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Completeness - Topology in C(X)

Elements of Solution

1. (Summable sequences.) Consider the space `1(N) of sequences U = {un}n∈N such
that the series

∑
n≥0
|un| converges, equipped with the distance d1 associated with the

norm
‖U‖1 =

∑
n≥0

|un|.

(a) Prove that `1(N) is complete.

Consider the subspace c00(N) of finitely supported sequences.

(b) Is it complete for d1? If not, determine its completion.

Solution. (a) Let {Uk}k∈N be a Cauchy sequence in `1(N). Let ε > 0 and consider p
and q large enough so that d1(Up − U q) < ε, that is,

(?)
∑
n∈N

|upn − uqn| < ε.

In particular, |upn − uqn| < ε for any p, q, n ∈ N, showing that, for any fixed n, the
sequence {ukn}k∈N is Cauchy in R complete. Denote by U = {un}n∈N the pointwise
limit defined by

un = lim
k→∞

ukn.

Let us prove that U ∈ `1(N). Cauchy sequences are bounded, so there exists M ≥ 0
such that ‖Uk‖1 ≤M for all k. In particular, partial sums are bounded by M as well:
for any N ≥ 1,

N∑
n=0

|ukn| ≤ ‖Uk‖1 ≤M.

Letting k →∞ in each of these finite sums, we see that
∑N

n=0 |un| ≤M for any N , so
that the series associated with U converges absolutely and ‖U‖1 ≤M .

Finally, we prove that d1(Uk, U)→ 0 as k →∞. Fix ε > 0 and consider p and q large
enough for (?) to hold. Fixing p and letting q → ∞ gives d1(Up, U) ≤ ε, and since ε
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can be chosen arbitrarily small, it shows that {Uk}k∈N converges in `1(N), which is
therefore complete.

(b) The example of a convergent geometric series shows that c00(N) is a strict subset
of `1(N). We will show that it is dense in `1(N), establishing at the same time that it
is not closed, hence not complete and that its completion with respect to d1 is `1(N).

Consider, for U = {un}n∈N in `1(N), the sequence {Uk}k∈N defined by truncation:

ukn =

{
un if n ≤ k
0 otherwise .

Then, by construction
d1(U

k, U) =
∑
n≥k+1

|un|,

which converges to 0 as k →∞ because U is summable, showing that U is the limit
in `1(N) of the sequence {Uk}k∈N of elements of c00(N).

2. (Completeness is not a topological property.) Let E = (0,+∞) and for x, y ∈ E,

consider δ(x, y) =
∣∣∣∣1x − 1

y

∣∣∣∣.
(a) Prove that δ is a distance on E and that it induces the same topology as the
Euclidean distance d.

(b) Is the map x 7→ x−1 uniformly continuous as a map from (E, d) to itself ? As a
map from (E, d) to (E, δ)?

(c) Is (E, δ) complete ?

(d) Is ((0, 1], d) complete?

(e) Is ((0, 1], δ) complete?

(f) Is completeness a topological property?

Solution. (a) Method 1: prove that every open d-ball contains a δ-ball with the same
center and vice versa. Method 2: prove that (E, d) Id−→ (E, δ) is a homeomorphism.
To see this, it is convenient to decompose the identity map as (E, d)

ϕ−→ (E, d)
ϕ−→

(E, δ) where ϕ(x) = x−1 and prove that both are homeomorphisms. Note that
both methods boil down to the fact that ϕ is a homeomorphism from (E, d or δ) to
(E, d or δ).

(b) No. Yes.

(c) No: un = n is Cauchy but it does not converge (argue by contradiction).
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(d) No: it is not closed in (R, d). Alternatively, consider un = 1
n

, Cauchy but not
convergent in (0, 1].

(e) Yes. Method 1: show that a Cauchy sequence {un} for δ is also Cauchy for d
hence converges for d in the closure of (0, 1]. If the d-limit is > 0, it is also the δ-
limit because d and δ induce the same topology (or check it directly with balls) so
the sequence converges. Assume the limit is 0. Then δ(1, un) diverges to +∞ so
{un} is not bounded which is impossible since it is Cauchy. In conclusion, a Cauchy
sequence in ((0, 1], δ) converges in ((0, 1], δ), which is therefore complete.

Method 2: x 7→ x−1 is an isometric (hence uniformly continuous) homeomorphism
between ((0, 1], δ) and ([1,+∞), d), which is closed in (R, d) complete, hence com-
plete. Uniformly continuous homeomorphisms preserve completeness so ((0, 1], δ)
is complete.

