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Metric Topology

Elements of Solution

1. (Product metric.) Let (E1, d1) and (E2, d2) be metric spaces. Prove that the map
defined by

d
(
(x1, x2) , (y1, y2)

)
= max

(
d1(x1, y1) , d2(x2, y2)

)
is a metric on E1 × E2.

Solution. Positivity, symmetry and separation are immediate. To check the triangle
inequality, let (x1, x2), (y1, y2) and (z1, z2). The triangle inequalities for d1 and d2 give:

d1(x1, z1) ≤ d1(x1, y1) + d1(y1, z1) and d2(x2, z2) ≤ d2(x2, y2) + d2(y2, z2)

so that

d
(
(x1, x2) , (z1, z2)

)
= max

(
d1(x1, z1) , d2(x2, z2)

)
≤ max

(
d1(x1, y1) + d1(y1, z1) , d2(x2, y2) + d2(y2, z2)

)
≤ max

(
d1(x1, y1) , d2(x2, y2)

)
+ max

(
d1(y1, z1) , d2(y2, z2)

)
= d

(
(x1, x2) , (y1, y2)

)
+ d
(
(y1, y2) , (z1, z2)

)
,

showing that d satisfies the triangle inequality and is therefore a metric on E1 × E2.

2. (Compactness in metric spaces.) Recall that a subset X of a topological space E is
said compact if any open cover of X admits a finite subcover. In this problem, we
assume that E is a metric space.

(a) What is a totally bounded set?

(b) What is a sequentially compact set?

(c) State all the implications between total boundedness, sequential compactness
and compactness for a general metric space.

(d) State the Heine-Borel Theorem and the Bolzano-Weierstrass Theorem for Rn

equipped with its ordinary (Euclidean) metric.

(e) What parts of these results hold in greater generality?
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Solution. (a) A metric space X is said totally bounded if for every ε > 0, the open
cover

{B(x, ε) , x ∈ X}

admits a finite subcover. In other words, X is contained in a finite union of balls of
any radius.

(b) A metric space X is said sequentially compact if every sequence in X has a con-
vergent subsequence.

(c) In a metric space:

sequential compactness ⇔ compactness ⇒ total boundedness.

(d) Heine-Borel Theorem. Let X be a subset of Rn equipped with the metric asso-
ciated with a norm. Then,

X is compact ⇔ X is closed and bounded.

Remarks about (⇒):

•
(
compact⇒ closed

)
holds in every Hausdorff space, metric or not.

•
(
compact⇒ bounded

)
holds in every metric space.

A metric space is said to have the Heine-Borel property if its closed and bounded
subsets are compact, that is, if (⇐) holds.

• No infinite-dimensional Banach space has the Heine-Borel property.

• Some Fréchet spaces do: for instance Hol(Ω) with Ω open in Cn or C∞(Ω) with
Ω open in Rn.

Bolzano-Weierstrass Theorem. Every bounded sequence in Rn equipped with the
distance associated with a norm has a convergent subsequence. In other words:

X is sequentially compact ⇔ X is closed and bounded.

See Propositions 17, 18 and 19 in Section 9.5 of [Royden-Fitzpatrick] for proofs.

3. (Convexity of normed balls.) Recall that a subset C of a linear space is said convex if
for any x, y in C the line segment

[x, y] = {(1− t)x+ ty , 0 ≤ t ≤ 1}

is included in C. Prove that balls in a normed linear space are always convex.
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Solution. Let a be an element in the space and r > 0. If x, y ∈ B(a, r) and zt =
(1− t)x+ ty with t ∈ [0, 1], then

d(a, zt) = ‖a− (1− t)x− ty‖
= ‖(1− t)a+ ta− (1− t)x− ty‖
≤ ‖(1− t)(a− x)‖+ ‖t(a− y)‖
= (1− t)‖a− x‖+ t‖a− y‖
≤ (1− t)r + tr

= r,

showing that zt belongs to B(a, r) which is therefore convex.

4. (SNCF distance.) Consider the map δ defined on R2 ×R2 by

δ(u, v) =

{
‖u− v‖ if u and v are colinear
‖u‖+ ‖v‖ otherwise .

(a) Prove that δ is a distance.

