Warm-up: Topology of the Real Line

Elements of Solution

Problem 1. Which of the following subsets of \mathbf{R} are open?

$$
A=(\pi, 5) \quad, \quad B=(1, \infty) \quad, \quad C=[\sqrt{2}, \sqrt{3}) \quad, \quad \mathbf{Q}
$$

Solution. Any interval of the form (a, b) is open: for $a<x<b$, let $r=\min \{x-a, b-$ $x\}$ and notice that $(x-r, x+r) \subset(a, b)$. The argument can be adapted to the case when a or b is infinite, so that A and B are open.
Every open interval centered at $\sqrt{2}$ contains numbers $<\sqrt{2}$, hence cannot be included in C, which is therefore not open.
Irrationals are dense in \mathbf{R} so that no open interval centered at a rational can contain only rationals, so that Q is not open.

Problem 2. Prove that unions and finite intersections of open sets are open.
Solution. The case of unions is immediate. Assume that $\mathcal{U}_{1}, \ldots, \mathcal{U}_{n}$ are open. If their intersection is empty, there is nothing to check. If it is not, for every x in $\mathcal{U}_{1} \cap \ldots \cap \mathcal{U}_{n}$, there exist positive numbers r_{1}, \ldots, r_{n} such that $\left(x-r_{i}, x+r_{i}\right)$ is included in \mathcal{U}_{i} for each $i \in\{1, \ldots, n\}$. Then $r=\min \left\{r_{1}, \ldots, r_{n}\right\}$ is positive and $(x-r, x+r)$ is contained in $\mathcal{U}_{1} \cap \ldots \cap \mathcal{U}_{n}$, which is therefore open.

Problem 3. Show that an arbitrary intersection of open sets is not necessarily open.
Solution. The intervals $\left(1-\frac{1}{n}, 2+\frac{1}{n}\right)$ for $n>0$ are open but their intersection, [1,2], is not. The argument given in the previous question fails to extend because the infimum of an infinite family of positive numbers may be 0 .

Problem 4. Prove that a function $f: \mathbf{R} \longrightarrow \mathbf{R}$ is continuous if and only if $f^{-1}(\mathcal{U})$ is open for any \mathcal{U} open in \mathbf{R}.

Solution. Assume f continuous. Let \mathcal{U} be an open subset of \mathbf{R} and $x \in f^{-1}(\mathcal{U})$. Then $f(x)$ belongs to \mathcal{U} open, so there exists $\varepsilon>0$ such that

$$
(f(x)-\varepsilon, f(x)+\varepsilon) \subset \mathcal{U}
$$

By continuity of f at x, there exists $\delta>0$ such that

$$
f((x-\delta, x+\delta)) \subset(f(x)-\varepsilon, f(x)+\varepsilon) \subset \mathcal{U}
$$

showing that $(x-\delta, x+\delta)$ is included in $f^{-1}(\mathcal{U})$, which is therefore open.
Conversely, if the inverse image of the open set $(f(x)-\varepsilon, f(x)+\varepsilon)$ is open, since it contains x, there must exist $\delta>0$ such that

$$
\left.(x-\delta, x+\delta) \subset f^{-1}((f(x)-\varepsilon, f(x)+\varepsilon))\right)
$$

showing that f is continuous at x.
Problem 5. Prove that a subset X of \mathbf{R} is closed if and only if for any sequence $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ of points of X that converges to a limit in \mathbf{R}, the limit is also in X.

Solution. Assume that X is closed and that $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is a sequence of elements of X that converges to a limit x in \mathbf{R}. If x is not in X, it must belong to its complement, which is open. Therefore, there exists $\varepsilon>0$ such that

$$
(x-\varepsilon, x+\varepsilon) \cap X=\varnothing
$$

In particular, no term of the sequence can be found within ε of x, which contradicts the assumption that $\lim x_{n}=x$. It follows that $x \in X$.
Conversely, assume that convergent sequences of points of X have their limits in X. To check that X is closed, we will prove that if $y \notin X$, there exists $\varepsilon>0$ such that $(y-\varepsilon, y+\varepsilon)$ is included in the complement of X. Indeed, if it was not the case, the intersection

$$
\left(y-\frac{1}{n}, y+\frac{1}{n}\right) \cap X
$$

would be non-empty for every positive integer n. Picking an element x_{n} is each of these sets would provide a sequence in X converging to y, hence a contradiction.

