Warm-up: Topology of the Real Line

Elements of Solution

Problem 1. Which of the following subsets of R are open?

$$A = (\pi, 5)$$
 , $B = (1, \infty)$, $C = \left[\sqrt{2}, \sqrt{3}\right]$, \mathbf{Q} .

Solution. Any interval of the form (a, b) is open: for a < x < b, let $r = \min\{x - a, b - x\}$ and notice that $(x - r, x + r) \subset (a, b)$. The argument can be adapted to the case when *a* or *b* is infinite, so that *A* and *B* are open.

Every open interval centered at $\sqrt{2}$ contains numbers $<\sqrt{2}$, hence cannot be included in *C*, which is therefore not open.

Irrationals are dense in **R** so that no open interval centered at a rational can contain only rationals, so that **Q** is not open.

Problem 2. Prove that unions and finite intersections of open sets are open.

Solution. The case of unions is immediate. Assume that U_1, \ldots, U_n are open. If their intersection is empty, there is nothing to check. If it is not, for every x in $U_1 \cap \ldots \cap U_n$, there exist positive numbers r_1, \ldots, r_n such that $(x - r_i, x + r_i)$ is included in U_i for each $i \in \{1, \ldots, n\}$. Then $r = \min\{r_1, \ldots, r_n\}$ is positive and (x - r, x + r) is contained in $U_1 \cap \ldots \cap U_n$, which is therefore open.

Problem 3. Show that an arbitrary intersection of open sets is not necessarily open.

Solution. The intervals $\left(1 - \frac{1}{n}, 2 + \frac{1}{n}\right)$ for n > 0 are open but their intersection, [1, 2], is not. The argument given in the previous question fails to extend because the infimum of an infinite family of positive numbers may be 0.

Problem 4. Prove that a function $f : \mathbf{R} \longrightarrow \mathbf{R}$ is continuous if and only if $f^{-1}(\mathcal{U})$ is open for any \mathcal{U} open in \mathbf{R} .

Solution. Assume f continuous. Let \mathcal{U} be an open subset of \mathbf{R} and $x \in f^{-1}(\mathcal{U})$. Then f(x) belongs to \mathcal{U} open, so there exists $\varepsilon > 0$ such that

$$(f(x) - \varepsilon, f(x) + \varepsilon) \subset \mathcal{U}.$$

By continuity of *f* at *x*, there exists $\delta > 0$ such that

$$f((x-\delta, x+\delta)) \subset (f(x)-\varepsilon, f(x)+\varepsilon) \subset \mathcal{U},$$

showing that $(x - \delta, x + \delta)$ is included in $f^{-1}(\mathcal{U})$, which is therefore open.

Conversely, if the inverse image of the open set $(f(x) - \varepsilon, f(x) + \varepsilon)$ is open, since it contains x, there must exist $\delta > 0$ such that

$$(x - \delta, x + \delta) \subset f^{-1}((f(x) - \varepsilon, f(x) + \varepsilon))),$$

showing that f is continuous at x.

Problem 5. Prove that a subset X of **R** is closed if and only if for any sequence $\{x_n\}_{n \in \mathbb{N}}$ of points of X that converges to a limit in **R**, the limit is also in X.

Solution. Assume that *X* is closed and that $\{x_n\}_{n \in \mathbb{N}}$ is a sequence of elements of *X* that converges to a limit *x* in **R**. If *x* is not in *X*, it must belong to its complement, which is open. Therefore, there exists $\varepsilon > 0$ such that

$$(x - \varepsilon, x + \varepsilon) \cap X = \varnothing.$$

In particular, no term of the sequence can be found within ε of x, which contradicts the assumption that $\lim x_n = x$. It follows that $x \in X$.

Conversely, assume that convergent sequences of points of *X* have their limits in *X*. To check that *X* is closed, we will prove that if $y \notin X$, there exists $\varepsilon > 0$ such that $(y - \varepsilon, y + \varepsilon)$ is included in the complement of *X*. Indeed, if it was not the case, the intersection

$$\left(y - \frac{1}{n}, y + \frac{1}{n}\right) \cap X$$

would be non-empty for every positive integer n. Picking an element x_n is each of these sets would provide a sequence in X converging to y, hence a contradiction.