(b) Describe geometrically the ball B(u, r) for u ∈ R2 and r > 0.

(c) Is there a norm N on R2 such that δ(u, v) = N(u− v) for all u, v ∈ R2?

Solution. (a) For the triangle inequality, distinguish cases when two or three of the
vectors are colinear.

(b) If u = 0, it is the Euclidean ball with radius r. Otherwise, it is the union of the

open line segment
{
u+ t

u

‖u‖
, −1 < t < 1

}
and the (possibly empty) Euclidean ball

B(0, ρ) with ρ = max(r − ‖u‖, 0).

(c) No: some of the balls for this distance are not convex, which cannot happen in a
normed linear space, as established in a previous question.

5. (Metric Urysohn’s Lemma.) Let (E, d) be a metric space. For any subset A ⊂ E and
any point x ∈ E, the distance between x and A is defined by

d(x,A) = inf
a∈A

d(x, a).

(a) Verify that d is well-defined and calculate d(x,A) when x ∈ A.

(b) Show that d(x,A) = d(x, Ā), where Ā is the closure of A.

(c) Show that d(·, A) is 1-Lipschitz, that is,

|d(x,A)− d(y, A)| ≤ d(x, y)
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for any x, y ∈ E.

(d) Let A and B be disjoint closed subsets of E. Prove the existence of a continuous
function f : E −→ R such that:

(i) 0 ≤ f(x) ≤ 1 for all x ∈ E;

(ii) f(x) = 0 for all x ∈ A;

(iii) f(x) = 1 for all x ∈ B.

Hint: consider an appropriate combination of d(·, A) and d(·, B).

Solution. (a) The infimum is taken over a non-empty set of non-negative numbers,
all of which are 0 if x ∈ A.

(b) Observe thatA ⊂ Ā so d(x,A) ≥ d(x, Ā). For the other inequality, consider α in Ā.
There exists a sequence {an} ∈ AN that converges to α. Given x fixed, the function
d(x, ·) is continuous so lim

n→∞
d(x, an) = d(x, α). Since d(x, an) ≥ d(x,A) for every n, it

follows that d(x, α) ≥ d(x,A). This is true for every α in Ā so d(x, Ā) ≥ d(x,A).

(c) For x, y ∈ E and a ∈ A, the triangle inequality and the definition of d(x,A)
imply that d(x,A) ≤ d(x, y) + d(y, a). This is true for every a ∈ A so d(x,A) ≤
d(x, y) + d(y, A) and we get d(x,A) − d(y, A) ≤ d(x, y). The same argument gives
d(y, A)− d(x,A) ≤ d(x, y) hence the result.

(d) Consider x 7−→ d(x,A)

d(x,A) + d(x,B)
. This is (a special case of) Urysohn’s Lemma.

6. (Separation of pseudo-metric spaces.) A pseudo-metric on a setE is a map d : E×E −→
R+ satisfying

(i) d(x, y) = d(y, x)

(ii) x = y ⇒ d(x, y) = 0

(iii) d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z in E.

(a) Check that the relation ∼ defined on E by:

x ∼ y ⇔ d(x, y) = 0

is an equivalence relation.

Denote by x̃ the class of x ∈ E for this relation, and by Ẽ the quotient E/ ∼.

(b) Verify that the map d̃ : (x̃, ỹ) 7−→ d(x, y) is a well-defined metric on Ẽ.
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Solution. (a) Symmetry follows from (i), reflexivity from (ii) and transitivity from
(iii).

(b) To check that the definition of d̃(x̃, ỹ) does not depend on the choice of repre-
sentatives for x̃ and ỹ, assume that x ∼ x′ and y ∼ y′. Then, the triangle inequality
implies

d(x, y) ≤ d(x, x′)︸ ︷︷ ︸
=0

+d(x′, y′) + d(y, y′)︸ ︷︷ ︸
=0

,

hence d(x, y) ≤ d(x′, y′). The reverse inequality is proved similarly, showing that d̃
is well-defined.

To prove that it is a metric, observe that conditions (i), (ii) and (iii) hold automatically
for d̃. Finally, d̃(x̃, ỹ) = 0 implies x̃ = ỹ by construction so d̃ is a metric on Ẽ.

