
Chapter 8

Root Space Decompositions

Henceforth we will focus on complex simple and semisimple Lie algebras. These
algebras have an incredibly rich structure, all brought to you by Theorem 7.3.12.
As for real semisimple Lie algebras, it turns out that the theory of such algebras
essentially amounts to finding the real forms of complex semisimple Lie algebras.
Unfortunately (really!), the study of such algebras is beyond the scope of this
course.

8.1 Cartan Subalgebras

We begin with a generalized binomial expansion for derivations.

Exercise 8.1.1. Let g be a Lie algebra over F and let D ∈ Der g. Prove that
for any x, y ∈ g, λ, µ ∈ F, and k ∈ N,

(D − (λ+ µ) Ig)
k [x, y] =

kX

r=0

�
k

r

�
[(D − λ Ig)

r x, (D − µ Ig)
k−r y]

Lemma 8.1.2. Let g be a Lie algebra over C. Then Der g contains the semisim-
ple and nilpotent parts of all its elements.

Proof. LetD ∈ Der g, and letD = S+N be its Jordan-Chevalley decomposition.
Here S and N are commuting semisimple and nilpotent linear operators on g,
respectively.

Since our field is C, we can, by Theorem 1.7.7, decompose g into a direct sum
of generalized eigenspaces of D:

g =
M

λ

gλ, (8.1)
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where the sum is taken over all eigenvalues of D, and

gλ = {x ∈ g | (D − λ Ig)
k x = 0 for some k ∈ Z+}

We now claim that [gλ, gµ] ⊂ gλ+µ. Here gλ+µ is understood to be {0} if λ+ µ
is not an eigenvalue of D.

To prove the claim, we first note that by the remark after Theorem 1.7.1, gλ =
ker(D − λ Ig)

n, where n = dim g. Suppose that x ∈ gλ and y ∈ gµ. Then by
Exercise 8.1.1,

(D − (λ+ µ) Ig)
2n [x, y] =

2nX

r=0

�
2n

r

�
[(D − λ Ig)

r x, (D − µ Ig)
2n−r y].

At least one of the factors in each Lie bracket on the right hand side above
vanishes. Hence the right hand side vanishes, and [x, y] is annihilated by a
power of D− (λ+µ) Ig. Thus, [x, y] belongs to the generalized eigenspace gλ+µ.

Assuming still that x ∈ gλ and y ∈ gµ, it is now easy to show that the semisimple
operator S satisfies Leibniz’ rule on [x, y]:

S[x, y] = (λ+ µ) [x, y] (since [x, y] ∈ gλ+µ)

= [λx, y] + [x, µy]

= [Sx, y] + [x, Sy].

If x and y are arbitrary elements of g, then we have x =
P

λ xλ and y =
P

λ yλ,
where xλ, yλ ∈ gλ. Hence

S[x, y] = S

�X

λ

xλ ,
X

µ

yµ

�

= S

�X

λ,µ

[xλ, yµ]

�

=
X

λ,µ

([Sxλ, yµ] + [xλ, Syµ])

=

�
S

 X

λ

xλ

!
,
X

µ

yµ

�
+

�X

λ

xλ, S

 X

µ

yµ

!�

= [Sx, y] + [x, Sy]

Hence Leibniz’ rule holds for S on g, and so S ∈ Der g. It follows that N =
D − S ∈ Der g.

Now if g is a semisimple Lie algebra over C, then we know by Theorem 7.1.5
that g is complete; that is, ad g = Der g. Lemma 8.1.2 then implies that if
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x ∈ g, the semisimple and nilpotent parts of adx belong to ad g. Since the map
ad : g → ad g is injective, there must therefore exist unique elements xs and xn

in g such that
adx = adxs + adxn

is the Jordan-Chevalley decomposition of adx. Here adxs is semisimple and
adxn is nilpotent. From the above, we obtain adx = ad(xs + xn), and so

x = xs + xn. (8.2)

Definition 8.1.3. Equation 8.2 is called the abstract Jordan-Chevalley decom-
position of x ∈ g. xs is called the semisimple part of x, and xn is called the
nilpotent part of x.

