MATH 428 Spring 2023

Metric Topology

Elements of Solution

1. (Product metric.) Let (E1,d;) and (Es,d>) be metric spaces. Prove that the map
defined by

d((z1,22), (y1,92)) = max (di(z1,91) , da(2,92))

is a metric on F; X Es.

Solution. Positivity, symmetry and separation are immediate. To check the triangle
inequality, let (x4, x2), (y1, y2) and (21, 22). The triangle inequalities for d; and d, give:

di(z1,21) < di(z1,91) +di(yr, 1) and  dy(w2, 22) < do(72,y2) + da(y2, 22)
so that

(1((1:1, xa), (21, 22)) = max ((11(1'1, z1), do(xs, /,2))
< max ((]1 (x1,91) + di(y1, 21) 5 da(x2,y2) + da(ya, 22))
< max (d1 (x1,91) , da(xa, yz)) + max (dl(yl, 21), da(ya, /:/2))
- (1((4171: r2), (Y1, !/2)) + d((l/L Y2), (21, «2))

showing that d satisfies the triangle inequality and is therefore a metric on E; x Ej.

2. (Compactness in metric spaces.) Recall that a subset X of a topological space E is
said compact if any open cover of X admits a finite subcover. In this problem, we
assume that F is a metric space.

(a) What is a totally bounded set?
(b) What is a sequentially compact set?

(c) State all the implications between total boundedness, sequential compactness
and compactness for a general metric space.

(d) State the Heine-Borel Theorem and the Bolzano-Weierstrass Theorem for R"
equipped with its ordinary (Euclidean) metric.

(e) What parts of these results hold in greater generality?
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Solution. (a) A metric space X is said totally bounded if for every ¢ > 0, the open
cover
{B(x,¢), v € X}

admits a finite subcover. In other words, X is contained in a finite union of balls of
any radius.

(b) A metric space X is said sequentially compact if every sequence in X has a con-
vergent subsequence.

(c) In a metric space:
sequential compactness <« compactness = total boundedness.

(d) Heine-Borel Theorem. Let X be a subset of R" equipped with the metric asso-
ciated with a norm. Then,

X iscompact < X is closed and bounded.
Remarks about (=):
* (compact = closed) holds in every Hausdorff space, metric or not.
* (compact = bounded) holds in every metric space.

A metric space is said to have the Heine-Borel property if its closed and bounded
subsets are compact, that is, if (<=) holds.

* No infinite-dimensional Banach space has the Heine-Borel property.

e Some Fréchet spaces do: for instance Hol(2) with Q2 open in C" or C'*°(Q2) with
2 openin R".

Bolzano-Weierstrass Theorem. Every bounded sequence in R" equipped with the
distance associated with a norm has a convergent subsequence. In other words:

X is sequentially compact <« X is closed and bounded.

See Propositions 17, 18 and 19 in Section 9.5 of [Royden-Fitzpatrick] for proofs.

3. (Convexity of normed balls.) Recall that a subset C' of a linear space is said convex if
for any z, y in C the line segment

[,y ={1—-t)z+ty, 0 <t <1}

is included in C. Prove that balls in a normed linear space are always convex.
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Solution. Let a be an element in the space and » > 0. If x,y € B(a,r) and 2z, =
(1 —t)x + ty with t € [0, 1], then
dla,z) = |la—(1—t)z -ty
= [[(1—=t)a+ta— (1 —t)x —ty|

< [ =t)(a—2)] + [[t(a —y)|
— (A =B)la—z] +tlla—yl

< (I=t)r+tr

f— 7",

showing that z, belongs to B(a, r) which is therefore convex.

4. (SNCF distance.) Consider the map § defined on R* x R? by

|lu—wv|  if uand v are colinear
llu|]| + ||v|| otherwise '

5(u,v) = {

(a) Prove that ¢ is a distance.
(b) Describe geometrically the ball B(u,r) for u € R? and r > 0.

(c) Is there a norm N on R? such that §(u,v) = N(u —v) for all u,v € R??

Solution. (a) For the triangle inequality, distinguish cases when two or three of the
vectors are colinear.

(b) If u = 0, it is the Euclidean ball with radius r. Otherwise, it is the union of the
u

[uf|

B(0, p) with p = max(r — [|ul[,0).

open line segment {u +t —-1<t< 1} and the (possibly empty) Euclidean ball

(c) No: some of the balls for this distance are not convex, which cannot happen in a
normed linear space, as established in a previous question.

5. (Metric Urysohn’s Lemma.) Let (E, d) be a metric space. For any subset A C E and
any point x € F, the distance between z and A is defined by

d(z, A) = égg d(x,a).

(a) Verify that d is well-defined and calculate d(z, A) when z € A.
(b) Show that d(z, A) = d(x, A), where A is the closure of A.
(c) Show that d(-, A) is 1-Lipschitz, that is,
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forany z,y € E.

(d) Let A and B be disjoint closed subsets of E. Prove the existence of a continuous
function f : F — R such that:

(i) 0< f(x) < 1lforallz € E;
(ii) f(x)=0forallz € 4;
(iii) f(z) =1forallz € B.
Hint: consider an appropriate combination of d(-, A) and d(-, B).

Solution. (a) The infimum is taken over a non-empty set of non-negative numbers,
all of which are 0 if x € A.

