Metric Topology

Elements of Solution

1. (*Product metric.*) Let (E_1, d_1) and (E_2, d_2) be metric spaces. Prove that the map defined by

$$d((x_1, x_2), (y_1, y_2)) = \max(d_1(x_1, y_1), d_2(x_2, y_2))$$

is a metric on $E_1 \times E_2$.

Solution. Positivity, symmetry and separation are immediate. To check the triangle inequality, let (x_1, x_2) , (y_1, y_2) and (z_1, z_2) . The triangle inequalities for d_1 and d_2 give:

 $d_1(x_1, z_1) \le d_1(x_1, y_1) + d_1(y_1, z_1)$ and $d_2(x_2, z_2) \le d_2(x_2, y_2) + d_2(y_2, z_2)$

so that

$$d((x_1, x_2), (z_1, z_2)) = \max (d_1(x_1, z_1), d_2(x_2, z_2))$$

$$\leq \max (d_1(x_1, y_1) + d_1(y_1, z_1), d_2(x_2, y_2) + d_2(y_2, z_2))$$

$$\leq \max (d_1(x_1, y_1), d_2(x_2, y_2)) + \max (d_1(y_1, z_1), d_2(y_2, z_2))$$

$$= d((x_1, x_2), (y_1, y_2)) + d((y_1, y_2), (z_1, z_2)),$$

showing that *d* satisfies the triangle inequality and is therefore a metric on $E_1 \times E_2$.

2. (*Compactness in metric spaces.*) Recall that a subset X of a topological space E is said *compact* if any open cover of X admits a finite subcover. In this problem, we assume that E is a metric space.

- (a) What is a *totally bounded* set?
- (b) What is a sequentially compact set?

(c) State all the implications between total boundedness, sequential compactness and compactness for a general metric space.

(d) State the Heine-Borel Theorem and the Bolzano-Weierstrass Theorem for \mathbb{R}^n equipped with its ordinary (Euclidean) metric.

(e) What parts of these results hold in greater generality?

Solution. (a) A metric space X is said *totally bounded* if for every $\varepsilon > 0$, the open cover

$$\{B(x,\varepsilon)\,,\,x\in X\}$$

admits a finite subcover. In other words, *X* is contained in a finite union of balls of any radius.

(b) A metric space *X* is said *sequentially compact* if every sequence in *X* has a convergent subsequence.

(c) In a metric space:

```
sequential compactness \Leftrightarrow compactness \Rightarrow total boundedness.
```

(d) Heine-Borel Theorem. Let X be a subset of \mathbb{R}^n equipped with the metric associated with a norm. Then,

X is compact \Leftrightarrow *X* is closed and bounded.

Remarks about (\Rightarrow) :

- (compact \Rightarrow closed) holds in every Hausdorff space, metric or not.
- (compact \Rightarrow bounded) holds in every metric space.

A metric space is said to have the Heine-Borel property if its closed and bounded subsets are compact, that is, if (\Leftarrow) holds.

- No infinite-dimensional Banach space has the Heine-Borel property.
- Some Fréchet spaces do: for instance Hol(Ω) with Ω open in Cⁿ or C[∞](Ω) with Ω open in Rⁿ.

Bolzano-Weierstrass Theorem. Every bounded sequence in \mathbb{R}^n equipped with the distance associated with a norm has a convergent subsequence. In other words:

X is sequentially compact \Leftrightarrow *X* is closed and bounded.

See Propositions 17, 18 and 19 in Section 9.5 of [Royden-Fitzpatrick] for proofs.

3. (*Convexity of normed balls.*) Recall that a subset C of a linear space is said *convex* if for any x, y in C the line segment

$$[x, y] = \{(1 - t)x + ty, 0 \le t \le 1\}$$

is included in C. Prove that balls in a normed linear space are always convex.

Solution. Let *a* be an element in the space and r > 0. If $x, y \in B(a, r)$ and $z_t = (1-t)x + ty$ with $t \in [0, 1]$, then

$$d(a, z_t) = ||a - (1 - t)x - ty|| = ||(1 - t)a + ta - (1 - t)x - ty|| \leq ||(1 - t)(a - x)|| + ||t(a - y)|| = (1 - t)||a - x|| + t||a - y|| \leq (1 - t)r + tr = r,$$

showing that z_t belongs to B(a, r) which is therefore convex.

4. (*SNCF distance.*) Consider the map δ defined on $\mathbb{R}^2 \times \mathbb{R}^2$ by

$$\delta(u, v) = \begin{cases} \|u - v\| & \text{if } u \text{ and } v \text{ are colinear} \\ \|u\| + \|v\| & \text{otherwise} \end{cases}$$

(a) Prove that δ is a distance.

(b) Describe geometrically the ball B(u, r) for $u \in \mathbb{R}^2$ and r > 0.