Definition 8.1.3 begs the question: what if g ⊂ gl(V ) for some complex vector
space V ? Does the abstract Jordan decomposition of any X ∈ g coincide with
its usual one? The answer is yes, as the following exercise shows.

First note that it is an immediate consequence of Lemma 6.3.1 and Lemma 1.9.9
(and its nilpotent counterpart) that if N is a nilpotent element of gl(V ), then
so is adN , and likewise, if S is a semisimple element of gl(V ), then so is adS.

Exercise 8.1.4. Let V be a complex vector space, and let g be a semisimple
Lie subalgebra of gl(V ). Let X ∈ g, and let X = S+N be its Jordan-Chevalley
decomposition, and X = Xs+Xn its abstract Jordan-Chevalley decomposition.
Using the following steps, prove that S = Xs and N = Xn.

(a). We know that Xs and Xn belong to g. The problem is that S or N may
not belong to g. Prove that S and N normalize g; that is, [S, g] ⊂ g and
[N, g] ⊂ g.

(b). Prove that S−Xs and N −Xn both belong to the centralizer of g in gl(V ).

(c). Prove that S commutes with Xs and N commutes with Xn.

(d). Since g is semisimple, Weyl’s theorem and Theorem 7.3.8 imply that V
decomposes into a direct sum of g-invariant irreducible subspaces V =
V1 ⊕ · · ·⊕ Vm. Prove that each subspace Vi is invariant under S and N .

(e). Since Xs, Xn ∈ g, each Vi is also Xs- and Xn-invariant. Show that S−Xs

and N −Xn are scalar operators on each Vi. That is, prove that for each i,
there is a λi ∈ C such that (S −Xs)|Vi

= λi IVi
, and similarly for N −Xn.

(f). Prove that Xs is a semisimple linear operator on each Vi, and hence on V .

(g). Prove that for each Y ∈ g, trY |Vi = 0. Hence trX|Vi = trXs|Vi =
trXn|Vi

= 0.

(h). Prove that N = Xn and that S = Xs.
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Example 8.1.5. In the case of g = sl(n,C), it is a lot easier to prove that
the abstract and the regular Jordan-Chevalley decompositions coincide. Let
X ∈ sl(n,C), and let X = S+N be its regular Jordan-Chevalley decomposition.
Since N is nilpotent, we have trN = 0. Hence N ∈ sl(n,C), and so S = X−N ∈
sl(n,C). Since adS and adN are semisimple and nilpotent, respectively, on
gl(n,C), they are likewise semisimple and nilpotent, respectively, on sl(n,C).
Hence S = Xs and N = Xn.

Definition 8.1.6. Let g be a semisimple Lie algebra over C. A toral subalgebra
of g is a subalgebra consisting entirely of semisimple elements x. (This means
x = xs in Definition 8.1.3.)

If g ̸= {0}, does g have any nonzero toral subalgebras? Yes! The reason is
that there is at least one element x of g such that xs ̸= 0. Otherwise, x = xn

for all x ∈ g, so adx is nilpotent for all x ∈ g, and hence by Engel’s theorem
(Theorem 5.2.1), g is nilpotent. But no nilpotent Lie algebra is semisimple.
(Why?) So choose x ∈ g such that xs ̸= 0. Then a = Cxs is a one-dimensional
toral subalgebra of g. Note that because a is one-dimensional, it is obviously
abelian.

Surprisingly, it turns out that all toral subalgebras are abelian.

Proposition 8.1.7. Let g be a semisimple Lie algebra over C. Then any toral
subalgebra T of g is abelian.

Proof. Let x ∈ T . Since T is a subalgebra, T is adx-invariant. We want to
show that adx|T = 0, since this will obviously imply that T is abelian. Now
clearly, adx = 0 for x = 0, so let us assume that x ̸= 0.

