Metric Topology

Elements of Solution

1. (Product metric.) Let $\left(E_{1}, d_{1}\right)$ and $\left(E_{2}, d_{2}\right)$ be metric spaces. Prove that the map defined by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left(d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right)
$$

is a metric on $E_{1} \times E_{2}$.
Solution. Positivity, symmetry and separation are immediate. To check the triangle inequality, let $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ and $\left(z_{1}, z_{2}\right)$. The triangle inequalities for d_{1} and d_{2} give:

$$
d_{1}\left(x_{1}, z_{1}\right) \leq d_{1}\left(x_{1}, y_{1}\right)+d_{1}\left(y_{1}, z_{1}\right) \quad \text { and } \quad d_{2}\left(x_{2}, z_{2}\right) \leq d_{2}\left(x_{2}, y_{2}\right)+d_{2}\left(y_{2}, z_{2}\right)
$$

so that

$$
\begin{aligned}
d\left(\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right) & =\max \left(d_{1}\left(x_{1}, z_{1}\right), d_{2}\left(x_{2}, z_{2}\right)\right) \\
& \leq \max \left(d_{1}\left(x_{1}, y_{1}\right)+d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(x_{2}, y_{2}\right)+d_{2}\left(y_{2}, z_{2}\right)\right) \\
& \leq \max \left(d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right)+\max \left(d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(y_{2}, z_{2}\right)\right) \\
& =d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)+d\left(\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right),
\end{aligned}
$$

showing that d satisfies the triangle inequality and is therefore a metric on $E_{1} \times E_{2}$.
2. (Compactness in metric spaces.) Recall that a subset X of a topological space E is said compact if any open cover of X admits a finite subcover. In this problem, we assume that E is a metric space.
(a) What is a totally bounded set?
(b) What is a sequentially compact set?
(c) State all the implications between total boundedness, sequential compactness and compactness for a general metric space.
(d) State the Heine-Borel Theorem and the Bolzano-Weierstrass Theorem for \mathbf{R}^{n} equipped with its ordinary (Euclidean) metric.
(e) What parts of these results hold in greater generality?

Solution. (a) A metric space X is said totally bounded if for every $\varepsilon>0$, the open cover

$$
\{B(x, \varepsilon), x \in X\}
$$

admits a finite subcover. In other words, X is contained in a finite union of balls of any radius.
(b) A metric space X is said sequentially compact if every sequence in X has a convergent subsequence.
(c) In a metric space:

$$
\text { sequential compactness } \Leftrightarrow \text { compactness } \Rightarrow \text { total boundedness. }
$$

(d) Heine-Borel Theorem. Let X be a subset of \mathbf{R}^{n} equipped with the metric associated with a norm. Then,

$$
X \text { is compact } \Leftrightarrow X \text { is closed and bounded. }
$$

Remarks about (\Rightarrow):

- (compact \Rightarrow closed) holds in every Hausdorff space, metric or not.
- (compact \Rightarrow bounded) holds in every metric space.

A metric space is said to have the Heine-Borel property if its closed and bounded subsets are compact, that is, if (\Leftarrow) holds.

- No infinite-dimensional Banach space has the Heine-Borel property.
- Some Fréchet spaces do: for instance $\operatorname{Hol}(\Omega)$ with Ω open in \mathbf{C}^{n} or $C^{\infty}(\Omega)$ with Ω open in \mathbf{R}^{n}.
Bolzano-Weierstrass Theorem. Every bounded sequence in \mathbf{R}^{n} equipped with the distance associated with a norm has a convergent subsequence. In other words:
X is sequentially compact $\Leftrightarrow X$ is closed and bounded.
See Propositions 17, 18 and 19 in Section 9.5 of [Royden-Fitzpatrick] for proofs.

3. (Convexity of normed balls.) Recall that a subset C of a linear space is said convex if for any x, y in C the line segment

$$
[x, y]=\{(1-t) x+t y, 0 \leq t \leq 1\}
$$

is included in C. Prove that balls in a normed linear space are always convex.

