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Preface 

These notes are a record of a course given in Algiers from lOth to 21st May, 
1965. Their contents are as follows. 

The first two chapters are a summary, without proofs, of the general 
properties of nilpotent, solvable, and semisimple Lie algebras. These are 
well-known results, for which the reader can refer to, for example, Chapter I 
of Bourbaki or my Harvard notes. 

The theory of complex semisimple algebras occupies Chapters III and IV. 
The proofs of the main theorems are essentially complete; however, I have 
also found it useful to mention some complementary results without proof. 
These are indicated by an asterisk, and the proofs can be found in Bourbaki, 
Groupes et Algebres de Lie, Paris, Hermann, 1960-1975, Chapters IV-VIII. 

A final chapter shows, without proof, how to pass from Lie algebras to Lie 
groups (complex-and also compact). It is just an introduction, aimed at 
guiding the reader towards the topology of Lie groups and the theory of 
algebraic groups. 

I am happy to thank MM. Pierre Gigord and Daniel Lehmann, who wrote 
up a first draft of these notes, and also Mlle. Franr,:oise Pecha who was 
responsible for the typing of the manuscript. 

Jean-Pierre Serre 
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CHAPTER I 

Nilpotent Lie Algebras and 
Solvable Lie Algebras 

The Lie algebras considered in this chapter are finite-dimensional algebras 
over a field k. In Sees. 7 and 8 we assume that k has characteristic 0. The Lie 
bracket of x and y is denoted by [x, y ], and the map y 1--+ [x, y] by ad x. 

1. Lower Central Series 

Let g be a Lie algebra. The lower central series of g is the descending series 
( C" g)n., 1 of ideals of g defined by the formulae 

C1g = g 

C" g = [g, cn-1 g] if n ;?: 2. 

We have 

and 

2. Definition of Nilpotent Lie Algebras 

Definition 1. A Lie algebra g is said to be nilpotent if there exists an integer n 
such that C"g = 0. 

More precisely, one says that g is nilpotent of class ~ r if c+1 g = 0. For 
r = 1, this means that [g, g] = 0; that is, g is abelian. 
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Proposition 1. The following conditions are equivalent: 

(i) g is nilpotent of class ~ r. 
(ii) For all x 0 , ••• , x, e g, we have 

[x0 ,[x1,[ ... ,x,] ... ]] = (adx0 )(adx1) ... (adx,_1)(x,) = 0. 

(iii) There is a descending series of ideals 

g = a0 => a1 ::> • • • ::> a, = 0 

such that [g, aa c ai+l for 0 ~ i ~ r - 1. 

Now recall that the center of a Lie algebra g is the set of x e g such that 
[x,y] = 0 for ally e g. It is an abelian ideal of g. 

Proposition 2. Let g be a Lie algebra and let a be an ideal contained in the center 
of g. Then: 

g is nilpotent<:;> gja is nilpotent. 

The above two propositions show that the nilpotent Lie algebras are those 
one can form from abelian algebras by successive "central extensions." 

(Warning: an extension of nilpotent Lie algebras is not in general nilpotent.) 

3. An Example of a Nilpotent Algebra 

Let V be a vector space of finite dimension n. A flag D = (D;) of V is a 
descending· series of vector subs paces 

V = Do => D1 => • • • => Dn = 0 

of V such that codim D; = i. 
Let D be a flag, and let n(D) be the Lie subalgebra of End(V) = gi(V) 

consisting of the elements x such that x(D;) c D;+t· One can verify that n(D) is 
a nilpotent Lie algebra of class n - 1. 

4. Engel's Theorems 

Theorem 1. For a Lie algebra g to be nilpotent, it is necessary and sufficient for 
ad x to be nilpotent for each x e g. 

(This condition is clearly necessary, cf. Proposition 1.) 

Theorem 2. Let V be a finite-dimensional vector space and g a Lie subalgebra 
of End(V) consisting of nilpotent endomorphisms. Then: 
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(a) g is a nilpotent Lie algebra. 
(b) There is a flag D of V such that g c: n(D). 

We can reformulate the above theorem in terms of g-modules. To do this, 
we recall that if g is a Lie algebra and V a vector space, then a Lie algebra 
homomorphism ,P: g --. End(V) is called a g-module structure on V; one also 
says that ,P is a linear representation of g on V. An element v e V is called 
invariant under g (for the given g-module structure) if f/J(x)v = 0 for all x e g. 
(This surprising terminology arises from the fact that, if k = R or C, and if r/J 
is associated with a representation of a connected Lie group G on V, then v is 
invariant under g if and only if it is invariant-this time in the usual sense­
under G.) 

With this terminology, Theorem 2 gives: 

Theorem 2'. Let f/J: g--. End(V) be a linear representation of a Lie algebra g on 
a nonzero finite-dimensional vector space V. Suppose that f/J(x) is nilpotent for 
all x e g. Then there exists an element v =F 0 of V which is invariant under g. 

5. Derived Series 

Let g be a Lie algebra. The derived series of g is the descending series (D"g),;;. 1 

of ideals of g defined by the formulae 

Dlg = g 

D"g = [D"-1 g,D"-1 g] 

One usually writes Dg for D2 g = [g, g]. 

ifn ~ 2. 

6. Definition of Solvable Lie Algebras 

Definition 2. A Lie algebra g is said to be solvable if there exists an integer n 
such that D"g = 0. 

Here again, one says that g is solvable of derived length ~ r if v•+l g = 0. 

EXAMPLES. 1. Every nilpotent algebra is solvable. 
2. Every subalgebra, every quotient, and every extension of 

solvable algebras is solvable. 
3. Let D = (Di) be a flag of a vector space V, and let b(D) be the 

subalgebra of End(V) consisting of the x e End(V) such that x(Di) c: Di for all 
i. The algebra b(D) (a "Borel algebra") is solvable. 
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Proposition 3. The following conditions are equivalent: 

(i) g is solvable of derived length ::s;; r. 
(ii) There is a descending series of ideals of g: 

g = ao => a1 :::> • • • => a, = 0 

suchthat[ai>aa c a1+1for0 ::s;; i ::s;; r -l(whichamountstosayingthatthat 
the quotients ada1+1 are abelian). 

Thus one can say that solvable Lie algebras are those obtained from abelian 
Lie algebras by successive "extensions" (not necessarily central). 

7. Lie's Theorem 

We assume that k is algebraically closed (and of characteristic zero). 

Theorem 3. Let ,P: g -+ End(V) be a finite-dimensional linear representation of 
a Lie algebra g. If g is solvable, there is a flag D of V such that ,P(g) c b(D). 

This theorem can be rephrased in the following equivalent forms. 

Theorem 3'. If g is solvable, the only finite-dimensional g-modules which 
are simple (irreducible in the language of representation theory) are one 
dimensional. 

Theorem 3". Under the hypotheses of Theorem 3, if V ':/= 0 there exists an 
element v ':/= 0 of V which is an eigenvector for every ,P(x), x e g. 

The proof of these theorems uses the following lemma. 

Lemma. Let g be a Lie algebra,~ an ideal of g, and ,P: g-+ End(V) a finite­
dimensional linear representation of g. Let v be a nonzero element of V and let 
A. be a linear form on~ such that A.(h)v = ,P(h)v for all he~- Then A. vanishes on 
[g.~]. 

8. Cartan's Criterion 

It is as follows: 

Theorem 4. Let V be a finite-dimensional vector space and g a Lie subalgebra 
of End(V). Then: 

g is solvable._ Tr(x o y) = 0 for all x e g, y e [g, g]. 

(This implication ~ is an easy corollary of Lie's theorem.) 



CHAPTER II 

Semisimple Lie Algebras 
(General Theorems) 

In this chapter, the base field k is a field of characteristic zero. The Lie algebras 
and vector spaces considered have finite dimension over k. 

1. Radical and Semisimplicity 

Let g be a Lie algebra. If a and b are solvable ideals of g, the ideal a + b is also 
solvable, being an extension ofb/(a n b) by a. Hence there is a largest solvable 
ideal r of g. It is called the radical of g. 

Definition 1. One says that g is semisimple if its radical r is 0. 

This amounts to saying that g has no abelian ideals other than 0. 

EXAMPLE. If Vis a vector space, the subalgebra sl(V) of End(V) consisting 
of the elements of trace zero is semisimple. 

(See Sec. 7 for more examples.) 

Theorem 1. Let g be a Lie algebra and r its radical. 

(a) g/r is semisimple. 
(b) There is a Lie subalgebra s of g which is a complement for r. 

If s satisfies the condition in (b), the projections-+ gjr is an isomorphism, 
showing (with the aid of (a)) that sis semisimple. Thus g is a semidirect product 
of a semisimple algebra and a solvable ideal (a "Levi decomposition"). 
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2. The Cartan-Killing Criterion 

Let g be a Lie algebra. A bilinear form B: g x g -+ k on g is said to be invariant 
if we have 

B([x,y],z) + B(y,[x,z]) = 0 for all x, y, z e g. 

The Killing form B(x,y) = Tr(adx o ady) is invariant and symmetric. 

Lemma. Let B be an invariant bilinear form on g, and a an ideal of g. Then the 
orthogonal space a' of a with respect to B is an ideal of g. 

(By definition, a' is the set of all y e g such that B(x, y) = 0 for all x e a.) 

Theorem 2 (Cartan-Killing Criterion). A Lie algebra is semisimple if and only 
if its Killing form is nondegenerate. 

3. Decomposition of Semisimple Lie Algebras 

Theorem 3. Let g be a semisimple Lie algebra, and a an ideal of g. The orthogonal 
space a' of a, with respect to the Killing form of g, is a complement for a in g; the 
Lie algebra g is canonically isomorphic to the product a x a'. 

Corollary. Every ideal, every quotient, and every product of semisimple algebras 
is semisimple. 

Definition 2. A Lie algebras is said to be simple if: 

(a) it is not abelian, 
(b) its only ideals are 0 and s. 

EXAMPLE. The algebra si(V) is simple provided that dim V ~ 2. 

Theorem 4. A Lie algebra g is semisimple if and only if it is isomorphic to a 
product of simple algebras. 

In fact, this decomposition is unique. More precisely: 

Theorem 4'. Let g be a semisimple Lie algebra, and ( a1) its minimal nonzero 
ideals. The ideals a1 are simple Lie algebras, and g can be identified with their 
product. 

Clearly, if sis simple we haves = [s, s]. Thus Theorem 4 implies: 

Corollary. If g is semisimple then g = [g, g). 
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4. Derivations of Semisimple Lie Algebras 

First recall that if A is an algebra, a derivation of A is a linear mapping 
D: A--+ A satisfying the identity 

D(x· y) = Dx· y + x· Dy. 

The derivations form a Lie subalgebra Der(A) of End(A). In particular, this 
applies to the case where we take A to be a Lie algebra g. A derivation D of 
g is called inner if D = ad x for some x e g, or in other words if D belongs to 
the image of the homomorphism ad: g --+ Der(g). 

Theorem 5. Every derivation of a semisimple Lie algebra is inner. 

Thus the mapping ad: g --+ Der(g) is an isomorphism. 

Corollary. Let G be a connected Lie group (real or complex) whose Lie algebra 
g is semisimple. Then the component Aut0 G of the identity in the automorphism 
group Aut G of G coincides with the inner automorphism group of G. 

This follows from the fact that the Lie algebra of Aut0 G coincides with 
Der(g). 

Remark. The automorphisms of g induced by the inner automorphisms of G 
are (by abuse of language) called the inner automrphisms of g. When g is 
semisimple, they form the component of the identity in the group Aut(g). 

5. Semisimple Elements and Nilpotent Elements 

Defmition 3. Let g be a semisimple Lie algebra, and let x e g. 

(a) xis said to be nilpotent if the endomorphism ad x of g is nilpotent. 
(b) xis said to be semisimple if ad x is semisimple (that is, diagonalizable after 

extending the ground field). 

Theorem 6. If g is semisimple, every element x of g can be written uniquely in 
the form x = s + n, with n nilpotent, s semisimple, and [s, n] = 0. Moreover, 
every element y e g which commutes with x also commutes with s and n. 

One calls n the nilpotent component of x, and s its semisimple component. 

Theorem 7. Let ,P: g--+ End(V) be a linear representation of a semisimple 
Lie algebra. If x is nilpotent (resp. semisimple), then so is the endomorphism 
,P(x). 



8 II. Semisimple Lie Algebras (General Theorems) 

6. Complete Reducibility Theorem 

Recall that a linear representation tP: g--+ End(V) is called irreducible (or 
simple) if V "I= 0 and if V has no invariant subspaces (submodules) other than 
0 and V. One says that tP is completely reducible (or semisimple) if it is a direct 
sum of irreducible representations. This is equivalent to the condition that 
every invariant subspace of V has an invariant complement. 

Theorem 8 (H. Weyl). Every (finite·dimensional) linear representation of a 
semisimple algebra is completely reducible. 

(The algebraic proof of this theorem, to be found in Bourbaki or Jacobson, 
for example, is somewhat laborious. Weyl's original proof, based on the theory 
of compact groups (the .. unitarian 1 trick") is simpler; we shall return to it later.) 

7. Complex Simple Lie Algebras 

The next few sections are devoted to the classification of these algebras. We 
will state the result straight away: 

There are four series (the .. four infinite families") An, Bn, en, and Dn, the 
index n denoting the .. rank" (defined in Chapter III). 

Here are their definitions: 

For n ~ 1, An= sl(n + 1) is the Lie algebra of the special linear group in 
n + 1 variables, SL(n + 1). 

For n ~ 2, Bn = so(2n + 1) is the Lie algebra of the special orthogonal 
group in 2n + 1 variables, S0(2n + 1). 

For n ~ 3, en = sv(2n) is the Lie algebra of the symplectic group in 2n 
variables, Sp(2n). 

For n ~ 4, Dn = so(2n) is the Lie algebra of the special orthogonal group in 
2n variables, S0(2n). 

(One can also define Bn, en, and Dn for n ~ 1, but then: 

-There are repetitions (A1 = B1 = et> B2 = e2 , A3 = D3 ). 

-The algebras D1 and D2 are not simple (D1 is abelian and one dimensional, 
and D2 is isomorphic to A1 x Ad.) 

In addition to these families, there are five .. exceptional" simple Lie algebras, 
denoted by G2 , F4 , E6 , E7 , and E8 • Their dimensions are, respectively, 14, 52, 
78, 133, and 248. The algebra G2 is the only one with a reasonably .. simple" 
definition: it is the algebra of derivations of Cayley's octonion algebra. 

1 This is often referred to as the "unitary trick"; however Weyl, introducing the idea in his book 
"The Classical Groups," used the more theological word "unitarian," and we will follow him. 
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8. The Passage from Real to Complex 

Let g0 be a Lie algebra over R, and g = g0 ® C its complexification. 

Theorem 9. g0 is abelian (resp. nilpotent, solvable, semisimple) if and only if g is. 

On the other hand, g0 is simple if and only if g is simple or of the form s x s, 
with » and s simple and mutually conjugate. 

Moreover, each complex simple Lie algebra g is the complexification of 
several nonisomorphic real simple Lie algebras; these are called the "real 
forms" of g. For their classification, see Seminaire S. Lie or Helgason. 



CHAPTER III 

Cartan Subalge bras 

In this chapter (apart from Sec. 6) the ground field is the field C of complex 
numbers. The Lie algebras considered are finite dimensional. 

1. Definition of Cartan Subalgebras 

Let g be a Lie algebra, and a a subalgebra of g. Recall that the normalizer of a 
in g is defined to be the set n(a) of all x E g such that ad(x)(a) c a; it is the 
largest subalgebra of g which contains a and in which a is an ideal. 

Definition 1. A subalgebra l) of g is called a Cartan subalgebra of g if it 
satisfies the following two conditions: 

(a) l) is nilpotent. 
(b) l) is its own normalizer (that is, l) = n(l))). 

We shall see later (Sec. 3) that every Lie algebra has Cartan subalgebras. 

2. Regular Elements: Rank 

Let g be a Lie algebra. If x E g, we will let Px(T) denote the characteristic 
polynomial of the endomorphism adx defined by x. We have 

Px(T) = det(T- ad(x)). 

If n = dim g, we can write Px(T) in the form 
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i=n 
P,(T) = L a;(x)Ti. 

i=O 

If x has coordinates x 1 , ••• , Xn (with respect to a fixed basis of g), we can view 
a;(x) as a function of the n complex variables x 1 , ..• , xn; it is a homogeneous 
polynomial of degree n- i in x 1, ••• , Xn. 

Definition 2. The rank of g is the least integer l such that the function a1 defined 
above is not identically zero. An element x e g is said to be regular if a1(x) =I= 0. 

Remarks. Since an = 1, we must have l ~ n with equality if and only if g is 
nilpotent. 

On the other hand, if xis a nonzero element of g then ad(x)(x) = 0, showing 
that 0 is an eigenvalue of ad x.It follows that if g =I= 0 then a0 = 0, so that l ~ 1. 

Proposition 1. Let g be a Lie algebra. The set g, of regular elements of g is a 
connected, dense, open subset of g. 

