Completeness - Topology in C(X)

Elements of Solution

1. (*Summable sequences.*) Consider the space $\ell^1(\mathbf{N})$ of sequences $U = \{u_n\}_{n \in \mathbf{N}}$ such that the series $\sum_{n \ge 0} |u_n|$ converges, equipped with the distance d_1 associated with the norm

$$||U||_1 = \sum_{n\geq 0} |u_n|.$$

(a) Prove that $\ell^1(\mathbf{N})$ is complete.

Consider the subspace $c_{00}(N)$ of finitely supported sequences.

(b) Is it complete for d_1 ? If not, determine its completion.

Solution. (a) Let $\{U^k\}_{k \in \mathbb{N}}$ be a Cauchy sequence in $\ell^1(\mathbb{N})$. Let $\varepsilon > 0$ and consider p and q large enough so that $d_1(U^p - U^q) < \varepsilon$, that is,

$$\sum_{n \in \mathbf{N}} |u_n^p - u_n^q| < \varepsilon$$

In particular, $|u_n^p - u_n^q| < \varepsilon$ for any $p, q, n \in \mathbb{N}$, showing that, for any fixed n, the sequence $\{u_n^k\}_{k\in\mathbb{N}}$ is Cauchy in **R** complete. Denote by $U = \{u_n\}_{n\in\mathbb{N}}$ the pointwise limit defined by

$$u_n = \lim_{k \to \infty} u_n^k.$$

Let us prove that $U \in \ell^1(\mathbf{N})$. Cauchy sequences are bounded, so there exists $M \ge 0$ such that $||U^k||_1 \le M$ for all k. In particular, partial sums are bounded by M as well: for any $N \ge 1$,

$$\sum_{n=0}^{N} |u_n^k| \le ||U^k||_1 \le M.$$

Letting $k \to \infty$ in each of these finite sums, we see that $\sum_{n=0}^{N} |u_n| \le M$ for any N, so that the series associated with U converges absolutely and $||U||_1 \le M$.

Finally, we prove that $d_1(U^k, U) \to 0$ as $k \to \infty$. Fix $\varepsilon > 0$ and consider p and q large enough for (\star) to hold. Fixing p and letting $q \to \infty$ gives $d_1(U^p, U) \le \varepsilon$, and since ε

can be chosen arbitrarily small, it shows that $\{U^k\}_{k\in\mathbb{N}}$ converges in $\ell^1(\mathbb{N})$, which is therefore complete.

(b) The example of a convergent geometric series shows that $c_{00}(\mathbf{N})$ is a strict subset of $\ell^1(\mathbf{N})$. We will show that it is dense in $\ell^1(\mathbf{N})$, establishing at the same time that it is not closed, hence not complete and that its completion with respect to d_1 is $\ell^1(\mathbf{N})$.

Consider, for $U = \{u_n\}_{n \in \mathbb{N}}$ in $\ell^1(\mathbb{N})$, the sequence $\{U^k\}_{k \in \mathbb{N}}$ defined by truncation:

$$u_n^k = \begin{cases} u_n & \text{if } n \le k \\ 0 & \text{otherwise} \end{cases}$$

Then, by construction

$$d_1(U^k, U) = \sum_{n \ge k+1} |u_n|,$$

which converges to 0 as $k \to \infty$ because U is summable, showing that U is the limit in $\ell^1(\mathbf{N})$ of the sequence $\{U^k\}_{k\in \mathbf{N}}$ of elements of $c_{00}(\mathbf{N})$.

2. (*Completeness is not a topological property.*) Let $E = (0, +\infty)$ and for $x, y \in E$, consider $\delta(x, y) = \left|\frac{1}{x} - \frac{1}{y}\right|$.

(a) Prove that δ is a distance on *E* and that it induces the same topology as the Euclidean distance *d*.

(b) Is the map $x \mapsto x^{-1}$ uniformly continuous as a map from (E, d) to itself? As a map from (E, d) to (E, δ) ?

(c) Is (E, δ) complete ?

(d) Is ((0, 1], d) complete?

(e) Is $((0, 1], \delta)$ complete?

