Fourier Series

Due Apr. 30

Problem 1. Let $f : \mathbf{R} \longrightarrow \mathbf{C}$ be a 2π -periodic function, piecewise continuous, piecewise of class C^1 . For $x_0 \in \mathbf{R}$, we denote by $f(x_0^{\pm})$ the one-sided limit $\lim_{x \to x_0^{\pm}} f(x)$

and \tilde{f} is the function defined on **R** by

$$\tilde{f}(x) = \frac{f(x^+) + f(x^-)}{2}$$

The purpose of this problem is to establish the pointwise convergence of the Fourier series of f to \tilde{f} , that is, for any $x_0 \in \mathbf{R}$,

$$\sum_{n \in \mathbf{Z}} \hat{f}(n) e^{inx_0} = \tilde{f}(x_0).$$

(a) Verify that for any x_0 in **R**, the map

$$h \mapsto \frac{f(x_0 + h) + f(x_0 - h) - f(x_0^+) - f(x_0^-)}{h}$$

is bounded near 0.

First, we consider the case $x_0 = 0$. Denote by $S_N(f)(0)$ the partial sum $\sum_{n=-N}^{N} \hat{f}(n)$.

(b) Prove that

$$2\pi S_N(f)(0) = \int_0^\pi (f(x) + f(-x)) D_N(x) \, dx,$$

where $D_N(x)$ is the Dirichlet kernel $\frac{\sin(N+\frac{1}{2})x}{\sin\frac{x}{2}}$.

(c) Show that $2\pi (S_N(f)(0) - \tilde{f}(0))$ can be written as $\int_0^{\pi} g(x) \sin \left(N + \frac{1}{2}\right) x \, dx$ with g piecewise continuous and bounded near 0.

(d) Conclude and extend to the case of arbitrary x_0 .

From now on, we assume *f* continuous and piecewise of class C^1 . We denote by φ the function defined on **R** by

$$\varphi(x) = \begin{cases} f'(x) & \text{if } f \text{ is differentiable at } x, \\ \frac{f'(x^+) + f'(x^-)}{2} & \text{otherwise.} \end{cases}$$

(e) Verify the relation $\hat{\varphi}(n) = in \hat{f}(n)$ for all $n \in \mathbf{Z}$.

(f) Prove that the Fourier series of f converges normally to \tilde{f} . <u>*Hints*</u>: (d) Riemann-Lebesgue. Consider $f_{x_0} : x \mapsto f(x + x_0)$. (f) $|ab| \leq \frac{1}{2}(a^2 + b^2)$.

Problem 2. Let *f* be the 2π -periodic function on **R** defined by $f(x) = 1 - \frac{x^2}{\pi^2}$ for all $x \in [-\pi, \pi]$.

- 1. Compute the Fourier coefficients of f.
- 2. Deduce the sums of the series $\sum_{n\geq 1} \frac{1}{n^2}$, $\sum_{n\geq 1} \frac{(-1)^n}{n^2}$ and $\sum_{n\geq 1} \frac{1}{n^4}$.

<u>*Hints:*</u> Note that only the real part of $\hat{f}(n)$ is useful. Parseval.

Problem 3. Let $C_{2\pi}$ denote the space of 2π -periodic continuous functions on **R**, equipped with $\|\cdot\|_{\infty}$. For $N \in \mathbf{N}$, we define a linear functional φ_N on $C_{2\pi}$ by:

$$\varphi_N(f) = S_N(f)(0) = \sum_{n=-N}^N \hat{f}(n).$$

- (a) Verify that $C_{2\pi}$ is a Banach space.
- **(b)** Prove that $\varphi_N \in \mathcal{C}^*_{2\pi}$ and compute $\|\varphi_N\|$.
- (c) Show that $\|\varphi_N\| \ge \frac{2}{\pi} \int_0^{\frac{(2N+1)\pi}{2}} \left|\frac{\sin u}{u}\right| \, du$ for any $N \in \mathbf{N}$.
- (d) Prove the existence of a function in $C_{2\pi}$ whose Fourier series diverges at 0.

<u>*Hints*</u>: (b) Consider $f_{\varepsilon} = \frac{D_N}{|D_N| + \varepsilon}$. (d) Use the Principle of Uniform Boundedness.