We have g, = g - V, where Vis defined by the vanishing ofthe polynomial 
function a1• Clearly g, is open. Now if the interior of V were nonempty, the 
function a1, vanishing on V, would be identically zero, against the definition 
of the rank. Finally, if x, y e g., the (complex) line D joining x and y meets V 
at finitely many points. We deduce that D n g, is connected, and hence that 
x and y belong to the same connected component of g,; thus g, is indeed 
connected. 

3. The Cartan Subalgebra Associated with a 
Regular Element 

Let x be an element of the Lie algebra g. If A. e C, we let g~ denote the nils pace 
of ad(x) - A.; that is, the set of y e g such that (ad(x) - A.)Py = 0 for sufficiently 
large p. 

In particular, g~ is the nilspace of ad x. Its dimension is the multiplicity of 
0 as an eigenvalue of ad x; that is, the least integer i such that a;(x) =1= 0. 

Proposition 2. Let x e g. Then: 

(a) g is the direct sum of the nilspaces g;. 
(b) (g~, g~J c g~+" if A, J.t E C. 
(c) g~ is a Lie subalgebra of g. 

Statement (a) is obtained by applying a standard property of vector space 
endomorphisms to ad x. To prove (b), we must show that, if y e g; and z e g~, 
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then [y, z] E g;+~'. Now we can use induction to prove the formula 

(ad x - A - Jl)"[y, z] = f, (n) [(ad x - A)Py, (ad x - Jl)"-Pz]. 
p=O p 

If we take n sufficiently large, all terms on the right vanish, showing that 
[y,z] is indeed in g~+~'. Finally, (c) follows from (b), applied to the case 
A= Jl = 0. 

Theorem 1. If x is regular, g~ is a Cartan subalgebra of g; its dimension is equal 
to the rank l of g. 

First, let us show that g~ is nilpotent. By Engel's Theorem (cf. Chapter I) 
it is sufficient to prove that, for each y E g~, the restriction of ad y to g~ is 
nilpotent. Let ad1 y denote this restriction, and ad2 y the endomorphism 
induced by ad yon the quotient-space g/g~. We put 

U = {y e g~Jad 1 y is not nilpotent} 

V = {y e g~Jad2 y is invertible}. 

The sets U and V are open in g~. The set V is nonempty: it contains the 
element x. Since Vis the complement of an algebraic subvariety of g~, it 
follows that Vis dense in g~. If U were nonempty, it would therefore meet V. 
However, let y e U n V. Since y E U, ad1 y has 0 as an eigenvalue with multi­
plicity strictly less than the dimension of g~, this dimension being visibly equal 
to the rank l of g. On the other hand, since y E V, 0 is not an eigenvalue of 
ad2 y. We deduce that the multiplicity of 0 as an eigenvalue of ad y is strictly 
less than l, contradicting the definition of l. Thus U is empty, and so g~ is 
indeed a nilpotent algebra. 

We now show that g~ is equal to its normalizer n(g~). Let z E n(g~). We have 
adz(g~) c g~, and in particular [z,x] E g~. By the definition of g~, there is 
therefore an integer p such that (ad x)P[z, x] = 0, giving (ad x)P+l z = 0, so that 
z e g~ as required. 

Remark. The above process provides a construction for Cartan subalgebras; 
we shall see that in fact it gives all of them. 

4. Conjugacy of Cartan Subalgebras 

Let g be a Lie algebra. We let G denote the inner automorphism group of g; 
that is, the subgroup of Aut(g) generated by the automorphisms ead(yl for y E g. 

Theorem 2. The group G acts transitively on the set of Cartan subalgebras of g. 

Combining this theorem with Theorem 1, we deduce: 
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Corollary 1. The dimension of a Cartan subalgebra of g is equal to the rank 
of g. 

Corollary 2. Every Cartan subalgebra of g has the form g~ for some regular 
element x of g. 

FIRST PART OF THE PROOF. In this part, ~ denotes a Cartan subalgebra of g. 
If x E ~' we let ad 1 x (resp. ad2 x) denote the endomorphism of~ (resp. g/~) 
induced by x. 

Lemma 1. Let V = {x E ~lad2 xis nilpotent}. The set Vis nonempty. 

Let us apply Lie's Theorem (cf. Chapter I) to the ~-module gj~. This gives 
a flag: 

0 = D0 c D1 c · · · Dm = gj~ 

stable under~· Now~ acts on the one-dimensional space D;/Di+1 by means of a 
linear form !X;: 

if x E ~' zED;, we have x· z = il(;(x)zmodD;_1. 

(To simplify the notation, we write x · z instead of ad2 x(z).) 
The eigenvalues of ad2 x are 1)( 1 (x), ... , !Xm(x). Hence it is sufficient to prove 

that none of the forms()(; is identically zero. Suppose, for example, that !X 1, ••. , 

!Xk_1 =f. 0 and ()(k is identically zero. Let x0 E ~be chosen so that !X 1 (x0 ) =f. 0, ... , 
!Xk_ 1 (x0 ) =f. 0. The endomorphism of Dk-1 (resp. of Dk) induced by ad2 x0 is 
invertible (resp. has 0 as an eigenvalue with multiplicity 1). The nilspace D of 
ad2 x0 in Dk is therefore one dimensional and is a complement for Dk_ 1 in Dk. 
We shall show that the elements zED are annihilated by each ad2 x, x E ~. 
This is clear for x 0 . Furthermore, we can use induction on n to prove the 
formula 

x0x · z =((ad x0 )"x) · z (zED). 

Since the algebra~ is nilpotent, we have (ad x0 )"x = 0 for sufficiently large 
n. This shows that x · z belongs to the nilspace of ad2 x0 in Dk, that is, x · z E D. 
On the other hand, ad2 xmaps DkintoDk_1 ; we therefore have x· zED n Dk_1 , 

so x · z = 0, proving that z is indeed annihilated by each element of~· We now 
take z to be a nonzero element of D, and let z be a representative of z in g. 
The condition that x · z = 0 for all x E ~ can be reinterpreted as [ x, z] E ~ for 
all x E ~;thus z belongs to the normalizer n@ of~. Since z is not in~ (because 
z =f. 0), we have n@ =f. ~' contradicting the definition of a Cartan subalgebra. 

Lemma 2. Let W = G · V be the union of the transforms of V under the action 
of the group G. The set W is open in g. 

Let x E V. It is sufficient to show that W contains a neighborhood of x. 
Consider the map (g, v) ~----+ g · v from G x V to g, and let () be its tangent map 
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at the point (1, x). We shall see that the image of() is the whole of g. Certainly 
this image contains the tangent space at V, namely~. On the other hand, if y e g 
the curve 

tt-+etad(ylx = 1 + t[y,x] + · ·· 

has [y, x] as its tangent vector at the origin. We deduce from this that 
Im(ad x) c lm(O). But since x e V, ad x induces an automorphism of g/I), and 
we have 

Im(adx) + ~ = g, 

so that Im(O) =g. The Implicit Function Theorem now shows that the map 
G x V--+ g is open at the point (1, x), giving the lemma. 

Lemma 3. There is a regular element x of g such that~= g~. 

Let us keep the preceding notation. Lemmas 1 and 2 show that W is open 
and nonempty. It therefore intersects the set g, of regular elements of g 
(cf. Prop. 1). Now if g · x is regular, it is clear that x is regular. We deduce 
that V contains at least one regular element x. Since ad 1 x is nilpotent and 
ad2 x invertible, we indeed have~ = g~. 

SECOND PART OF THE PROOF. We know, thanks to Lemma 3, that the Cartan 
subalgebras of g all have the form g~, with x e g,. Consider the following 
equivalence relation R on g,: 

R(x,y)<=>g~ and g~ are conjugate under G. 

Lemma 4. The equivalence classes of R are open in g,. 

We must prove that, if x e g., every y sufficiently close to xis equivalent to 
x. We will apply the results of the first part of the proof to the Cartan 
subalgebra ~ = g~. The corresponding set V contains x. By Lemma 2, G · Vis 
open. Hence each element y sufficiently close to x has the form g · x', with 
g e G and x' e V. We then have g~ = g · g~. = g · ~ = g · g~, showing that x and 
y are indeed equivalent. 

Since the equivalent classes of R are open, and since g, is connected 
(Prop. 1), there can be only one equivalence class. This shows that the Cartan 
subalgebras are indeed conjugate to each other, thus completing the proof of 
Theorem 2. 

Remark. Theorem 2 remains true if one replaces the group G with the sub­
group generated by the automorphisms of the form ead(y) with ad(y) nilpotent. 
This form of the theorem has been extended by Chevalley to the case of an 
arbitrary algebraically closed base field (of characteristic zero). See expose 15 
of Seminaire Sophus Lie, as well as Bourbaki, Chap. VII, Sec. 3. 
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5. The Semisimple Case 

Theorem 3. Let ~ be a Cartan subalgebra of a semisimple Lie algebra g. Then: 

(a) ~ is abelian. 
(b) The centralizer of ~ is ~. 
(c) Every element of~ is semisimple (cf. Sec. 11.5). 
(d) The restriction of the Killing form of g to ~ is nondegenerate. 

(d) By Corollary 2 to Theorem 2, there is a regular element x such that 
h = g~. Let 

g=g~<:e L g! 
.l.;'O 

be the canonical decomposition of g with respect to x (cf. Prop. 2). If B denotes 
the Killing form of g, then a simple calculation shows that g! and g~ are 
orthogonal with respect to B provided that A. + f.J. "# 0. We therefore have a 
decomposition of g into mutually orthogonal subspaces 

g = g~ <:a L (g! <:a g;">· 
.l.;'O 

Since B is nondegenerate, so is its restriction to each of these subspaces, giving 
(d) since~ = g~. 

(a) By applying Cartan's criterion to ~ and to the representation ad: ~ __. 
End(g), we see that Tr(ad x o ad y) = 0 for x e ~andy e [~,~].In other words, 
[~, ~] is orthogonal to~ with respect to the Killing form B. Because of (d), this 
implies that ~. ~] = 0. 

(b) Being abelian,~ is contained in its own centralizer c@. Moreover, c@ is 
clearly contained in the normalizer n@ of~. Since n@ = ~. we have c@ = ~. 

(c) Let x e ~.and lets (resp. n) be its semisimple (resp. nilpotent) component 
(cf. Sec. 11.5). If y e ~. then y commutes with x and hence also with s and n 
(Chapter II, Theorem 6). We therefore haves, n e c@ =~.However, since y 
and n commute and ad(n) is nilpotent, ad(y) o ad(n) is also nilpotent and its 
trace B(y, n) is zero. Thus n is orthogonal to every element of~. Since it belongs 
to ~. n is zero by (d). Thus x = s, which shows that xis indeed semisimple. 

Corollary 1. ~ is a maximal abelian subalgebra of g. 

This follows from (b). 

Corollary 2. Every regular element of g is semisimple. 

This is because such an element is contained in a Cartan subalgebra of g. 

Remark. One can show that every maximal abelian subalgebra of g consisting 
of semisimple elements is a Cartan subalgebra of g. However, if g "# 0 there are 
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maximal abelian subalgebras of g which contain nonzero nilpotent elements, 
and which are therefore not Cartan subalgebras. 

6. Real Lie Algebras 

Let g0 be a Lie algebra over R, and g its complexification. The concepts of 
Cartan subalgebra, regular element, and rank are defined for g0 as in the 
complex case. Moreover, the rank of g0 is equal to that of g; a subalgebra ~0 
of g0 is a Cartan subalgebra if and only if its complexification ~ is a Cartan 
subalgebra of g; an element of g0 is regular in g0 if and only if it is so in g. 
Theorems 1 and 3 remain true (in particular, showing the existence of Cartan 
subalgebras). However, this does not apply to Theorem 2: all one can say is 
that the Cartan subalgebras of g0 are divided into finitely many classes modulo 
the inner automorphisms of g0 . (This is because the set of regular elements of 
g0 is not necessarily connected, but rather a finite union of connected open 
sets.) A precise description of these classes is to be found in B. Kostant, Proc. 
Nat. Acad. Sci. USA, 1955. For more details on Cartan subalgebras, see 
Bourbaki, Chapter 7. 



CHAPTER IV 

The Algebra sl2 and Its Representations 

In this chapter (apart from Sec. 6) the ground field is the field C of complex 
numbers. 

1. The Lie Algebra sl2 

This is the algebra of square matrices of order 2 and trace zero. We shall denote 
it by g. One can easily verify that it is a simple algebra, of rank 1. It has as a 
basis the three elements 

We have 

[X, Y] = H, [H,X] = 2X, [H, Y] = -2Y. 

The endomorphism ad(H) has three eigenvalues: 2, 0, - 2. It follows that H 
is semisimple; the line I) = C · H spanned by H is a Cartan subalgebra of g, 
called the canonical Cartan subalgebra. 

The elements X, Yare nilpotent. The subalgebra b of g generated by Hand 
X is solvable; this is the canonical Borel subalgebra of g. 

2. Modules, Weights, Primitive Elements 

Let V be a g-module (not necessarily finite-dimensional). If A. E C, we will let 
V;, denote the eigenspace of H in V corresponding to A.; that is, the set of all 
x E V such that Hx = A.x. An element of V;, is said to have weight A.. 
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Proposition 1. (a) The sum L.<eC V;. is direct. (b) If x has weight A., then Xx has 
weight A.+ 2 and Yx has weight A.- 2. 

(a) merely expresses the well-known fact that the eigenvectors correspond­
ing to distinct eigenvalues are linearly independent. 

Moreover, if Hx = A.x we have 

HXx = [H,X]x + XHx = 2Xx + A.Xx =(A.+ 2)Xx, 

and so X x has weight A. + 2. A similar argument applies to Yx. 

Remark. When Vis finite dimensional, the sum L V .<is equal to V (this follows, 
for example, from the fact that H is semisimple; cf. Chapter II, Theorem 7). 
This is no longer true when Vis infinite dimensional. 

Defmition 1. Let V be a g-module, and let A. e C. An element e e V is said to be 
primitive of weight A. if it is nonzero and if we have 

Xe = 0, He= A.e. 

Proposition 2. For a nonzero element e of the g-module V to be primitive, it is 
necessary and sufficient that the line it spans should be stable under the Borel 
algebra b. 

This condition is clearly necessary. Conversely, if Ce is stable under b then 
we have Xe = Jl.e, He= A.e, with A., Jl. e C. Using the formula [H,X] = 2X, we 
see that 2Jl. = 0, so Jl. = 0 and e is indeed primitive. 

Proposition 3. Every nonzero finite-dimensional g-module contains a primitive 
element. 

This follows from Lie's Theorem (cf. Chapter I, Theorem 2'). 

(Alternative proof: one chooses an eigenvector x for H, and takes the last 
nonzero term in the sequence x, Xx, X 2 x, .... This is a primitive element.) 

3. Structure of the Submodule Generated by a 
Primitive Element 

Theorem 1. Let V be a g-module and e e V a primitive element of weight A.. Let 
us put e,. = Y"e/n! for n ~ 0, and e_1 = 0. Then we have 

(i) He,. =(A.- 2n)e,. 

(ii) Ye,. = (n + l)e,.+1 

(iii) Xe,. =(A.- n + l)e,_1 

for all n ~ 0. 
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Formula (i) asserts that en has weight A. - 2n, which follows from Prop. 1. 
Formula (ii) is obvious. 
Formula (iii) is proved by induction on n (the case n = 0 being true because 

of the convention that e_1 = 0); for we have 

nXen = XYen- 1 =[X, Y]e"_ 1 + YXen- 1 = He"_ 1 +(A.- n + 2)Yen-2 

=(A.- 2n + 2 +(A.- n + 2)(n- 1))en-1 

= n(A.- n + 1)en-h 

which gives (iii) on dividing by n. 

Corollary 1. Only two cases arise: either 

(a) the elements (en), n ~ 0, are all linearly independent, 
or 
(b) the weight A. of e is an integer m ~ 0, the elements e0 , ••• , em are linearly 

independent, and e; = 0 for i > m. 

Since the elements e; have distinct weights, those which are nonzero are 
linearly independent (cf. Prop. 1). If they are all nonzero, then we have case 
(a). Otherwise, there is an integer m ~ 0 such that e0 , ••• , em are nonzero, and 
em+l = em+l = · · · = 0. Applying formula (iii) with n = m + 1, we obtain 

Xem+1 =(A.- m)em. 

However, em+1 = 0 and em :F 0. The above formula therefore implies that 
A. = m, so we are in case (b). 

Corollary 2. Suppose that Vis finite dimensional. Then we are in case (b) of 
Corollary 1. The vector subspace W of V with basis e0, .•• , em is stable under 
g; it is an irreducible g-module. 

Clearly case (a) of Corollary 1 is impossible. On the other hand, formulae 
(i), (ii), and (iii) show that W is a g-submodule of V (it is the g-submodule 
generated by e). By (i), the eigenvalues of H on Ware equal tom, m - 2, m - 4, 
... , - m, and have multiplicity 1. If W' is a nonzero subspace of W stable 
under H, then it contains one of the eigenvectors e; (0 ~ i ~ m); however, if 
W' is stable under g, formulae (iii) show that W' contains e;_1 , ••• , e0 = e, and 
formulae (ii) show that it contains e;, ei+1 , •••• We therefore have W' = W, 
proving the irreducibility of W. 