(f) Is completeness a topological property?

Solution. (a) Method 1: prove that every open *d*-ball contains a δ -ball with the same center and vice versa. Method 2: prove that $(E, d) \xrightarrow{\mathrm{Id}} (E, \delta)$ is a homeomorphism. To see this, it is convenient to decompose the identity map as $(E, d) \xrightarrow{\varphi} (E, d) \xrightarrow{\varphi} (E, \delta) \xrightarrow{\varphi} (E, \delta)$ where $\varphi(x) = x^{-1}$ and prove that both are homeomorphisms. Note that both methods boil down to the fact that φ is a homeomorphism from $(E, d \operatorname{or} \delta)$ to $(E, d \operatorname{or} \delta)$.

(b) No. Yes.

(c) No: $u_n = n$ is Cauchy but it does not converge (argue by contradiction).

(d) No: it is not closed in (\mathbf{R}, d) . Alternatively, consider $u_n = \frac{1}{n}$, Cauchy but not convergent in (0, 1].

(e) Yes. *Method* 1: show that a Cauchy sequence $\{u_n\}$ for δ is also Cauchy for d hence converges for d in the closure of (0, 1]. If the d-limit is > 0, it is also the δ -limit because d and δ induce the same topology (or check it directly with balls) so the sequence converges. Assume the limit is 0. Then $\delta(1, u_n)$ diverges to $+\infty$ so $\{u_n\}$ is not bounded which is impossible since it is Cauchy. In conclusion, a Cauchy sequence in $((0, 1], \delta)$ converges in $((0, 1], \delta)$, which is therefore complete.

Method 2: $x \mapsto x^{-1}$ is an isometric (hence uniformly continuous) homeomorphism between $((0,1], \delta)$ and $([1, +\infty), d)$, which is closed in (\mathbf{R}, d) complete, hence complete. Uniformly continuous homeomorphisms preserve completeness so $((0,1], \delta)$ is complete.

(f) No: the results of (a), (d) and (e) prove that ((0,1],d) and $((0,1],\delta)$ are homeomorphic (through Id), but only the latter is complete.

3. (*Weierstrass' Theorem via Dirac sequences.*) If f and g are functions on the real line, their *convolution* is the function $f \star g$ defined by

$$(f \star g)(x) = \int_{\mathbf{R}} f(x-t)g(t) dt$$

if it makes sense.

(a) Verify that \star is well-defined on the space $C_c(\mathbf{R})$ of continuous functions on \mathbf{R} that vanish outside of a compact subset, and that it is commutative and distributive with respect to addition.

A *Dirac sequence* is a sequence $\{\varphi_n\}_{n \in \mathbb{N}}$ of non-negative functions in $C_c(\mathbb{R})$, satisfying the following conditions

(1)
$$\forall n \in \mathbf{N}, \ \int_{\mathbf{R}} \varphi_n(t) \, dt = 1$$

(2) $\forall \alpha > 0, \ \lim_{n \to \infty} \int_{\mathbf{R} \setminus [-\alpha, \alpha]} \varphi_n(t) \, dt = 0$

(b) Assume given a Dirac sequence $\{\varphi_n\}_{n \in \mathbb{N}}$. Prove that if $f \in C_c(\mathbb{R})$, then $\varphi_n \star f$ converges uniformly to f.

Hint: Continuous functions with compact support are uniformly continuous.

For $n \in \mathbf{N}$, consider

$$a_n = \int_{-1}^{1} (1 - t^2)^n dt \quad \text{and} \quad \pi_n : t \longmapsto \begin{cases} (1 - t^2)^n / a_n & \text{if } |t| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

(c) Prove that $\{\pi_n\}_{n \in \mathbb{N}}$ is a Dirac sequence.

(d) Assume that $f \in C_c(\mathbf{R})$ is supported in the segment $I = \left[-\frac{1}{2}, \frac{1}{2}\right]$. Prove that $f \star \pi_n$ is a polynomial function on I.

(e) Derive Weierstrass' Approximation Theorem: every continuous function on the segment [a, b] is the uniform limit of a sequence of polynomial functions.

