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Completeness - Topology in C(X)

Elements of Solution

1. (Summable sequences.) Consider the space ¢!(N) of sequences U = {u, },en such
that the series ) |u,| converges, equipped with the distance d; associated with the

n>0
Ul = .

n>0

norm

(a) Prove that (' (N) is complete.
Consider the subspace cy(N) of finitely supported sequences.

(b) Is it complete for d;? If not, determine its completion.

Solution. (a) Let {U"},en be a Cauchy sequence in ¢! (N). Let ¢ > 0 and consider p
and ¢ large enough so that d; (U? — UY) < ¢, that is,

(%) > lub —ul| <e.

neN

n

sequence {uF }en is Cauchy in R complete. Denote by U = {u, },en the pointwise
limit defined by

In particular, [u? — ul| < ¢ for any p,¢,n € N, showing that, for any fixed n, the

U, = lim ui‘l

Let us prove that U € H(N). Cauchy sequences are bounded, so there exists A/ > 0
such that ||U*||; < M for all k. In particular, partial sums are bounded by M as well:
forany N > 1,

N
D luf| < [JUF[lx < M.
n=0

Letting £ — oo in each of these finite sums, we see that Zﬁfzo |un| < M for any N, so
that the series associated with U converges absolutely and ||U||; < M.

Finally, we prove that d; (U*,U) — 0 as k — oo. Fix £ > 0 and consider p and ¢ large
enough for (x) to hold. Fixing p and letting ¢ — oo gives d;(U?,U) < ¢, and since ¢
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can be chosen arbitrarily small, it shows that {U*};cn converges in ¢1(N), which is
therefore complete.

(b) The example of a convergent geometric series shows that cy(IN) is a strict subset
of /'(N). We will show that it is dense in ¢! (N), establishing at the same time that it
is not closed, hence not complete and that its completion with respect to d; is ¢*(IN).

Consider, for U = {u, }nen in £1(N), the sequence {U*}cn defined by truncation:

k

n -

u

u, ifn <k
0 otherwise °

Then, by construction

(U U) = ) fual,

n>k+1

which converges to 0 as k — oo because U is summable, showing that U is the limit
in /' (N) of the sequence {U*};cn of elements of cy(N).

2. (Completeness is not a topological property.) Let E = (0,+00) and for z,y € E,
. 1 1
consider §(z,y) = '— - =
roy

(a) Prove that § is a distance on E and that it induces the same topology as the

Euclidean distance d.

(b) Is the map x — 2! uniformly continuous as a map from (E, d) to itself ? As a
map from (E,d) to (E,0)?

(o) Is (E,0) complete ?
(d) Is ((0, 1], d) complete?
(e) Is ((0,1],6) complete?

(f) Is completeness a topological property?

Solution. (a) Method 1: prove that every open d-ball contains a §-ball with the same

center and vice versa. Method 2: prove that (E, d) X, (E,¢) is a homeomorphism.
To see this, it is convenient to decompose the identity map as (E,d) — (E,d) —*
(E,d) where p(z) = z~! and prove that both are homeomorphisms. Note that
both methods boil down to the fact that ¢ is a homeomorphism from (£, dord) to
(E,dord).

(b) No. Yes.

(c) No: u,, = n is Cauchy but it does not converge (argue by contradiction).
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(d) No: it is not closed in (R, d). Alternatively, consider u,, = %, Cauchy but not
convergent in (0, 1].

(e) Yes. Method 1: show that a Cauchy sequence {u,} for ¢ is also Cauchy for d
hence converges for d in the closure of (0,1]. If the d-limit is > 0, it is also the /-
limit because d and ¢ induce the same topology (or check it directly with balls) so
the sequence converges. Assume the limit is 0. Then 6(1,w,) diverges to +o00 so
{u,} is not bounded which is impossible since it is Cauchy. In conclusion, a Cauchy
sequence in ((0, 1], §) converges in ((0, 1], ¢), which is therefore complete.

Method 2: z + z~! is an isometric (hence uniformly continuous) homeomorphism
between ((0,1],d) and ([1, +00), d), which is closed in (R, d) complete, hence com-
plete. Uniformly continuous homeomorphisms preserve completeness so ((0, 1], )
is complete.

(f) No: the results of (a), (d) and (e) prove that ((0,1],d) and ((0, 1], ) are homeo-
morphic (through Id), but only the latter is complete.

3. (Weierstrass” Theorem via Dirac sequences.) If f and g are functions on the real line,
their convolution is the function f % g defined by

(f %) /fx—t

(a) Verify that * is well-defined on the space C.(R) of continuous functions on R
that vanish outside of a compact subset, and that it is commutative and distributive
with respect to addition.

if it makes sense.

A Dirac sequence is a sequence {y, },en of non-negative functions in C.(R), satisfy-
ing the following conditions

(1) VneN,/¢Awﬁ:1

(2)  VYa>0, lim On(t)dt =0

n—oo R\[—a,a]

(b) Assume given a Dirac sequence {¢, }n,en. Prove that if f € C.(R), then ¢, x f
converges uniformly to f.

Hint: Continuous functions with compact support are uniformly continuous.

For n € N, consider

1 _ 42\n :
an:/ (1 —tH"dt and 7Tn1t|—>{ (1 to) f lf|t|§.1

. otherwise
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(c) Prove that {7, },en is a Dirac sequence.

(d) Assume that f € C.(R) is supported in the segment I = [—1, 1]. Prove that
[ xm, is a polynomial function on I.

(e) Derive Weierstrass” Approximation Theorem: every continuous function on the
segment [a, b] is the uniform limit of a sequence of polynomial functions.