Now since adx is semisimple, its restriction adx|T is also semisimple, by Lemma
1.9.9. Thus it suffices to prove that any eigenvalue α of adx|T is 0. So suppose
that α is an eigenvalue of adx|T and that y ∈ T is an eigenvector corresponding
to α. Then [x, y] = adx (y) = α y. Hence

ad y [y, x] = − ad y [x, y]

= − ad y (α y)

= −α [y, y]

= 0. (8.3)

Now y ∈ T , so ad y|T is semisimple. Thus, there is a basis (e1, . . . , ek) of T
consisting of eigenvectors of ad y|T , with respective eigenvalues α1, . . . ,αk.

We have, of course, x =
Pk

i=1 λi ei, for some scalars λi, not all 0. Then
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ad y (x) = [y, x] =
Pk

i=1 λi [y, ei] =
Pk

i=1 λiαi ei, and so by equation (8.3),

0 = ad y [y, x]

= ad y

 
kX

i=1

λiαi ei

!

=

kX

i=1

λiαi [y, ei]

=

kX

i=1

λiα
2
i ei.

It follows that λiα
2
i = 0 for all i, from which it follows that λiαi = 0 for all i.

Hence α y = adx (y) = [x, y] = −[y, x] = −Pk
i=1 λiαi ei = 0. Since y ̸= 0, we

conclude that α = 0, proving the proposition.

Definition 8.1.8. Let g be a complex semisimple Lie algebra. A Cartan sub-
algebra of g is a maximal toral subalgebra of g; i,e., a toral subalgebra which is
not properly contained in any other toral subalgebra of g.

Any toral subalgebra of maximal dimension is obviously a Cartan subalgebra of
g. It is an important result in Lie theory that any two Cartan subalgebras are
conjugate under an automorphism of g.

Theorem 8.1.9. Let h1 and h2 be Cartan subalgebras of a complex semisimple
Lie algebra g. Then there exists an automorphism φ of g such that φ(h1) = h2.

In particular, any two Cartan subalgebras of g have the same dimension, which
is called the rank of g.

Theorem 8.1.9 says that the behavior of any two Cartan subalgebras of g with
respect to the adjoint representation is exactly the same. Since the proof of
Theorem 8.1.9 requires some Lie group theory, we will omit it.

8.2 Root Space Decomposition

In this section, we examine the root space structure of a complex semisimple
Lie algebra g. Knowledge of this structure is absolutely vital for any further
study of semisimple Lie theory.

Lemma 8.2.1. Let h be a toral subalgebra of a complex semisimple Lie algebra
g. Then there is a basis of g relative to which the linear operators adh all have
diagonal matrices, for every h ∈ h.
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Proof. Let h1, . . . , hl be a basis of h. then adh1, . . . , adhk are semisimple lin-
ear operators on g. Moreover, these operators commute, since [adhi, adhj ] =
ad[hi, hj ] = 0. Hence by Exercise 1.9.12, there is a basis of g relative to which
each adhi has a diagonal matrix. If h ∈ h, then adh is a linear combination of
the adhi, so the matrix of adh relative to this basis is also diagonal.

The basis obtained in Lemma 8.2.1 thus consists of joint eigenvectors of all the
elements of ad h.

Let us now assume that h is a Cartan subalgebra of a complex semisimple Lie
algebra g. Choose a basis of g consisting of joint eigenvectors of adh. If v is an
element of this basis, then for every h ∈ h, we have

adh (v) = α(h) v, (8.4)

where the complex coefficient α(h) clearly depends on h. The mapping h 7→ α(h)
is easily seen to be a linear functional on h, and it is also clear that v belongs
to the joint eigenspace corresponding to α ∈ h∗.

For each α ∈ h∗, let gα denote the joint eigenspace corresponding to α:

gα = {v ∈ g | [h, v] = α(h) v for all h ∈ h} (8.5)

Of course, for a given α, gα could very well be {0}. Nonetheless, each vector
in our basis belongs to a unique joint eigenspace, and we obtain the direct sum
decomposition

g =
M

α

gα (8.6)

where the sum ranges over all α ∈ h∗ such that gα ̸= {0}.

The decomposition (8.6) is very important, and we will study its structure in
some detail.

Observe that if 0 denotes the zero linear functional on h, then the joint eigenspace
g0 is the centralizer c(h) of h in g. Since h is abelian, we have h ⊂ g0, so in
particular g0 ̸= {0}.

