Progression and homework

DateTopicsAssignments & resources
19/01The axiomatic method[G] pp. 1-15. On Pythagorean Mathematics:
A Light Dance on the Dust of the Ages, by T. Maudlin
29/06Euclid's postulates I - IV[G] pp. 15-19
9/08The fifth postulate[G] pp. 20-29. A visualization of the Pythagorean Theorem
39/13Geometric constructions[G] pp. 29-33
9/15More constructions, the Cartesian Method, $\pi$[G] pp. 33-40
49/20Review of elementary logic, 1/2[G] pp. 53-60 - Quiz 1
9/22Review of elementary logic, 2/2[G] pp. 60-68
59/27Incidence geometry: axioms and models[G] pp. 69-76
9/29Incidence geometry: examples, isomorphisms[G] pp.76-81
610/04Projective completion of affine planes[G] pp.81-85 - Quiz 2
10/06Models of projective geometry[G] pp.85-88
710/11Hilbert's axioms: betweennesss[G] pp.103-119 - Hilbert's radio address
10/13No classFall Break
810/18Hilbert's axioms: congruence[G] pp.119-129
10/20Hilbert's axioms: continuity[G] pp.129-138
910/25Neutral geometry[G] pp.161-168 - Quiz 3
10/27Measures of angles and segments[G] pp.169-173
1011/01Equivalence of Euclidean parallel postulates[G] pp.173-176
11/03Saccheri and Lambert quadrilaterals[G] pp.176-183
1111/08No classElection Day
11/10Angle sum of a triangle[G] pp.183-190 - Quiz 4
1211/15History of non-Euclidean geometry[G] pp.239-249
11/17Non-Euclidean Hilbert planes[G] pp.249-262
1311/22Meetings
11/24No classThanksgiving Break
1411/29Classification of parallels in hyperbolic planes
Consistency of (non-)Euclidean geometry
[G] pp.262-264
[G] pp.289-293
12/01The Beltrami and Poincaré models[G] pp.297-308
1512/06Hyperbolic geometry
12/08Wrap-upQuiz 5