4. The Modules Wm 

Let m be an integer ~ 0, and let wm be a vector space of dimension m + 1, 
with basis e0 , ••. , em. Let us define endomorphisms X, Y, H of Wm by the 
following formulae (with the convention that e_1 = em+1 = 0): 
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(i) He,.= (m- 2n)e, 

(ii) Ye,. = (n + 1)en+l 

(iii) Xe, = (m- n + 1)e,_1 • 

A direct computation shows that 

HXe,- XHe, = 2Xe,., HYe,.- YHe, = -2Ye,, XYe,- YXe, =He,, 

in other words the endomorphisms X, Y, H make Wm into a g-module. 

Theorem 2. (a) Wm is an irreducible g-module. (b) Every irreducible g-module 
of dimension m + 1 is isomorphic to wm. 

(a) follows from Corollary 2 to Theorem 1, and the fact that Wm is generated 
by the images of the primitive element e0 , which has weight m. 

Let V be an irreducible g-module of dimension m + 1. By Prop. 3, V 
contains a primitive element e. Corollary 2 to Theorem 1 shows that the weight 
of e is an integer m' ~ 0, and that the g-submodule W of V generated bye has 
dimension m' + 1. Since Vis irreducible, we must have W = V, so that m' = m, 
and the formulae of Theorem 1 show that Vis isomorphic to Wm, as required. 

EXAMPLES. The module W0 is the trivial g-module of dimension 1. The space 
C2 with its natural g-module structure is isomorphic to W1 • The algebra g, 
regarded as a g-module by means of the adjoint representation, is isomorphic 
to Jtl. 

Remark. One can show that Wm is isomorphic to the m-th symmetric power of 
the module W1 = C2• 

5. Structure of the Finite-Dimensional g-Modules 

Theorem 3. Each finite-dimensional g-module is isomorphic to a direct sum of 
modules wm. 

Indeed, by H. Weyl's theorem (Chapter II, Theorem 8), such a module is a 
direct sum of irreducible modules, and we have just seen that each finite­
dimensional irreducible g-module is isomorphic to some wm. 

Theorem 4. Let V be a finite-dimensional g-module. Then: 

(a) The endomorphism of V induced by His diagonalizable. Its eigenvalues are 
integers. If ±n (with n ~ 0) is an eigenvalue of H, then so are n- 2, n- 4, 
... , -n. 
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(b) If n is an integer ~ 0, the linear maps 

Y": V"--+ v-n and X": v-n--+ V" 

are isomorphisms. In particular, V" and v-n have the same dimension. 
(Recall that V" denotes the set of elements of V of weight n.) 

21 

By Theorem 3, we may assume that Vis one of the g-modules Wm, in which 
case (a) and (b) are clear. 

Remarks. (1) The fact that V" and y-n have the same dimension can also be 
seen by using the endomorphism e = exe-Yex of V (notice that X and Yare 
nilpotent on V, so that their exponentials are just polynomials). Now one 
checks that: 

eoX= -Yoe, eo Y= -Xoe, eoH= -Hoe, 

and the last identity shows that e maps V" to y-n. 
(2) Here is an example of an application of Theorems 3 and 4, independent 

of the interpretation of sl2 as the Lie algebra of SL2 : 

Let U be a compact Kahler variety of complex dimension n, and let V be 
the cohomology algebra H*(U, C). Hodge theory associates endomorphisms 
A and L of V with the kiihlerian structure on U (cf. A. Weil, Varietes kiihler­
iennes, Chap. IV); let us take X and Y to be these endomorphisms, and define 
H by the relation Hx = (n- p)x if x E HP(U, C). Then one can check (Weil, 
loc. cit.) that V becomes a g-module. By applying Theorems 3 and 4 to this 
module, one retrieves Hodge's theorem's on "primitive" cohomology classes. 

6. Topological Properties of the Group SL2 

This is the group of complex matrices of order 2 and determinant equal to 1. 
It is a complex Lie group, with Lie algebra sl2 . The elements X, Y, H of sl2 

generate the following one-parameter subgroups: 

erx = G ~). etY = G ~). etH = (~ e~} 
Similarly we will consider the subgroup SU 2 of SL2 formed by the unitary 

matrices; its Lie algebra will be denoted by su2 • 

Theorem 5. (a) SL2 is isomorphic (as a real analytic variety) to SU2 x R3• 

(b) SU2 is isomorphic (as a Lie group) to the group of quaternions of norm 1, 
which is itself homeomorphic to the sphere s3. 

(c) SU2 and SL2 are connected and simply connected. 
(d) The algebra sl2 can be identified with the complexification of the real Lie 

algebra su2 : we have sl2 = su2 EB i · su2 • 
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The algebra su2 consists of the skew hermitian matrices of order 2 and trace 
zero; if P denotes the set of hermitian matrices of trace zero, then clearly 
P = i · su2 and sl2 = su2 E9 P, giving (d). 

Moreover, it is straightforward to check that the map 

(u,p)l--+ u · eP 

is an isomorphism (of real analytic varieties) from su2 X p onto SL2. Since 
Pis isomorphic to R3, this proves (a). 

Statement (b) is well-known, and (c) follows from (b) and the fact that S3 is 
connected and simply connected. 

Now Weyl's "unitarian trick" takes the following form: 

Theorem 6. For each complex Lie group G, with Lie algebra g, the following 
canonical maps are bijections: 

Homc(SL2,G) ~ HomR(SU2,G) 

·1 ' ·J 
Homc(sl2, g) -- HomR(su2, g). 

(Notation: Homc(SL2, G) denotes the set of complex analytic homo­
morphisms from SL2 to G, HomR(su2, g) denotes the set oCR-homomorphisms 
from the Lie algebra su2 to the Lie algebra g, etc. The maps a and d are the 
restriction maps; the maps b and c arise from the functor "Lie group" 1--+ "Lie 
algebra". 

PROOF. The maps b and c are bijective because SL2 and SU 2 are connected 
and simply connected; the map dis bijective because sl2 is the complexification 
of su2; the bijectivity of a (which is not a priori obvious) follows from the 
commutativity of the diagram. D 

CoroUary. The finite-dimensional linear representations of SU 2, SL2, su2, and 
sl2 correspond bijectively with each other. 

It is sufficient to apply the theorem to the group G = GL,.(C) for n = 0, 
1, .... 

7. Applications 

The global results of the preceding section provide alternative proofs of certain 
properties of sl2 -modules. Thus, for example: 

(i) The complete reducibility of finite-dimensional sl2-modules follows from 
the fact that, by the corollary to Theorem 6, these modules correspond 
to the linear representations of the compact group su2. 
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(ii) The fact that the eigenvalues of Hare integers can be seen in the following 
way: let V be a finite-dimensional sl2-module, and let x E V be an eigen­
vector of H, with eigenvalue A. By the corollary to Theorem 6, the group 
SL2 acts on V; in particular, the element e1H of SL2 sends x to e'.tx; but, 
if t = 2in, we have e1H = 1 in SL2 , so e1H x = x. We must therefore have 
e''- = 1 for t = 2in, implying that A is an integer. 

(iii) The automorphism () introduced at the end of Sec. 5 corresponds to the 

action of the element ( _ ~ ~) of SL2 • 



CHAPTER V 

Root Systems 

In this chapter (apart from Sec. 17) the ground field is the field R of real 
numbers. The vector spaces considered are all finite dimensional. 

1. Symmetries 

Let V be a vector space and a a nonzero element of V. One defines a symmetry 
with vector IX to be any automorphism s of V satisfying the following two 
conditions: 

(i) s(a) = -IX. 

(ii) The set H of elements of V fixed by s is a hyperplane of V. 

It is clear that H is then a complement for the line Ra spanned by a, and 
that s has order 2. The symmetry s is completely determined by the choice of 
Ra and of H. 

Let V* be the dual space of V, and let a* be the unique element of V* which 
vanishes on H and takes the value 2 on a. We have 

s(x) = x- (a*,x)a for all x E V, 

which we can write as 
s = 1 - a* ® IX, 

on identifying End(V) and V* ® V. 
Conversely, if a e V and a* e V* satisfy 

(a*, a)= 2, 

the element 1 - a* ® a is a symmetry with vector a. 
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Lemma. Let IX be a nonzero element of V, and let R be a finite subset of V which 
spans V. There is at most one symmetry with vector IX which leaves R invariant. 

Let s and s' be two such symmetries, and let u be their product. The 
automorphism u has the following properties: 

u(R) = R, 

u(IX) = IX, 

u induces the identity on VjRIX. 

The last two properties show that the eigenvalues of u are equal to 1. 
Moreover, because R is finite there is an integer n ~ 1 such that un(x) = x for 
all x e R, so that un = 1 since R spans V. This implies that u is diagonalizable. 
Since its eigenvalues are equal to 1, we therefore have u = 1, so that s = s'. 

2. Definition of Root Systems 

Definition 1. A subset R of a vector space V is said to be a root system in V if 
the following conditions are satisfied: 

(1) R is finite, spans V, and does not contain 0. 
(2) For each IX e R, there is a symmetry sa, with vector IX, leaving R invariant. 

(This symmetry is unique, by Lemma 1.) 
(3) For each IX, PeR, sa(P)- Pis an integer multiple of IX. 

The dimension of Vis called the rank of R. The elements of R are called the 
roots of V (relative to R). By Sec. 1, the symmetry sa associated with the root 
IX can be written uniquely as 

Sa = 1 - IX* <8) IX With (IX*, IX) = 2. 

The element IX* of V* is called the inverse root of IX. Condition (3) is 
equivalent to the following: 

(3') For all IX, peR, we have (1X*,p) e Z. 

Let IX e R. By (2) and (3), we have -IX e R, since -IX= sa(1X). 

Definition 2. A root system R is said to be reduced if, for each IX e R, IX and -IX 
are the only roots proportional to IX. 

If a root system R is not reduced, it contains two proportional roots IX and 
tiX, with 0 < t < 1. Applying (3) to P = tiX, we see that 2t e Z, which implies 
that t = t. 

Then the roots proportional to IX are simply 

- IX, - IX/2, IX/2, IX. 
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Remark. The reduced roots systems are those which arise in the theory of 
semisimple Lie algebras (or algebraic groups) over an algebraically closed 
field; they are the only ones we shall need. Nonreduced systems occur when 
one no longer assumes that the base field is algebraically closed. 

3. First Examples 

(We shall see others in Sec. 16.) Clearly, the only reduced system of rank 1 is 
the system 

• • • (denoted by A1) . 

-C( 0 C( 

There is one nonreduced system of rank 1: 

• • • • • 
-2C( -C( 0 C( 2C! 

One can show (cf. Sees. 8, 15) that every reduced system of rank 2 is 
isomorphic to one of the following four: 

----a+'. 
-13 

(type A1 x Ad 

-13----a -13 

-13-2a 
-13----a -13 
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2~ + 3a 

~ + 3a 

-~-3a -~-2a -~-a 

-2~-3a 

EXERCISE. Complete the root system B2 so as to obtain a nonreduced system. 
Can one do the same with A 2 and G2 ? 

4. The Weyl Group 

Definition 3. Let R be a root system in a vector space V. The Weyl group of R 
is the subgroup W of GL(V) generated by the symmetries s", IX E R. 

The group W is a normal subgroup of the group Aut(R) of automorphisms 
of V leaving R invariant. Since R spans V, these two groups can be identified 
with subgroups of the group of all permutations of R; they are finite groups. 

EXAMPLE. When R is a reduced system of rank 2, the group W is isomorphic 
to the dihedral group of order 2n, with n = 2 (type A1 x A1 ), n = 3 (type A2 ), 

n = 4 (type B2 ), or n = 6 (type G2 ). We have Aut(R) = W when R is of type 
B2 or G2 , and IAut(R): WI= 2 when R is of type A1 x A1 or A 2 . 

5. Invariant Quadratic Forms 

Proposition 1. Let R be a root system in V. There is a positive definite symmetric 
bilinear form (,) on V which is invariant under the Weyl group W of R. 

This follows simply from the fact that W is finite. For if B(x, y) is any positive 
definite symmetric bilinear form on V, the form 

(x, y) = L B(wx, wy) 
weW 

is invariant, and (x, x) > 0 for all x =1- 0. 
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From now onwards, we let(,) denote such a form. The choice of(,) gives 
V the structure of a Euclidean space, with respect to which the elements of W 
are orthogonal transformations. In particular this applies to the symmetries 
s,.; we deduce from this that we have 

(x, ex) 
s,.(x) = x - 2-( -)ex 

ex, ex 
for all x e V. 

Let ex' be the element of V corresponding to ex* under the isomorphism 
V-+ V* determined by the chosen bilinear form. By definition, we have 

s..(x) = x - (ex', x)ex for all x e V. 

Comparing this with the preceding formula, we get 

, 2ex 
ex=--

(ex, ex)· 

(Thus we pass from ex to ex' by an "inversion in a sphere of radius J2," in 
the sense of elementary geometry.) 

Condition (3) for root systems can be written as 

2(ex,p) e Z 
(ex, ex) 

for ex, PeR. 

Thus one can retrieve the traditional definition of root systems, cf. Jacobson 
or Seminaire S. Lie. (The definition in Sec. 2 is that of Bourbaki, Systemes de 
Racines-it has the advantage of separating the roles of V and of V*.) 

6. Inverse Systems 

Let R be a root system in V. 

Proposition 2. The set R* of inverse roots ex*, ex e R, is a root system in V*. 
Moreover, ex** =ex for all ex e R. 

Clearly R* is finite and does not contain 0. To prove that it spans V* 
it is sufficient (by the isomorphism V-+ V*) to show that the elements 
ex' = 2ex/(ex, ex) span V, which is obvious. If ex* e R* we take the corresponding 
symmetry to be the transpose's,. = 1 - ex® ex* of s,.. Since s..(R) = R, we have 
s,..(R*) = R*. Similarly, we see that ex** = ex. Finally, if ex*, P* e R*, we have 

(ex**, P*) = <P*, ex) e Z, 

as required. 

The system R* is called the inverse (or dual) system of the system R. Its Weyl 
group can be identified with that of R by means of the map 
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7. Relative Position of Two Roots 

Let us keep the notation of the preceding sections. If IX, P are two roots, we put 

(p ) - < * P>- 2(1X,p) n ,IX - IX , - -( -). 
IX, IX 

We have n(p, IX) E Z. Now if we let I lXI denote the length of IX (that is, (IX, 1X)1'2 ), 

and ¢J the angle between IX and p (with respect to the Euclidean structure on 
V), then we have (1X,p) = IIXIIPI cosf/J, so that 

IPI n(p, IX) = 2-
1 
cos f/J. 

IIX 

From this we deduce the formula 

n(p, 1X)n(1X, p) = 4 cos2 f/J. 

Since n(p, IX) is an integer, 4 cos2 ¢J can take only the values 0, 1, 2, 3, 4; the 
last case being that in which IX and P are proportional. 

Returning to the case of nonproportional roots, we see that there are 7 
possibilities (up to transposition of IX and p): 

1 n(IX, p) = 0, n(p,IX) = 0, ¢J = n/2. 

2 n(1X,P)= 1, n(p, IX)= 1, ¢J = n/3, IPI = IIXI. 

3 n(IX,p) = -1, n(p, IX) = -1, ¢J = 2n/3, IPI = IIXI. 

4 n(IX, p) = 1, n(p, IX)= 2, ¢J = n/4, IPI = J211XI. 

5 n(IX, p) = -1, n(p, IX) = -2, ¢J = 3n/4, IPI = J211XJ. 

6 n(IX,p) = 1, n(p,IX) = 3, ¢J = n/6, IPI = ~IIXI. 
7 n(IX, p) = -1, n(p, IX) = -3, ¢J = 5n/6, IPI = ~IIXI. 

Notice that knowledge of the angle ¢J determines the set { n(IX, p), n(p, IX)}, 
or, what amounts to the same thing, the set of ratios of lengths 

provided that we have ¢J # n/2. 

Proposition 3. Let IX and P be two non proportional roots. If n(p, IX) > 0, then 
IX - P is a root. 

(Notice that n(p, IX) > 0 is equivalent to (IX, p) > 0: the two roots form an acute 
angle.) 

The above list shows that we have either n(p, IX) = 1 or n(IX, p) = 1. In the 
first case, 

IX - P = - (p - n(p, 1X)1X) = - s,.(p), 

so that IX - PER. In the second case, IX - p = sp(IX) E R. 
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8. Bases 

Let R be a root system in V. 

Definition 4. A subset S of R is called a base for R if the following two conditions 
are satisfied: 

(i) S is a basis for the vector space V. 
(ii) Each P E R can be written as a linear combination 

P = L m«ex, 
«ES 

where the coefficients m« are integers with the same sign (that is, all ;;:::: 0 or 
all ::s;; 0). 

Instead of "base," the terms "simple root system" or "fundamental root 
system" are also used; the elements of S are then called the "simple roots." 