(f) No: the results of (a), (d) and (e) prove that ((0, 1], d) and ((0, 1], δ) are homeo-
morphic (through Id), but only the latter is complete.

3. (Weierstrass’ Theorem via Dirac sequences.) If f and g are functions on the real line,
their convolution is the function f ? g defined by(

f ? g
)
(x) =

∫
R

f(x− t)g(t) dt

if it makes sense.

(a) Verify that ? is well-defined on the space Cc(R) of continuous functions on R
that vanish outside of a compact subset, and that it is commutative and distributive
with respect to addition.

A Dirac sequence is a sequence {ϕn}n∈N of non-negative functions in Cc(R), satisfy-
ing the following conditions

(1) ∀n ∈ N ,

∫
R

ϕn(t) dt = 1

(2) ∀α > 0 , lim
n→∞

∫
R\[−α,α]

ϕn(t) dt = 0

(b) Assume given a Dirac sequence {ϕn}n∈N. Prove that if f ∈ Cc(R), then ϕn ? f
converges uniformly to f .

Hint: Continuous functions with compact support are uniformly continuous.

For n ∈ N, consider

an =

∫ 1

−1
(1− t2)n dt and πn : t 7−→

{
(1− t2)n/an if |t| ≤ 1

0 otherwise
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(c) Prove that {πn}n∈N is a Dirac sequence.

(d) Assume that f ∈ Cc(R) is supported in the segment I =
[
−1

2
, 1

2

]
. Prove that

f ? πn is a polynomial function on I .

(e) Derive Weierstrass’ Approximation Theorem: every continuous function on the
segment [a, b] is the uniform limit of a sequence of polynomial functions.

Solution. (a) The integrand defining f ? g is compactly supported if f and g are
so the convolution is well-defined. Distributivity follows from the distributivity of
multiplication over addition in R and the additivity of integrals. Use the change of
variables u = x− t to verify that ? is commutative.

(b) Let ε > 0. Since f is continuous and compactly supported, it is uniformly con-
tinuous. Therefore, there exists δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε.

For x ∈ R,

|f ? ϕn(x)− f(x)| =

∣∣∣∣∫
R

f(x− t)ϕn(t) dt−
∫
R

f(x)ϕn(t) dt

∣∣∣∣
=

∣∣∣∣∫
R

(
f(x− t)− f(x)

)
ϕn(t) dt

∣∣∣∣
≤

∫ δ

−δ
|f(x− t)− f(x)|ϕn(t) dt+

∫
R\(−δ,δ)

|f(x− t)− f(x)|ϕn(t) dt.

Condition (2) implies that
∫
R\[−α,α]

ϕn(t) dt < ε when n is large enough, in which

case

|f ? ϕn(x)− f(x)| ≤ ε

∫ δ

−δ
ϕn(t) dt+ 2‖f‖∞ε ≤

(
1 + 2‖f‖∞

)
ε.

The upper bound is independent of x and can be made arbitrarily small for n large
enough, so ‖f ? ϕn − f‖∞ −→

n→∞
0.

(c) Non-negativity is immediate and the normalization condition (1) follows from a

direct calculation. Note that
∫
R\[−α,α]

πn(t) dt = 0 if α ≥ 1 and that

an = 2

∫ 1

0

(1− t2)n dt ≥ 2

∫ 1

0

(1− t)n dt = 2

n+ 1
.
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For 0 < α < 1 and n ≥ 1, we see that∫
R\[−α,α]

πn(t) dt =
2

an

∫ 1

α

(1− t2)n dt

≤ 2

an
(1− α2)n ≤ (n+ 1)(1− α2︸ ︷︷ ︸

<1

)
n −→
n→∞

0.

(d) First observe that πn(x− t) is polynomial in x. To fix notations, we write

πn(x− t) =
2n∑
k=0

ck(t)x
k.

Then, for x in the support of the convolution,

(f ∗ πn)(x) =
2n∑
k=0

(∫ 1
2

− 1
2

f(t)ck(t) dt

)
xk

which is a polynomial expression.

(e) It follows from the previous results that a continuous function with compact sup-
port in

[
−1

2
, 1
2

]
is a uniform limit of polynomial functions. Now let f be a continuous

function defined on a segment [a, b]. Then f extends to a compactly supported con-
tinuous function f̃ : consider for instance f̃ to be 0 oustide of [a− 1, b+1], equal to f
on [a, b] and affine elsewhere.

