Completeness - Topology in $C(X)$

Elements of Solution

1. (Summable sequences.) Consider the space $\ell^{1}(\mathbf{N})$ of sequences $U=\left\{u_{n}\right\}_{n \in \mathbf{N}}$ such that the series $\sum_{n \geq 0}\left|u_{n}\right|$ converges, equipped with the distance d_{1} associated with the norm

$$
\|U\|_{1}=\sum_{n \geq 0}\left|u_{n}\right| .
$$

(a) Prove that $\ell^{1}(\mathbf{N})$ is complete.

Consider the subspace $c_{00}(\mathbf{N})$ of finitely supported sequences.
(b) Is it complete for d_{1} ? If not, determine its completion.

Solution. (a) Let $\left\{U^{k}\right\}_{k \in \mathbf{N}}$ be a Cauchy sequence in $\ell^{1}(\mathbf{N})$. Let $\varepsilon>0$ and consider p and q large enough so that $d_{1}\left(U^{p}-U^{q}\right)<\varepsilon$, that is,

$$
\sum_{n \in \mathbf{N}}\left|u_{n}^{p}-u_{n}^{q}\right|<\varepsilon .
$$

In particular, $\left|u_{n}^{p}-u_{n}^{q}\right|<\varepsilon$ for any $p, q, n \in \mathbf{N}$, showing that, for any fixed n, the sequence $\left\{u_{n}^{k}\right\}_{k \in \mathbf{N}}$ is Cauchy in \mathbf{R} complete. Denote by $U=\left\{u_{n}\right\}_{n \in \mathbf{N}}$ the pointwise limit defined by

$$
u_{n}=\lim _{k \rightarrow \infty} u_{n}^{k}
$$

Let us prove that $U \in \ell^{1}(\mathbf{N})$. Cauchy sequences are bounded, so there exists $M \geq 0$ such that $\left\|U^{k}\right\|_{1} \leq M$ for all k. In particular, partial sums are bounded by M as well: for any $N \geq 1$,

$$
\sum_{n=0}^{N}\left|u_{n}^{k}\right| \leq\left\|U^{k}\right\|_{1} \leq M
$$

Letting $k \rightarrow \infty$ in each of these finite sums, we see that $\sum_{n=0}^{N}\left|u_{n}\right| \leq M$ for any N, so that the series associated with U converges absolutely and $\|U\|_{1} \leq M$.
Finally, we prove that $d_{1}\left(U^{k}, U\right) \rightarrow 0$ as $k \rightarrow \infty$. Fix $\varepsilon>0$ and consider p and q large enough for (\star) to hold. Fixing p and letting $q \rightarrow \infty$ gives $d_{1}\left(U^{p}, U\right) \leq \varepsilon$, and since ε
can be chosen arbitrarily small, it shows that $\left\{U^{k}\right\}_{k \in \mathbf{N}}$ converges in $\ell^{1}(\mathbf{N})$, which is therefore complete.
(b) The example of a convergent geometric series shows that $c_{00}(\mathbf{N})$ is a strict subset of $\ell^{1}(\mathbf{N})$. We will show that it is dense in $\ell^{1}(\mathbf{N})$, establishing at the same time that it is not closed, hence not complete and that its completion with respect to d_{1} is $\ell^{1}(\mathbf{N})$.
Consider, for $U=\left\{u_{n}\right\}_{n \in \mathbb{N}}$ in $\ell^{1}(\mathbf{N})$, the sequence $\left\{U^{k}\right\}_{k \in \mathbf{N}}$ defined by truncation:

$$
u_{n}^{k}=\left\{\begin{array}{cl}
u_{n} & \text { if } n \leq k \\
0 & \text { otherwise }
\end{array}\right.
$$

Then, by construction

$$
d_{1}\left(U^{k}, U\right)=\sum_{n \geq k+1}\left|u_{n}\right|
$$

which converges to 0 as $k \rightarrow \infty$ because U is summable, showing that U is the limit in $\ell^{1}(\mathbf{N})$ of the sequence $\left\{U^{k}\right\}_{k \in \mathbf{N}}$ of elements of $c_{00}(\mathbf{N})$.
2. (Completeness is not a topological property.) Let $E=(0,+\infty)$ and for $x, y \in E$, consider $\delta(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|$.
(a) Prove that δ is a distance on E and that it induces the same topology as the Euclidean distance d.
(b) Is the map $x \mapsto x^{-1}$ uniformly continuous as a map from (E, d) to itself? As a map from (E, d) to (E, δ) ?
(c) Is (E, δ) complete?
(d) Is $((0,1], d)$ complete?
(e) Is $((0,1], \delta)$ complete?
(f) Is completeness a topological property?