Definition 8.2.2. Let h be a Cartan subalgebra of a complex semisimple Lie
algebra g. Any nonzero linear functional α ∈ h∗ such that gα ̸= {0} is called a
root of g relative to h. If α is a root, the joint eigenspace gα is called the root
space corresponding to α. We denote the set of all roots by ∆.

We note that ∆ is a nonempty finite set. If it was empty, then g0 = c = would
coincide with g, making h a non-zero subspace of the center of g, which we know
is trivial.

Since g is finite-dimensional and since each root space gα has dimension ≥ 1,
we see that the set ∆ of roots is finite.
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Definition 8.2.3. If h is a Cartan subalgebra of a complex semisimple Lie
algebra g, then we can rewrite the decomposition (8.6) as

g = g0 ⊕
M

α∈∆

gα. (8.7)

We call (8.7) the root space decomposition of g relative to h.

For the rest of this section, we assume that h is a fixed Cartan subalgebra of a
complex semisimple Lie algebra g.

Theorem 8.2.4. The joint eigenspaces gα satisfy the following properties:

(a) For α, β ∈ h∗, [gα, gβ ] ⊂ gα+β.

(b) If α ̸= 0 and x ∈ gα, then adx is nilpotent.

(c) If α, β ∈ h∗ such that α+ β ̸= 0, then B(gα, gβ) = {0}.

Proof. (a) Let h ∈ h, and let x ∈ gα, y ∈ gβ . Then, since adh is a derivation,
we have

adh [x, y] = [adh (x), y] + [x, adh (y)]

= [α(h)x, y] + [x, β(h) y]

= (α(h) + β(h)) [x, y]

= (α+ β)(h) [x, y].

This shows that [gα, gβ ] ⊂ gα+β .

(b) We can assume that x is a nonzero element of gα. Let β ∈ h∗ such that
gβ ̸= {0}. Then by Part (a), adx (gβ) ⊂ gβ+α. Applying Part (a) again,
we have (adx)2 (gβ) ⊂ gβ+2α. In general, for all k ∈ Z+,

(adx)
k
(gβ) ⊂ gβ+kα

Now the set of β ∈ h∗ such that gβ ̸= {0} is finite, so, since α ̸= 0, there
is a nonnegative integer k = kβ such that gβ+kβα = {0}. Then of course
gβ+kβ α = {0}, and so

(adx)
kβ (gβ) = {0}.

Let N = max{kβ}, where the maximum is taken over all β such that gβ ̸=
{0}. Then we have (adx)N = 0, and hence adx is nilpotent.

(c) Let x ∈ gα and y ∈ gβ . For any h ∈ h, Lemma 6.4.1 implies that
B([x, h], y) = B(x, [h, y]), hence:

0 = B([h, x], y) +B(x, [h, y])

= B(α(h)x, y) +B(x,β(h) y)

= (α(h) + β(h))B(x, y). (8.8)
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Since α+β ̸= 0, we may choose an element h0 ∈ h such that α(h0)+β(h0) ̸=
0. If we plug in h = h0 in (8.8), we obtain B(x, y) = 0. Since x and y are
arbitrary in gα and gβ , it follows that B(gα, gβ) = {0}.

Theorem 8.2.4 implies, in particular, that [g0, g0] ⊂ g0, so that g0 is a subalgebra
of g.

Corollary 8.2.5. The Killing form B is nondegenerate on g0.

Proof. The assertion is that B|g0×g0
is nondegenerate. If x ∈ g0, then by

Theorem 8.2.4, we have B(x, gα) = {0} for all α ̸= 0 in h∗. Suppose that x ̸= 0.
Then since B is nondegenerate, B(x, g) ̸= {0}. Hence

{0} ̸= B(x, g)

= B
�
x, g0 ⊕

M

α∈∆

gα
�

= B(x, g0) +
X

α∈∆

B(x, gα)

= B(x, g0).

This shows that B is nondegenerate on g0.

Lemma 8.2.6. The Killing form B is nondegenerate on h.

Proof. Suppose that h ∈ h satisfies B(h, h) = {0}. We will prove that B(h, g0) =
{0}, so that by Lemma 8.2.5, it will follow that h = 0.

