Linear Operators on Banach Spaces

Elements of Solution

1. (*Integration.*) Consider, for $x_0 \in [a, b]$, the linear map $\mathcal{I}_{x_0} : C([a, b]) \longrightarrow C([a, b])$ defined by

$$\mathcal{I}_{x_0}f(x) = \int_{x_0}^x f(t) \, dt.$$

(a) Prove that \mathcal{I}_{x_0} is a bounded operator and that $\|\mathcal{I}_{x_0}\|_{\text{op}} \leq b - a$.

(b) Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of functions with continuous derivatives such that:

- the sequence $\{f'_n\}_{n \in \mathbb{N}}$ converges uniformly on [a, b];
- there exists a point $x_0 \in [a, b]$ such that $\{f_n(x_0)\}_{n \in \mathbb{N}}$ converges.

Prove that $\{f_n\}_{n \in \mathbb{N}}$ converges in C([a, b]).

Solution. (a) It suffices to show that b - a is a Lipschitz constant for \mathcal{I}_{x_0} . Denote by I(x) the interval with bounds x_0 and x. Since

$$|\mathcal{I}_{x_0}f(x)| \le \int_{I(x)} |f(t)| \, dt \le |x - x_0| \, ||f||_{\infty} \le (b - a) ||f||_{\infty}$$

holds for any $x \in [a, b]$, we see that $\|\mathcal{I}_{x_0}f\|_{\infty} \leq (b-a) \leq \|f\|_{\infty}$.

(b) Denote by g the (uniform) limit of the sequence $\{f'_n\}_{n \in \mathbb{N}}$ and $\ell = \lim_n f_n(x_0)$. Then $\ell + \mathcal{I}_{x_0}(g)$ is a continuous function. The Fundamental Theorem of Calculus gives

$$f_n(x) = f_n(x_0) + \mathcal{I}_{x_0}g(x)$$

for any $x \in [a, b]$, so that

$$|f_n(x) - f(x)| \le |f_n(x_0) - \ell| + |\mathcal{I}_{x_0}(f'_n - g)| \le |f_n(x_0) - \ell| + (b - a)||f'_n - g||_{\infty}$$

and both terms in the right-hand side can be made arbitrarily small for n large enough, independently of x.

2. (*Differentiation.*) Denote by *E* the Banach space C([0, 1]) equipped with supremum norm and let $E^1 = C^1([0, 1])$ be the subspace of all functions that admit a continuous derivative.

The purpose of this problem is to study properties of the differentiation operator

(a) Is *D* bounded?

(b) Is *D* closed?

(c) Is E^1 closed in E? If not, determine its closure.

Let *F* be a closed subspace of *E*, contained in E^1 .

(d) Prove that the restriction of *D* to *F* is Lipschitz.

(e) Prove that *F* is necessarily finite-dimensional.

Solution. (a) No: let f be a function of class C^1 on \mathbb{R} such that $f'(0) \neq 0$ for some $x_0 \in [0,1]$ and define for $n \in \mathbb{N}$, $f_n(x) = f(nx)$ for $x \in [0,1]$. The sequence $\{f_n\}_{n \in \mathbb{N}}$ is bounded but

 $||Df_n||_{\infty} \ge f'_n(0) = n|f'(0)|$

so Df_n is unbounded.

(b) Yes, as a direct consequence of the result established in the previous problem.

(c) The space E^1 contains all polynomial functions, and is therefore dense in E by Weierstrass' Theorem. Being a strict subspace, it is in particular not closed.

(d) The same argument as in (b) shows that D is closed. Since F is closed in E, it is complete and the Closed Graph Theorem applies, implying that D is bounded on F, hence Lipschitz.

(e) By Riesz' Theorem, it suffices to prove that the closed unit ball \mathbb{B}_1 in F is compact. If C be a Lipschitz constant for D, then

$$\|f'\|_{\infty} \le C$$

for every f in \mathbb{B}_1 . The Mean Value Theorem implies that \mathbb{B}_1 is equicontinuous, hence compact by Ascoli-Arzelà.

3. (*Banach-Steinhaus' Uniform Boundedness Principle.*) Let *E* be a Banach space, *F* a normed linear space and \mathcal{T} a family of bounded operators between *E* and *F*. The purpose of this problem is to prove the equivalence of the following statements:

- (i) \mathcal{T} is bounded in $\mathcal{B}(E, F)$.
- (ii) For every x in E, the family $\mathcal{T}_x = \{Tx : T \in \mathcal{T}\}$ is bounded in F.
- (a) Check that (i) implies (ii).

For $n \in \mathbf{N}$, let

$$E_n = \{ x \in E : ||Tx|| \le n \text{ for all } T \text{ in } \mathcal{T} \}.$$

(b) Verify that the sets E_n are closed and that $E = \bigcup_{n \in \mathbb{N}} E_n$.

(c) Prove the existence of a point $x_0 \in E$, a real number r > 0 and an integer n_0 such that

 $\forall T \in \mathcal{T}, \|x - x_0\| < r \quad \Rightarrow \quad \|Tx\| \le n_0.$

(d) Find a common Lipschitz constant for all T in \mathcal{T} and conclude.

Solution. (a) If \mathcal{T} is bounded, there exists $M \ge 0$ such that $||T||_{op} \le M$ for any $T \in \mathcal{T}$. Since M is a Lipschitz constant for every T, it follows that \mathcal{T}_x is contained in the closed ball centered at 0, with radius M||x||.

(b) The sets E_n are closed as intersections of closed sets, namely the inverse images of $B_c(0_F, n)$ under the elements of \mathcal{T} .

That their union exhausts *E* follows from the assumption that every T_x is bounded, hence included in some $B_c(0_F, n)$.

(c) It follows from Baire's Theorem that at least one of the sets E_n has non-empty interior, hence contains an open ball. Denoting by n_0 the index of that particular non-meager set, x_0 the center of the ball and r its radius immediately gives the desired statement.

(d) The previous result shows that the operators $T \in \mathcal{T}$ are uniformly bounded on the open ball $B(x_0, r)$ hence also on the closed ball $B_c(x_0, \rho)$ with $0 < \rho < r$.

By linearity of the elements of \mathcal{T} and isometry of translations, they are also uniformly bounded on $B_c(0_E, \rho)$ by some constant M, from which it follows that $\frac{M}{\rho}$ is a joint Lipschitz constant for all $T \in \mathcal{T}$.