Solution. (a) Method 1: prove that every open d-ball contains a δ-ball with the same center and vice versa. Method 2: prove that $(E, d) \xrightarrow{\mathrm{Id}}(E, \delta)$ is a homeomorphism. To see this, it is convenient to decompose the identity map as $(E, d) \xrightarrow{\varphi}(E, d) \xrightarrow{\varphi}$ (E, δ) where $\varphi(x)=x^{-1}$ and prove that both are homeomorphisms. Note that both methods boil down to the fact that φ is a homeomorphism from $(E, d$ or $\delta)$ to (E, d or δ).
(b) No. Yes.
(c) No: $u_{n}=n$ is Cauchy but it does not converge (argue by contradiction).
(d) No: it is not closed in (\mathbf{R}, d). Alternatively, consider $u_{n}=\frac{1}{n}$, Cauchy but not convergent in $(0,1]$.
(e) Yes. Method 1: show that a Cauchy sequence $\left\{u_{n}\right\}$ for δ is also Cauchy for d hence converges for d in the closure of $(0,1]$. If the d-limit is >0, it is also the δ limit because d and δ induce the same topology (or check it directly with balls) so the sequence converges. Assume the limit is 0 . Then $\delta\left(1, u_{n}\right)$ diverges to $+\infty$ so $\left\{u_{n}\right\}$ is not bounded which is impossible since it is Cauchy. In conclusion, a Cauchy sequence in $((0,1], \delta)$ converges in $((0,1], \delta)$, which is therefore complete.
Method 2: $x \mapsto x^{-1}$ is an isometric (hence uniformly continuous) homeomorphism between $((0,1], \delta)$ and $([1,+\infty), d)$, which is closed in (\mathbf{R}, d) complete, hence complete. Uniformly continuous homeomorphisms preserve completeness so $((0,1], \delta)$ is complete.
(f) No: the results of (a), (d) and (e) prove that $((0,1], d)$ and $((0,1], \delta)$ are homeomorphic (through Id), but only the latter is complete.
3. (Weierstrass' Theorem via Dirac sequences.) If f and g are functions on the real line, their convolution is the function $f \star g$ defined by

$$
(f \star g)(x)=\int_{\mathbf{R}} f(x-t) g(t) d t
$$

if it makes sense.
(a) Verify that \star is well-defined on the space $C_{c}(\mathbf{R})$ of continuous functions on \mathbf{R} that vanish outside of a compact subset, and that it is commutative and distributive with respect to addition.

A Dirac sequence is a sequence $\left\{\varphi_{n}\right\}_{n \in \mathbf{N}}$ of non-negative functions in $C_{c}(\mathbf{R})$, satisfying the following conditions
(1) $\quad \forall n \in \mathbf{N}, \int_{\mathbf{R}} \varphi_{n}(t) d t=1$
(2) $\quad \forall \alpha>0, \lim _{n \rightarrow \infty} \int_{\mathbf{R} \backslash[-\alpha, \alpha]} \varphi_{n}(t) d t=0$
(b) Assume given a Dirac sequence $\left\{\varphi_{n}\right\}_{n \in \mathbf{N}}$. Prove that if $f \in C_{c}(\mathbf{R})$, then $\varphi_{n} \star f$ converges uniformly to f.
Hint: Continuous functions with compact support are uniformly continuous.
For $n \in \mathbf{N}$, consider

$$
a_{n}=\int_{-1}^{1}\left(1-t^{2}\right)^{n} d t \quad \text { and } \quad \pi_{n}: t \longmapsto\left\{\begin{array}{cl}
\left(1-t^{2}\right)^{n} / a_{n} & \text { if }|t| \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(c) Prove that $\left\{\pi_{n}\right\}_{n \in \mathbf{N}}$ is a Dirac sequence.
(d) Assume that $f \in C_{c}(\mathbf{R})$ is supported in the segment $I=\left[-\frac{1}{2}, \frac{1}{2}\right]$. Prove that $f \star \pi_{n}$ is a polynomial function on I.
(e) Derive Weierstrass' Approximation Theorem: every continuous function on the segment $[a, b]$ is the uniform limit of a sequence of polynomial functions.