Problem 6. Find a subset of R that is neither open nor closed.

Solution. Any interval of the form [a, b) works. So does Q.

Problem 7. Is the set $X = \left[\sqrt{2}, \sqrt{3}\right] \cup \left(\sqrt{5}, \sqrt{6}\right]$ compact?

Solution. No: consider the family of open sets

$$\mathcal{U}_n = \left(1, \sqrt{3} - \frac{1}{n}\right) \cup \left(\sqrt{5} + \frac{1}{n}, 3\right)$$

for $n \ge 1$. The fact that the sequences $\sqrt{3} - \frac{1}{n}$ and $\sqrt{5} + \frac{1}{n}$ respectively converge to $\sqrt{3}$ from below and $\sqrt{5}$ from above guarantee that $\{\mathcal{U}_n\}_{n\ge 1}$ covers *X*.

Since the family is increasing, the union of any finite subfamily is of the form U_p for some $p \ge 1$, hence cannot cover X, which is therefore not compact.

Problem 8. Let *K* be a compact subset of **R** and $f : \mathbf{R} \longrightarrow \mathbf{R}$ a continuous function. Prove that f(K) is compact.

Solution. Let $\{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ be an open cover of f(K). Since f is continuous, the family $\{f^{-1}(\mathcal{U}_{\alpha})\}_{\alpha \in I}$ is an open cover of K, compact, so one can extract a finite subcover

$$\left\{f^{-1}(\mathcal{U}_{\alpha_1}),\ldots,f^{-1}(\mathcal{U}_{\alpha_p})\right\}$$

and $\{\mathcal{U}_{\alpha_1},\ldots,\mathcal{U}_{\alpha_p}\}$ is a finite subcover of f(K), which is therefore compact.

Problem 9. Assume that *K* is a compact subset of **R**. Prove that *K* is bounded.

Solution. Let x be a fixed element in K. The family of open intervals (x - n, x + n) with $n \in \mathbb{N}$ covers K. The union of any finite subfamily is of the form (x - N, x + N) for some $N \in \mathbb{N}$. If K is contained in such an interval, then it is included in the interval (-|x| - N, |x| + N), hence bounded.

Alternatively, the family of open intervals $\{I_x\}_{x \in K}$ where $I_x = (x - 1, x + 1)$ covers K. If it admits a finite subcover, say $\{I_{x_1}, \ldots, I_{x_p}\}$, then K is included in the interval

$$(\min\{x_1,\ldots,x_p\}-1,\max\{x_1,\ldots,x_p\}+1)$$

hence bounded.

Problem 10. Prove that compact subsets of R are closed.

Solution. Assume that $K \subset \mathbf{R}$ is compact. To prove that its complement is open, consider $x_0 \notin K$ and let $r_k = |k - x_0|/2$ for every $k \in K$. The open intervals

$$U_k = (k - r_k, k + r_k)$$
 and $V_k = (x_0 - r_k, x_0 + r_k)$

are disjoint for every $k \in K$ and the family $\{\mathcal{U}_k\}_{k \in K}$ covers K. Extract a finite subcover $\{\mathcal{U}_{k_1}, \ldots, \mathcal{U}_{k_p}\}$:

$$K \subset \mathcal{U}_{k_1} \cup \ldots \cup \mathcal{U}_{k_n}$$

and consider the intersection of the corresponding sets $\mathcal{V}_{k_1}, \ldots, \mathcal{V}_{k_p}$. By construction, $\mathcal{V}_{k_1} \cap \ldots \cap \mathcal{V}_{k_p}$ is disjoint from $\mathcal{U}_{k_1} \cup \ldots \cup \mathcal{U}_{k_p}$ hence is included in the complement of K, which therefore contains $(x_0 - r, x_0 + r)$ where $r = \min\{r_{k_1}, \ldots, r_{k_p}\} > 0$.