Theorem 1. There exists a base. 

We shall prove a more precise result. 
Let t E V* be an element such that < t, ex) # 0 for all ex E R. Let Ri be the 

set of all ex E R such that < t, ex) is > 0; we have R = Ri u (-Ri ). An element 
ex of Ri is called decomposable if there exist p, y E Ri such that ex= p + y; 
otherwise, oc is called indecomposable. Let S1 be the set of indecomposable 
elements of Ri . 

Proposition 4. S, is a base for R. Conversely, if S is a base for R, and if t E V* 
is such that (t, ex) is >0 for all exES, then S = S,. 

Let us show that S1 is a base for R. We will do this in stages. 

Lemma 2. Each element of Ri is a linear combination, with non-negative integer 
coefficients, of elements of st. 

Let I be the set of ex E Ri which do not have the property in question. If 
I were nonempty, there would be an element ex E I with (t, ex) minimal. The 
element ex is decomposable (otherwise it would belong to S,); if we write 
ex = P + y, with p, y E Ri, we have 

(t, ex) = (t, P> + (t, y), 

and since < t, p) and < t, y) are > 0, they are stricti y smaller than < t, ex). We 
therefore have p ¢I andy¢ I, clearly giving ex¢ I, a contradiction. 

Lemma 3. We have (ex,p) ::s;; 0 if ex, P E S1• 
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Otherwise, Prop. 3 would show that y =a-Pis a root. We would then 
have either y E Ri, in which case a = P + y would be decomposable, or else 
-y E Ri, in which case p =a+ ( -y) would be decomposable. 

Lemma 4. Let t E V* and A c V be such that: 

(a) (t, a) > 0 

(b) (a, p) ~ 0 

for all a E A, 

for all a, P E A. 

Then the elements of A are linearly independent. 

(In other words, vectors which subtend obtuse angles with each other, and 
lie in the same half-space, are linearly independent.) 

Each relation between the elements of A can be written in the form 

LYpP = "f.zry, 
where the coefficients Yp and zy are ~0, and where P andy range over disjoint 
finite subsets of A. 

Let A E V be the element LYpP· We have 

(A, A) = "f.ypzy(P, y), 

so that (A, A) ~ 0, by (b). 
We deduce that A = 0. But then we have 

0 = (t,A) = LYp(t,p), 

so that Yp = 0 for all p, and similarly zy = 0 for all y, as required. 

Lemmas 2, 3, 4 show that St is a base for R. Conversely, letS be a base for R, 
and let t E V* be such that (t, a) is > 0 for all a E S. If we let R+ denote the 
set of linear combinations with non-negative integer coefficients of elements 
of S, then we haveR+ c Ri and ( -R+) c ( -Ri}, so that R+ = Ri since R 
is the union of R+ and -R+. We deduce that the elements of S are indecom­
posable in Ri, that is, that S c St. Since S and St have the same number of 
elements (namely the dimension of V}, we have S = St. 

EXAMPLE. Suppose that dim V = 2, and let {a,p} be a base for R. Since the 
angle between a and P is obtuse (Lemma 3}, only cases 1/, 3/, 5/, 7/ of Sec. 7 
are possible (allowing for a possible transposition of a and p). They correspond 
to the systems of types A1 x A1 , A 2 , B2 , and G2 respectively (cf. Sec. 3). 

9. Some Properties of Bases 

In the following sections, S denotes a base for the root system R. We denote 
by R + the set of roots which are linear combinations with non-negative integer 
coefficients, of elements of S. An element of R+ is called a positive root (with 
respect to S). 
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Proposition 5. Every positive root p can be written as 

p = ex1 + ... + exk 

in such a way that the partial sums 

ex1 + ... +ex,, 

are all roots. 

With ex; E S, 

1~h~k. 

V. Root Systems 

Let t e V* satisfy < t, ex) = 1 for all ex e S. Since P is a positive root, < t, p) is 
a non-negative integer. We shall prove the proposition by induction on 
k = (t,p). First note that the values of (ex,p), peS, cannot all be ~0. If 
they were, then Lemma 4 would show that P and the elements of S were 
linearly independent, which is absurd. Hence there exists some ex e S such that 
(ex, P) > 0. If ex and P are proportional, we have P = ex or P = 2ex, and Prop. 5 
is true. Otherwise, Prop. 3 shows that y = p- ex is a root. If y e -R+, 
ex= P + ( -y)would be decomposable, which is absurd. Hencewehavey e R+ 
and < t, y) = k - 1. The induction hypothesis can be applied to y, so we obtain 
the result by taking exk =ex. 

Proposition 6. Suppose that R is reduced, and let ex e S. The symmetry sa. 
associated with ex leaves R + - {ex} invariant. 

Let peR+ - {ex}. We have 

p = L myy with my~ 0. 
yeS 

Since R is reduced, and P =F ex, Pis not proportional to ex, and there exists some 
y =F ex such that my =F 0. Since s~~.(P) = P - n(p, ex)ex, we see that the coefficient 
of y in s~~.(P) is equal to my. This gives s~~.(P) e R +, proving the proposition. 

Corollary. Let p be half the sum of the positive roots. We have 

s~~.(p) = p- ex 

for all ex e s. 

Let Pa. be half the sum of the elements of R+ -{ex}. Clearly we have 
s~~.(P~~.) = Pa.· On the other hand, p = Pa. + ex/2. Since sa.( ex) = -ex we deduce from 
this that s~~.(P) = p- ex. 

Proposition 7. Suppose that R is reduced. The set S* of inverse roots of the 
elements of S is a base for R*. 

Let R' be the root system consisting of the vectors ex' = 2ex/(ex, ex) for ex e R. 
By the isomorphism V-+ V* (cf. Sec. 5) it is sufficient to prove that the vectors 
ex', exeS, form a base for R'. If t e V* is such that (t, ex) > 0 for all exeS, then 
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(R'): consists of the vectors a.' with a. e R+. The convex cone C generated by 
(R'): is therefore the same as that generated by R+. Lets; be the corresponding 
base of R'. The half-lines generated by the elements of s; are the extremal 
generators of C; hence they are the half-lines R+ a., with a. e S. Since R is 
reduced, such a half-line contains a unique root of R', which must be a.'. Thus 
s; = S, as required. 

Remark. In the general case, let S1 (resp. S2 ) be the subset of S consisting of 
the roots a. such that 2a. is not a root (resp. 2a. is a root). We obtain a base for 
R* by taking the elements a.*, a. E sl, and the elements a.*/2, a. E s2. 

10. Relations with the Weyl Group 

We assume that R is reduced. 

Theorem 2. Let W be the Weyl group of R. 

(a) For each t e V*, there exists we W such that (w(t), a.) ~ 0 for all a. e S. 
(b) If S' is a base for R, there exists we W such that w(S') = S. 
(c) For each PeR, there exists we W such that w(P) e S. 
(d) The group E is generated by the symmetries s", a. e S. 

Let Ws be the subgroup of W generated by the symmetries s"', a. e S. We 
first prove (a) for the group JiVs. Let t e V*, and let p be half the sum of the 
positive roots (cf. Prop. 6, Corollary). Let us choose an element w of Ws so 
that 

(w(t),p) 

is maximal. In particular, we have 

(w(t),p) ~ (s"w(t),p) if a. E S. 

But we have 

(s"w(t),p) = (w(t),s"(p)) = (w(t),p- a.) 

(cf. the corollary to Prop. 6). Hence we conclude that (w(t),a.) ~ 0, which 
proves our assertion. 

We now prove (b) for the group JiVs. Let t' be an element of V* such that 
(t',a.') > 0 for all a.' e S'. By (a), there exists we Ws such that, if we put 
t = w(t'), then (t, a.) ~ 0 for all a. e S. Since (t, a.) = (t', w-1 (a.) ), and since 
t' is not orthogonal to any root, we in fact have (t, a.) > 0 for all a. e S. By 
Prop. 4, we have 

S = S, and S' = s, .. 

Since w sends t' to t, it also sends S' to S. 
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We now prove (c) for the group JVs. Let PeR, and let L be the hyperplane 
of V* orthogonal to p. The hyperplanes associated with the roots other than 
± P are distinct from L, and there are only finitely many of them. Hence there 
is an element t0 of L not contained in any of these hyperplanes. We have 

for y e R, y =I= ±P. 
One can find an element t sufficiently close to t0 that (t, P> = e, withe > 0, 

the absolute value of each (t,y), y =/:: ±P, being strictly greater than e. LetS, 
be the base of R associated with t as described in Sec. 8; clearly p belongs to 
S,. By (b), there exists we W such that w(S,) = S. We then have w(p) e S. 

We finally show that Ws = W, which will prove (d). Since W is generated by 
the symmetries s11 , with PeR, it is sufficient to show that s11 e JVs. By (c), there 
exists we Ws such that a= w(p) belongs to S. We have 

s~~. = Sw(fl) = w·s11 ·w-1, 

so that s11 = w-1 · s~~. · w, which indeed shows that s11 e JVs. 

Remarks. (1) The element w given in (b) is unique (cf. Sec. VII.5). 
(2) The set of elements t e V* such that (t, a) > 0 for all a e Sis called the 

Weyl chamber associated with S. By (a) and (b), the Weyl chambers are the 
connected components of the complement in V* of the hyperplanes orthogonal 
to the roots; the group W permutes them transitively. 

(3) One can refine (d) by showing that the relations between the generators 
s~~.(a e S) of Ware all consequences ofthe following: 

s2 - 1 (s s )rn(rz,/1) - 1 
~~-' II fl -' 

where m(a, p) is equal to 2, 3, 4, or 6 as the angle between a and pis 7t/2, 27t/3, 
37t/4, or 57t/6. See, for example, Seminaire Chevalley, 1956-58, expose 14, or 
Bourbaki, Chaps. IV-: V. 

11. The Cartan Matrix 

Defmition 5. The Cartan matrix of R (with respect to the chosen base S) is the 
matrix (n(a, P))rz,fleS· 

We recall (cf. Sec. 7) that n(a, p) = (p*, a) is an integer. We have n(a, a) = 2; 
if a =/:: p, we know (cf. Lemma 3) that n(a, p) ~ 0. We have n(a, p) = 0, -1, -2, 
or -3. 

EXAMPLE. The Cartan matrix of G2 is ( _ ~ - ~). 

Proposition 8. A reduced root system is determined, up to isomorphism, by its 
Cartan matrix. 
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More precisely: 

Proposition 8'. Let R' be a reduced root system in a vector space V', letS' be a 
base for R', and let </J: S--+ S' be a bijection such that n(</J(oc), </J(P)) = n(oc, p) for 
all oc, P E S. If R is reduced, then there is a unique isomorphism f: V--+ V' which 
is an extension of </J and maps R onto R'. 

To define f, we extend </J by linearity from S to V. If a:, p E S, we have 

s~(rz) 0 f(p) = S~(rz)(</J(P)) = </J(P) - n(</J(a:), </J(P))</J(oc) 

and 

f 0 Srz(P) = f(P - n(p, a:)a:) = </J(P) - n(p, a:)</J(a:). 

Comparing these, we see that s~<rz> of = f o Srz for all a: E S. If W (resp. W') 
denotes the Weyl group of R (resp. R'), we see that W' = fWf-1• Since 
R = W(S) and R' = W(S'), we deduce that f(R) = R', as required. 

In particular, let E be the group of permutations of S which leave the Cartan 
matrix invariant. By the above argument, E can be identified with the group 
of automorphisms of R which leave the base S invariant. 

Proposition 9. The group Aut(R) is the semidirect product of E and W. 

If w E W n E, we have w(S) = S, so that w = 1 by a result which will be 
proved later (Sec. VI1.5). Moreover, if u E Aut(R), u(S) is a base for R, hence 
there exists wE W such that w(u(S)) = S (cf. Theorem 2). We therefore have 
wu E E, showing that Aut(R) = W ·E. 

Corollary. The group Aut(R)/W is isomorphic to E. 

12. The Coxeter Graph 

Definition 6. A Coxeter graph is a finite graph, each pair of distinct vertices 
being joined by 0, 1, 2, or 3 edges. 

Let R be a root system, and let S be a base for R. The Coxeter graph of R 
(with respect to S) is defined as follows: the vertices are the elements of S, two 
distinct vertices a: and P being joined by 0, 1, 2, or 3 edges as n(a:, p) · n(p, a:) is 
equal to 0, 1, 2, or 3. 

(Recall that if </J denotes the angle between oc and p, then 

n(a:, p) · n(p, oc) = 4 cos2 </J, 

cf. Sec. 7.) 
Of course, the transitivity theorem in Sec. 10 shows that the graphs asso­

ciated with different bases of R are isomorphic. 



36 V. Root Systems 

EXAMPLES. The Coxeter graphs of the root systems in Sec. 3 are the following: 

o type A1 

o o type A1 x A1 

o--o typeA2 

0===0 type B2 

~ typeG2• 

13. Irreducible Root Systems 

Proposition 10. Suppose that Vis the direct sum of two subspaces V1 and V2 , 

and that R is contained in V1 u V2. Let R; = R n V;, i = 1, 2. Then: 

(a) vl and v2 are orthogonal. 
(b) R; is a root system in V;. 

If ex E R1 and f3 E R 2 , ex - f3 is not contained in V1 u V2 , so it is not a root. 
By Prop. 3, we therefore have (ex, /3) ~ 0. Since this also applies to ex and - {3, 
we see that (ex, /3) = 0. Since R; spans V;, (a) follows. 

For (b), it is sufficient to notice that, by (a), the symmetry associated with 
an element of R 1 preserves V2 , and hence also V1 . 

One says that the system R is the sum ofthe subsystems R;. If this can happen 
only trivially (that is, with V1 or V2 equal to 0), and if V =1- 0, then R is said to 
be irreducible. 

Proposition 11. Every root system is a sum of irreducible systems. 

This is obvious. 

One can show that such a decomposition is unique. 

Proposition 12. For R to be irreducible, it is necessary and sufficient that its 
Coxeter graph should be connected and nonempty. 

If R is the sum of two nontrivial subsystems R 1 and R 2 , we can take the 
union of two bases sl and s2 for Rl. and R2 to be a base s for R. If ex E sl and 
f3 E S2 , then ex and f3 are orthogonal and are therefore not joined by any edge 
in the Coxeter graph of S. We deduce that the latter is the disjoint sum of the 
Coxeter graphs of the bases S;, and is therefore not connected. 

Conversely, if S has a nontrivial partition 

s = sl u s2 
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such that every element of S1 is orthogonal to every element of S2 , then the 
vector subspaces vl and v2 spanned by sl and s2 are orthogonal, and are 
therefore invariant under the symmetries s,., IX e S. Hence R is contained in 
vl u v2, and is therefore reducible. 

14. Classification of Connected Coxeter Graphs 

Theorem* 3. Every connected nonempty Coxeter graph which is attached to a 
root system is isomorphic to one of the following: 

A,.: o---o-­

B,.: o---o--

D,.: o---o--

---o---o 

E7: o---o---~--~--~---o 

The principle of the proof is as follows. 

(n vertices, n ~ 1) 

(n vertices, n ~ 2) 

(n vertices, n ~ 4) 

One takes a nonempty connected Coxeter graph G, with vertex-set S. One 
associates with G a symmetric bilinear form (,) on the space R8 with basis 
(e,.),.es• by defining 

(e,.,e,.) = 1 

(e,., ep) = cos(n/2), cos(2n/3), cos(3n/4), cos(5n/6) as IX and p are joined by 0, 
1, 2, or 3 edges. 

For G to be the Coxeter graph of a root system, it is necessary that this 
form should be positive definite (for it can be realized by one of the invariant 
forms of Sec. 5). One then shows, by a series of ingenious reductions, that this 
positivity condition is sufficient to force an isomorphism between G and A,., 
B,., ... or E8 • For further details, see Seminaire S. Lie, expose 13; Jacobson, 
pp. 128-134; or Bourbaki, Chap. 6, Sec. 4. 
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15. Dynkin Diagrams 

(For simplicity, we restrict our attention to root systems which are both 
reduced and irreducible.) 

The Coxeter graph is not sufficient to determine the Cartan matrix (and 
hence the root system); indeed it gives only the angles between the pairs of 
roots in the base, without indicating which is the longer. Two mutually inverse 
systems (like B,. and C,.; cf. Sec. 16) have the same Coxeter graph. 

However, the Cartan matrix is determined if we specify the ratios of lengths 
of the roots. This leads us to attach, to the vertices of the Coxeter graph, 
coefficients proportional to the square (tx, tx) of the length of the relevant root 
oc. The Coxeter graph, thus labelled, is called the Dynkin diagram of R. 

If we agree to identify two Dynkin diagrams which differ only by a coefficient 
of proportionality, we have: 

Proposition 13. Specifying a Dynkin diagram is equivalent to specifying a Cartan 
matrix. They determine the root system up to isomorphism. 