Let x be any element of g0 = c(h), and let x = xs + xn be its abstract
Jordan-Chevalley decomposition. Since adxs and adxn are the semisimple and
nilpotent parts of adx, they are polynomials in adx with zero constant term.
(See Theorem 1.9.14.) Since adx(h) = {0}, we conclude that adxs(h) = {0}
and adxn(h) = {0} as well. Thus xs, xn ∈ c(h) = g0. This means that
[xs, h] = [xn, h] = {0}.

Next we claim that xs ∈ h. Since xs is a semisimple element of g commuting
with h, the subspace Cxs + h is a toral subalgebra of g containing h. Since
h is maximal toral, this implies that Cxs + h = h, and therefore xs ∈ h. In
particular, by the hypothesis on h, we have B(xs, h) = 0.

Now xn commutes with h, so adxn commutes with adh. Since adxn is nilpotent,
this must also be true of adxn ◦ adh: (adxn)

N
= 0 =⇒ (adxn ◦ adh)N =

(adxn)
N ◦ (adh)N = 0. Hence B(xn, h) = tr (adxn ◦ adh) = 0.

Together with B(xs, h) = 0, we conclude that B(x, h) = B(xn, h) + B(xs, h) =
0. Since x is arbitrary in g0, we get B(g0, h) = {0}, from which we obtain
h = 0.
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Lemma 8.2.7. Let h be a Cartan subalgebra of a complex semisimple Lie algebra
g, and let g0 = c(h). Then g0 = h.

Proof. We first repeat a key observation made during the proof of Lemma 8.2.6,
namely, that if x = xs + xn is the abstract Jordan decomposition of x ∈ g0,
then xs ∈ h and xn ∈ g0. The proof is then carried out by proving the following
successive assertions:

Step 1: g0 is nilpotent. By Engel’s theorem, it suffices to prove that for each x ∈
g0, (adx)|g0 is nilpotent. Let x = xs+xn be the abstract Jordan decomposition
of x. Since xs ∈ h, we have [xs, g0] = {0}, and thus (adxs)|g0 = 0. On the other
hand adxn is nilpotent on g, and so its restriction to g0 is nilpotent. Therefore
(adx)|g0

= (adxn)|g0
is nilpotent.

Step 2: h∩[g0, g0] = {0}. Note that B(h, [g0, g0]) = B([h, g0], g0) = B({0}, g0) =
{0}. Thus if h ∈ h∩ [g0, g0], it follows that B(h, h) ⊂ B(h, [g0, g0]) = {0}. Since
B is nondegenerate on h, this forces h = 0.

Step 3: g0 is abelian. Assume that [g0, g0] ̸= {0}. From the descending central
series for the nilpotent Lie algebra g0, it is clear that if c0 denotes the center of
g0, then c0 ∩ [g0, g0] ̸= {0}. Let c be a nonzero element of c0 ∩ [g0, g0], and let
c = cs+cn be its abstract Jordan-Chevalley decomposition. If cn = 0, then from
the proof of Lemma 8.2.6, we get 0 ̸= c = cs ∈ h∩[g0, g0] = {0}, a contradiction.
Hence cn ̸= 0.

Again, from our key observation, we know that cn ∈ g0. Since c ∈ c0 and
cs ∈ h ⊂ c0, we see that cn ∈ c0. Thus, for all x ∈ g0, [cn, x] = 0 and
therefore [ad cn, adx] = 0. Now ad cn is a nilpotent linear operator, and we
conclude that ad cn ◦ adx is also nilpotent for all x ∈ g0. Hence, for all such x,
B(cn, x) = tr (ad cn ◦ adx) = 0. It follows that B(cn, g0) = {0}, contradicting
the nondegeneracy of B on g0.

This contradiction leads us to conclude that [g0, g0] = {0}.