Solution. (a) The integrand defining $f \star g$ is compactly supported if f and g are so the convolution is well-defined. Distributivity follows from the distributivity of multiplication over addition in **R** and the additivity of integrals. Use the change of variables u = x - t to verify that \star is commutative.

(b) Let $\varepsilon > 0$. Since *f* is continuous and compactly supported, it is uniformly continuous. Therefore, there exists $\delta > 0$ such that

$$|x-y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \varepsilon.$$

For $x \in \mathbf{R}$,

$$\begin{aligned} |f \star \varphi_n(x) - f(x)| &= \left| \int_{\mathbf{R}} f(x-t)\varphi_n(t) \, dt - \int_{\mathbf{R}} f(x)\varphi_n(t) \, dt \right| \\ &= \left| \int_{\mathbf{R}} \left(f(x-t) - f(x) \right) \varphi_n(t) \, dt \right| \\ &\leq \int_{-\delta}^{\delta} |f(x-t) - f(x)| \, \varphi_n(t) \, dt + \int_{\mathbf{R} \setminus (-\delta, \delta)} |f(x-t) - f(x)| \, \varphi_n(t) \, dt. \end{aligned}$$

Condition (2) implies that $\int_{\mathbf{R}\setminus[-\alpha,\alpha]}\varphi_n(t)\,dt < \varepsilon$ when n is large enough, in which case

$$|f \star \varphi_n(x) - f(x)| \le \varepsilon \int_{-\delta}^{\delta} \varphi_n(t) \, dt + 2||f||_{\infty} \varepsilon \le (1 + 2||f||_{\infty})\varepsilon.$$

The upper bound is independent of x and can be made arbitrarily small for n large enough, so $||f \star \varphi_n - f||_{\infty} \xrightarrow[n \to \infty]{} 0$.

(c) Non-negativity is immediate and the normalization condition (1) follows from a direct calculation. Note that $\int_{\mathbf{R}\setminus[-\alpha,\alpha]} \pi_n(t) dt = 0$ if $\alpha \ge 1$ and that

$$a_n = 2 \int_0^1 (1 - t^2)^n dt \ge 2 \int_0^1 (1 - t)^n dt = \frac{2}{n+1}.$$

For $0 < \alpha < 1$ and $n \ge 1$, we see that

$$\int_{\mathbf{R}\setminus[-\alpha,\alpha]} \pi_n(t) dt = \frac{2}{a_n} \int_{\alpha}^1 (1-t^2)^n dt$$
$$\leq \frac{2}{a_n} (1-\alpha^2)^n \leq (n+1) (\underbrace{1-\alpha^2}_{<1})^n \underset{n\to\infty}{\longrightarrow} 0.$$

(d) First observe that $\pi_n(x - t)$ is polynomial in x. To fix notations, we write

$$\pi_n(x-t) = \sum_{k=0}^{2n} c_k(t) x^k.$$

Then, for *x* in the support of the convolution,

$$(f * \pi_n)(x) = \sum_{k=0}^{2n} \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} f(t)c_k(t) \, dt \right) x^k$$

which is a polynomial expression.

(e) It follows from the previous results that a continuous function with compact support in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ is a uniform limit of polynomial functions. Now let f be a continuous function defined on a segment [a, b]. Then f extends to a compactly supported continuous function \tilde{f} : consider for instance \tilde{f} to be 0 oustide of [a - 1, b + 1], equal to f on [a, b] and affine elsewhere.

Now consider the affine transformation $h: t \mapsto (b-a+2)t + \frac{a+b}{2}$. It is a homeomorphism between $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and [a-1, b+1] so the composition $f \circ h$ is continuous and compactly supported in $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Therefore, there exists a sequence $\{p_n\}_{n \in \mathbb{N}}$ of polynomial functions that converges uniformly on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ to $f \circ h$.

