Progression and homework

Presentation: written work should be done on one side only of 8.5''x11'' paper with smooth edges. Each problem should begin a new page.

Deadlines: papers should be turned in by 12:30pm on the due date. Extensions may (and usually will) be granted if requested at least twenty-four hours before the due date. Late homework will not be accepted.

DateReadingTopic
11/171.1 - 1.4Rational numbers
1/191.5 - 1.11Ordered sets
21/221.12 - 1.18Fields
1/241.19 - 1.21The real field
1/261.36 - 1.37Euclidean spaces
31/292.15 - 2.17Metric spaces
1/312.18 - 2.23Basic topology
2/02No class
42/052.24 - 2.28Basic topology
2/072.31 - 2.38Compactness
2/092.39 - 2.42Compactness
52/12Compactness in $\mathbb{R}^n$
2/142.45 - 2.47Connectedness
2/16Midterm 1
62/193.1 - 3.2Sequences
2/213.3Limits
2/233.4 - 3.7Subsequences and compactness
72/263.8 - 3.12Cauchy sequences and completeness
2/283.13 - 3.14Monotonicity, infinite limits
3/023.15 - 3.17Inferior and superior limits
83/12Loose ends, review
3/13Midterm 2
$\pi$3.20Special sequences
3/163.21 , 3.26Series: vocabulary and examples
93/193.22 - 3.25Cauchy's criterion, comparison theorems
3/213.27 - 3.29Series of non-negative terms
3/233.30 - 3.32Euler's number $e$
103/263.33 - 3.37The root and ratio tests
3/283.47 - 3.51Sums and products of series
3/303.43Alternating series
114/023.52 - 3.55Conditional convergence and rearrangement
4/04Sequences and series: wrap-up
4/064.1 - 4.4Limits of functions
124/094.5 - 4.8Continuity
4/114.9 - 4.11, 4.25 - 4.26Continuity
4/13Problem session
134/164.13 - 4.15Continuity and compactnesss
4/184.16 - 4.17Extreme values
4/204.22 - 4.23Continuity and connectedness
144/235.1 - 5.5Differentiability
4/255.6 - 5.11Mean value results
4/275.13 - 5.15L'Hospital's Rule, Taylor's expansion
5/02Final examination