(c) Is there a norm N on \mathbb{R}^2 such that $\delta(u, v) = N(u - v)$ for all $u, v \in \mathbb{R}^2$?

Solution. (a) For the triangle inequality, distinguish cases when two or three of the vectors are colinear.

(b) If u = 0, it is the Euclidean ball with radius r. Otherwise, it is the union of the open line segment $\left\{ u + t \frac{u}{\|u\|}, -1 < t < 1 \right\}$ and the (possibly empty) Euclidean ball $B(0, \rho)$ with $\rho = \max(r - \|u\|, 0)$.

(c) No: some of the balls for this distance are not convex, which cannot happen in a normed linear space, as established in a previous question.

5. (*Metric Urysohn's Lemma.*) Let (E, d) be a metric space. For any subset $A \subset E$ and any point $x \in E$, the *distance* between x and A is defined by

$$d(x,A) = \inf_{a \in A} d(x,a).$$

(a) Verify that *d* is well-defined and calculate d(x, A) when $x \in A$.

(b) Show that $d(x, A) = d(x, \overline{A})$, where \overline{A} is the closure of A.

(c) Show that $d(\cdot, A)$ is 1-Lipschitz, that is,

$$|d(x,A) - d(y,A)| \le d(x,y)$$

for any $x, y \in E$.

(d) Let *A* and *B* be disjoint closed subsets of *E*. Prove the existence of a continuous function $f : E \longrightarrow \mathbf{R}$ such that:

(i) $0 \le f(x) \le 1$ for all $x \in E$;

(ii) f(x) = 0 for all $x \in A$;

(iii) f(x) = 1 for all $x \in B$.

<u>*Hint*</u>: consider an appropriate combination of $d(\cdot, A)$ and $d(\cdot, B)$.

Solution. (a) The infimum is taken over a non-empty set of non-negative numbers, all of which are 0 if $x \in A$.

(b) Observe that $A \subset \overline{A}$ so $d(x, A) \ge d(x, \overline{A})$. For the other inequality, consider α in \overline{A} . There exists a sequence $\{a_n\} \in A^{\mathbb{N}}$ that converges to α . Given x fixed, the function $d(x, \cdot)$ is continuous so $\lim_{n \to \infty} d(x, a_n) = d(x, \alpha)$. Since $d(x, a_n) \ge d(x, A)$ for every n, it follows that $d(x, \alpha) \ge d(x, A)$. This is true for every α in \overline{A} so $d(x, \overline{A}) \ge d(x, A)$.

(c) For $x, y \in E$ and $a \in A$, the triangle inequality and the definition of d(x, A) imply that $d(x, A) \leq d(x, y) + d(y, a)$. This is true for every $a \in A$ so $d(x, A) \leq d(x, y) + d(y, A)$ and we get $d(x, A) - d(y, A) \leq d(x, y)$. The same argument gives $d(y, A) - d(x, A) \leq d(x, y)$ hence the result.

(d) Consider $x \mapsto \frac{d(x, A)}{d(x, A) + d(x, B)}$. This is (a special case of) Urysohn's Lemma.

6. (*Separation of pseudo-metric spaces.*) A *pseudo-metric* on a set *E* is a map $d : E \times E \longrightarrow \mathbf{R}_+$ satisfying

(i)
$$d(x, y) = d(y, x)$$

(ii)
$$x = y \Rightarrow d(x, y) = 0$$

(iii)
$$d(x, y) \le d(x, z) + d(z, y)$$

for all x, y, z in E.

(a) Check that the relation \sim defined on *E* by:

$$x \sim y \quad \Leftrightarrow \quad d(x, y) = 0$$

is an equivalence relation.

Denote by \tilde{x} the class of $x \in E$ for this relation, and by \tilde{E} the quotient E/\sim .

(b) Verify that the map $\tilde{d} : (\tilde{x}, \tilde{y}) \longmapsto d(x, y)$ is a well-defined metric on \tilde{E} .

Solution. (a) Symmetry follows from (i), reflexivity from (ii) and transitivity from (iii).

(b) To check that the definition of $\tilde{d}(\tilde{x}, \tilde{y})$ does not depend on the choice of representatives for \tilde{x} and \tilde{y} , assume that $x \sim x'$ and $y \sim y'$. Then, the triangle inequality implies

$$d(x,y) \leq \underbrace{d(x,x')}_{=0} + d(x',y') + \underbrace{d(y,y')}_{=0},$$

hence $d(x,y) \leq d(x',y')$. The reverse inequality is proved similarly, showing that \tilde{d} is well-defined.

To prove that it is a metric, observe that conditions (i), (ii) and (iii) hold automatically for \tilde{d} . Finally, $\tilde{d}(\tilde{x}, \tilde{y}) = 0$ implies $\tilde{x} = \tilde{y}$ by construction so \tilde{d} is a metric on \tilde{E} .

