Completeness - Topology in C(X)

Due Feb. 20

Problem 1. Consider the space $\ell^1(\mathbf{N})$ of sequences $U = \{u_n\}_{n \in \mathbf{N}}$ such that the series $\sum_{n \ge 0} |u_n|$ converges, equipped with the distance d_1 associated with the norm

$$||U||_1 = \sum_{n \ge 0} |u_n|$$

(a) Prove that $\ell^1(\mathbf{N})$ is complete.

Consider the subspace $c_{00}(N)$ of finitely supported sequences.

(b) Is it complete for d_1 ? If not, determine its completion.

Problem 2. Let
$$E = (0, +\infty)$$
 and for $x, y \in E$, consider $\delta(x, y) = \left|\frac{1}{x} - \frac{1}{y}\right|$.

(a) Prove that δ is a distance on *E* and that it induces the same topology as the Euclidean distance *d*.

(b) Is the map $x \mapsto x^{-1}$ uniformly continuous as a map from (E, d) to itself? As a map from (E, d) to (E, δ) ?

(c) Is (E, δ) complete ?

(d) Is ((0, 1], d) complete?

(e) Is $((0, 1], \delta)$ complete?

(f) Is completeness a topological property?

Problem 3. If *f* and *g* are functions on the real line, their *convolution* is the function $f \star g$ defined by

$$(f \star g)(x) = \int_{\mathbf{R}} f(x-t)g(t) dt$$

if it makes sense.

(a) Verify that \star is well-defined on the space $C_c(\mathbf{R})$ of continuous functions on \mathbf{R} that vanish outside of a compact subset, and that it is commutative and distributive with respect to addition.

A *Dirac sequence* is a sequence $\{\varphi_n\}_{n \in \mathbb{N}}$ of non-negative functions in $C_c(\mathbb{R})$, satisfying the following conditions

(1)
$$\forall n \in \mathbf{N}, \ \int_{\mathbf{R}} \varphi_n(t) \, dt = 1$$

(2) $\forall \alpha > 0, \ \lim_{n \to \infty} \int_{\mathbf{R} \setminus [-\alpha, \alpha]} \varphi_n(t) \, dt = 0$

(b) Assume given a Dirac sequence $\{\varphi_n\}_{n \in \mathbb{N}}$. Prove that if $f \in C_c(\mathbb{R})$, then $\varphi_n \star f$ converges uniformly to f.

<u>Hint</u>: Continuous functions with compact support are uniformly continuous.

For $n \in \mathbf{N}$, consider

$$a_n = \int_{-1}^{1} (1-t^2)^n dt$$
 and $\pi_n : t \longmapsto \begin{cases} (1-t^2)^n / a_n & \text{if } |t| \le 1 \\ 0 & \text{otherwise} \end{cases}$

(c) Prove that $\{\pi_n\}_{n \in \mathbb{N}}$ is a Dirac sequence.

(d) Assume that $f \in C_c(\mathbf{R})$ is supported in the segment $I = \left[-\frac{1}{2}, \frac{1}{2}\right]$. Prove that $f \star \pi_n$ is a polynomial function on I.

(e) Derive Weierstrass' Approximation Theorem: every continuous function on the segment [a, b] is the uniform limit of a sequence of polynomial functions.

Problem 4. Let $\{P_n\}_{n \in \mathbb{N}}$ be a sequence of polynomial functions on **R**.

(a) Prove that if P_n converges uniformly on **R** to a function f, then f is polynomial.

(b) Compare with the previous problem.

$$h_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

is finite. For M > 0 and $0 < \alpha \le 1$, denote

$$H_{\alpha,M} = \{ f \in C([0,1], \mathbf{R}), h_{\alpha}(f) \leq M \text{ and } \|f\|_{\infty} \leq M \}.$$

(a) Prove that $H_{\alpha,M}$ is compact in $(C([0,1], \mathbf{R}), \|\cdot\|_{\infty})$.

(b) State Hölder's Inequality for functions on ${\bf R}_+.$

(c) Assume $f \in L^p(\mathbf{R}_+)$ with p > 1 and define F by:

$$F(x) = \int_0^x f(t) \, dt.$$

Prove that *F* is $\left(1 - \frac{1}{p}\right)$ -Hölder.

Problem 6. (*Optional.*) Look up and summarize a different proof of Weierstrass' Approximation Theorem.