Linear Operators on Banach Spaces

Due Apr. 8

Problem 1. Consider, for $x_0 \in [a, b]$, the linear map $\mathcal{I}_{x_0} : C([a, b]) \longrightarrow C([a, b])$ defined by

$$\mathcal{I}_{x_0}f(x) = \int_{x_0}^x f(t) \, dt.$$

(a) Prove that \mathcal{I}_{x_0} is a bounded operator and that $\|\mathcal{I}_{x_0}\|_{\text{op}} \leq b - a$.

(b) Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of functions with continuous derivatives such that:

- the sequence $\{f'_n\}_{n \in \mathbb{N}}$ converges uniformly on [a, b];
- there exists a point $x_0 \in [a, b]$ such that $\{f_n(x_0)\}_{n \in \mathbb{N}}$ converges.

Prove that $\{f_n\}_{n \in \mathbb{N}}$ converges in C([a, b]).

Problem 2. Denote by *E* the Banach space C([0, 1]) equipped with supremum norm and let $E^1 = C^1([0, 1])$ be the subspace of all functions that admit a continuous derivative.

The purpose of this problem is to study properties of the differentiation operator

$$\begin{array}{cccc} D:E^1 & \longrightarrow & E\\ f & \longmapsto & f' \end{array}$$

(a) Is *D* bounded?

(b) Is *D* closed?

(c) Is E^1 closed in E? If not, determine its closure.

Let *F* be a closed subspace of *E*, contained in E^1 .

(d) Prove that the restriction of *D* to *F* is Lipschitz.

(e) Prove that *F* is necessarily finite-dimensional.

Problem 3. Let *E* be a Banach space, *F* a normed linear space and \mathcal{T} a family of bounded operators between *E* and *F*. The purpose of this problem is to prove the equivalence of the following statements:

- (i) \mathcal{T} is bounded in $\mathcal{B}(E, F)$.
- (ii) For every x in E, the family $\mathcal{T}_x = \{Tx : T \in \mathcal{T}\}$ is bounded in F.

(a) Check that (i) implies (ii).

For $n \in \mathbf{N}$, let

$$E_n = \{x \in E : ||Tx|| \le n \text{ for all } T \text{ in } \mathcal{T}\}.$$

(b) Verify that the sets E_n are closed and that $E = \bigcup_{n \in \mathbf{N}} E_n$.

(c) Prove the existence of a point $x_0 \in E$, a real number r > 0 and an integer n_0 such that

$$\forall T \in \mathcal{T}, \|x - x_0\| < r \quad \Rightarrow \quad \|Tx\| \le n_0.$$

(d) Find a common Lipschitz constant for all T in \mathcal{T} and conclude.