Normed Linear Spaces

Due Mar. 27

Problem 1. Recall that two norms N_1 and N_2 on a linear space *E* are said *equivalent* if there exist constants α and β such that

$$\alpha N_1(x) \le N_2(x) \le \beta N_1(x)$$

for all $x \in E$.

(a) Prove that the norms $\|_\|_1$, $\|_\|_2$ and $\|_\|_\infty$ on \mathbb{R}^n are equivalent.

(b) For $X = (x_1, \ldots, x_n)$ fixed in \mathbb{R}^n , determine $\lim_{p \to \infty} ||X||_p$.

(c) Prove that equivalent norms have the same bounded sets.

Problem 2. Denote by \mathcal{W} the set of non-negative continuous functions on [0, 1] that vanish finitely many times (possibly zero). For $\varphi \in \mathcal{W}$ and $f \in C([0, 1])$, let

$$||f||_{\varphi} = \sup_{x \in [0,1]} |f(x)\varphi(x)|.$$

(a) Prove that $\|_\|_{\varphi}$ is a norm on C([0,1]).

(b) Assume φ_1 and φ_2 are strictly positive elements of W.

Prove that $\|_\|_{\varphi_1}$ and $\|_\|_{\varphi_2}$ are equivalent.

From now on, let $\varphi_1(x) = x$ and $\varphi_2(x) = x^2$.

(c) Verify that $||f||_{\varphi_2} \leq ||f||_{\varphi_1}$ for every $f \in C([0,1])$.

(d) Prove that $\|_\|_{\varphi_1}$ and $\|_\|_{\varphi_2}$ are not equivalent.

<u>*Hint*</u>: consider the sequence of functions $f_n : x \mapsto (1-x)^n$.

Problem 3. If $A = \{a_n\}_{n \in \mathbb{N}}$ is a sequence of real numbers and $U = \{u_n\}_{n \in \mathbb{N}} \in \mathcal{B}(\mathbb{N}, \mathbb{R})$ is a bounded sequence, denote by $N_A(U)$ the (possibly divergent) series

$$N_A(U) = \sum_{n \in \mathbf{N}} a_n |u_n|.$$

(a) Find a necessary and sufficient condition on A for N_A to be a norm on $\mathcal{B}(\mathbf{N}, \mathbf{R})$.

(b) Under the condition of (a), compare N_A and $\|_\|_{\infty}$. Are they equivalent?

Problem 4. Denote by T the linear map from $\mathbf{R}^{\mathbf{N}}$ to itself defined by

$$T(u)_n = \frac{u_n}{n+1}$$
, for $u = \{u_n\}_{n \in \mathbb{N}}$.

(a) Prove that T restricts to a bounded operator T_0 from $(c_{00}(\mathbf{N}), \|_{-}\|_{\infty})$ to itself.

(b) Verify that T_0 is invertible. Is T_0^{-1} bounded?

(c) Discuss the restriction of T to $c_0(\mathbf{N})$.

(d) (Optional.) Identify $c_{00}(\mathbf{N})$ with the space of polynomial functions on **R**. Express T_0 and T_0^{-1} under this identification.

<u>*Hint*</u>: denote by δ_n the sequence defined by $\delta_n(k) = 0$ for $k \neq n$ and $\delta_n(n) = 1$. Notice that it is a Hamel basis for $c_{00}(\mathbf{N})$.