7. (Ultrametric distances.) Let E be a set equipped with a map d : E × E −→ R+

satisfying

(i) d(x, y) = d(y, x)

(ii) d(x, y) = 0 ⇔ x = y

(iii) d(x, y) ≤ max
(
d(x, z) , d(z, y)

)
for all x, y, z in E.

(a) Verify that (E, d) is a metric space.

(b) Prove that if d(x, z) 6= d(z, y), then (iii) is an equality. What can be said of trian-
gles in E?

(c) Let x ∈ E and r > 0. Prove that B(x, r) = B(y, r) for any y ∈ B(x, r).

Solution. (a) It suffices to prove the triangle inequality, which is a weaker condition
than (iii), as a consequence of the identity max(a, b) = a + b−min(a, b) with a and b
non-negative.

(b) Assume d(x, z) < d(z, y) so that (iii) becomes d(x, y) ≤ d(z, y) and apply (iii)
again:

d(z, y) ≤ max
(
d(z, x) , d(x, y)

)
and the assumption implies that the right-hand side is d(x, y), showing that d(z, y) =
d(x, y).

All triangles in an ultrametric space are isosceles, with the unequal side shorter than
the other two.

(c) Let z be an element of B(x, r). Then

d(y, z) ≤ max
(
d(y, x)︸ ︷︷ ︸

<r

, d(x, z)︸ ︷︷ ︸
<r

)
< r,
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showing that B(x, r) ⊂ B(y, r). Conversely, consider z in B(y, r). Then,

d(x, z) ≤ max
(
d(x, y)︸ ︷︷ ︸

<r

, d(y, z)︸ ︷︷ ︸
<r

)
< r,

establishing that B(x, r) = B(y, r).

In an ultrametric space, every point of a ball is a center.

8. (p-adic distance.) Let p be a prime number. For n ∈ Z \ {0}, denote by νp(n) the
exponent of p in the prime factorization of n.

(a) Prove that the map dp defined on Z× Z by

dp(x, y) =

{
p−νp(x−y) if x 6= y

0 otherwise

satisfies the conditions of the previous problem.

(b) Determine B(x, p−n) and Bc(x, p
−n) for x ∈ Z and n ∈ N.

(c) Study the convergence of the sequence un = 6n in (Z, d2) and in (Z, d5).

Solution. (a) For (i) note that the p-valuations of x and −x are equal for any x ∈ Z.
(ii) is immediate since no power of p is equal to 0. To prove (iii) it suffices to verify
that the p-adic valuation | · |p defined by |n|p = p−νp(n) and |0|p = 0 satisfies the
identity

|m+ n|p ≤ max
(
|m|p , |n|p

)
.

Notice that νp(m + n) ≥ min
(
νp(m) , νp(n)

)
, with equality unless m + n = 0. The

function t 7→ p−t being decreasing, it follows that

|m+ n|p ≤ p−min
(
νp(m) , νp(n)

)
≤ max

(
p−νp(m) , p−νp(n)

)
= max

(
|m|p , |n|p

)
.

(b) For y ∈ Z, the condition dp(x, y) < p−n is equivalent to νp(x − y) < n, meaning
that y ≡ x [pn+1] so that

B(x, p−n) =
{
x+ kpn+1 , k ∈ Z

}
.

A similar argument shows that

Bc(x, p
−n) = {x+ kpn , k ∈ Z} .

Note that every closed ball is also an open ball (with a different radius).
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(c) Note that ν2(6n) = n. Therefore, d2(un, 0) = 2−n −→
n→∞

0 and un converges to 0 in
the 2-adic distance.

We will prove that the sequence is not Cauchy in the 5-adic distance: for any integers
p > q,

(†) ν5(up − uq) = ν5
(
6q(6p−q − 1)

)
= ν5(6

p−q − 1),

so that d5(un, un+1) =
1

5
for any n, showing that d5(up, uq) cannot be made arbitrarily

small for p and q large enough.

It follows from (†) that the only possible accumulation point of the sequence is 1.
Noting that ϕ(5n) = 5n − 5n−1, an application of Fermat’s little theorem shows that
the subsequence 6(5n) is convergent.