Problem 6. Find a subset of \mathbf{R} that is neither open nor closed.
Solution. Any interval of the form $[a, b)$ works. So does \mathbf{Q}.
Problem 7. Is the set $X=[\sqrt{2}, \sqrt{3}) \cup(\sqrt{5}, \sqrt{6}]$ compact?
Solution. No: consider the family of open sets

$$
\mathcal{U}_{n}=\left(1, \sqrt{3}-\frac{1}{n}\right) \cup\left(\sqrt{5}+\frac{1}{n}, 3\right)
$$

for $n \geq 1$. The fact that the sequences $\sqrt{3}-\frac{1}{n}$ and $\sqrt{5}+\frac{1}{n}$ respectively converge to $\sqrt{3}$ from below and $\sqrt{5}$ from above guarantee that $\left\{\mathcal{U}_{n}\right\}_{n \geq 1}$ covers X.
Since the family is increasing, the union of any finite subfamily is of the form \mathcal{U}_{p} for some $p \geq 1$, hence cannot cover X, which is therefore not compact.

Problem 8. Let K be a compact subset of \mathbf{R} and $f: \mathbf{R} \longrightarrow \mathbf{R}$ a continuous function. Prove that $f(K)$ is compact.

Solution. Let $\left\{\mathcal{U}_{\alpha}\right\}_{\alpha \in I}$ be an open cover of $f(K)$. Since f is continuous, the family $\left\{f^{-1}\left(\mathcal{U}_{\alpha}\right)\right\}_{\alpha \in I}$ is an open cover of K, compact, so one can extract a finite subcover

$$
\left\{f^{-1}\left(\mathcal{U}_{\alpha_{1}}\right), \ldots, f^{-1}\left(\mathcal{U}_{\alpha_{p}}\right)\right\}
$$

and $\left\{\mathcal{U}_{\alpha_{1}}, \ldots, \mathcal{U}_{\alpha_{p}}\right\}$ is a finite subcover of $f(K)$, which is therefore compact.

Problem 9. Assume that K is a compact subset of \mathbf{R}. Prove that K is bounded.

Solution. Let x be a fixed element in K. The family of open intervals $(x-n, x+n)$ with $n \in \mathbf{N}$ covers K. The union of any finite subfamily is of the form $(x-N, x+N)$ for some $N \in \mathbf{N}$. If K is contained in such an interval, then it is included in the interval $(-|x|-N,|x|+N)$, hence bounded.
Alternatively, the family of open intervals $\left\{I_{x}\right\}_{x \in K}$ where $I_{x}=(x-1, x+1)$ covers K. If it admits a finite subcover, say $\left\{I_{x_{1}}, \ldots, I_{x_{p}}\right\}$, then K is included in the interval

$$
\left(\min \left\{x_{1}, \ldots, x_{p}\right\}-1, \max \left\{x_{1}, \ldots, x_{p}\right\}+1\right)
$$

hence bounded.

Problem 10. Prove that compact subsets of \mathbf{R} are closed.
Solution. Assume that $K \subset \mathbf{R}$ is compact. To prove that its complement is open, consider $x_{0} \notin K$ and let $r_{k}=\left|k-x_{0}\right| / 2$ for every $k \in K$. The open intervals

$$
\mathcal{U}_{k}=\left(k-r_{k}, k+r_{k}\right) \quad \text { and } \quad \mathcal{V}_{k}=\left(x_{0}-r_{k}, x_{0}+r_{k}\right)
$$

are disjoint for every $k \in K$ and the family $\left\{\mathcal{U}_{k}\right\}_{k \in K}$ covers K. Extract a finite subcover $\left\{\mathcal{U}_{k_{1}}, \ldots, \mathcal{U}_{k_{p}}\right\}$:

$$
K \subset \mathcal{U}_{k_{1}} \cup \ldots \cup \mathcal{U}_{k_{p}}
$$

and consider the intersection of the corresponding sets $\mathcal{V}_{k_{1}}, \ldots, \mathcal{V}_{k_{p}}$. By construction, $\mathcal{V}_{k_{1}} \cap \ldots \cap \mathcal{V}_{k_{p}}$ is disjoint from $\mathcal{U}_{k_{1}} \cup \ldots \cup \mathcal{U}_{k_{p}}$ hence is included in the complement of K, which therefore contains $\left(x_{0}-r, x_{0}+r\right)$ where $r=\min \left\{r_{k_{1}}, \ldots, r_{k_{p}}\right\}>0$.

