Applications of Baire's Theorem

Due Mar. 3rd

Problem 1. Let (E, d) and (F, δ) be metric spaces.

Assume *E* complete and consider a sequence $\{f_n\}_{n\geq 1}$ of continuous maps from *E* to *F* that converges pointwise to $f : E \longrightarrow F$.

(a) Consider, for $n \ge 1$ and $\varepsilon > 0$, the set $F_{n,\varepsilon} = \{x \in E, \forall p \ge n, \delta(f_n(x), f_p(x)) \le \varepsilon\}.$

Show that $\Omega_{\varepsilon} = \bigcup_{n \ge 1} \overset{\mathbf{o}}{F_{n,\varepsilon}}$ is a dense open subset of *E*.

(b) Show that every point $x_0 \in \Omega_{\varepsilon}$ has a neighborhood \mathcal{N} such that

$$\forall x \in \mathcal{N}, \ \delta(f(x_0), f(x)) \le 3\varepsilon.$$

(c) Prove that f is continuous at every point of $\Omega = \bigcap_{n \ge 1} \Omega_{\frac{1}{n}}$ and that $\overline{\Omega} = E$.

Problem 2. Let *f* be differentiable on **R**. Show that *f'* is continuous on a dense set. <u>*Hint*</u>: Apply the result of the previous problem to a well-chosen sequence.

Problem 3. (*Optional.*) The purpose of this problem is to show that nowhere differentiable functions are dense in $E = C([0, 1], \mathbf{R})$ equipped with its ordinary norm. Consider, for $\varepsilon > 0$ and $n \in \mathbf{N}$,

$$U_{n,\varepsilon} = \left\{ f \in E , \forall x \in [0,1], \exists y \in [0,1], |x-y| < \varepsilon \text{ and } \left| \frac{f(y) - f(x)}{y-x} \right| > n \right\}.$$

(a) Prove that every set $U_{n,\varepsilon}$ has a closed complement.

For $p \ge 1$ integer, let v_p be a continuous function on [0, 1], affine on each interval $\left[\frac{k}{2p}, \frac{k+1}{2p}\right]$ and such that $v_p\left(\frac{k}{2p}\right) = 0$ (resp. = 1) if k is even (resp. odd).

(b) Sketch the graphs of v_1 , v_2 and v_3 .

Let f be a function of class C^1 on [0, 1] and $g_p = f + \lambda v_p$ with $\lambda > 0$.

(c) Verify that g_p can be chosen arbitrarily close to f in $C([0, 1], \mathbf{R})$.

(d) Prove that

$$\left|\frac{g_p(x) - g_p(y)}{x - y}\right| \ge \lambda \left|\frac{v_p(x) - v_p(y)}{x - y}\right| - \|f'\|_{\infty}$$

for $x \neq y$ in [0, 1]

- (e) Verify that $g_p \in U_{n,\varepsilon}$ whenever $p > \frac{n + \|f'\|_{\infty}}{2\lambda}$.
- (f) Prove that $U_{n,\varepsilon}$ is dense in *E*.

(g) Conclude.