Solution. Let a be an element in the space and $r>0$. If $x, y \in B(a, r)$ and $z_{t}=$ $(1-t) x+t y$ with $t \in[0,1]$, then

$$
\begin{aligned}
d\left(a, z_{t}\right) & =\|a-(1-t) x-t y\| \\
& =\|(1-t) a+t a-(1-t) x-t y\| \\
& \leq\|(1-t)(a-x)\|+\|t(a-y)\| \\
& =(1-t)\|a-x\|+t\|a-y\| \\
& \leq(1-t) r+t r \\
& =r,
\end{aligned}
$$

showing that z_{t} belongs to $B(a, r)$ which is therefore convex.
4. (SNCF distance.) Consider the map δ defined on $\mathbf{R}^{2} \times \mathbf{R}^{2}$ by

$$
\delta(u, v)=\left\{\begin{array}{ll}
\|u-v\| & \text { if } u \text { and } v \text { are colinear } \\
\|u\|+\|v\| & \text { otherwise }
\end{array} .\right.
$$

(a) Prove that δ is a distance.
(b) Describe geometrically the ball $B(u, r)$ for $u \in \mathbf{R}^{2}$ and $r>0$.
(c) Is there a norm N on \mathbf{R}^{2} such that $\delta(u, v)=N(u-v)$ for all $u, v \in \mathbf{R}^{2}$?

Solution. (a) For the triangle inequality, distinguish cases when two or three of the vectors are colinear.
(b) If $u=0$, it is the Euclidean ball with radius r. Otherwise, it is the union of the open line segment $\left\{u+t \frac{u}{\|u\|},-1<t<1\right\}$ and the (possibly empty) Euclidean ball $B(0, \rho)$ with $\rho=\max (r-\|u\|, 0)$.
(c) No: some of the balls for this distance are not convex, which cannot happen in a normed linear space, as established in a previous question.
5. (Metric Urysohn's Lemma.) Let (E, d) be a metric space. For any subset $A \subset E$ and any point $x \in E$, the distance between x and A is defined by

$$
d(x, A)=\inf _{a \in A} d(x, a)
$$

(a) Verify that d is well-defined and calculate $d(x, A)$ when $x \in A$.
(b) Show that $d(x, A)=d(x, \bar{A})$, where \bar{A} is the closure of A.
(c) Show that $d(\cdot, A)$ is 1-Lipschitz, that is,

$$
|d(x, A)-d(y, A)| \leq d(x, y)
$$

for any $x, y \in E$.
(d) Let A and B be disjoint closed subsets of E. Prove the existence of a continuous function $f: E \longrightarrow \mathbf{R}$ such that:
(i) $0 \leq f(x) \leq 1$ for all $x \in E$;
(ii) $f(x)=0$ for all $x \in A$;
(iii) $f(x)=1$ for all $x \in B$.

Hint: consider an appropriate combination of $d(\cdot, A)$ and $d(\cdot, B)$.
Solution. (a) The infimum is taken over a non-empty set of non-negative numbers, all of which are 0 if $x \in A$.
(b) Observe that $A \subset \bar{A}$ so $d(x, A) \geq d(x, \bar{A})$. For the other inequality, consider α in \bar{A}. There exists a sequence $\left\{a_{n}\right\} \in A^{\overline{\mathbf{N}}}$ that converges to α. Given x fixed, the function $d(x, \cdot)$ is continuous so $\lim _{n \rightarrow \infty} d\left(x, a_{n}\right)=d(x, \alpha)$. Since $d\left(x, a_{n}\right) \geq d(x, A)$ for every n, it follows that $d(x, \alpha) \geq d(x, A)$. This is true for every α in \bar{A} so $d(x, \bar{A}) \geq d(x, A)$.
(c) For $x, y \in E$ and $a \in A$, the triangle inequality and the definition of $d(x, A)$ imply that $d(x, A) \leq d(x, y)+d(y, a)$. This is true for every $a \in A$ so $d(x, A) \leq$ $d(x, y)+d(y, A)$ and we get $d(x, A)-d(y, A) \leq d(x, y)$. The same argument gives $d(y, A)-d(x, A) \leq d(x, y)$ hence the result.
(d) Consider $x \longmapsto \frac{d(x, A)}{d(x, A)+d(x, B)}$. This is (a special case of) Urysohn's Lemma.
6. (Separation of pseudo-metric spaces.) A pseudo-metric on a set E is a map $d: E \times E \longrightarrow$ \mathbf{R}_{+}satisfying
(i) $d(x, y)=d(y, x)$
(ii) $x=y \quad \Rightarrow \quad d(x, y)=0$
(iii) $d(x, y) \leq d(x, z)+d(z, y)$
for all x, y, z in E.
(a) Check that the relation \sim defined on E by:

