Fourier Series

Due Apr. 30

Problem 1. Let $f: \mathbf{R} \longrightarrow \mathbf{C}$ be a 2π-periodic function, piecewise continuous, piecewise of class C^{1}. For $x_{0} \in \mathbf{R}$, we denote by $f\left(x_{0}^{ \pm}\right)$the one-sided limit $\lim _{x \rightarrow x_{0}^{ \pm}} f(x)$ and \tilde{f} is the function defined on \mathbf{R} by

$$
\tilde{f}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}
$$

The purpose of this problem is to establish the pointwise convergence of the Fourier series of f to \tilde{f}, that is, for any $x_{0} \in \mathbf{R}$,

$$
\sum_{n \in \mathbf{Z}} \hat{f}(n) e^{i n x_{0}}=\tilde{f}\left(x_{0}\right)
$$

(a) Verify that for any x_{0} in \mathbf{R}, the map

$$
h \mapsto \frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-f\left(x_{0}^{+}\right)-f\left(x_{0}^{-}\right)}{h}
$$

is bounded near 0 .
First, we consider the case $x_{0}=0$. Denote by $S_{N}(f)(0)$ the partial sum $\sum_{n=-N}^{N} \hat{f}(n)$.
(b) Prove that

$$
2 \pi S_{N}(f)(0)=\int_{0}^{\pi}(f(x)+f(-x)) D_{N}(x) d x
$$

where $D_{N}(x)$ is the Dirichlet kernel $\frac{\sin \left(N+\frac{1}{2}\right) x}{\sin \frac{x}{2}}$.
(c) Show that $2 \pi\left(S_{N}(f)(0)-\tilde{f}(0)\right)$ can be written as $\int_{0}^{\pi} g(x) \sin \left(N+\frac{1}{2}\right) x d x$ with g piecewise continuous and bounded near 0 .
(d) Conclude and extend to the case of arbitrary x_{0}.

From now on, we assume f continuous and piecewise of class C^{1}. We denote by φ the function defined on \mathbf{R} by

$$
\varphi(x)=\left\{\begin{array}{l}
f^{\prime}(x) \text { if } f \text { is differentiable at } x, \\
\frac{f^{\prime}\left(x^{+}\right)+f^{\prime}\left(x^{-}\right)}{2} \text { otherwise. }
\end{array}\right.
$$

(e) Verify the relation $\hat{\varphi}(n)=i n \hat{f}(n)$ for all $n \in \mathbf{Z}$.
(f) Prove that the Fourier series of f converges normally to \tilde{f}.

Hints: (d) Riemann-Lebesgue. Consider $f_{x_{0}}: x \mapsto f\left(x+x_{0}\right)$. (f) $|a b| \leq \frac{1}{2}\left(a^{2}+b^{2}\right)$.

Problem 2. Let f be the 2π-periodic function on \mathbf{R} defined by $f(x)=1-\frac{x^{2}}{\pi^{2}}$ for all $x \in[-\pi, \pi]$.

1. Compute the Fourier coefficients of f.
2. Deduce the sums of the series $\sum_{n \geq 1} \frac{1}{n^{2}} \quad, \sum_{n \geq 1} \frac{(-1)^{n}}{n^{2}}$ and $\sum_{n \geq 1} \frac{1}{n^{4}}$.

Hints: Note that only the real part of $\hat{f}(n)$ is useful. Parseval.

Problem 3. Let $\mathcal{C}_{2 \pi}$ denote the space of 2π-periodic continuous functions on \mathbf{R}, equipped with $\|\cdot\|_{\infty}$. For $N \in \mathbf{N}$, we define a linear functional φ_{N} on $\mathcal{C}_{2 \pi}$ by:

$$
\varphi_{N}(f)=S_{N}(f)(0)=\sum_{n=-N}^{N} \hat{f}(n)
$$

(a) Verify that $\mathcal{C}_{2 \pi}$ is a Banach space.
(b) Prove that $\varphi_{N} \in \mathcal{C}_{2 \pi}^{*}$ and compute $\left\|\varphi_{N}\right\|$.
(c) Show that $\left\|\varphi_{N}\right\| \geq \frac{2}{\pi} \int_{0}^{\frac{(2 N+1) \pi}{2}}\left|\frac{\sin u}{u}\right| d u$ for any $N \in \mathbf{N}$.
(d) Prove the existence of a function in $\mathcal{C}_{2 \pi}$ whose Fourier series diverges at 0.

Hints: (b) Consider $f_{\varepsilon}=\frac{D_{N}}{\left|D_{N}\right|+\varepsilon}$. (d) Use the Principle of Uniform Boundedness.