Let us explain how to determine the Cartan matrix from the Dynkin 
diagram: 

if oc = {J, we have n(tx, {J) = 2; 
if oc i' {J, and if oc and fJ are not joined by an edge, we have n(oc, {J) = 0; 
if tx # {J, if tx and {J are joined by at least one edge, and if the coefficient of tx is 

less than or equal to that of {J, we have n(oc, {J) = -1; 
if tx # {J, if oc and fJ are joined by i edges (1 ~ i ~ 3), and if the coefficient of oc 

is greater than or equal to that of {J, we have n(oc, {J) = - i. 

(In this last case, the coefficient of oc is i times that of {J; hence there is no 
need to draw multiple edges.) 

Theorem* 4. Each nonempty connected Dynkin diagram is isomorphic to one of 
the following: 

1 1 
A,.: o---o--

2 2 
B,.: o---o--

1 1 
C,.: o---o--

1 1 
D,.: o---o--

1 3 
G z : ()!!!!EooB!O 

1 1 
--<>--0 

2 1 
--<>-====0 

1 2 
---<>=--=0 

---<~ 
1 1 2 2 

F4: o------<:>====-

(n vertices, n ~ 1) 

(n vertices, n ~ 2) 

(n vertices, n ~ 3) 

(n vertices, n ~ 4) 
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1 

~ 

This follows easily from Theorem 3. 

Remarks. (1) Conversely, the Dynkin diagrams An, ... , £ 8 do indeed corre­
spond to root systems. This can be seen by constructing these systems explic­
itly; we shall do this in the next section. 

(2) It follows from Prop. 13 that the automorphism groupE of the Coxeter 
matrix (cf. Sec. 11) is isomorphic to that of the Dynkin diagram. A quick glance 
at the list in Theorem 4 shows that: 

E = {1} for types A 1 , Bn, Cn, G2 , F4 , E 7 , Es. 
Eisa group with two elements for An(n ;;:: 2), Dn(n ;;:: 5), and E6 • 

E is isomorphic to the group of permutations of three symbols for type D4 • 

(3) A Dynkin diagram is often represented by a symbol such as 

Bn: 0----0- . . . --()==j>==Q 

where the inequality sign > on the multiple edge indicates which of the two 
adjacent roots is the longer (and the absence of an inequality sign means that 
two adjacent roots have the same length). With this notation, we have 

en: 0----0- . . . ~ 

G 2: C>===$=0 

F4:~ 

16. Construction of Irreducible Root Systems 

In this section, we let e1 , ... , en denote the standard basis of R", and we put 
on Rn the bilinear form(,) given by (e;, e)= l>ii. We let Ln denote the subgroup 
generated by the vectors e;. 

Construction of An (n ;;:: 1 ). We take V to be the hyperplane ofRn+l orthogonal 
to e1 + · · · + en+l· R consists of elements a E V n Ln+l such that (a, a)= 2. The 
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symmetry s" associated with such an element can be written as 

fJ 1-+ fJ - (rx, fJ)rx. 

The fact that R is a root system is immediate. 
The elements of R are the vectors e; - e1, i =I= j. For a base S we can take 

the set of all vectors e; - ei+1, 1 ~ i ~ n. 
The Weyl group can be identified with the group of permutations of e 1 , ••• , 

en+l· 

Construction of B, (n ~ 1). In the space V = R", we takeR to be the set of all 
rx e L, such that (rx, rx) = 1 or (rx, rx) = 2. These are the vectors e; and ± e; ± e1 
(i =I= j). 

Weyl group: permutations and sign changes of the vectors e;. 

(For n = 1, this system is isomorphic to A 1 .) 

Construction of C, (n ~ 1 ). We take the inverse of B,; it consists of the vectors 
±e; ± e1 (i =I= j) and ±2e;. 

Weyl group: the same as that of B,. 

(For n = 1, this system is isomorphic to A 1 and B1; for n = 2 it is isomorphic 
to B2 .) 

Construction of D, (n ~ 2). V = R"; R is the set of all rx e L, such that (rx, rx) = 2; 
these are the vectors ± e; ± e1 (i =I= j). 

Weyl group: permutations and sign changes of(an even number of) 
the vectors e;. 

(For n = 2, this system is isomorphic to A 1 x A 1 ; for n = 3 it is isomorphic 
to A3 .) 

Construction of G2 • This was done in Sec. 3. To put it briefly, R can be 
described as the set of integers of norm 1 or 3 in the field of the cubic roots 
of unity. 

Construction of F4 • In V = R\ let L~ be the subgroup generated by L4 and 
f(e1 + e2 + e3 + e4). We take R to be the set of all rx e L~ such that 
(rx, rx) = 1 or (rx, rx) = 2. These are the vectors ± e;, ± e; ± e1 (i =I= j), and 
f(±el ± e2 ± e3 ± e4). 

Base: e2 - e3, e3 - e4, e4, f(e1 - e2 - e3 - e4). 



17. Complex Root Systems 41 

Construction of E 8 • In V = R8 , let L8 be the subgroup generated by L8 and 
-!(e1 + · · · + e8 ), and let L~ be the subgroup of L8 formed by the elements 
whose sum of coordinates is an even integer. We takeR to be the set of all 
IX E L~ such that (IX, IX) = 2. These are the vectors: 

with L m(i) even. 

Construction of E6 and E 7 • We take the intersection of the system E8 con­
structed above with the vector subspace spanned by the first six (resp. first 
seven) elements of the base. 

Nonreduced Root Systems. One can show that, for each n;;:: 1 there is (up to 
isomorphism) exactly one nonreduced irreducible root system: it is the system 
BC" obtained as the union of the systems Bn and C" constructed above. 

17. Complex Root Systems 

Let V be a finite-dimensional complex vector space. The definition of a 
symmetry given in Sec. 1 can be used without change, and Lemma 1 is still 
true. Hence we have the concept of a root system: 

Definition 7. A subset R of Vis called a (complex) root system if: 
(1) R is finite, spans V (as a complex vector space), and does not contain 0 .. 
(2) For each IX E R, there is a symmetry sa = 1 - IX* ® IX with vector IX which 

leaves R invariant. 
(3) If IX, f3 E R, sa(f3) - f3 is an integer multiple of IX. 

EXAMPLE. Let R be a root system in a real vector space V0 , and let V be the 
complexlfzcation V0 ® C of V0 • The space V0 is imbedded in V, and R is a root 
system in V. This can be seen by extending the symmetries s~ of V0 by linearity 
to V. 

Theorem 5. Every complex root system can be obtained in the above way. 

More precisely: 

Theorem 5'. Let R be a root system in a complex vector space V. Let V0 be the 
R-subspace of V spanned by R. Then: 

(a) R is a root system in V0 • 

(b) The canonical mapping i: V0 ® C-+ Vis an isomorphism. 
(c) If IX E R, the symmetry sa of Vis the linear extension of the symmetry s~ 

of V0 • 
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PRooF OF (a). Clearly R spans V0 • Furthermore, if a E R, the symmetry s,.leaves 
invariant R, and hence V0 • Lets~ be its restriction to V0 • If PER, we have 
s~(p) = p - a*(p)a, with a*(P) E Z. Hence R is a root system in Vo; moreover, 
the inverse root a~ of a in V0* is none other than the image of a* E V* under 
the restriction homomorphism V* --+ Hom(V0 , C). D 

PROOF OF (b). Because R spans V, the homomorphism 

i: V0 ® C--+ V 

is surjective. On the other hand, we have just seen that its transpose 

maps a* to a~ for each a E R. But, by Prop. 2, the elements a~ form a root 
system in V0*, and in particular they span V0*. It follows that ti is surjective, 
and hence i is injective, giving (b). D 

Finally, (c) follows from the facts proved above. 

Theorem 5 reduces the theory of complex root systems to that of real root 
systems. All the definitions and results of the preceding sections are therefore 
applicable in the complex case. 



CHAPTER VI 

Structure of Semisimple Lie Algebras 

Throughout this chapter, g denotes a complex semisimple Lie algebra, and ~ 
a Cartan subalgebra of g (cf. Chap. III). 

1. Decomposition of g 

If oc is an element of the dual space ~* of~. we let g" denote the corresponding 
eigen-subspace of g, or in other words, the set of x E g such that [H, x] = 
oc(H)x for all H E ~; an element of 9" is said to have weight oc. 

In particular, g0 is the set of elements x E 9 commuting with l); by 
Theorem 3 of Chap. III, we have 

go=~-

Any element oc of~* such that oc-# 0 and g" -# 0 is called a root of 9 (relative 
to ~); the set of roots will be denoted by R. 

Theorem 1. One has g = ~ EB LaeR g" (direct sum). 

By Theorem 3 of Chap. III, the endomorphisms ad(H) of g for H e ~ are 
diagonalizable; since they commute with each other, they are simultaneously 
diagonalizable, which proves the theorem. 

The subspaces g"' have the following properties: 

Theorem 2. (a) R is a root system in ~*, in the sense of Sec. V.17; this system 
is reduced (V.2). 

(b) Let oc E R. Then g" is one dimensional; so is the subspace ~" = [g"', g -a] 
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of 1). There is a unique element H« E l)IZ such 1X(H«) = 2; it is the inverse root of 
IX (cf. Sec. V.2). 

(c) Let IX E R. For each nonzero element X« of g«, there is a unique element 
Y, of g-« such that [X«,¥,]= H«. One has [H«,X«] = 2X« and [H«, ¥,] = 
-2¥,. The subalgebra s« = l)« ~ g« ~ g-« is isomorphic to sl2 • 

(d) If IX, f3 E Rand IX + f3 # 0, then 

[g«, gil] = g«+ll. 

The proof will be given in Sec. 2. In the following theorem, we let ( , ) denote 
an invariant nondegenerate symmetric bilinear form on g (for example, the 
Killing form). 

Theorem 3. (i) The subspaces g« and gil are orthogonal if IX + f3 ¥= 0. The 
subs paces g« and g -« are dual with respect to ( , ). The restriction of ( , ) to 
l) is nondegenerate. 

(ii) If X E g«, y E g-«, and HE 1), then 

(H,[x,y]) = 1X(H)·(x,y). 

(iii) Let IX E R, and let h« be the element of l) corresponding to IX under the 
isomorphism l) --+ l)* associated with the chosen bilinear form. Then 

[x,y] = (x,y)h« 

PRooF. (i) If x E g«, y E gil, and HE 1), we have 

([H,x],y) + (x,[H,y]) = 0 

since ( , ) is invariant. We can also write this as 

r.x(H) · (x, y) + f3(H) · (x, y) = 0. 

If IX+ f3 ¥= 0, we can choose H so that 1X(H) + /3(H) ¥= 0, from which we 
obtain (x, y) = 0, which indeed proves that g« and g11 are orthogonal. 

The decomposition 

is therefore a decomposition of g into mutually orthogonal subspaces. Since 
( , ) is nondegenerate, its restriction to each of these subspaces is also non­
degenerate; the last two assertions of (i) follow from this. 

(ii) The in variance of ( , ) allows us to write 

(H,[x,y]) = ([H,x],y) = r.x(H)·(x,y). 

(iii) If HE 1), we have 1X(H) = (H, h«) by definition of ha. Formula (ii) can 
then be written as 

(H,[x,y]) = (H,(x,y)·h«). 

Since the restriction of ( , ) to l) is nondegenerate, we deduce from this that 
[x,y] = (x,y)·h«. 
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2. Proof of Theorem 2 

This rests basically on Theorem 3 and the properties ofthe algebra sl2 proved 
in Chap. IV. One proceeds by stages: 

2.1. If a, fJ e ~·. then [g,., gil] c: g,.+ll. This follows from the Jacobi identity 

[H,[x,y]] = [[H,x],y] + [x,[H,y]] 

applied to HE~. X E g,., y E gil. 

2.2. R spans ~·. Otherwise, there would be a nonzero element H E ~ such that 
a(H) = 0 for all a E R. We would then have ad(H) = 0, that is, H would belong 
to the center of g; however, we know that the center of g is trivial. 

2.3. If a E R, the subspace ~,. = [g,., g_,.] of~ is !-dimensional. Indeed, by 
Theorem 3 (iii), ~,. consists of the multiples of the element h,.. 

2.4. If a E R, there is a unique element H,. of~,. such that a(H,.) = 2. In view of 
2.3, it is sufficient to prove that the restriction of a to ~,. is nontrivial. Let us 
suppose that it is trivial, and let us choose elements x, y of g,., g -,. such that 
z = [x,y] is nonzero. Since a(z) = 0, we have 

[z,x] = 0, [z,y] = 0, [x,y] = z. 

These formulae show that the subalgebra a of g generated by x, y, z is 
solvable (and even nilpotent). If p: a -+ End(V) is a finite-dimensional linear 
representation of a, Lie's Theorem (Chap. I, Theorem 3) shows that there 
is a flag D of V stable under p(a). Since z E [a, a], we have p(z) E n(D), 
and hence p(z) is nilpotent. By applying this result to the representation 
ad: a -+ End(g), we see that z is nilpotent. On the other hand, z is semisimple 
(Chap. III, Theorem 3); hence z = 0, a contradiction. 

2.5. Let a E R and let X,. be a nonzero element of g,.. There exists ¥,. E g -,. such 
that [X,.,¥,.] = H,.. Indeed, since g,. and g-,. are dual with respect to ( , ), 
there exists y E g -,.such that (X,., y) -::ft. 0, giving [X,., y] -::ft. 0 by Theorem 3 (iii). 
Multiplying y by a suitable scalar, we obtain the required element ¥,..We have 

[H,.,X,.] = a(H,.)X,. = 2X,., [H,., ¥,.] = -a(H,.)Y,. = -2¥,.. 

If s,. is the subalgebra of g generated by X,., ¥,., and H,., the mapping 
(X, Y,H)~-+(X,., Y,.,H,.) defines an isomorphism f/J,. from sl2 onto s,.. Using the 
adjoint representation, we can now regard g as an sl2-module. 

2.6. We have dim g,. = 1 if a E R. Let us keep the notation of 2.5. Since g,. and 
g -,. are dual with respect to ( , ), if we had dim g,. -::ft. 1 there would be a 
nonzero element y E g_,. orthogonal to X,.. By Theorem 3, we would have 
[X,.,y] = 0 and moreover [H,.,y] = -a(H,.)y = -2y. Thus y would be a 
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primitive element of weight -2 in g, regarded as an sl2 -module by means of 
tA_. This contradicts Corollary 2 to Theorem 1 of Chap. IV. 

2.7. We haves,.=~~~ EB g 11 EB g-11• This follows from 2.5 and 2.6. 

2.8. The element Y,. in 2.5 is unique. This follows from the fact that dim g-.. = 1. 

2.9. If a. and p are roots, then P(H,.) is an integer and P - P(H,.)a. is a root. Let 
y E gfl, y =F 0, and let p = P(H,.). We have 

[H,.,y] = P(H,.)y = p· y, 

which shows that y has "weight" p, when we view g as an sl2-module by means 
of iP,.. By Theorem 4 of Chap. IV it follows that pis an integer. We put 

z = Y,!y ifp ~ 0, and z = x;Py ifp ~ 0. 

The same theorem shows that z =F 0; since z has weight P - pa., it follows 
that p - pa. is a root. 

2.10. R is a root system, and H,. is the inverse root of P- P(H,.)a.. By 2.2, R 
spans~*. Now if a. E R, lets,. be the endomorphism P~--+ p- P(H,.)a.. Since 
a.(H,.) = 2, s,. is a symmetry with respect to a. (cf. Chap. V). By 2.9, s,. leaves R 
invariant, and P(H,.) is an integer for each P E R; the statement now follows. 

2.11. The root system R is reduced. Otherwise, there would be some a. E R 
such that 2a. E R. Let y be a nonzero element of g211• We have [H,.,y] = 
2a.(H,.)y = 4y. On the other hand, 3a. is not a root, so ad(X,.)y = 0. The 
formula H,. = [X,., Y,.] shows that ad(H,.)y = ad(X,.) ad(Y,.)y; but ad(Y,.)y 
belongs to g .. , so it is a multiple of X,. and is annihilated by ad(X,.). Thus 
4y = ad(H,.)y = 0, a contradiction. 

2.12. Let a. and p be two nonproportional roots. Let p (resp. q) be the greatest 
integer such that P - pa. (resp. P + qa.) is a root. Let E = Lk gfl+k ... Then E is 
an irreducible s,.-module, of dimension p + q + 1. If - p ~ k ~ q - 1, the map 

ad(X,.): gfl+kll -+ gfi+(Hl)ll 

is an isomorphism. We have P(H,.) = p - q. 
Clearly E is an s,.-submodule of g; moreover, if we view E as an s12-module 

(using tP,. to identify s12 and s,.), we see that the weights of E are the integers 
p(H,.) + 2k, for all values of k such that p + ka. is a root; each such weight has 
multiplicity 1. These properties ofthe weights of E,. together with the structure 
theorem of Sec. IV.5, imply that E is irreducible of dimension m + 1, with 
m = P(H,.) + 2q = - P(H,.) + 2p. The fact that 

ad(X,.): gfl+kll -+ gfl+(k+1)110 -p~k~q-1 

is an isomorphism follows from the structure of the irreducible sl2 -modules. 
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2.13. If IX e R, fJ e R, IX + fJ e R, we have [g", gil] = g"+ll. With the notation 
above we have q ~ 1. Taking k = 0, we deduce that 

ad(X.,): gil -+ gil+" 

is an isomorphism, thus proving the result. 