Now consider the affine transformation h : t 7−→ (b− a+ 2)t+
a+ b

2
. It is a homeo-

morphism between
[
−1

2
, 1
2

]
and [a− 1, b + 1] so the composition f ◦ h is continuous

and compactly supported in
[
−1

2
, 1
2

]
. Therefore, there exists a sequence {pn}n∈N of

polynomial functions that converges uniformly on
[
−1

2
, 1
2

]
to f ◦ h.

Notice that h−1 is also an affine function so that {pn ◦ h−1}n∈N is a sequence of poly-
nomial functions on [a, b]. We will prove that this sequence converges uniformly to
f . For x ∈ [a, b],

|pn ◦ h−1(x)− f(x)| = |pn ◦ h−1(x)− f ◦ h
(
h−1(x)

)
| ≤ ‖pn − f ◦ h‖∞.

The upper bound is independent of x and converges to 0 as n → ∞, showing that
pn ◦ h−1 −→

n→∞
f uniformly on

[
−1

2
, 1
2

]
.

4. (Uniform limits of polynomial functions.) Let {Pn}n∈N be a sequence of polynomial
functions on R.

(a) Prove that if Pn converges uniformly on R to a function f , then f is polynomial.
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(b) Compare with the previous problem.

Solution. (a) If it converges, then {Pn}n∈N must be a Cauchy sequence, so there
exists an integer N such that ‖PN − Pn‖∞ < 1 for any n ≥ N . The polynomials
Pn − PN are therefore bounded, hence constant. In other words there are constants
αn such that

Pn = PN + αn

for n ≥ N . The sequence {αn}n≥N is Cauchy in R hence converges to some α ∈ R
and

f = lim
n→∞

fn = lim
n→∞

PN + αn = PN + α

is a polynomial function.

(b) Weierstrass’ Theorem asserts that any continuous function on a compact interval
of R is a uniform limit of polynomial functions, meaning that polynomial functions
are dense. On the entire real line however, uniform limits of polynomial functions
are polynomial, so polynomial functions are a closed subset.

5. (Hölder maps.) A function f ∈ C([0, 1]) is said to be α-Hölder if

hα(f) = sup
x 6=y

|f(x)− f(y)|
|x− y|α

is finite. For M > 0 and 0 < α ≤ 1, denote

Hα,M = {f ∈ C([0, 1],R) , hα(f) ≤M and ‖f‖∞ ≤M} .

(a) Prove that Hα,M is compact in (C([0, 1],R), ‖ · ‖∞).

(b) State Hölder’s Inequality for functions on R+.

(c) Assume f ∈ Lp(R+) with p > 1 and define F by:

F (x) =

∫ x

0

f(t) dt.

Prove that F is
(
1− 1

p

)
-Hölder.

Solution. (a) The Arzelà-Ascoli Theorem implies that it suffices to check that Hα,M

is closed, bounded and equicontinuous. The set in question is the intersection of the
closed ball Bc(0,M) and FM = {f ∈ C([0, 1]) , hα(f) ≤ M}, so it is automatically
bounded and it is enough to check that FM is closed. To do so, consider a sequence
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{fn} of functions in FM , that converges to f in C([0, 1]). The pointwise convergence
of the sequence implies that

|f(x)− f(y)|
|x− y|α

≤M

for every x 6= y so FM is closed.

To establish equicontinuity, let ε > 0 and verify that δ =
(
ε
M

) 1
α is an appropriate

modulus of continuity.

(b) If u ∈ Lp(R+) and v ∈ Lq(R+) with p and q conjugate, that is, satisfying
1

p
+
1

q
= 1,

the pointwise product uv is integrable on R+ and

‖uv‖1 ≤ ‖u‖p ‖v‖q.

(c) Let 0 ≤ x < y and apply Hölder’s Inequality with u = f and v = 1[x,y].

6. (Weierstrass’ Theorem.) Look up and summarize a different proof of Weierstrass’
Approximation Theorem.

Solution. A classical proof consists in considering Berstein polynomials: for f con-
tinuous on [0, 1], one can prove that the sequence of polynomials {Bn(f)}n≥1 defined
by

Bn(f)(x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k

converges to f uniformly on [0, 1].

A more general statement, due to M. Stone, characterizes dense subalgebras of
C0(X) where X is a locally compact Hausdorff space.


