Applications of Baire's Theorem

Elements of Solution

1. (*Baire's Simple Limit Theorem*) Let (E, d) and (F, δ) be metric spaces.

Assume *E* complete and consider a sequence $\{f_n\}_{n\geq 1}$ of continuous maps from *E* to *F* that converges pointwise to $f : E \longrightarrow F$.

(a) Consider, for $n \ge 1$ and $\varepsilon > 0$, the set $F_{n,\varepsilon} = \{x \in E, \forall p \ge n, \delta(f_n(x), f_p(x)) \le \varepsilon\}.$

Show that $\Omega_{\varepsilon} = \bigcup_{n \ge 1} F_{n,\varepsilon}$ is a dense open subset of *E*.

(b) Show that every point $x_0 \in \Omega_{\varepsilon}$ has a neighborhood \mathcal{N} such that

$$\forall x \in \mathcal{N}, \ \delta(f(x_0), f(x)) \le 3\varepsilon.$$

(c) Prove that f is continuous at every point of $\Omega = \bigcap_{n \ge 1} \Omega_{\frac{1}{n}}$ and that $\overline{\Omega} = E$.

Solution. (a) According to the corollary of Baire's Theorem proved in class, it suffices to prove that the sets $F_{n,\varepsilon}$ are closed and cover E. For given n and p, the set $\{x \in E, \delta(f_n(x), f_p(x)) \leq \varepsilon\}$ is closed as the inverse image of $[0, \varepsilon]$, closed, under the map $x \mapsto \delta(f_n(x), f_p(x))$, continuous as composed of continuous functions. Taking the intersection over $p \geq n$ gives $F_{n,\varepsilon}$ closed. That the union of these sets covers E follows from the pointwise convergence of the sequence $\{f_n\}_{n \in \mathbb{N}}$.

(b) Let *n* be such that $x_0 \in \overset{\mathbf{o}}{F_{n,\varepsilon}}$. Since $\overset{\mathbf{o}}{F_{n,\varepsilon}}$ is open and f_n is continuous, there exists a neighborhood \mathcal{N} of x_0 included in $\overset{\mathbf{o}}{F_{n,\varepsilon}}$ such that

 $\delta(f_n(x_0), f_n(x)) \leq \varepsilon \quad \text{for all } x \in \mathcal{N}.$

Since $\mathcal{N} \subset \overset{\mathbf{o}}{F_{n,\varepsilon}}$, we have

 $\delta(f_n(x), f_p(x)) \le \varepsilon$ for all $x \in \mathcal{N}$ and $p \ge n$.

Letting $p \to \infty$ in this inequality, we get

 $\delta(f_n(x), f(x)) \leq \varepsilon$ for all $x \in \mathcal{N}$.

Now, by the triangle inequality,

$$\delta(f(x), f(x_0)) \leq \delta(f(x), f_n(x)) + \delta(f_n(x), f_n(x_0)) + \delta(f_n(x_0), f(x_0))$$

$$\leq \varepsilon + \varepsilon + \varepsilon$$

for all $x \in \mathcal{N}$.

(c) Let $x_0 \in \Omega$ and $\varepsilon > 0$. Fix *n* such that $\frac{1}{n} < \frac{\varepsilon}{3}$. By the previous result, there is a neighborhood \mathcal{N} of x_0 such that $\delta(f(x), f(x_0)) \leq \varepsilon$ for all $x \in \mathcal{N}$, which proves continuity of *f* at x_0 . The fact that Ω is dense in *E* follows from (a) and the Baire Category Theorem.

2. (*Continuity of derivatives.*) Let f be differentiable on **R**. Show that f' is continuous on a dense set.

<u>Hint</u>: Apply the result of the previous problem to a well-chosen sequence.

Solution. Apply the previous result to the sequence $(f_n)_{n\geq 1}$ defined by:

$$f_n(x) = \frac{f\left(x + \frac{1}{n}\right) - f(x)}{1/n}$$

3. (*Hermite's Dreadful Plague.*) The purpose of this problem is to show that nowhere differentiable functions are dense in $E = C([0,1], \mathbf{R})$ equipped with its ordinary norm.

Consider, for $\varepsilon > 0$ and $n \in \mathbf{N}$,

$$U_{n,\varepsilon} = \left\{ f \in E \ , \ \forall x \in [0,1] \ , \ \exists y \in [0,1] \ , \ |x-y| < \varepsilon \quad \text{and} \quad \left| \frac{f(y) - f(x)}{y-x} \right| > n \right\}.$$

(a) Prove that every set $U_{n,\varepsilon}$ has a close complement.