$$
x \sim y \quad \Leftrightarrow \quad d(x, y)=0
$$

is an equivalence relation.
Denote by \tilde{x} the class of $x \in E$ for this relation, and by \tilde{E} the quotient E / \sim.
(b) Verify that the map $\tilde{d}:(\tilde{x}, \tilde{y}) \longmapsto d(x, y)$ is a well-defined metric on \tilde{E}.

Solution. (a) Symmetry follows from (i), reflexivity from (ii) and transitivity from (iii).
(b) To check that the definition of $\tilde{d}(\tilde{x}, \tilde{y})$ does not depend on the choice of representatives for \tilde{x} and \tilde{y}, assume that $x \sim x^{\prime}$ and $y \sim y^{\prime}$. Then, the triangle inequality implies

$$
d(x, y) \leq \underbrace{d\left(x, x^{\prime}\right)}_{=0}+d\left(x^{\prime}, y^{\prime}\right)+\underbrace{d\left(y, y^{\prime}\right)}_{=0},
$$

hence $d(x, y) \leq d\left(x^{\prime}, y^{\prime}\right)$. The reverse inequality is proved similarly, showing that \tilde{d} is well-defined.

To prove that it is a metric, observe that conditions (i), (ii) and (iii) hold automatically for \tilde{d}. Finally, $\tilde{d}(\tilde{x}, \tilde{y})=0$ implies $\tilde{x}=\tilde{y}$ by construction so \tilde{d} is a metric on \tilde{E}.
7. (Ultrametric distances.) Let E be a set equipped with a map $d: E \times E \longrightarrow \mathbf{R}_{+}$ satisfying
(i) $d(x, y)=d(y, x)$
(ii) $d(x, y)=0 \quad \Leftrightarrow \quad x=y$
(iii) $d(x, y) \leq \max (d(x, z), d(z, y))$
for all x, y, z in E.
(a) Verify that (E, d) is a metric space.
(b) Prove that if $d(x, z) \neq d(z, y)$, then (iii) is an equality. What can be said of triangles in E ?
(c) Let $x \in E$ and $r>0$. Prove that $B(x, r)=B(y, r)$ for any $y \in B(x, r)$.

Solution. (a) It suffices to prove the triangle inequality, which is a weaker condition than (iii), as a consequence of the identity $\max (a, b)=a+b-\min (a, b)$ with a and b non-negative.
(b) Assume $d(x, z)<d(z, y)$ so that (iii) becomes $d(x, y) \leq d(z, y)$ and apply (iii) again:

$$
d(z, y) \leq \max (d(z, x), d(x, y))
$$

and the assumption implies that the right-hand side is $d(x, y)$, showing that $d(z, y)=$ $d(x, y)$.
All triangles in an ultrametric space are isosceles, with the unequal side shorter than the other two.
(c) Let z be an element of $B(x, r)$. Then

$$
d(y, z) \leq \max (\underbrace{d(y, x)}_{<r}, \underbrace{d(x, z)}_{<r})<r
$$

showing that $B(x, r) \subset B(y, r)$. Conversely, consider z in $B(y, r)$. Then,