Step 4: g0 = h. Suppose that x ∈ g0 \ h. If x = xs + xn is its abstract Jordan-
Chevalley decomposition, then we must have xn ̸= 0. Now xn ∈ g0, so, since
g0 is abelian, we conclude that adxn ◦ ad y is a nilpotent linear operator for all
y ∈ g0. Hence B(xn, y) = 0 for all y ∈ g0. Since B is nondegenerate on g0, this
forces xn = 0, a contradiction. Thus g0 = h, completing the proof of Lemma
8.2.7.

Theorem 8.2.8. (Root Space Decomposition) Let g be a semisimple Lie algebra
over C and let h be a Cartan subalgebra. Then g is a direct sum of h and the
root spaces of h:

g = h⊕
M

α∈∆

gα (8.9)

Theorem 8.2.8 is an immediate consequence of equation (8.7) and Lemma 8.2.7.
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Theorem 8.2.9. Let h be a Cartan subalgebra of a complex semisimple Lie
algebra g. Then for each φ ∈ h∗, there is a unique element hφ such that φ(h) =
B(hφ, h) for all h ∈ h.

Proof. This follows immediately from Proposition 1.10.8.

Note that according to Proposition 1.10.8, we also have hαφ+βψ = αhφ + βhψ,
for all φ, ψ ∈ h∗ and all α,β ∈ C.

Definition 8.2.10. We transfer the Killing form B to the dual space h∗ by
B(ϕ,ψ) = B(hϕ, hψ) for all ϕ, ψ ∈ h∗.

Using the convention in Definition 8.2.10, we have φ(hψ) = B(hφ, hψ) = ψ(hφ).
By Lemma 8.2.6, we also see that B is nondegenerate on h∗.

Let us now investigate the root spaces gα.

Theorem 8.2.11. (Theorem on Roots) Let h be a Cartan subalgebra of a com-
plex semisimple Lie algebra g, and let ∆ be the set of roots of g relative to h.
Then:

(a) There are dim h linearly independent roots which thus form a basis of h∗.

(b) If α is a root, then so is −α.

(c) If α is a root and x ∈ gα, y ∈ g−α, then [x, y] = B(x, y)hα.

(d) If α is a root, then [gα, g−α] = Chα.

(e) For each α ∈ ∆, α(hα) = B(α,α) ̸= 0.

(f) Let α be a root, and let h∗
α = 2hα/α(hα). If eα is a nonzero element of

gα, then there is an fα ∈ g−α such that (eα, fα, h
∗
α) is the basis of a three-

dimensional simple Lie subalgebra of g isomorphic to sl(2,C).

Proof. (a) The claim here is that ∆ spans the dual space h∗. Suppose, to the
contrary, that ∆ does not span h∗. Then there exists a nonzero vector h ∈ h
such that α(h) = 0 for all α ∈ ∆. For each x ∈ gα, we therefore obtain
[h, x] = α(h)x = 0. Hence [h, gα] = {0} for all α ∈ ∆. Since h is abelian, we
also have [h, h] = {0}. Hence by Theorem 8.2.8, [h, g] = {0}, and therefore
h lies in the center c of g. But since g is semisimple, c = {0}, so h = 0, a
contradiction.

(b) Suppose that α is a root, but that −α isn’t. Let x be a nonzero element
of gα. Then by Theorem 8.2.4 (c), B(x, gβ) = {0} for all β ∈ ∆ (including
β = α). For the same reason, we have B(x, g0) = B(x, h) = {0}. Thus, by
Theorem 8.2.8, we obtain B(x, g) = {0}. This contradicts the fact that B
is nondegenerate on g.
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(c) Suppose that α is a root and that x ∈ gα, y ∈ g−α. Then according to
Theorem 8.2.4 (a), [x, y] ∈ g0 = h. We can determine the vector [x, y] in h
as follows: For any h ∈ h, we have

B(h, [x, y]) = B([h, x], y)

= B(α(h)x, y)

= α(h)B(x, y)

= B(x, y)B(h, hα)

= B(h,B(x, y)hα).

SinceB is nondegenerate on h (Theorem 8.2.6), we see that [x, y] = B(x, y)hα.