For $p \ge 1$ integer, let v_p be a continuous function on [0, 1], affine on each interval $\left[\frac{k}{2p}, \frac{k+1}{2p}\right]$ and such that $v_p\left(\frac{k}{2p}\right) = 0$ (resp. = 1) if k is even (resp. odd).

(b) Sketch the graphs of v_1 , v_2 and v_3 .

Let *f* be a function of class C^1 on [0, 1] and $g_p = f + \lambda v_p$ with $\lambda > 0$.

- (c) Verify that g_p can be chosen arbitrarily close to f in $C([0, 1], \mathbf{R})$.
- (d) Prove that

$$\left|\frac{g_p(x) - g_p(y)}{x - y}\right| \ge \lambda \left|\frac{v_p(x) - v_p(y)}{x - y}\right| - \|f'\|_{\infty}$$

for $x \neq y$ in [0, 1]

(e) Verify that
$$g_p \in U_{n,\varepsilon}$$
 whenever $p > \frac{n + \|f'\|_{\infty}}{2\lambda}$.

(f) Prove that $U_{n,\varepsilon}$ is dense in E.

(g) Conclude.

Solution. (a) Observe that

$$U_{n,\varepsilon}^{c} = \left\{ f \in E , \ \exists x \in [0,1] , \ \forall y \in [0,1] , \ |x-y| < \varepsilon \Rightarrow \left| \frac{f(y) - f(x)}{y-x} \right| \le n \right\}.$$

and let $\{f_k\}$ be a sequence in $U_{n,\varepsilon}^c$ that converges to f in E. For each k, there exists $x_k \in [0,1]$ such that $|x_k - y| < \varepsilon \Rightarrow \left| \frac{f(y) - f(x_k)}{y - x_k} \right| \le n$. Since [0,1] is compact, $\{x_k\}$ has a convergent subsequence $\{x_{\varphi(k)}\}$. Denote x its limit and let y in [0,1] be such that $0 < |x - y| < \varepsilon$. For k large enough, one has $0 < |x_{\varphi(k)} - y| < \varepsilon$ so that $\left| \frac{f_{\varphi(k)}(y) - f_{\varphi(k)}(x_{\varphi(k)})}{y - x_{\varphi(k)}} \right| \le n$ and the uniform convergence $f_{\varphi(k)} \to f$ implies that $\left| \frac{f(y) - f(x)}{y - x} \right| \le n$, so that f belongs to $U_{n,\varepsilon}^c$.

(c) The functions g_p are continuous as combinations of continuous functions and $||f - g_p||_{\infty} \leq \lambda$.

(d) If
$$x \neq y$$
 in $[0, 1]$, then

$$\left|\frac{g_p(x) - g_p(y)}{x - y}\right| \geq \lambda \left|\frac{v_p(x) - v_p(y)}{x - y}\right| - \left|\frac{f(x) - f(y)}{x - y}\right|$$
$$\geq \lambda \left|\frac{v_p(x) - v_p(y)}{x - y}\right| - \|f'\|_{\infty}.$$

(e) Let $p > \frac{n + ||f'||_{\infty}}{2\lambda}$. For any $x \in [0, 1]$, there exists $y \in [0, 1]$ within ε of x and in the same interval $\left[\frac{k}{2p}, \frac{k+1}{2p}\right]$. By definition of v_p , the latter implies that $\left|\frac{v_p(x) - v_p(y)}{x - y}\right| = 2p$. Then

$$\left|\frac{g_p(x) - g_p(y)}{x - y}\right| \ge 2p\lambda - \|f'\|_{\infty} > n$$

so that $g_p \in U_{n,\varepsilon}$.

(f) Polynomials are dense in E, and we just proved that functions of class C^1 can be approximated by elements of $U_{n,\varepsilon}$, which is therefore dense in E.

(g) The Baire Category Theorem ensures that $U = \bigcap_{n \ge 1} U_{\frac{1}{n},n}$ is dense in *E*. Let $f \in U$ and $x \in [0,1]$. Then there is a sequence $\{x_n\}$ such that

$$0 < |x_n - x| < \frac{1}{n}$$
 and $\left| \frac{f(x_n) - f(y)}{x_n - y} \right| > n$,

which prevents f from being differentiable at x.

'Je me détourne avec effroi et horreur de cette plaie lamentable des fonctions continues qui n'ont point de dérivées.'

C. Hermite, 1893.