Duality

Due Apr. 12

Problem 1. Let E and F be Banach spaces and $T: E \longrightarrow F$ a linear map such that

$$
\forall \varphi \in F^{*} \quad, \quad \varphi \circ T \in E^{*}
$$

Prove that T is bounded.

Problem 2. Let $p \in[1,+\infty)$ and denote by q the only element of $(1,+\infty]$ such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

The purpose of this problem is to identify $\ell^{p}(\mathbf{N})^{*}$ with $\ell^{q}(\mathbf{N})$. To this end, we shall prove that the map Φ defined on ℓ^{q} by

$$
\Phi(u) v=\sum_{n \geq 0} u_{n} v_{n}
$$

is an isometry.
(a) Recall Hölder's Inequality and verify that $\Phi(u)$ is a linear functional on $\ell^{p}(\mathbf{N})$ for each $u \in \ell^{q}(\mathbf{N})$ and that Φ is linear.
(b) Let $u \in \ell^{q}(\mathbf{N})$. Prove that $\Phi(u) \in \ell^{p}(\mathbf{N})^{*}$ and that $\|\Phi(u)\| \leq\|u\|_{q}$.

Let $u \in \ell^{q}(\mathbf{N})$ be fixed.
(c) Assume $p>1$. Verify that the sequence v defined by

$$
v_{n}=\|u\|_{q}^{1-q} \operatorname{sign}\left(u_{n}\right)\left|u_{n}\right|^{q-1}
$$

is in ℓ^{p} and compute $\Phi(u) v$.
(d) Let $p=1$. For $\varepsilon>0$, find v on the unit sphere of $\ell^{1}(\mathbf{N})$ such that

$$
|\Phi(u) v|>\|u\|_{\infty}-\varepsilon .
$$

(e) What have we proved so far?
(f) Prove that finitely supported sequences are dense in $\ell^{p}(\mathbf{N})$ for $p \geq 1$.
(g) Does the result hold in $\ell^{\infty}(\mathbf{N})$?

For $n \in \mathbf{N}$, define the sequence e^{n} by $e_{k}^{n}=\delta_{k, n}$, that is

$$
e^{n}=\{\overbrace{0,0, \ldots, 0}^{n}, 1,0,0, \ldots\}
$$

Let $\varphi \in \ell^{p}(\mathbf{N})^{*}$ and $\gamma_{n}=\varphi\left(e^{n}\right)$. For $N \in \mathbf{N}$, define a sequence δ^{N} by

$$
\delta^{N}=\left\{\gamma_{0}\left|\gamma_{0}\right|^{q-2}, \gamma_{1}\left|\gamma_{1}\right|^{q-2}, \ldots, \gamma_{N}\left|\gamma_{N}\right|^{q-2}, 0,0, \ldots\right\}
$$

(h) Calculate $\varphi\left(\delta^{N}\right)$.
(i) Prove that $\sum_{n=0}^{N}\left|\gamma_{n}\right|^{q} \leq\|\varphi\|\left(\sum_{n=0}^{N}\left|\gamma_{n}\right|^{q}\right)^{\frac{1}{p}}$.
(j) Deduce that the N-truncation of the sequence $\gamma=\left\{\gamma_{n}\right\}_{n \in \mathbf{N}}$ has norm less than $\|\varphi\|$ in $\ell^{q}(\mathbf{N})$.
(k) Conclude that γ is in $\ell^{q}(\mathbf{N})$.
(1) Verify that $\varphi(u)=\Phi(\gamma)(u)$ if u is finitely supported and conclude.
(m) Prove the existence of a bounded linear functional on $\ell^{\infty}(\mathbf{N})$ that is not of the form $\Phi(u)$ with $u \in \ell^{1}(\mathbf{N})$.
Hint: consider the subspace C of convergent sequences and study the map:

$$
\lambda: v \mapsto \lim _{n \rightarrow \infty} v_{n}
$$

Problem 3. Let E_{0} and F be the subsets of $\ell^{1}(\mathbf{N})$ defined by

$$
E_{0}=\left\{u \in \ell^{1}(\mathbf{N}), \forall n \geq 0, u_{2 n}=0\right\}
$$

and

$$
F=\left\{u \in \ell^{1}(\mathbf{N}), \forall n \geq 1, u_{2 n}=2^{-n} u_{2 n-1}\right\}
$$

(a) Verify that E_{0} and F are closed subspaces and that $\overline{E_{0}+F}=\ell^{1}(\mathbf{N})$.

Hint: show that E_{0} and F are intersections of closed hyperplanes.

Let v be the sequence defined by $v_{2 n}=2^{-n}$ and $v_{2 n-1}=0$.
(b) Verify that v is in $\ell^{1}(\mathbf{N})$ and that $v \notin E_{0}+F$.
(c) Let $E=E_{0}-v$. Prove that E and F are closed disjoint convex subsets of $\ell^{1}(\mathbf{N})$ that cannot be separated in the sense that there exists no couple (φ, α) in $\ell^{1}(\mathbf{N})^{*} \times \mathbf{R}$ such that $\varphi \neq 0$ and

$$
\varphi(e) \leq \alpha \leq \varphi(f)
$$

for all $e \in E, f \in F$.