Notice that h^{-1} is also an affine function so that $\{p_n \circ h^{-1}\}_{n \in \mathbb{N}}$ is a sequence of polynomial functions on [a, b]. We will prove that this sequence converges uniformly to f. For $x \in [a, b]$,

$$|p_n \circ h^{-1}(x) - f(x)| = |p_n \circ h^{-1}(x) - f \circ h(h^{-1}(x))| \le ||p_n - f \circ h||_{\infty}$$

The upper bound is independent of x and converges to 0 as $n \to \infty$, showing that $p_n \circ h^{-1} \underset{n \to \infty}{\longrightarrow} f$ uniformly on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

4. (*Uniform limits of polynomial functions.*) Let $\{P_n\}_{n \in \mathbb{N}}$ be a sequence of polynomial functions on **R**.

(a) Prove that if P_n converges uniformly on **R** to a function f, then f is polynomial.

(b) Compare with the previous problem.

Solution. (a) If it converges, then $\{P_n\}_{n \in \mathbb{N}}$ must be a Cauchy sequence, so there exists an integer N such that $||P_N - P_n||_{\infty} < 1$ for any $n \ge N$. The polynomials $P_n - P_N$ are therefore bounded, hence constant. In other words there are constants α_n such that

$$P_n = P_N + \alpha_n$$

for $n \ge N$. The sequence $\{\alpha_n\}_{n\ge N}$ is Cauchy in **R** hence converges to some $\alpha \in \mathbf{R}$ and

$$f = \lim_{n \to \infty} f_n = \lim_{n \to \infty} P_N + \alpha_n = P_N + \alpha$$

is a polynomial function.

(b) Weierstrass' Theorem asserts that any continuous function on a compact interval of **R** is a uniform limit of polynomial functions, meaning that polynomial functions are dense. On the entire real line however, uniform limits of polynomial functions are polynomial, so polynomial functions are a closed subset.

5. (*Hölder maps.*) A function $f \in C([0, 1])$ is said to be α -*Hölder* if

$$h_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

is finite. For M > 0 and $0 < \alpha \le 1$, denote

$$H_{\alpha,M} = \{ f \in C([0,1], \mathbf{R}), h_{\alpha}(f) \le M \text{ and } \|f\|_{\infty} \le M \}.$$

(a) Prove that $H_{\alpha,M}$ is compact in $(C([0,1], \mathbf{R}), \|\cdot\|_{\infty})$.

(b) State Hölder's Inequality for functions on R_+ .

(c) Assume $f \in L^p(\mathbf{R}_+)$ with p > 1 and define F by:

$$F(x) = \int_0^x f(t) \, dt.$$

Prove that *F* is $\left(1 - \frac{1}{p}\right)$ -Hölder.

Solution. (a) The Arzelà-Ascoli Theorem implies that it suffices to check that $H_{\alpha,M}$ is closed, bounded and equicontinuous. The set in question is the intersection of the closed ball $B_c(0, M)$ and $F_M = \{f \in C([0, 1]), h_\alpha(f) \leq M\}$, so it is automatically bounded and it is enough to check that F_M is closed. To do so, consider a sequence

 $\{f_n\}$ of functions in F_M , that converges to f in C([0, 1]). The pointwise convergence of the sequence implies that

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le M$$

for every $x \neq y$ so F_M is closed.

To establish equicontinuity, let $\varepsilon > 0$ and verify that $\delta = \left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}$ is an appropriate modulus of continuity.

(b) If $u \in L^p(\mathbf{R}_+)$ and $v \in L^q(\mathbf{R}_+)$ with p and q conjugate, that is, satisfying $\frac{1}{p} + \frac{1}{q} = 1$, the pointwise product uv is integrable on \mathbf{R}^+ and

$$||uv||_1 \le ||u||_p \, ||v||_q.$$

(c) Let $0 \le x < y$ and apply Hölder's Inequality with u = f and $v = \mathbf{1}_{[x,y]}$.

6. (*Weierstrass' Theorem.*) Look up and summarize a different proof of Weierstrass' Approximation Theorem.

Solution. A classical proof consists in considering Berstein polynomials: for f continuous on [0, 1], one can prove that the sequence of polynomials $\{B_n(f)\}_{n\geq 1}$ defined by

$$B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

converges to f uniformly on [0, 1].

A more general statement, due to M. Stone, characterizes dense subalgebras of $C_0(X)$ where X is a locally compact Hausdorff space.