$$
d(x, z) \leq \max (\underbrace{d(x, y)}_{<r}, \underbrace{d(y, z)}_{<r})<r
$$

establishing that $B(x, r)=B(y, r)$.
In an ultrametric space, every point of a ball is a center.
8. (p-adic distance.) Let p be a prime number. For $n \in \mathbf{Z} \backslash\{0\}$, denote by $\nu_{p}(n)$ the exponent of p in the prime factorization of n.
(a) Prove that the map d_{p} defined on $\mathbf{Z} \times \mathbf{Z}$ by

$$
d_{p}(x, y)=\left\{\begin{array}{cl}
p^{-\nu_{p}(x-y)} & \text { if } x \neq y \\
0 & \text { otherwise }
\end{array}\right.
$$

satisfies the conditions of the previous problem.
(b) Determine $B\left(x, p^{-n}\right)$ and $B_{c}\left(x, p^{-n}\right)$ for $x \in \mathbf{Z}$ and $n \in \mathbf{N}$.
(c) Study the convergence of the sequence $u_{n}=6^{n}$ in $\left(\mathbf{Z}, d_{2}\right)$ and in $\left(\mathbf{Z}, d_{5}\right)$.

Solution. (a) For (i) note that the p-valuations of x and $-x$ are equal for any $x \in \mathbf{Z}$. (ii) is immediate since no power of p is equal to 0 . To prove (iii) it suffices to verify that the p-adic valuation $|\cdot|_{p}$ defined by $|n|_{p}=p^{-\nu_{p}(n)}$ and $|0|_{p}=0$ satisfies the identity

$$
|m+n|_{p} \leq \max \left(|m|_{p},|n|_{p}\right)
$$

Notice that $\nu_{p}(m+n) \geq \min \left(\nu_{p}(m), \nu_{p}(n)\right)$, with equality unless $m+n=0$. The function $t \mapsto p^{-t}$ being decreasing, it follows that

$$
|m+n|_{p} \leq p^{-\min \left(\nu_{p}(m), \nu_{p}(n)\right)} \leq \max \left(p^{-\nu_{p}(m)}, p^{-\nu_{p}(n)}\right)=\max \left(|m|_{p},|n|_{p}\right)
$$

(b) For $y \in \mathbf{Z}$, the condition $d_{p}(x, y)<p^{-n}$ is equivalent to $\nu_{p}(x-y)<n$, meaning that $y \equiv x\left[p^{n+1}\right]$ so that

$$
B\left(x, p^{-n}\right)=\left\{x+k p^{n+1}, k \in \mathbf{Z}\right\} .
$$

A similar argument shows that

$$
B_{c}\left(x, p^{-n}\right)=\left\{x+k p^{n}, k \in \mathbb{Z}\right\}
$$

Note that every closed ball is also an open ball (with a different radius).
(c) Note that $\nu_{2}\left(6^{n}\right)=n$. Therefore, $d_{2}\left(u_{n}, 0\right)=2^{-n} \underset{n \rightarrow \infty}{\longrightarrow} 0$ and u_{n} converges to 0 in the 2-adic distance.

We will prove that the sequence is not Cauchy in the 5-adic distance: for any integers $p>q$,

$$
\nu_{5}\left(u_{p}-u_{q}\right)=\nu_{5}\left(6^{q}\left(6^{p-q}-1\right)\right)=\nu_{5}\left(6^{p-q}-1\right)
$$

so that $d_{5}\left(u_{n}, u_{n+1}\right)=\frac{1}{5}$ for any n, showing that $d_{5}\left(u_{p}, u_{q}\right)$ cannot be made arbitrarily small for p and q large enough.
It follows from (\dagger) that the only possible accumulation point of the sequence is 1 . Noting that $\varphi\left(5^{n}\right)=5^{n}-5^{n-1}$, an application of Fermat's little theorem shows that the subsequence $6^{\left(5^{n}\right)}$ is convergent.