The proof of Theorem 2 is now complete. 

Remark. Let W be the Weyl group associated with the root system R; let us 
identify W with a group of automorphisms of~- Then every element w e W is 
induced by an inner automorphism of g which leaves ~ invariant. In fact, it is 
sufficient to see this when w is the symmetry associated with the root IX, and 
in this case we can take the inner automorphism to be the element 

9., = ead(X.le-ad(Y.Jead(X.l (cf. Sec. IV.S). 

Conversely, one can show that every inner automorphism of gleaving ~ 
invariant induces an element of Won~- Moreover, the group Aut(g)/Aut0 (g) 
of"outer automorphisms" of g can be identified with the group E = Aut(R)/W 
defined in Sec. V.11. See Seminaire S. Lie, expose 16, or Bourbaki, Chap. 8, 
Sec. 5. 

3. Borel Subalgebras 

Let R be the root system associated with (g, ~) and let us choose a base S of 
R (cf. Sec. V.8). Let R+ be the set of positive roots with respect to S. We put 

n = L g", n- = L g-", b = ~ E9 n . 
.. >o .. >o 

Theorem 4. (a) One has g = n- E9 ~ EB n = n- E9 b. 
(b) nand n- are subalgebras of g consisting of nilpotent elements; they are 

nilpotent. 
(c) b is a solvable subalgebra of g; its derived algebra is n. 

(a) is trivial. 
(b): Let x en; for each integer k > 0, and each fJ e ~·.one has 

ad(x)k(gll) c L gll+ .. ,+···+"k, 
«i>O 

If k is sufficiently large, fJ and fJ + IX1 + · · · + IXk cannot both be in R u {0}. 
Hence one has ad(xf = 0, which shows that x is nilpotent. The fact that n is 
nilpotent follows from Engel's Theorem (Sec. 1.4) or from a direct argument. 

The case ofn- is similar. 
(c) follows from the equation [~, ~] = n. 

The algebra b is called the Borel subalgebra corresponding to~ and S. 
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Theorem* 5 (Borel-Morozov). Every solvable subalgebra of g can be mapped 
to a subalgebra of f) by an inner automorphism of g. In particular, b is a maximal 
solvable subalgebra of g. 

For the proof see A. Borel, Ann. of Maths. 64 (1956), pp. 66-67; Bourbaki, 
Chap. 8, Sec. 10; or Humphreys, Sec. 16.3. 

Corollary. Every subalgebra of g consisting of nilpotent elements can be mapped 
to a subalgebra of n by an inner automorphism of g. 

This follows from Theorem 5, and from the fact that each nilpotent element 
of g contained in b belongs to n. 

4. Weyl Bases 

We will keep the notation of the preceding section. We let (oc 1 , ••• , ocn) denote 
the chosen base S; n = dim f) is the rank of g (cf. Chap. III). For each i, we 
put Hi = Ha.,, and we choose elements Xi Ega.', Y; E g-a., such that [Xi, Y;] = Hi 
(cf. Theorem 2). 

Finally, we put 

n(i,j) = ocj(HJ 

The matrix formed by the numbers n(i,j) is the Cartan matrix of the given 
system; recall (cf. Sec. V.ll) that n(i,j) is an integer :::; 0 if i # j. 

Theorem 6. (a) n is generated by the elements Xi, n- by the elements Y;, and g 
by the elements Xi, Y;, Hi. 

(b) These elements satisfy the relations (called the "Weyl relations") 

[Hi,Hj] = 0, 

[Xi, lj] = 0 ifi # j, 

[Hi, lj] = -n(i,j)lj. 

(c) They also satisfy the following relations: 

(Oij) ad(XJ-n<i.j)+l(Xj) = 0 

(Oij) ad(Y;t"<i,j)+l(lj) = 0 

(i # j), 

(i # j). 

PROOF. (a) It is sufficient to show that n is generated by the elements Xi. To 
prove this, let oc E R+. It is known (cf. Sec. V.9) that oc can be decomposed as 
a sum of roots oci, 
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in such a way that the partial sums IX1, + 0 0 0 + IXih belong toR+ for each h ~ ko 
Let us choose such a decomposition and put 

XIZ = [Xik,[X,k-l,ooo,[Xi2•XIJooo]]o 

By Theorem 2, Xrz is a nonzero element of g«o Since n is the sum ofthe spaces 
g«, IX E R+' this shows that n is indeed generated by the elements xi. 

(b) The relation [X" lj] = 0 fori=!- j follows from the fact that [X" lj] has 
weight IXi - IX1, where we know that 1X1 - 1X1 is not a root (because every root 
is a linear combination of roots IXi with coefficients of the same sign). The other 
relations are obvious. 

(c) The element 

()ii = ad(Xi)-n(l,J)+l(XJ) 

has weight IX1 - n(i,j)1X1 + IXi = si(1X1 - 1Xi), where si denotes the symmetry cor­
responding to IXi. Since IX1 - IX; is not a root, neither is s1(1X1 - IXi), so ()ii = 0. 
The relation Oij = 0 is proved in the same way. D 

Theorem 7. (i) The algebra n can be defined by the generators Xi and the 
relations Ou, i =!- j. 

(ii) The algebra g can be defined by the generators X;, Y;, H1, the Weyl 
relations, and the relations 911, Oij . 

((i) shows that the generators X1 and the relations Ou form a "presentation" of 
n; in other words, if L is the free Lie algebra generated by the elements X;, 
and iff: L --+ n is the obvious homomorphism, then the kernel off is the ideal 
of L generated by the elements Ou. The meaning of (ii) is similar.) 

For the proof, see the Appendix at the end of this chapter. 

EXAMPLE. If R is oftype G2 , the algebra n has a presentation consisting of two 
generators X 1 , X 2 and of two relations: 

We now give an application of Theorem 7: 

Corollary. There is an automorphism q of g which is equal to - 1 on ~. and 
which sends Xi to - Y;, li to -Xi, for all i. One has q 2 = 1. 

Let us put Hi= -H1, Xi= -Y;, Y;' = -Xi. Clearly the elements x;, Y;', 
Hi satisfy the Weyl relations and the relations 911, Ojj. Hence by (ii) there is a 
homomorphism q: g--+ g mapping X" Y;, H1 to x;, Y;', Hi. Since q 2 fixes X 1, 

Y;, H1, it is the identity, as required. 

Remark. Theorem 7 gives an explicit description of g and of n in terms of the 
Cartan matrix (n(i,j)). 
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5. Existence and Uniqueness Theorems 

The conjugacy theorem for Cartan subalgebras (Sec. 111.4) shows that the root 
system of a semisimple Lie algebra is independent (up to isomorphism) of the 
chosen Cartan subalgebra. Furthermore: 

Theorem 8. 1\vo semisimple Lie algebras corresponding to isomorphic root 
systems are isomorphic. 

More precisely: 

Theorem 8'. Let g (resp. g') be a semisimple Lie algebra,~ (resp. ~')a Cartan 
subalgebra of g (resp. g'), S (resp. S') a base for the co"esponding root system, 
and r: S-+ S' a bijection sending the Cartan matrix of S to that of S'. For each 
i E S (resp. j E S'), let X 1 (resp. X}) be a nonzero element of g1 (resp. g'i). Then 
there is a unique isomorphism f: g -+ g' sending H1 to H;<i> and X 1 to X~1> for all 
i E S. 

Let Yj (resp. lj') be the element of g-1 (resp. of g'-i) such that [X1, Yj] = H1 

(resp. [Xj, lj'] = Hj). Then Theorem 7 shows that there is a unique homomor­
phism f: g-+ g' sending X;, Yj, H1 to x;<i>• Y:C0 , H;<i>• and clearly this is an 
isomorphism. 

Remark. By applying this result in the case g' = g, ~' = ~. S' = - S, one 
obtains another proof of the corollary to Theorem 7. 

Finally, here is the existence theorem: 

Theorem 9. Let R be a reduced root system. There exists a semisimple Lie 
algebra g whose root system is isomorphic to R. 

Let S = {a1 , ..• ,an} be a base for R, with (n(i,j)) the corresponding 
Cartan matrix. Let g be the Lie algebra defined by 3n generators X;, Yj, 
H1 and by the relations in Theorem 6 (i.e. the Weyl relations and the rela­
tions 01i, Ojj ). One shows (cf. the Appendix) that this Lie algebra is finite 
dimensional, semisimple, and has a root system isomorphic to R. Hence the 
theorem. 

Corollary. For g to be simple, it is necessary and sufficient that R should be 
irreducible. 

This is obvious. 
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6. Chevalley's Normalization 

For each IX E R, choose a nonzero element Xa Ega. Then we have 

if IX+ f3 E R, 
if IX + {3 ff R, IX + {3 =f. 0, 

where Na,p is a nonzero scalar. The coefficients Na,p determine the "multiplica­
tion table" of g. However, they depend on the choice of the elements X a. 

Theorem 10. One can choose the elements Xa so that 

[Xa,X-a] = Ha for all IX E R, 

Na,(J = -N-a,-(J for IX, {3, IX + {3 E R. 

Let R+ be the set of positive roots relative to a baseS of R, and let a be an 
automorphism of g equal to -1 on~. and such that a2 = 1 (cf. the Corollary 
to Theorem 7). We have a(ga) = g-a. Let IX E R+, and let us choose a nonzero 
element X a of ga. We have [xa, a(xa)J E [ga, g -a], so there is a nonzero scalar 
ta such that 

[xa, a(xa)] = taHa. 

Let ua be a square root of - ta, and let us put 

X a = u;1 X a, X -a = - a(Xa). 

We now have [X a, X -aJ = Ha and X a + a(Xa) = 0. The identity 

Na,(J = -N-a,-(J 

is then obtained by writing [aXa, aXp] = a[Xa, Xp]. 

Theorem* 11 (Chevalley). Suppose that the conditions of Theorem 10 are 
satisfied. Let IX, f3 E R be such that IX + f3 E R, and let p be the greatest integer 
such that f3- piX E R (cf. VI.2.12). Then one has 

Na,(J = ±(p + 1). 

For the proof, see Chevalley, Tokoku Math. J., 7 (1955), pp. 22-23, or 
Bourbaki, Chap. 8, Sec. 2, No. 4. 

Remarks. (1) Let g(Z) be the abelian subgroup of g generated by the elements 
Ha and by a family of elements X a satisfying the conditions of Theorem 10. It 
follows from Theorem 11 that g(Z) is a Lie algebra over Z. For each field K, 
one can therefore define the Lie algebra g(K) = g(Z) ® K. This is the starting 
point for the construction of the "Chevalley groups" (cf. Chevalley, TOhoku, 
loc. cit.; see also Carter's survey, J. London Math. Soc., 40 (1965), and his book 
Simple Groups of Lie Type, Wiley (1972)). 
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(2) Tits (Publ. Math. I.H.E.S., 31 (1966), pp. 21-58) has determined the ± 
signs in Theorem 11 (however, it is necessary to index the elements X~~. 

differently). From this he has deduced a new proof of the existence theorem 
(Theorem 9). 

(3) Let f be the real vector subspace of g spanned by the elements iH~~., the 
elements X~~.- X_~~., and the elements i(X~~. +X_~~.). One easily checks that f is 
a real Lie subalgebra of g, and that the Killing form off is negative. Moreover, 
g can be identified with the complexification f ® C of f. One says that f is a 
compact form of g. The existence of such a form is the basis ofWeyl's "unitarian 
trick." When g = sl2 , we have f = su2 (cf. Sees. IV.6, IV.7). 

Appendix. Construction of Semisimple Lie Algebras 
by Generators and Relations 

Let R be a root system in a complex vector space V. For consistency with the 
notation of the preceding sections, the dual of V will be denoted by ~. so that 
V =~*.LetS= {oc1 , ••• ,ocn} be a base for R, let H 1 , ••• , Hn e ~be the inverse 
roots of oc1 , ••• , ocn, and let 

n(i,j) = (oc1,H1). 

The numbers n(i,j) form the Cartan matrix of R with respect to S. We aim 
to prove the following theorem. 

Theorem. Let g be the Lie algebra defined by 3n generators X 1, Y;, H1 and by 
the relations 

(W:1) [H1,H1] = 0 

(W:2) [X;, Y;] = Hi, [X1, lj] = 0 ifi"#j 

(W:3) [H;, X1] = n(i,j)X1, [Hi, lj] = - n(i,j) lj 

(Oi1) ad(Xirn<i,J>+t (XJ) = o ifi"#j 

(O;j) ad(Y;tn<I,Jl+l(lj) = o ifi"#j. 

Then g is a semisimple Lie algebra, with the subalgebra ~ generated by the 
elements H1 as a Cartan subalgebra; its root system is R. 

Let us first consider the algebra a defined by the 3n generators X;, Y;, H1 

and by the relations (W:1), (W:2), (W:3). The structure of a is known; it has been 
determined by Chevalley, Harish-Chandra, and Jacobson. We just state the 
result (for the proof, see, e.g. Bourbaki, Chap. 8, Sec. 4, No. 2): 

One has 
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where l) (resp. x) is the Lie algebra generated by the elements Yj (resp. X;), and 
where l) has the elements H; as a basis. Moreover, l) (resp. x) can be identified 
with the free Lie algebra generated by the elements Yj (resp. X;). 

(By abuse of notation, we identify the original vector space l) with the vector 
subspace of a spanned by the elements H;.) 

Now let 

and 

Ojj = ad(Yj)-n(i,J)+t(lj). 

We have Ou ex, Oij e 1). We denote by u (resp. u-) the ideal of x (resp. of l)) 
generated by the elements Ou (resp. Ojj) fori ¥ j. Lett = u E9 u-. 

(a) u, u-, and t are ideals ofa. Let U a be the universal enveloping algebra of 
a. The adjoint representation ad: a--. End(a) defines a Ua-module structure 
on a. The ideal u;1 of a generated by Ou is equal to the submodule (U a)· Ou. By 
the Birkhoff-Witt theorem, uu is spanned (as a vector space) by the elements 
XYH8;1, with X e Ux, Ye Ul), He Ul). Clearly HOu is proportional to Ou; 
moreover, a straightforward calculation (cf. Jacobson, Lemma 1, p. 216) shows 
that ad(lf.)(Ou) = 0 for all k. It follows that YOu is proportional to Ou. Thus 
the ideal uil is generated by the elements X8;1, and is therefore contained in u. 
We then have u = L u;1, showing that u is indeed an ideal of a. A similar 
argument may be applied to u-; the result fort then follows. 

Thus, t is the smallest ideal generated by the elements Ou and O;j. Hence the 
algebra g which we wish to study is simply the quotient aft. 

(b) One has g = n- $1} E9 n, where n = x/u, n- = 1)/U-. This is obvious. 

(c) The endomorphisms ad(X;) and ad(Yj) of g are locally nilpotent. Let V; be 
the set of all z e g such that ad(X;)kz = 0 for some integer k. We must prove 
that V; = g. Now a simple computation shows that V; is a Lie subalgebra of 
g. Since V; contains the elements Xk (by the relations Ou = 0) and Yr. (by the 
relations W), it contains the elements Hk = [Xk, lf.], so we indeed have V; = g. 
The same argument can be applied to ad(Yj). 

We now introduce some notation. If A. is a linear form on 1), we denote by 
aA (resp. gA) the set of all z e a (resp. z e g) such that ad(H)z = A.(H)z for all 
H e l); such an element z will be said to have weight A.. It follows from the 
decomposition of a given above that a is the direct sum of the subspaces aA; 
hence g is the direct sum ofits subspaces g.t. If a A ¥ 0, A. is a linear combination 
of the simple roots a;, with integer coefficients, all of the same sign. 

Wehavel) = a0,x = L.t>oa\1) = L.t<oa .. ,andsimilarlyforg. We will now 
find the dimension of each g.t. First, we have: 
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(d) If A. is the image of Jl under an element w of the Weyl group W, then 
dim g;. = dim g~". It is sufficient to show this when w is the symmetry corre­
sponding to one of the roots IX; inS (cf. Chap. V, Theorem 2). In this case, we 
define an automorphism 0; of g by the formula 

which is meaningful because of (c). One easily checks that 0; induces the 
symmetry s; relative to rx; on 1), and hence sends g'- to g~' if A. = s;(Jl). Thus 
dim g;. = dim g~'. 

(e) One has dim g"' = 1 and dim gm"' = 0 for m -:f ± 1, 0. The corresponding 
formulae for a are obvious, and moreover u does not contain X;. Hence the 
result. 

(f) If oc E R, then dim g" = 1. Indeed, there exists w E W, sending IX to some rx;, 
so we can use (d) and (e). 