(b) Observe that A C Asod(z, A) > d(x, A). For the other inequality, consider « in A.
There exists a sequence {a,} € AN that converges to a. Given z fixed, the function
d(z,-) is continuous so lim d(z,a,) = d(z, «). Since d(z, a,) > d(z, A) for every n, it

n—0o0

follows that d(z, ) > d(x, A). This is true for every a in A so d(z, A) > d(x, A).
(c) For z,y € E and a € A, the triangle inequality and the definition of d(z, A)
imply that d(z,A) < d(z,y) + d(y,a). This is true for every a € A so d(z,A) <
d(z,y) + d(y, A) and we get d(z, A) — d(y,A) < d(z,y). The same argument gives
d(y,A) —d(x, A) < d(z,y) hence the result.

d(xz, A)
d(xz,A) +d(z, B)

(d) Consider z — . This is (a special case of) Urysohn’s Lemma.

6. (Separation of pseudo-metric spaces.) A pseudo-metriconaset Eisamapd: ExXE —
R satisfying

(i) d(z,y) = d(y, x)
(i) z=y = dz,y)=0
(iii) d(z,y) < d(x,z)+d(z,v)
forall z, y, zin E.

(a) Check that the relation ~ defined on E by:
r~y < dz,y) =0

is an equivalence relation.
Denote by 7 the class of = € E for this relation, and by E the quotient E/ ~.

(b) Verify that the map d: (Z,9) — d(x,y) is a well-defined metric on E.
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Solution. (a) Symmetry follows from (i), reflexivity from (ii) and transitivity from
(iii).
(b) To check that the definition of d(#,7) does not depend on the choice of repre-
sentatives for  and g, assume that z ~ 2’ and y ~ y'. Then, the triangle inequality
implies
d(w,y) < d(a,a) +d(@, ') + d(y,y),
t,()—/ T

hence d(x,y) < d(«',y'). The reverse inequality is proved similarly, showing that d
is well-defined.

To prove that it is a metric, observe that conditions (i), (ii) and (iii) hold automatlcally
for d. Finally, d(z, ) = 0 implies # = / by construction so d is a metric on E.

7. (Ultrametric distances.) Let E be a set equipped withamap d : £ x F — Ry
satisfying

(i) d(z,y) = d(y, )
(i) d(z,y) =0 <& z=y
(iii) d(z,y) < max (d(z,z), d(z,y))
forall z,y, zin E.
(a) Verify that (E, d) is a metric space.

(b) Prove that if d(x, z) # d(z,y), then (iii) is an equality. What can be said of trian-
glesin £7?

(c) Let z € E'and r > 0. Prove that B(z,r) = B(y,r) forany y € B(z,r).

Solution. (a) It suffices to prove the triangle inequality, which is a weaker condition
than (iii), as a consequence of the identity max(a,b) = a + b — min(a, b) with a and b
non-negative.

(b) Assume d(x,z) < d(z,y) so that (iii) becomes d(z,y) < d(z,y) and apply (iii)
again:

d(z,y) < max (d(z,), d(z,y))
and the assumption implies that the right-hand side is d(z, y), showing that d(z, y) =
d(z,y).

All triangles in an ultrametric space are isosceles, with the unequal side shorter than
the other two.

(c) Let z be an element of B(x,r). Then
d(y,z) <max (d(y,z), d(z,z)) <,
——

N——
<r <r
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showing that B(x,r) C B(y,r). Conversely, consider z in B(y,r). Then,

d(z,z) < max ((1(:1;, y), d(y, z)) <,
— ——
<r <r
establishing that B(x,r) = B(y, ).

In an ultrametric space, every point of a ball is a center.

8. (p-adic distance.) Let p be a prime number. For n € Z \ {0}, denote by v,(n) the
exponent of p in the prime factorization of n.

(a) Prove that the map d,, defined on Z x Z by

—vp(e=y) if
o ifz#y
dp(,y) = { 0 otherwise

satisfies the conditions of the previous problem.
(b) Determine B(z,p™") and B.(z,p™") for x € Z and n € N.

(c) Study the convergence of the sequence u,, = 6" in (Z, d») and in (Z, d5).

Solution. (a) For (i) note that the p-valuations of x and —x are equal for any = € Z.
(ii) is immediate since no power of p is equal to 0. To prove (iii) it suffices to verify
that the p-adic valuation | - |, defined by |n|, = p~( and |0|, = 0 satisfies the
identity

Im + n|, < max (|ml,, [n|,).

Notice that v,(m + n) > min (1,(m), v,(n)), with equality unless m + n = 0. The
function ¢ — p~' being decreasing, it follows that

im +n|, <p ™" (vt () < max (p~*™ | p=»") = max (|ml,, |nl,).

(b) For y € Z, the condition d,(z,y) < p~" is equivalent to v,(z — y) < n, meaning
that y = z [p"*!] so that

B([E7p_”) _ {I’ =+ ]{'er—l 7 ke Z}
A similar argument shows that

B(:(Iap_”) - {I + ]{pn/ ) k € Z}

Note that every closed ball is also an open ball (with a different radius).
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(c) Note that 1,(6") = n. Therefore, ds(u,,0) = 27" — 0 and u,, converges to 0 in

n—oo
the 2-adic distance.

We will prove that the sequence is not Cauchy in the 5-adic distance: for any integers
D >q,
(1) vs(up — ug) = v5(69(6P7 — 1)) = v5(6"77 — 1),
1
so that ds(uy,, u,+1) = - for any n, showing that ds(u,, u,) cannot be made arbitrarily
small for p and ¢ large enough.
It follows from (f) that the only possible accumulation point of the sequence is 1.

Noting that p(5™) = 5" — 57!, an application of Fermat's little theorem shows that
the subsequence 6" is convergent.