Solution. (a) The integrand defining $f \star g$ is compactly supported if f and g are so the convolution is well-defined. Distributivity follows from the distributivity of multiplication over addition in R and the additivity of integrals. Use the change of variables $u=x-t$ to verify that \star is commutative.
(b) Let $\varepsilon>0$. Since f is continuous and compactly supported, it is uniformly continuous. Therefore, there exists $\delta>0$ such that

$$
|x-y|<\delta \quad \Rightarrow \quad|f(x)-f(y)|<\varepsilon
$$

For $x \in \mathbf{R}$,

$$
\begin{aligned}
\left|f \star \varphi_{n}(x)-f(x)\right| & =\left|\int_{\mathbf{R}} f(x-t) \varphi_{n}(t) d t-\int_{\mathbf{R}} f(x) \varphi_{n}(t) d t\right| \\
& =\left|\int_{\mathbf{R}}(f(x-t)-f(x)) \varphi_{n}(t) d t\right| \\
& \leq \int_{-\delta}^{\delta}|f(x-t)-f(x)| \varphi_{n}(t) d t+\int_{\mathbf{R} \backslash(-\delta, \delta)}|f(x-t)-f(x)| \varphi_{n}(t) d t
\end{aligned}
$$

Condition (2) implies that $\int_{\mathbf{R} \backslash[-\alpha, \alpha]} \varphi_{n}(t) d t<\varepsilon$ when n is large enough, in which case

$$
\left|f \star \varphi_{n}(x)-f(x)\right| \leq \varepsilon \int_{-\delta}^{\delta} \varphi_{n}(t) d t+2\|f\|_{\infty} \varepsilon \leq\left(1+2\|f\|_{\infty}\right) \varepsilon
$$

The upper bound is independent of x and can be made arbitrarily small for n large enough, so $\left\|f \star \varphi_{n}-f\right\|_{\infty} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$.
(c) Non-negativity is immediate and the normalization condition (1) follows from a direct calculation. Note that $\int_{\mathbf{R} \backslash[-\alpha, \alpha]} \pi_{n}(t) d t=0$ if $\alpha \geq 1$ and that

$$
a_{n}=2 \int_{0}^{1}\left(1-t^{2}\right)^{n} d t \geq 2 \int_{0}^{1}(1-t)^{n} d t=\frac{2}{n+1}
$$

For $0<\alpha<1$ and $n \geq 1$, we see that

$$
\begin{aligned}
\int_{\mathbf{R} \backslash[-\alpha, \alpha]} \pi_{n}(t) d t & =\frac{2}{a_{n}} \int_{\alpha}^{1}\left(1-t^{2}\right)^{n} d t \\
& \leq \frac{2}{a_{n}}\left(1-\alpha^{2}\right)^{n} \leq(n+1)(\underbrace{1-\alpha^{2}}_{<1})^{n} \underset{n \rightarrow \infty}{\longrightarrow} 0 .
\end{aligned}
$$

(d) First observe that $\pi_{n}(x-t)$ is polynomial in x. To fix notations, we write

$$
\pi_{n}(x-t)=\sum_{k=0}^{2 n} c_{k}(t) x^{k}
$$

Then, for x in the support of the convolution,

$$
\left(f * \pi_{n}\right)(x)=\sum_{k=0}^{2 n}\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) c_{k}(t) d t\right) x^{k}
$$

which is a polynomial expression.
(e) It follows from the previous results that a continuous function with compact support in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ is a uniform limit of polynomial functions. Now let f be a continuous function defined on a segment $[a, b]$. Then f extends to a compactly supported continuous function \tilde{f} : consider for instance \tilde{f} to be 0 oustide of $[a-1, b+1]$, equal to f on $[a, b]$ and affine elsewhere.
Now consider the affine transformation $h: t \longmapsto(b-a+2) t+\frac{a+b}{2}$. It is a homeomorphism between $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $[a-1, b+1]$ so the composition $f \circ h$ is continuous and compactly supported in $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Therefore, there exists a sequence $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ of polynomial functions that converges uniformly on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ to $f \circ h$.
Notice that h^{-1} is also an affine function so that $\left\{p_{n} \circ h^{-1}\right\}_{n \in \mathbf{N}}$ is a sequence of polynomial functions on $[a, b]$. We will prove that this sequence converges uniformly to f. For $x \in[a, b]$,

$$
\left|p_{n} \circ h^{-1}(x)-f(x)\right|=\left|p_{n} \circ h^{-1}(x)-f \circ h\left(h^{-1}(x)\right)\right| \leq\left\|p_{n}-f \circ h\right\|_{\infty} .
$$

The upper bound is independent of x and converges to 0 as $n \rightarrow \infty$, showing that $p_{n} \circ h^{-1} \underset{n \rightarrow \infty}{\longrightarrow} f$ uniformly on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
4. (Uniform limits of polynomial functions.) Let $\left\{P_{n}\right\}_{n \in \mathbf{N}}$ be a sequence of polynomial functions on R .
(a) Prove that if P_{n} converges uniformly on \mathbf{R} to a function f, then f is polynomial.