(g) Let A. be a linear combination of the simple roots IX;, with real coefficients, 
and suppose that A. is not a multiple of any root. Then there exists w E W such 
that w(A.) = L t;IX;, with some t; > 0 and some t; < 0. Let I.>a be the real vector 
subspace of l) spanned by the elements H; (cf. Sec. V.17). We denote by L,. 
(resp. L) the hyperplane of l)R orthogonal to IX (resp. to A.). By hypothesis, L is 
not equal to any L,., and hence is not contained in their union. Let H be an 
element of L which does not lie in any L,.. Transforming A. and L by an element 
of W if necessary, we can assume that IX;( H)> 0 for all i (cf. Chap. V, Theorem 
2(a)). If we write A. in the form A. = L t;IX;, we have 

0 = A.(H) = L t;IX;(H). 

Since the terms rx;(H) are > 0, this is impossible unless two of the coefficients 
t; have opposite signs. 

(h) If A. is not a root, and if A. -:f 0, then g'- = 0. We can assume that A. is a linear 
combination of the simple roots IX;, with integer coefficients. If A. is a multiple 
of a root, (h) follows from (d) and (e). Otherwise, by (g) there exists wE W such 
that the linear form ll = w(A.) is a linear combination of the roots IX;, with two 
coefficients of opposite signs. We then have a~'= 0, so that g~' = 0, and we 
finish by applying (d) again. 

(i) The algebra g has finite dimension, equal ton + Card(R). Indeed, by (f) and 
(h) we have 

g = l) EE> .L g", 
O<ER 

and each g is one dimensional. 
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(j) If a E R, [gil, g-il] consists of multiples of Hil. The subalgebra sil of g 
generated by Hil, gil, and g-il is isomorphic to sl2 • This is clear when a is one 
of the roots ai. We can reduce the proof to this case by using a product of 
automorphisms of the form (Ji· 

(k) g is a semisimple algebra. Lett be an abelian ideal of g. Since tis invariant 
under the endomorphisms ad(H), HE~. we have t = t 11 ~ $ LileR t 11 gil. 
However,sincesilisisomorphic to sl2 , t 11 sl2 = Oandhenceafortiorit 11 gil= 
0. We therefore have t c ~-By writing down the condition that tis invariant 
under ad(Xi), we see that t is orthogonal to each ai; hence t = 0, and g is 
semisimple. 

(I) ~ is a Cartan subalgebra of g, and R is the corresponding root system. For 
~ is equal to its own normalizer. The fact that R is the corresponding root 
system is clear. 

The proof of the theorem is thus complete, and with it that of Theorem 9 
(the existence theorem). 

Theorem 7 follows easily: let g' be a semisimple Lie algebra, ~' a Cartan 
subalgebra of g', and Xi, Y;', Hi the corresponding generators of g'. Suppose 
that the Cartan matrix of g' is the same as that of the Lie algebra g which we 
have just constructed. By Theorem 6, the generators x;, Y;', Hi satisfy the 
relations (W) and the relations (Oii), (Oi]); hence there is a homomorphism 
f: g-+ g' sending Xi, Y;, Hi to x;, Y;', Hi. Since the latter generate g, f is 
surjective. However, g and g' have the same dimension, namely n + Card(R); 
thus f is an isomorphism. Theorem 7 is now obvious. 

EXERCISE. Let r' be an ideal of a. Show that the following conditions are equivalent: 

(i) r' contains the ideal r generated by the elements (}iJ and Oij. 
(ii) The algebra a/t' is finite dimensional. 

(iii) There is an integer m;;,?; 0 such that, for all i,j, i # j, one has ad(Xi)m(Xi) e r' and 
ad(Y;r(l}) E t'. 

(In particular, r is the smallest ideal of finite codimension in a.) 



CHAPTER VII 

Linear Representations of Semisimple 
Lie Algebras 

In this chapter, g denotes a complex semisimple Lie algebra, ~ a Cartan 
subalgebra of g, and R the corresponding root system. We choose a base 
S = {tX 1, ••• ,tXn} of R, and we denote by R+ the set of positive roots (with 
respect to S). 

For each tX e R+, we choose X,. e g,., Y,. e g _,.so that [X,., Y,.] = H,. (cf. Chap. 
VI). When tX is one of the simple roots tX~o we write X;, Y;, H1 instead of X,.,, 
Y,.,, H,.,. We put n = :L,.>o g,., n- = :L,.<o g,., b = l) EB n. 

We intend to study those irreducible g-modules having a "highest weight" 
(cf. Sec. 3), and in particular to characterize those which are finite dimensional. 

1. Weights 

Let V be a g-module (not necessarily finite dimensional), and let w e ~· be a 
linear form on~. We will let V"' denote the set of all v e V such that Hv = 
w(H)v for all H e ~· This is a vector subspace of V. An element of V"' is said 
to have weight w. The dimension of V"' is called the multiplicity of w in V; if 
V"' =F 0, w is called a weight of V. 

Proposition 1. (a) One has g,.V"' c yeo+,. if we~·. tX e R. 
(b) The sum V' = Lm vm is direct; it is a g-submodule of V. 

Let X e g11, v e V"'; if H e ~. one has 

H(Xv) = X(Hv) + [H,X]v = (w(H) + tX(H))Xv, 

which shows that Xv has weight w + tX, giving (a). 
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The fact that the sum ofthe subspaces vw is direct is standard (eigenvectors 
associated with distinct eigenvalues are linearly independent). Finally, (a) 
shows that V' is invariant under each g", and hence under g since g = ~ $ L g". 

2. Primitive Elements 

Let V be a g-module, v an element of V, and w a linear form on ~. One says 
that v is a primitive element of weight w if it satisfies the following two 
conditions: 

(i) v is nonzero, and has weight w. 
(ii) One has x .. v = 0 for all ex e R+ (or for all exeS, which amounts to the 

same thing). 

The primitive elements can also be characterized as the eigenvalues of the 
Borel subalgebra b. 

Proposition 2. Let V be a g-module and let v e V be a primitive element of V of 
weight w; let E be the g-submodule of V generated by v. Then: 

( 1) If P1 , ••. , Pt denote the different positive roots, E is spanned (as a vector 
space) by the elements of the form 

(2) The weights of E have the form 
n 

(J) - L PilXi, 
i=l 

They have finite multiplicity. 
(3) w is a weight of E of multiplicity 1. 
(4) E is an indecomposable g-module. 

with mieN. 

Pi EN. 

(Recall that a module E is called indecomposable if it is nontrivial and if, 
for each direct sum decomposition E = E 1 $ E 2 , one has E 1 = 0 or E 2 = 0. 
Every irreducible module is indecomposable; in general, the converse is false.) 

Let A= Ug be the universal enveloping algebra of g; similarly let B = Ub 
and C = un-. Since g = n- $ b, one has A= C· B, and hence E =A ·v = 

C · B · v. However, since v is an eigenvector for b, every product bv, with b e B, 
is proportional to v; we therefore have C · B · v = C · v, that is, E = C · v. But 
by the Birkhoff-Witt Theorem, the monomials 

form a basis for C; hence (1). 
Moreover, Prop. 1 shows that Yp~· · · · Yp~kv has weight w - L mA, and 
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each {J1 is a linear combination of the simple roots OC; with integer coefficients 
~0; hence (2). For (3), we note that w- "f.m1{J1 cannot be equal tow unless 
every m1 is zero. 

Finally, if E is the direct sum of two submodules E 1 and E 2 , we have 
Ew = Ef Ei) E~. Since we have just seen that dim Ew = 1, we must have Ew = 
Ef or Ew = E~. In the first case, we have v E E 1, and since v generates E this 
forces E = E 1 and E 2 = 0. We apply a similar argument in the second case; 
thus E is indecomposable. 

3. Irreducible Modules with a Highest Weight 

Theorem 1. Let V be an irreducible g-module containing a primitive element v 
of weight w. Then: 

(a) v is the only primitive element of V (up to scalar multiplication); its weight 
w is called the "highest weight" of V. 

(b) The weights n of V have the form 

n = w - "f. m;oc; with m;EN. 

They have finite multiplicity; in particular, w has multiplicity 1. One has 
V="f.V". 

(c) For two irreducible g-modules v1 and v2 with highest weights (I)1 and (I)2 to 
be isomorphic, it is necessary and sufficient that w1 = w2. 

(Statement (b) shows that the weights of Vare dominated by w, in an obvious 
sense; this justifies the terminology "highest weight".) 

The g-submodule E of V generated by v is nonzero, and hence equal to V 
since Vis irreducible. By applying Prop. 2 to it, one obtains (b). 

Let us now prove (a): let v' be a primitive element of V, of weight w'. By (b), 
w' can be written as 

m;~O. 

Similarly, exchanging the roles of v and v', we see that 

m; ~0. 
These two equations are possible only if m; = m; = 0 for all i, that is, w = w'. 
By (b), v and v' are then proportional giving (a). 

For (c), it is sufficient to prove that, if w 1 = w2 , the modules V1 and V2 are 
isomorphic. Let V; (i = 1, 2) be a primitive element of Jlj, of weight w = w1 = 
(I)2. Clearly the g-module v = v1 Ei) v2 has v = v1 + v2 as a primitive element 
of weight w. Let E be the g-submodule of V generated by v. The second 
projection pr2 : V-+ V2 induces a g-module homomorphism f 2 : E-+ V2 • One 
has f(v) = v2; since v2 generates V2, it follows that f is surjective. Moreover, 
the kernel N2 = V1 n E of f 2 is a submodule of V1 • This submodule does not 
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contain v1 (because, by Prop. 2, the only elements of E of weight w are the 
multiples of v, and v1 is not a multiple of v). It is therefore distinct from V1 , 

and since V1 is irreducible, one has N2 = 0. Thus f 2 : E --+ V2 is an isomorphism. 
Similarly, one proves that E is isomorphic to V1 ; therefore V1 and V2 are 
isomorphic. 

Remark. One can give examples of irreducible g-modules which have no 
highest weight (in other words, which do not contain a primitive element); 
these modules are necessarily infinite dimensional (cf. Sec. 4). 

Theorem 2. For each w E l)*, there is an irreducible g-module with highest weight 
equal to w. 

(Theorem 1 shows that such a module is unique up to isomorphism.) 

(i) Our first step will be to construct a g-module V0 , containing a primitive 
element v of weight w, and generated by v. 

First let Lw be a one-dimensional b-module, having as basis an element v 
such that 

Hv=w(H) ifHEl),Xv=O ifXEn. 

We can view Lw as a Ub-module, where Ub denotes the universal enveloping 
algebra of b. By taking a tensor product with Ug, we obtain from this a 
Ug-module 

Vw = Ug ®ubLw. 

It is clear that the module Vw is generated by the element 1 ® v (which we shall 
write simply as v); this element is nonzero since, by the Birkhoff-Witt Theorem, 
U g is a free Ub-module having a basis containing the unit element 1. More­
over, the formulae written above clearly show that v is primitive of weight w. 

(In fact, Vw has as a basis the family of elements Yp~· · · · Yp~kv, but we do 
not need this .) 

(ii) Let Vw be the module constructed above, and let us put 

If V' is a g-submodule of Vw distinct from Vw, then V c vw-. Indeed since V' 
is stable under l), one has V' = L V'", and if V'"' were nonzero, it would contain 
v and one would have V' = V"'. One therefore has V' = Ln,.<w V'", that is, 
V' c vw-. This being so, let Nro be the g-submodule of Vw generated by all the 
g-submodules of Vw distinct from Vw. By the above, one has Nro c vw-, so that 
Nw "# Vw. The quotient module Ew = Vw/N ro is obviously irreducible with 
highest weight w. 

Remarks. (1) Depending on the given linear form w, it can happen that Nro = 0 
or N"' "# 0; both cases arise even for g = sl2 • 
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(2) Theorems 1 and 2 give a bijection between the elements ro of l)* and the 
classes of irreducible g-modules with a highest weight. 

4. Finite-Dimensional Modules 

Proposition 3. Let V be a finite-dimensional g-module. Then one has 

(a) V = }:V". 
(b) If n is a weight of V, n(H,.) is an integer for all ex e R. 
(c) If V =F 0, V contains a primitive element. 
(d) If Vis generated by a primitive element, Vis irreducible. 

By Theorem 3 of Chap. Ill, the elements of l) are semisimple; the endo­
morphisms of V which they defme are therefore diagonalizable (Chap. II, 
Theorem 7). Since they commute with each other, they can be diagonalized 
simultaneously, giving (a). Statement (c) follows from Lie's theorem (Chap. I, 
Theorem 3) applied to the solvable algebra b. Statement (d) follows from Prop. 
2 (4), combined with the complete reducibility theorem (Chap. II, Theorem 8). 

Finally, if ex e R+, V can be viewed as a module over the Lie algebra s,. 
generated by X,., Y,., H,. (cf. Chap. VI). By applying Theorem 4 of Chap. IV to 
this module, one sees that the eigenvalues of H,. on V belong to Z. Since these 
eigenvalues are none other than the values n(H,.), one gets (b). 

Corollary. Every finite-dimensional irreducible g-module has a highest weight. 

This follows from (c). 

In view of Theorems 1 and 2, it only remains to characterize the elements 
ro e l)* which are highest weights of finite-dimensional irreducible modules. 

Theorem 3. Let ro e l)* and let Em be an irreducible g-module having ro as highest 
weight. For Em to be finite dimensional, it is necessary and sufficient that one 
has 

(•) For all ex e R+, ro(H,.) is an integer ~0. 
(Since the simple inverse roots H1 form a base for the inverse roots H,., it is 

sufficient that the values ro(H1) be integers ~ 0.) 

The necessity of condition ( •) follows from the fact that, if v is a primitive 
element of Em for g, it is also a primitive element for the subalgebra s,. generated 
by X,., Y,., H,.. By Corollary 2 to Theorem 1 in Chap. IV, ro(H,.) must therefore 
be an integer ~ 0. 

Now let us show that condition (•) is sufficient. Let v be a primitive element 
of Em, and let i be an integer between 1 and n. Let us put 

m1 = ro(H1) and v1 = Y;m<+1v. 
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lfj # i,-Xi and Yj commute. One then has 

Xivi = Yjm,+l Xiv = 0. 

Moreover, Theorem 1 of Chap. IV, applied to the subalgebra S; generated by 
X;, Yj, H;, shows that X;v; = 0. If v; were nonzero, it would then be a primitive 
element of Ew, of weight ro - (m; + 1 )oc;, contradicting Theorem 1. This proves 
that v; = 0. Theorem 1 of Chap. IV now shows that the vector subspace F; of 
Ew spanned by the elements YjPv, 0 :::::;; p :::::;; m;, is a finite-dimensional S;­

submodule of Ew. 
Now letT; be the set of finite-dimensional si-submodules of Ew, and E; their 

sum. If F e T;, one checks easily that g · F e T;; it follows that E~ is a g­
submodule of Ew. Since Ew is irreducible and E; nonzero (it contains F;), we 
have E; = Ew. Thus we have proved that Ew is a sum of finite-dimensional 
s; -submodules. 

Let Pw be the set of weights of Ew. We shall show that Pw is invariant under 
the symmetry s; associated with the root oc;. To see this, let n e Pw, and let 
y be a nonzero element of E':,. By Theorem 1, Pi = n(H;) is an integer. Let us 
put 

x = YjP•y if P; ~ 0, and x = X;-P•y if P; :::::;; 0. 

By Theorem 4 of Chap. IV, applied to s; and to a finite-dimensional 
s;-submodule of Ew containing y, one has x # 0. Since the weight of x is equal 
to 

n - pioci = n - ro(H;)oc; = s;(n), 

this shows that s;(n) is a weight of Ew, and Pw is indeed invariant under S;. 

Now let us prove that Pw is finite. If 11: e Pw, Theorem 1 shows that 11: can 
be written as 

where the coefficients Pi are integers ~ 0. All that remains is to bound these 
coefficients. Now, because -Sis a base for R, there is an element w of the 
Weyl group of R sending S to -S, and this element is a product of the 
symmetries s; (cf. Sec. V.10). It follows that w(n) also belongs to Pw, and can 
therefore be written as 

w(n) = ro - L q;oc; 

Applying w-1 to this formula, one finds 

n = w-1(ro) + L r;oc; 

with q; ~ 0. 

with r; ~ 0. 

One concludes from this that P; + r; is equal to the coefficient c; of oc; in 
ro- w-1(ro); thus P;:::::;; c;, and the coefficients P; are indeed bounded. 

Thus, there are only finitely many weights of Ew. Since each of them has 
finite multiplicity (Theorem 1), and since Ero is the sum of the corresponding 
eigen-subspaces, Ew is finite dimensional, as required. 
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Remarks. (1) In the course of this proof we have seen that the set Pw of weights 
of Ew is invariant under the Weyl group W. In fact, if n e Pw and wE W, the 
weights nand w(n) have the same multiplicity. For it is sufficient to see this 
when w = s1, and in this case one easily checks that the element 

sends the eigen-subspace corresponding to n to that corresponding to s1(n) 
(cf. Sec. IV.5, Remark 1). 

(2) Let (m1) be the basis of~· dual to the basis (H1): 

if i ::1= j. 

The w1 are called the fundamental weights of the root system R (with respect 
to the chosen baseS). Condition (•) of Theorem 3 means that the linear form 
w is a linear combination of the weights w1, the coefficients being integers ~0. 

The irreducible modules having the weights w1 as highest weights are called 
the fundamental modules (or fundamental representations) of g. 

