MATH 428 Spring 2023

Duality

Due Apr. 12

Problem 1. Let *E* and *F* be Banach spaces and $T: E \longrightarrow F$ a linear map such that

$$\forall \varphi \in F^* \quad , \quad \varphi \circ T \in E^*.$$

Prove that T is bounded.

Problem 2. Let $p \in [1, +\infty)$ and denote by q the only element of $(1, +\infty]$ such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

The purpose of this problem is to identify $\ell^p(\mathbf{N})^*$ with $\ell^q(\mathbf{N})$. To this end, we shall prove that the map Φ defined on ℓ^q by

$$\Phi(u)v = \sum_{n>0} u_n v_n$$

is an isometry.

- (a) Recall Hölder's Inequality and verify that $\Phi(u)$ is a linear functional on $\ell^p(\mathbf{N})$ for each $u \in \ell^q(\mathbf{N})$ and that Φ is linear.
- **(b)** Let $u \in \ell^q(\mathbf{N})$. Prove that $\Phi(u) \in \ell^p(\mathbf{N})^*$ and that $\|\Phi(u)\| \le \|u\|_q$.

Let $u \in \ell^q(\mathbf{N})$ be fixed.

(c) Assume p > 1. Verify that the sequence v defined by

$$v_n = ||u||_q^{1-q} \operatorname{sign}(u_n) |u_n|^{q-1}$$

is in ℓ^p and compute $\Phi(u)v$.

(d) Let p=1. For $\varepsilon>0$, find v on the unit sphere of $\ell^1(\mathbf{N})$ such that

$$|\Phi(u)v| > ||u||_{\infty} - \varepsilon.$$

MATH 428 Spring 2023

- (e) What have we proved so far?
- **(f)** Prove that finitely supported sequences are dense in $\ell^p(\mathbf{N})$ for $p \geq 1$.
- (g) Does the result hold in $\ell^{\infty}(\mathbf{N})$?

For $n \in \mathbb{N}$, define the sequence e^n by $e_k^n = \delta_{k,n}$, that is

$$e^n = \{0, 0, \dots, 0, 1, 0, 0, \dots\}.$$

Let $\varphi \in \ell^p(\mathbf{N})^*$ and $\gamma_n = \varphi(e^n)$. For $N \in \mathbf{N}$, define a sequence δ^N by

$$\delta^N = \{ \gamma_0 | \gamma_0 |^{q-2}, \gamma_1 | \gamma_1 |^{q-2}, \dots, \gamma_N | \gamma_N |^{q-2}, 0, 0, \dots \}.$$

- **(h)** Calculate $\varphi(\delta^N)$.
- (i) Prove that $\sum_{n=0}^{N} |\gamma_n|^q \le ||\varphi|| \left(\sum_{n=0}^{N} |\gamma_n|^q\right)^{\frac{1}{p}}$.
- (j) Deduce that the N-truncation of the sequence $\gamma = \{\gamma_n\}_{n \in \mathbb{N}}$ has norm less than $\|\varphi\|$ in $\ell^q(\mathbb{N})$.
- **(k)** Conclude that γ is in $\ell^q(\mathbf{N})$.
- (1) Verify that $\varphi(u) = \Phi(\gamma)(u)$ if u is finitely supported and conclude.
- (m) Prove the existence of a bounded linear functional on $\ell^{\infty}(\mathbf{N})$ that is not of the form $\Phi(u)$ with $u \in \ell^1(\mathbf{N})$.

 $\underline{\mathit{Hint}}$: consider the subspace C of convergent sequences and study the map:

$$\lambda: v \mapsto \lim_{n \to \infty} v_n.$$

Problem 3. Let E_0 and F be the subsets of $\ell^1(\mathbf{N})$ defined by

$$E_0 = \{ u \in \ell^1(\mathbf{N}), \forall n \ge 0, u_{2n} = 0 \}$$

and

$$F = \{ u \in \ell^1(\mathbf{N}), \forall n \ge 1, u_{2n} = 2^{-n} u_{2n-1} \}.$$

(a) Verify that E_0 and F are closed subspaces and that $\overline{E_0 + F} = \ell^1(\mathbf{N})$.

<u>Hint</u>: show that E_0 and F are intersections of closed hyperplanes.

MATH 428 Spring 2023

Let v be the sequence defined by $v_{2n}=2^{-n}$ and $v_{2n-1}=0$.

- **(b)** Verify that v is in $\ell^1(\mathbf{N})$ and that $v \notin E_0 + F$.
- (c) Let $E=E_0-v$. Prove that E and F are closed disjoint convex subsets of $\ell^1(\mathbf{N})$ that cannot be separated in the sense that there exists no couple (φ,α) in $\ell^1(\mathbf{N})^* \times \mathbf{R}$ such that $\varphi \neq 0$ and

$$\varphi(e) \le \alpha \le \varphi(f)$$

for all $e \in E$, $f \in F$.