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Warm-up: Topology of the Real Line

Elements of Solution

Problem 1. Which of the following subsets of R are open?

A = (π, 5) , B = (1,∞) , C =
[√

2,
√
3
)

, Q.

Solution. Any interval of the form (a, b) is open: for a < x < b, let r = min{x−a, b−
x} and notice that (x − r, x + r) ⊂ (a, b). The argument can be adapted to the case
when a or b is infinite, so that A and B are open.

Every open interval centered at
√
2 contains numbers <

√
2, hence cannot be in-

cluded in C, which is therefore not open.

Irrationals are dense in R so that no open interval centered at a rational can contain
only rationals, so that Q is not open.

Problem 2. Prove that unions and finite intersections of open sets are open.

Solution. The case of unions is immediate. Assume that U1, . . . ,Un are open. If their
intersection is empty, there is nothing to check. If it is not, for every x in U1∩ . . .∩Un,
there exist positive numbers r1, . . . , rn such that (x − ri, x + ri) is included in Ui for
each i ∈ {1, . . . , n}. Then r = min{r1, . . . , rn} is positive and (x−r, x+r) is contained
in U1 ∩ . . . ∩ Un, which is therefore open.

Problem 3. Show that an arbitrary intersection of open sets is not necessarily open.

Solution. The intervals
(
1− 1

n
, 2 +

1

n

)
for n > 0 are open but their intersection,

[1, 2], is not. The argument given in the previous question fails to extend because
the infimum of an infinite family of positive numbers may be 0.
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Problem 4. Prove that a function f : R −→ R is continuous if and only if f−1(U) is
open for any U open in R.

Solution. Assume f continuous. Let U be an open subset of R and x ∈ f−1(U).
Then f(x) belongs to U open, so there exists ε > 0 such that(

f(x)− ε, f(x) + ε
)
⊂ U .

By continuity of f at x, there exists δ > 0 such that

f
(
(x− δ, x+ δ)

)
⊂ (f(x)− ε, f(x) + ε) ⊂ U ,

showing that (x− δ, x+ δ) is included in f−1(U), which is therefore open.

Conversely, if the inverse image of the open set
(
f(x)− ε, f(x) + ε

)
is open, since it

contains x, there must exist δ > 0 such that

(x− δ, x+ δ) ⊂ f−1
(
(f(x)− ε, f(x) + ε)

)
),

showing that f is continuous at x.

Problem 5. Prove that a subset X of R is closed if and only if for any sequence
{xn}n∈N of points of X that converges to a limit in R, the limit is also in X .

Solution. Assume that X is closed and that {xn}n∈N is a sequence of elements of X
that converges to a limit x in R. If x is not in X , it must belong to its complement,
which is open. Therefore, there exists ε > 0 such that

(x− ε, x+ ε) ∩X = ∅.

In particular, no term of the sequence can be found within ε of x, which contradicts
the assumption that limxn = x. It follows that x ∈ X .

Conversely, assume that convergent sequences of points of X have their limits in X .
To check that X is closed, we will prove that if y /∈ X , there exists ε > 0 such that
(y − ε, y + ε) is included in the complement of X . Indeed, if it was not the case, the
intersection (

y − 1

n
, y +

1

n

)
∩X

would be non-empty for every positive integer n. Picking an element xn is each of
these sets would provide a sequence in X converging to y, hence a contradiction.
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Problem 6. Find a subset of R that is neither open nor closed.

Solution. Any interval of the form [a, b) works. So does Q.

Problem 7. Is the set X =
[√

2,
√
3
)
∪
(√

5,
√
6
]

compact?

Solution. No: consider the family of open sets

Un =

(
1,
√
3− 1

n

)
∪
(√

5 +
1

n
, 3

)

for n ≥ 1. The fact that the sequences
√
3 − 1

n
and
√
5 +

1

n
respectively converge to

√
3 from below and

√
5 from above guarantee that {Un}n≥1 covers X .

Since the family is increasing, the union of any finite subfamily is of the form Up for
some p ≥ 1, hence cannot cover X , which is therefore not compact.

Problem 8. Let K be a compact subset of R and f : R −→ R a continuous function.
Prove that f(K) is compact.

Solution. Let {Uα}α∈I be an open cover of f(K). Since f is continuous, the family
{f−1(Uα)}α∈I is an open cover of K, compact, so one can extract a finite subcover{

f−1(Uα1), . . . , f
−1(Uαp)

}
and

{
Uα1 , . . . ,Uαp

}
is a finite subcover of f(K), which is therefore compact.

Problem 9. Assume that K is a compact subset of R. Prove that K is bounded.

Solution. Let x be a fixed element in K. The family of open intervals (x− n, x+ n)
with n ∈ N covers K. The union of any finite subfamily is of the form (x−N, x+N)
for some N ∈ N. If K is contained in such an interval, then it is included in the
interval (−|x| −N, |x|+N), hence bounded.

Alternatively, the family of open intervals {Ix}x∈K where Ix = (x − 1, x + 1) covers
K. If it admits a finite subcover, say {Ix1 , . . . , Ixp}, then K is included in the interval

(min{x1, . . . , xp} − 1,max{x1, . . . , xp}+ 1)

hence bounded.
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Problem 10. Prove that compact subsets of R are closed.

Solution. Assume that K ⊂ R is compact. To prove that its complement is open,
consider x0 /∈ K and let rk = |k − x0|/2 for every k ∈ K. The open intervals

Uk = (k − rk, k + rk) and Vk = (x0 − rk, x0 + rk)

are disjoint for every k ∈ K and the family {Uk}k∈K covers K. Extract a finite sub-
cover {Uk1 , . . . ,Ukp}:

K ⊂ Uk1 ∪ . . . ∪ Ukp
and consider the intersection of the corresponding sets Vk1 , . . . ,Vkp . By construction,
Vk1 ∩ . . .∩ Vkp is disjoint from Uk1 ∪ . . .∪ Ukp hence is included in the complement of
K, which therefore contains (x0 − r, x0 + r) where r = min{rk1 , . . . , rkp} > 0.