Solution. (a) The integrand defining f % ¢g is compactly supported if f and g are
so the convolution is well-defined. Distributivity follows from the distributivity of
multiplication over addition in R and the additivity of integrals. Use the change of
variables u = x — t to verify that  is commutative.

(b) Let ¢ > 0. Since f is continuous and compactly supported, it is uniformly con-
tinuous. Therefore, there exists 6 > 0 such that

[z -yl <o = [flz)-f)l<e

Forz € R,

|fxpn(r) = f(2)] =

| te=e0d~ [ faena
| (=0 - 1@)e.to dt\

)
< / e~ 1) = f@)l pult)dt + / @ — ) — F()] pult) dt.

R\(~4,0)

Condition (2) implies that / ¢n(t)dt < e when n is large enough, in which
R\[—a,q]
case

)
1 % pula) — fl2)] < / ou() dt + 2| floce < (14 21[]lnc)e.

The upper bound is independent of x and can be made arbitrarily small for n large
enough, so || f * ¢, — fllcc — 0.
(c) Non-negativity is immediate and the normalization condition (1) follows from a

direct calculation. Note that / mn(t) dt = 0if & > 1 and that
R\[-a,0]

1 -1 2
an—Q/ (1—t2)”dt22/ (1 —tydr=
0

0 n +
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For 0 < o < 1and n > 1, we see that

2 1
/ ) dt = = [ (1—t)"dt
R\[—a,q] an Jo
2
< Z(1-a2"< (1 —-a?)" — 0.
R
<

(d) First observe that 7, (z — t) is polynomial in . To fix notations, we write

m(r —t) = ch(t)xk.

k=0

Then, for z in the support of the convolution,

(f*m)(@) =Y ( OG0 dt)

k=0
which is a polynomial expression.

(e) It follows from the previous results that a continuous function with compact sup-
portin [—1, 1] is a uniform limit of polynomial functions. Now let f be a continuous
function defined on a segment [a, b]. Then f extends to a compactly supported con-
tinuous function f: consider for instance f to be 0 oustide of [a — 1, + 1], equal to f

on [a, b] and affine elsewhere.

b
Now consider the affine transformation i : ¢t — (b — a + 2)t + a;L. It is a homeo-

morphism between [—2, 1| and [a — 1,b + 1] so the composition f o A is continuous
p 202 p
11

and compactly supported in [—1, 1]. Therefore, there exists a sequence {p,},en Of

polynomial functions that converges uniformly on [—1, 1] to f o h.
Notice that A~ is also an affine function so that {p, o h~'},cn is a sequence of poly-
nomial functions on [a, b]. We will prove that this sequence converges uniformly to

f. Forz € [a, ],
lpnoh™'(z) = f(2)] = |pnoh™(z) — foh(h ()| < |lpn — f © bl

The upper bound is independent of = and converges to 0 as n — oo, showing that

, -1 : 11
Pnoh e f uniformly on [—5, 5].

4. (Uniform limits of polynomial functions.) Let { P, },en be a sequence of polynomial
functions on R.

(a) Prove that if P, converges uniformly on R to a function f, then f is polynomial.
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(b) Compare with the previous problem.

Solution. (a) If it converges, then {P,},cx must be a Cauchy sequence, so there
exists an integer N such that |Py — P,||~ < 1 for any n > N. The polynomials
P, — Py are therefore bounded, hence constant. In other words there are constants
o, such that

P, = Py + ay,

for n > N. The sequence {«, },>n is Cauchy in R hence converges to some o € R
and
f=lim f, = lim Py +a, = Py 4+«
n—oo

n—oo

is a polynomial function.

(b) Weierstrass” Theorem asserts that any continuous function on a compact interval
of R is a uniform limit of polynomial functions, meaning that polynomial functions
are dense. On the entire real line however, uniform limits of polynomial functions
are polynomial, so polynomial functions are a closed subset.

5. (Holder maps.) A function f € C([0, 1]) is said to be a-Holder if

o V0 = 1)
S A PR

is finite. For M > 0 and 0 < o < 1, denote

Hon ={f € C([0,1],R), ha(f) < Mand |[[f|[c <M}

(a) Prove that H, s is compact in (C([0, 1], R), || - |leo)-
(b) State Holder’s Inequality for functions on R,.
(c) Assume f € LP(R,) with p > 1 and define F by:

F(z) = /0 " @) dt.

Prove that F' is (1 — %) -Holder.

Solution. (a) The Arzela-Ascoli Theorem implies that it suffices to check that H,
is closed, bounded and equicontinuous. The set in question is the intersection of the
closed ball B.(0, M) and Fy, = {f € C([0,1]), ho(f) < M}, so it is automatically
bounded and it is enough to check that F}, is closed. To do so, consider a sequence
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{fn} of functions in F), that converges to f in C([0, 1]). The pointwise convergence
of the sequence implies that

[f(z) = f(¥)|

<M
|z —y|*
for every x # y so F)y is closed.

To establish equicontinuity, let ¢ > 0 and verify that § = (<) is an appropriate
modulus of continuity.

1 1
(b) Ifu € LP(R;) and v € LY(R ) with p and ¢ conjugate, that is, satisfying —+- =1,
p q

the pointwise product uv is integrable on R* and

lwolly < fullp [[0]l,-

(c) Let 0 <z < y and apply Holder’s Inequality with u = f and v = 1, .

6. (Weierstrass” Theorem.) Look up and summarize a different proof of Weierstrass’
Approximation Theorem.

Solution. A classical proof consists in considering Berstein polynomials: for f con-
tinuous on [0, 1], one can prove that the sequence of polynomials { B,,(f)},>1 defined

by n
BN = 37 (jj) (D R

converges to f uniformly on [0, 1].

A more general statement, due to M. Stone, characterizes dense subalgebras of
Co(X) where X is a locally compact Hausdorff space.