5. An Application to the Weyl Group 

Proposition 4. The Weyl group W acts simply transitively on the set of bases 
ofR. 

We know (Sec. V.10) that it acts transitively. Hence it is sufficient to prove 
that, if w(S) = S, with w e W, then w = 1. Let P be the set of fundamental 
weights. We have w(P) = P. If we P, we know that w(m) is a weight of the 
fundamental module Ew with highest weight m. By Theorem 1, it follows that 
w- w(m) is a linear combination ofthe simple roots rt.;, with coefficients ~0. 
This applies to every w e P. But on the other hand, we have 

L (w - w(m)) = L w - L w = 0. 
weP weP weP 

This is impossible unless each of the summands w- w(m) is zero. Since Pis 
a basis for ~·, this indeed forces w = 1, as required. 

6. Example: sln+t 

Let g be the algebra sl,.+l of square matrices of order n + 1 and trace 
zero. We take ~ to be the subalgebra consisting of the diagonal matrices 
H = (A.l> ... , A.,.+d• with L A.1 = 0. The roots are the linear forms a.1,1, i ::1= j, 
given by 
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For a base, we take the roots a.i = a.i,1+1, 1 ~ i ~ n. The element Hie l) 
corresponding to a.i has components A.i = 1, A.i+1 = -1, A.i = 0 if j =I= i, i + 1. 

The fundamental weights wi are given by 

wi(H) = A- 1 + · · · + A.i. 

The fundamental weight w 1 is the highest weight of the natural representa­
tion of sln+l on the vector space E = cn+1• More generally, wi is the highest 
weight of the i-th exterior power of E. 

(In fact, all the finite-dimensional irreducible representations of sln+l can 
be obtained by decomposing the tensor powers of E; for more details, see 
H. Weyl, The Classical Groups.) 

7. Characters 

Let P be the subgroup of l)* consisting of the elements n such that n(H,.) e Z 
for all a. e R (or equivalently, for all a. e S). The group Pis a free abelian group, 
having a basis consisting of the fundamental weights w 1 , ••• , w". 

We will denote by A the group-algebra Z[P] of the group P with coefficients 
in Z. By definition, A has a basis (e"),.eP such that e" · e"' = e"+"'. 

Definition. Let V be a finite-dimensional g-module. For each weight n of V, let 
m,. = dim V" be the multiplicity of n in V. The element 

ch(V) = L m,.e" 

of the algebra A is called the character of V. 

(This definition is legitimate, since each weight n of V belongs to P by 
Prop. 3.) 

Proposition 5. (a) ch(V) is invariant under the Weyl group W. 
(b) One has 

ch(V E9 V') = ch(V) + ch(V') 

ch(V ® V') = ch(V) · ch(V'). 

(c) Two finite-dimensional g-modules V and V' are isomorphic if and only if 
ch(V) = ch(V'), 

Statement (a) expresses the fact that two weights which are equivalent under 
W have the same multiplicity (cf. Sec. 4, Remark 1). The two formulae in (b) 
are obvious. Let us now prove (c). We must show that ch(V) = ch(V') implies 
that V and V' are isomorphic. We argue by induction on dim V. If dim V = 0, 
then ch(V) = 0, so that V' = 0. Otherwise, let Pv be the set of weights of V 
(which is the same as that for V' since the characters of V and V' are equal). 
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We have Pv :f. 0. and since Pv is finite, one can find an element OJ E Pv such 
that OJ + oci does not belong to Pv for any i. If v is a nonzero element of V"', it 
is clear that v is primitive. By Prop. 3, the submodule V1 of V generated by v 
is irreducible and has highest weight OJ. By the complete reducibility theorem, 
one has V = V1 EB V2 , where V2 is a submodule of V. The same argument, 
applied to V', shows that V' = V{ E9 v;, where V{ is irreducible with highest 
weight OJ. Since V1 and v; have the same highest weight, they are iso­
morphic (Theorem 1), so that ch(V1 ) = ch(V{). Using (b), we now see that 
ch(V2) = ch(V;), and the induction hypothesis shows that V2 is isomorphic to 
v;; thus V and V' are isomorphic, as required. 

Let Aw be the subalgebra of A= Z[P] consisting of the elements invariant 
under the Weyl group W. By (a), every character belongs to Aw; conversely, 
every element of Aw is the difference of two characters. This is a consequence 
of the following more precise proposition, which we shall not prove (for a 
proof, see Bourbaki, Chap. 8, Sec. 7, No.7). 

Proposition* 6. Let T; = ch(E"',) be the character of the i-th fundamental 
module of g (cf. Sec. 4, Remark 2). The elements T;, 1 ::::; i::::; n, are algebraically 
independent, and generate the algebra Aw. 

One can therefore identify Aw with the polynomial algebra 

Z[T1 , ••• , T,]. 

Corollary. The map defined by ch induces an isomorphism from the "Grothen­
dieck group" of finite-dimensional g-modules onto the algebra A w. 

This follows from Propositions 5 and 6. 

8. H. Weyl's Formula 

This formula allows one to calculate the character of an irreducible g-module 
as a function of its highest weight. 

Before giving it, let us introduce some notation: 

(i) lfw E W,let e(w)denote the determinant ofw. This is + 1 ifwis the product 
of an even number of symmetries S11 , and -1 otherwise. 

(ii) We put p = t La>o oc; one can show that p(HJ = 1 for all i, so that pEP. 
(iii) We put 

D = n (e"i2 - e-af2), 
a>O 

the product being evaluated in the algebra Z[tPJ. In fact, we have 
DE Z[P], since one can show that 

D = L e(w)ew<pJ. 
weW 
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Theorem* 4. Let E be a finite-dimensional irreducible g-module, and ro its 
highest weight. One has 

1 
ch(E) = -· L e(w)ew<w+pJ. 

D weW 

The original proof of this theorem (Weyl, 1926) used the theory of compact 
groups (cf. Seminaire S. Lie, expose 21). A "purely algebraic" (but less natural) 
proof was found in 1954 by Freudenthal; it is reproduced in Jacobson's book 
(see also Bourbaki, Chap. 8, Sec. 9). 

Coronary 1. The dimension of E is given by the formula 

dimE= TI (ro+p,H~~.) = TI (ro+p,oc). 
11.>0 (p,H~~.) 11.>0 (p,oc) 

One deduces this from the theorem by computing the sum of the coefficients 
of ch(E) (cf. Bourbaki, Chap. 8, Sec. 9). 

Corollary 2. Let V be a finite-dimensional g-module, and let n( V, ro) be the 
multiplicity with which E appears in a decomposition of V as a direct sum of 
irreducible modules. Then n(V, ro) is equal to the coefficient of e"'+P in the product 
D·ch(V). 

This is a simple consequence of the theorem. 

EXAMPLE. For g = sl2 , there is a unique positive root oc equal to 2p. The group 
P consists of the integer multiples of p. A highest weight ro can be written as 
ro = mp, with m ~ 0. Weyl's formula gives 

e<m+l)p - e-<m+l)p 
ch(E) = = e"'P + e<m-l)p + · · · + e-"'P, 

eP- e P 

which is indeed consistent with the results in Chap. IV. 



CHAPTER VIII 

Complex Groups and Compact Groups 

This chapter contains no proofs. All the Lie groups considered (except in Sec. 
7) are complex groups. 

1. Cartan Subgroups 

From now on, G denotes a connected Lie group whose Lie algebra g is 
semisimple. Such a group is called a complex semisimple group. 

Let l) be a Cartan subalgebra of g, and let H be the Lie subgroup of G 
corresponding to l). The conjugates of H are called the Cartan subgroups of G. 

Theorem 1. (a) H is a closed group subvariety of G. (b) G is a group of 
multiplicative type (i.e. isomorphic to a product of groups C*). 

Let us describe the structure of H more precisely. Let R be the root system 
of g with respect to l), let R* c l) be the inverse system, let r be the subgroup 
of l) generated by the elements H« of R*, and let r1 be the subgroup of r 
consisting of those x e l) such that a(x) e Z for all a e R. 

One has 

Furthermore, let 

e: l)-+ H 

be the map x 1-+ exp(2inx). This is a homomorphism, since l) is abelian. 
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Theorem 2. (a) The homomorphism e: l)-+ His surjective, and its kernel r(G) 
lies between r and rl. 

(b) e defines an isomorphism from rtfr(G) onto the center of G. 
(c) The canonical map n 1 (H)-+ n 1 (G) is surjective. It induces an isomorphism 

from the the quotient r(G)jr onto n 1(G). (One identifies n 1(H) with r(G) by 
means of e.) 

Statement (a) has a converse. 

Tbeorem3.ForeachsubgroupM ofl)suchthatr c M c r 1 ,thereisacomplex 
semisimple group G, with Lie algebra g, such that r(G) = M. This group is 
unique (up to a unique isomorphism). 

In particular, G is an adjoint group (trivial center) if and only if r(G) = r 1 ; 

G is simply connected (n1 (G)= 0) if and only if r(G) = r. 
Since the group rt~r is finite, we see that there are only a finite number of 

complex semisimple groups with a given Lie algebra-up to isomorphism, 
of course. They are obtained by taking the coverings of the adjoint group. 

EXAMPLES. ( 1) If g = sl2 , r is the set Zrx of multiples of a root rx, and r 1 = t Zrx. 
Hence there are two groups: the simply connected group SL2 and the adjoint 
group PGL2 = SL2 /{ ± 1 }. 

(2) Here is the structure of rt~r for each of the types of simple Lie algebras: 

type An, n ~ 1: rt~r = Z/(n + 1)Z 

type Dn, even n ~ 4: rt~r = Z/2Z x Z/2Z 

type Dn, odd n ~ 5: rt~r = Z/4Z 

type E 6 : rt~r = Z/3Z 

types Bn, Cn, n ~ 2, and E 7 : rt~r = Z/2Z 

types G2 , F4 , E 8 : rt~r = 0. 

2. Characters 

One defines a character of the Cartan group H to be any (complex analytic) 
homomorphism x: H-+ C*. The group X(H) of characters of H is a free 
abelian group of rank equal to dim H. Knowledge of X(H) is equivalent to 
knowledge of H, by virtue of the formula 

H = Hom(X(H),C*). 

If x EX (H), the tangent mapping at x is a homomorphism from l) to C, that 
is, an element ofl)*. Thus we get an injection from X(H) into l)*, which allows 
us to identify X(H) with a subset of l)*. With this convention, we have: 
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Theorem 4. (a) Let P1 (resp. P) be the subgroup of l)* generated by the roots 
(resp. by the highest weights). One has P1 c X(H) c P. 

(b) Conversely, every subgroup M* lying between P1 and Pis an X(H) for a 
suitable choice of G; the corresponding group G is then defined up to a unique 
isomorphism. 

This assertion is simply a reformulation of Theorem 3, if one notices that 
P, P1 , and X(H) are the duals orr, r 1 , and r(G). 

3. Relations with Representations 

Let p: 9 --+ End( E) be a finite-dimensional linear representation of g. 

Theorem 5. For p to correspond to a linear representation 

p: G--+ GL(E) 

of the group G, it is necessary and sufficient that the weights of E belong to the 
subgroup X(H) defined in Sec. 2. 

Remarks. (1) This condition is always satisfied if G is simply connected. 
(2) If E is irreducible, with highest weight w (with respect to a base S of R), 

it is sufficient that w should belong to X(H). Indeed, we know (Chap. VII) that 
every weight of E has the form w - y, with y E P. 

EXAMPLE. Let us take G to be the adjoint group of sl2 , that is, PGL2 = 

SL2 /{ ± 1 }. By the above, the irreducible representations of G correspond to 
the irreducible representations of sl2 for which the highest weight is an integer 
multiple of the positive root oc; these are the representations W2n of Chap. IV. 

4. Borel Subgroups 

LetS be a base for R, and let 9 = n- ${) E9 n be the corresponding decom­
position of 9 (cf. Sec. V1.6). Let b = l) EB n. 

Theorem 6. (a) The exponential map defines an isomorphism from n onto a 
closed group subvariety U of G. 

(b) The Lie subgroup B corresponding to b is closed; it is the semidirect 
product of Hand U. 

(c) Every connected solvable subgroup of G is conjugate to a subgroup of H. 

The groups conjugate to B are called the Borel subgroups of G. 
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Theorem 7. The quotient G/B is a projective algebraic variety (hence compact). 

Moreover, one has a cellular decomposition of G/B, called the "Bruhat 
decomposition", which corresponds to the action of BonG/B. 

More precisely, let W be the Weyl group of g with respect to {). If we W, 
let us choose an element nw e G such that Int(nw) leaves {) invariant and 
induces won{) (cf. Sec. V1.2); let w be the image of nw in G/B. 

Theorem 8. G/B is the disjoint union of the orbits Bw, for we W. 

Corollary. The map WHBnwB is a bijection from W onto the set B\G/B of 
double cosets of G modulo B. 

Moreover, each Bw is isomorphic to an affine space cn<w>. 

5. Construction of Irreducible Representations from 
Borel Subgroups 

Let us keep the notation of the preceding section. Let w be a highest weight, 
that is, an element of P such that w(Ha) ~ 0 for all a e S. Suppose that w 
belongs to the subgroup X(H) of P. Then by Sec. 3, there exists an irreducible 
representation Ero of G, with highest weight w. We shall describe it explicitly. 

We have seen that w may be viewed as a homomorphism from H to C*; let 
us extend this homomorphism to the whole of B by putting 

w(u) = 1 for all u e U. 

Let Vro be the set of holomorphic functions f on G which satisfy the identity 

f(yb) = w(b)f(y) 

We make G act on Vro by putting 

(gf)(y) = f(g-1) 

ifb E B, y e G. 

if y, g e G. 

Theorem 9. The representation Vro is irreducible and finite dimensional. Its dual 
is isomorphic to Ero. 

If e E Ero is a primitive element of weight w, one defines a G-map 

i: (Ero)* -+ Vw 

by putting 

i(A.)(y) = (A.,y·e). 

One can show that this is an isomorphism. 
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[To prove that V"' is finite dimensional, one puts on V"' the topology of 
convergence on compact subsets. Using the compactness of G/B, one sees that 
V"' is a Banach space which is locally compact (by Montel's criterion) and 
hence finite dimensional.] 

6. Relations with Algebraic Groups 

Let G be a complex semisimple group. 

Theorem 10. (a) There is a complex algebraic group structure on G, and one 
only, which is compatible with its analytic group structure. 

(b) If G' is a complex algebraic group, every analytic homomorphism from G 
to G' is algebraic. 

Thus we have a dictionary "algebraic.;:;. analytic". 

Remark. The algebraic structure on G can be described in several ways. 
The most "explicit" consists of choosing a faithful linear representation jj: 
G-+ GL(E), and showing that jj(G) is an algebraic subgroup of GL(E); hence 
p induces an algebraic structure on G, which can be shown to be independent 
of the choice of p. 

One can also give a direct definition of the affine algebra AG of the algebraic 
structure on G, as follows: 

f e AG.;:;. f is a holomorphic function on G whose translates 
span a finite-dimensional vector space. 

7. Relations with Compact Groups 

(In this section, we are concerned with both real Lie groups and complex 
Lie groups. For the results stated here, see Chevalley, Theory of Lie groups, 
Chap. 6, Sees. 8-12.) 

First we recall: 

Theorem 11. Let K be a real connected semisimple Lie group, with Lie algebra 
f. ForK to be compact, it is necessary and sufficient that the Killing form off 
should be negative. 

Here now is the assertion which underlies Weyl's "unitarian trick" (cf. 
Corollary 2). 

Theorem 12. Let G be a complex semisimple Lie group, with Lie algebra g. Let 
K be a maximal compact subgroup of G, with Lie algebra f. 
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(a) The algebra f is a real form of g, that is, g = f Ea if. 
(b) The exponential map defines an isomorphism (of real analytic variety 

structures) from if onto a closed subvariety N of G. 
(c) The map (k,n)t-+k·n is an isomorphism (of real analytic varieties) from 

K x N onto G. 
(d) Every compact subgroup of G is contained in a conjugate of K. 

This theorem has the following consequences: 

Corollary 1. The homology groups and homotopy groups of G can be identified 
with those of K. In particular, n 1 (G) = n 1 (K). 

This follows from (b) and (c). 

Corollary 2. If G' is a complex Lie group, the restriction map 

r: Homc(G, G')--+ HomR(K, G') 

is bijective. 

This follows from (a) and the fact that n1(G) = n1(K). 

Corollary 3. The group G is determined up to a unique isomorphism by K. 

This follows from Corollary 2. 

Conversely: 

Theorem 13. Let K be a compact, connected Lie group, with a semisimple Lie 
algebra. There exists a complex semisimple Lie group G which contains K as a 
maximal compact subgroup. 

(In view of the preceding result, this group is unique, up to a unique 
isomorphism; it is called the complexification of K.) 

The construction of the affine algebra AG of G is easy: its elements are the 
continuous functions f on K whose translates span a finite-dimensional vector 
space. Notice that this algebra has a canonical real structure; it therefore 
defines an algebraic group L over R. The set of real points of L is K, its set of 
complex points is G. 
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