Metric Topology

Due Feb. 10

Problem 1. Let $\left(E_{1}, d_{1}\right)$ and $\left(E_{2}, d_{2}\right)$ be metric spaces. Prove that the map defined by

$$
d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left(d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right)
$$

is a metric on $E_{1} \times E_{2}$.

Problem 2. Recall that a subset X of a topological space E is said compact if any open cover of X admits a finite subcover. In this problem, we assume that E is a metric space.
(a) What is a totally bounded set?
(b) What is a sequentially compact set?
(c) State all the implications between total boundedness, sequential compactness and compactness for a general metric space.
(d) State the Heine-Borel Theorem and the Bolzano-Weierstrass Theorem for \mathbf{R}^{n} equipped with its ordinary (Euclidean) metric.
(e) What parts of these results hold in greater generality?

See Section 9.5 of [Royden-Fitzpatrick] for inspiration.

Problem 3. Recall that a subset C of a linear space is said convex if for any x, y in C the line segment

$$
[x, y]=\{(1-t) x+t y, 0 \leq t \leq 1\}
$$

is included in C. Prove that balls in a normed linear space are always convex.

Problem 4. Consider the map δ defined on $\mathbf{R}^{2} \times \mathbf{R}^{2}$ by

$$
\delta(u, v)=\left\{\begin{array}{ll}
\|u-v\| & \text { if } u \text { and } v \text { are colinear } \\
\|u\|+\|v\| & \text { otherwise }
\end{array} .\right.
$$

(a) Prove that δ is a distance.
(b) Describe geometrically the ball $B(u, r)$ for $u \in \mathbf{R}^{2}$ and $r>0$.
(c) Is there a norm N on \mathbf{R}^{2} such that $\delta(u, v)=N(u-v)$ for all $u, v \in \mathbf{R}^{2}$?

Problem 5. Let (E, d) be a metric space. For any subset $A \subset E$ and any point $x \in E$, the distance between x and A is defined by

$$
d(x, A)=\inf _{a \in A} d(x, a)
$$

(a) Verify that d is well-defined and calculate $d(x, A)$ when $x \in A$.
(b) Show that $d(x, A)=d(x, \bar{A})$, where \bar{A} is the closure of A.
(c) Show that $d(\cdot, A)$ is 1-Lipschitz, that is,

$$
|d(x, A)-d(y, A)| \leq d(x, y)
$$

for any $x, y \in E$.
(d) Let A and B be disjoint closed subsets of E. Prove the existence of a continuous function $f: E \longrightarrow \mathbf{R}$ such that:
(i) $0 \leq f(x) \leq 1$ for all $x \in E$;
(ii) $f(x)=0$ for all $x \in A$;
(iii) $f(x)=1$ for all $x \in B$.

Hint: consider an appropriate combination of $d(\cdot, A)$ and $d(\cdot, B)$.

Problem 6. A pseudo-metric on a set E is a map $d: E \times E \longrightarrow \mathbf{R}_{+}$satisfying
(i) $d(x, y)=d(y, x)$
(ii) $x=y \quad \Rightarrow \quad d(x, y)=0$
(iii) $d(x, y) \leq d(x, z)+d(z, y)$
for all x, y, z in E.
(a) Check that the relation \sim defined on E by:

$$
x \sim y \quad \Leftrightarrow \quad d(x, y)=0
$$

is an equivalence relation.
Denote by \tilde{x} the class of $x \in E$ for this relation, and by \tilde{E} the quotient E / \sim.
(b) Verify that the map $\tilde{d}:(\tilde{x}, \tilde{y}) \longmapsto d(x, y)$ is a well-defined metric on \tilde{E}.

Problem 7. Let E be a set equipped with a map $d: E \times E \longrightarrow \mathbf{R}_{+}$satisfying
(i) $d(x, y)=d(y, x)$
(ii) $d(x, y)=0 \quad \Leftrightarrow \quad x=y$
(iii) $d(x, y) \leq \max (d(x, z), d(z, y))$
for all x, y, z in E.
(a) Verify that (E, d) is a metric space.
(b) Prove that if $d(x, z) \neq d(z, y)$, then (iii) is an equality. What can be said of triangles in E ?
(c) Let $x \in E$ and $r>0$. Prove that $B(x, r)=B(y, r)$ for any $y \in B(x, r)$.

Problem 8. (Optional.) Let p be a prime number. For $n \in \mathbf{Z} \backslash\{0\}$, denote by $\nu_{p}(n)$ the exponent of p in the prime factorization of n.
(a) Prove that the map d_{p} defined on $\mathbf{Z} \times \mathbf{Z}$ by

$$
d_{p}(x, y)=\left\{\begin{array}{cl}
p^{-\nu_{p}(x-y)} & \text { if } x \neq y \\
0 & \text { otherwise }
\end{array}\right.
$$

satisfies the conditions of the previous problem.
(b) Determine $B\left(x, p^{-n}\right)$ and $B_{c}\left(x, p^{-n}\right)$ for $x \in \mathbf{Z}$ and $n \in \mathbf{N}$.
(c) Study the convergence of the sequence $u_{n}=6^{n}$ in $\left(\mathbf{Z}, d_{2}\right)$ and in $\left(\mathbf{Z}, d_{5}\right)$.