(b) Compare with the previous problem.

Solution. (a) If it converges, then $\left\{P_{n}\right\}_{n \in \mathbf{N}}$ must be a Cauchy sequence, so there exists an integer N such that $\left\|P_{N}-P_{n}\right\|_{\infty}<1$ for any $n \geq N$. The polynomials $P_{n}-P_{N}$ are therefore bounded, hence constant. In other words there are constants α_{n} such that

$$
P_{n}=P_{N}+\alpha_{n}
$$

for $n \geq N$. The sequence $\left\{\alpha_{n}\right\}_{n \geq N}$ is Cauchy in \mathbf{R} hence converges to some $\alpha \in \mathbf{R}$ and

$$
f=\lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} P_{N}+\alpha_{n}=P_{N}+\alpha
$$

is a polynomial function.
(b) Weierstrass' Theorem asserts that any continuous function on a compact interval of \mathbf{R} is a uniform limit of polynomial functions, meaning that polynomial functions are dense. On the entire real line however, uniform limits of polynomial functions are polynomial, so polynomial functions are a closed subset.
5. (Hölder maps.) A function $f \in C([0,1])$ is said to be α-Hölder if

$$
h_{\alpha}(f)=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

is finite. For $M>0$ and $0<\alpha \leq 1$, denote

$$
H_{\alpha, M}=\left\{f \in C([0,1], \mathbf{R}), h_{\alpha}(f) \leq M \text { and }\|f\|_{\infty} \leq M\right\}
$$

(a) Prove that $H_{\alpha, M}$ is compact in $\left(C([0,1], \mathbf{R}),\|\cdot\|_{\infty}\right)$.
(b) State Hölder's Inequality for functions on \mathbf{R}_{+}.
(c) Assume $f \in L^{p}\left(\mathbf{R}_{+}\right)$with $p>1$ and define F by:

$$
F(x)=\int_{0}^{x} f(t) d t
$$

Prove that F is $\left(1-\frac{1}{p}\right)$-Hölder.
Solution. (a) The Arzelà-Ascoli Theorem implies that it suffices to check that $H_{\alpha, M}$ is closed, bounded and equicontinuous. The set in question is the intersection of the closed ball $B_{c}(0, M)$ and $F_{M}=\left\{f \in C([0,1]), h_{\alpha}(f) \leq M\right\}$, so it is automatically bounded and it is enough to check that F_{M} is closed. To do so, consider a sequence
$\left\{f_{n}\right\}$ of functions in F_{M}, that converges to f in $C([0,1])$. The pointwise convergence of the sequence implies that

$$
\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq M
$$

for every $x \neq y$ so F_{M} is closed.
To establish equicontinuity, let $\varepsilon>0$ and verify that $\delta=\left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}$ is an appropriate modulus of continuity.
(b) If $u \in L^{p}\left(\mathbf{R}_{+}\right)$and $v \in L^{q}\left(\mathbf{R}_{+}\right)$with p and q conjugate, that is, satisfying $\frac{1}{p}+\frac{1}{q}=1$, the pointwise product $u v$ is integrable on \mathbf{R}^{+}and

$$
\|u v\|_{1} \leq\|u\|_{p}\|v\|_{q}
$$

(c) Let $0 \leq x<y$ and apply Hölder's Inequality with $u=f$ and $v=\mathbf{1}_{[x, y]}$.

6. (Weierstrass' Theorem.) Look up and summarize a different proof of Weierstrass' Approximation Theorem.

Solution. A classical proof consists in considering Berstein polynomials: for f continuous on $[0,1]$, one can prove that the sequence of polynomials $\left\{B_{n}(f)\right\}_{n \geq 1}$ defined by

$$
B_{n}(f)(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

converges to f uniformly on $[0,1]$.
A more general statement, due to M. Stone, characterizes dense subalgebras of $C_{0}(X)$ where X is a locally compact Hausdorff space.

