MATH 428 Spring 2023

Metric Topology

Due Feb. 10

Problem 1. Let (E_1, d_1) and (E_2, d_2) be metric spaces. Prove that the map defined by

$$d((x_1, x_2), (y_1, y_2)) = \max(d_1(x_1, y_1), d_2(x_2, y_2))$$

is a metric on $E_1 \times E_2$.

Problem 2. Recall that a subset X of a topological space E is said *compact* if any open cover of X admits a finite subcover. In this problem, we assume that E is a metric space.

- (a) What is a totally bounded set?
- **(b)** What is a *sequentially compact* set?
- **(c)** State all the implications between total boundedness, sequential compactness and compactness for a general metric space.
- (d) State the Heine-Borel Theorem and the Bolzano-Weierstrass Theorem for \mathbb{R}^n equipped with its ordinary (Euclidean) metric.
- **(e)** What parts of these results hold in greater generality?

See Section 9.5 of [Royden-Fitzpatrick] for inspiration.

Problem 3. Recall that a subset C of a linear space is said *convex* if for any x, y in C the line segment

$$[x,y] = \{(1-t)x + ty, 0 \le t \le 1\}$$

is included in *C*. Prove that balls in a normed linear space are always convex.

MATH 428 Spring 2023

Problem 4. Consider the map δ defined on $\mathbb{R}^2 \times \mathbb{R}^2$ by

$$\delta(u,v) = \left\{ \begin{array}{ll} \|u-v\| & \text{if } u \text{ and } v \text{ are colinear} \\ \|u\| + \|v\| & \text{otherwise} \end{array} \right.$$

- (a) Prove that δ is a distance.
- **(b)** Describe geometrically the ball B(u,r) for $u \in \mathbf{R}^2$ and r > 0.
- (c) Is there a norm N on \mathbf{R}^2 such that $\delta(u,v)=N(u-v)$ for all $u,v\in\mathbf{R}^2$?

Problem 5. Let (E, d) be a metric space. For any subset $A \subset E$ and any point $x \in E$, the *distance* between x and A is defined by

$$d(x,A) = \inf_{a \in A} d(x,a).$$

- (a) Verify that d is well-defined and calculate d(x, A) when $x \in A$.
- **(b)** Show that $d(x, A) = d(x, \bar{A})$, where \bar{A} is the closure of A.
- (c) Show that $d(\cdot, A)$ is 1-Lipschitz, that is,

$$|d(x,A) - d(y,A)| \le d(x,y)$$

for any $x, y \in E$.

- (d) Let A and B be disjoint closed subsets of E. Prove the existence of a continuous function $f: E \longrightarrow \mathbf{R}$ such that:
 - (i) $0 \le f(x) \le 1$ for all $x \in E$;
 - (ii) f(x) = 0 for all $x \in A$;
 - (iii) f(x) = 1 for all $x \in B$.

<u>Hint</u>: consider an appropriate combination of $d(\cdot, A)$ and $d(\cdot, B)$.

Problem 6. A *pseudo-metric* on a set E is a map $d: E \times E \longrightarrow \mathbf{R}_+$ satisfying

- (i) d(x, y) = d(y, x)
- (ii) $x = y \implies d(x, y) = 0$
- (iii) $d(x,y) \le d(x,z) + d(z,y)$

MATH 428 Spring 2023

for all x, y, z in E.

(a) Check that the relation \sim defined on E by:

$$x \sim y \quad \Leftrightarrow \quad d(x, y) = 0$$

is an equivalence relation.

Denote by \tilde{x} the class of $x \in E$ for this relation, and by \tilde{E} the quotient E/\sim .

(b) Verify that the map $\tilde{d}: (\tilde{x}, \tilde{y}) \longmapsto d(x, y)$ is a well-defined metric on \tilde{E} .

Problem 7. Let E be a set equipped with a map $d: E \times E \longrightarrow \mathbf{R}_+$ satisfying

- (i) d(x, y) = d(y, x)
- (ii) $d(x,y) = 0 \Leftrightarrow x = y$
- (iii) $d(x,y) \le \max (d(x,z), d(z,y))$

for all x, y, z in E.

- (a) Verify that (E, d) is a metric space.
- **(b)** Prove that if $d(x, z) \neq d(z, y)$, then (iii) is an equality. What can be said of triangles in E?
- (c) Let $x \in E$ and r > 0. Prove that B(x,r) = B(y,r) for any $y \in B(x,r)$.

Problem 8. (*Optional.*) Let p be a prime number. For $n \in \mathbb{Z} \setminus \{0\}$, denote by $\nu_p(n)$ the exponent of p in the prime factorization of n.

(a) Prove that the map d_p defined on $\mathbf{Z} \times \mathbf{Z}$ by

$$d_p(x,y) = \begin{cases} p^{-\nu_p(x-y)} & \text{if } x \neq y \\ 0 & \text{otherwise} \end{cases}$$

satisfies the conditions of the previous problem.

- **(b)** Determine $B(x, p^{-n})$ and $B_c(x, p^{-n})$ for $x \in \mathbf{Z}$ and $n \in \mathbf{N}$.
- (c) Study the convergence of the sequence $u_n = 6^n$ in (\mathbf{Z}, d_2) and in (\mathbf{Z}, d_5) .