7. (*Ultrametric distances.*) Let *E* be a set equipped with a map $d : E \times E \longrightarrow \mathbf{R}_+$ satisfying

- (i) d(x, y) = d(y, x)
- (ii) $d(x,y) = 0 \quad \Leftrightarrow \quad x = y$
- (iii) $d(x, y) \le \max(d(x, z), d(z, y))$

for all x, y, z in E.

(a) Verify that (E, d) is a metric space.

(b) Prove that if $d(x, z) \neq d(z, y)$, then (iii) is an equality. What can be said of triangles in *E*?

(c) Let $x \in E$ and r > 0. Prove that B(x, r) = B(y, r) for any $y \in B(x, r)$.

Solution. (a) It suffices to prove the triangle inequality, which is a weaker condition than (iii), as a consequence of the identity $\max(a, b) = a + b - \min(a, b)$ with a and b non-negative.

(b) Assume d(x,z) < d(z,y) so that (iii) becomes $d(x,y) \leq d(z,y)$ and apply (iii) again:

 $d(z, y) \le \max\left(d(z, x), d(x, y)\right)$

and the assumption implies that the right-hand side is d(x, y), showing that d(z, y) = d(x, y).

All triangles in an ultrametric space are isosceles, with the unequal side shorter than the other two.

(c) Let z be an element of B(x, r). Then

$$d(y, z) \le \max\left(\underbrace{d(y, x)}_{< r}, \underbrace{d(x, z)}_{< r}\right) < r,$$

showing that $B(x,r) \subset B(y,r)$. Conversely, consider *z* in B(y,r). Then,

$$d(x, z) \le \max\left(\underbrace{d(x, y)}_{< r}, \underbrace{d(y, z)}_{< r}\right) < r,$$

establishing that B(x, r) = B(y, r).

In an ultrametric space, every point of a ball is a center.

8. (*p*-adic distance.) Let p be a prime number. For $n \in \mathbb{Z} \setminus \{0\}$, denote by $\nu_p(n)$ the exponent of p in the prime factorization of n.

(a) Prove that the map d_p defined on $\mathbf{Z} \times \mathbf{Z}$ by

$$d_p(x,y) = \begin{cases} p^{-\nu_p(x-y)} & \text{if } x \neq y \\ 0 & \text{otherwise} \end{cases}$$

satisfies the conditions of the previous problem.

(b) Determine $B(x, p^{-n})$ and $B_c(x, p^{-n})$ for $x \in \mathbb{Z}$ and $n \in \mathbb{N}$.

(c) Study the convergence of the sequence $u_n = 6^n$ in (\mathbf{Z}, d_2) and in (\mathbf{Z}, d_5) .

Solution. (a) For (i) note that the *p*-valuations of x and -x are equal for any $x \in \mathbb{Z}$. (ii) is immediate since no power of p is equal to 0. To prove (iii) it suffices to verify that the *p*-adic valuation $|\cdot|_p$ defined by $|n|_p = p^{-\nu_p(n)}$ and $|0|_p = 0$ satisfies the identity

$$|m+n|_p \le \max\left(|m|_p, |n|_p\right).$$

Notice that $\nu_p(m+n) \ge \min(\nu_p(m), \nu_p(n))$, with equality unless m + n = 0. The function $t \mapsto p^{-t}$ being decreasing, it follows that

$$|m+n|_p \le p^{-\min(\nu_p(m),\nu_p(n))} \le \max(p^{-\nu_p(m)}, p^{-\nu_p(n)}) = \max(|m|_p, |n|_p).$$

(b) For $y \in \mathbb{Z}$, the condition $d_p(x, y) < p^{-n}$ is equivalent to $\nu_p(x - y) < n$, meaning that $y \equiv x [p^{n+1}]$ so that

$$B(x, p^{-n}) = \{x + kp^{n+1}, k \in \mathbb{Z}\}.$$

A similar argument shows that

$$B_c(x, p^{-n}) = \{x + kp^n, k \in \mathbb{Z}\}.$$

Note that every closed ball is also an open ball (with a different radius).

(c) Note that $\nu_2(6^n) = n$. Therefore, $d_2(u_n, 0) = 2^{-n} \xrightarrow[n \to \infty]{} 0$ and u_n converges to 0 in the 2-adic distance.

We will prove that the sequence is not Cauchy in the 5-adic distance: for any integers p > q,

(†)
$$\nu_5(u_p - u_q) = \nu_5(6^q(6^{p-q} - 1)) = \nu_5(6^{p-q} - 1),$$

so that $d_5(u_n, u_{n+1}) = \frac{1}{5}$ for any *n*, showing that $d_5(u_p, u_q)$ cannot be made arbitrarily small for *p* and *q* large enough.

It follows from (†) that the only possible accumulation point of the sequence is 1. Noting that $\varphi(5^n) = 5^n - 5^{n-1}$, an application of Fermat's little theorem shows that the subsequence $6^{(5^n)}$ is convergent.