(d) By part (c), it suffices to show that if 0 ̸= x ∈ gα, then there exists a
y ∈ g−α such that B(x, y) ̸= 0. Suppose, to the contrary, that B(x, g−α) =
{0}. Now by Theorem 8.2.4 (c), B(x, gβ) = {0} for all β ∈ ∆ such that
β ̸= −α, and likewise B(x, h) = {0}. Thus B(x, g) = {0}, contradicting the
nondegeneracy of B on g.

(e) Let α ∈ ∆, and suppose that α(hα) = 0. By part (d), it is possible to choose
vectors x ∈ gα and y ∈ g−α such that B(x, y) ̸= 0. Let s = Cx+C y+Chα.
Then, since [x, y] = c hα (with c = B(x, y) ̸= 0) and [hα, x] = α(hα)x = 0,
[hα, y] = α(hα) y = 0, we see that s is a solvable Lie subalgebra of g with
derived algebra s′ = Chα. The algebra ad s is a solvable Lie algebra of linear
operators on g, so by Lie’s Theorem (Theorem 4.2.3), g has a basis relative
to which every element of ad s has an upper triangular matrix. With respect
to this basis, the elements of ad s′ have strictly upper triangular matrices.
In particular, this means that adhα has a strictly upper triangular matrix,
and so adhα is nilpotent. But adhα is semisimple, so adhα = 0, whence
hα = 0, and therefore α = 0, contradicting the fact that the elements of ∆
are nonzero.

(f) Let 0 ̸= eα ∈ gα. Then by part (d) above, there exists an element f ′
α ∈ g−α

such that B(eα, f
′
α) = c ̸= 0. Let fα = 2f ′

α/(cα(hα)). Then B(eα, fα) =
2/α(hα). Hence, by part (c),

[eα, fα] =
2hα

α(hα)
= h∗

α. (8.10)

Note that α(h∗
α) = 2. From equation (8.10), we obtain the commutation

relations

[h∗
α, eα] = α(h∗

α) eα = 2 eα (8.11)

[h∗
α, fα] = −α(h∗

α) fα = −2 fα, (8.12)

which show that the span of (eα, fα, h
∗
α) is a subalgebra of g isomorphic to

sl(2,C), the explicit isomorphism mapping eα to e, fα to f and h∗
α to h.
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An ordered triple (e′, f ′, h′) of nonzero elements of g satisfying [h′, e′] = 2e′,
[h′, f ′] = −2f ′, [e′, f ′] = h′ is called an sl2-triple. Clearly, any sl2-triple in g
is the basis of a Lie subalgebra of g isomorphic to sl(2,C). Assertion (f) above
states that (eα, fα, h

∗
α) is an sl2-triple.

The appearance in semisimple algebras of ‘copies’ of sl(2,C), the representation
theory of which was completely elucidated in Theorem 7.3.12, has important
consequences in the study of the geometry of roots, starting with the following
integrality result.

Lemma 8.2.12. If α and β are roots of g relative to h, then

2
B(β,α)

B(α,α)
∈ Z.

Proof. Using the notation of Theorem 8.2.11, Part (f), the triple (eα, fα, h
∗
α)

generates a three-dimensional simple Lie subalgebra g(α) of g isomorphic to
sl(2,C). Now g(α) acts on g via the adjoint representation, so byWeyl’s Theorem
(Theorem 7.3.7), g is a direct sum of irreducible g(α)-invariant subspaces. By
Theorem 7.3.12, each irreducible subspace has a basis consisting of eigenvectors
of adh∗

α, whose corresponding eigenvalues are all integers. Thus, g has a basis
consisting of eigenvectors of adh∗

α with integer eigenvalues. This implies in
particular that any eigenvalue of adh∗

α is an integer.

Suppose that β ∈ ∆. Then any nonzero vector xβ ∈ gβ is an eigenvector of
adh∗

α, with eigenvalue

β(h∗
α) = 2

β(hα)

α(hα)
= 2

B(β,α)

B(α,α)
.

Theorem 8.2.13. Let ∆ be the set of roots of a complex semisimple Lie algebra
g with respect to a Cartan subalgebra h. Suppose that α ∈ ∆. Then dim gα = 1.
The only multiples of α which are roots are ±α.

Proof. Suppose that cα is a root, for some c ∈ C. Then by the integrality
condition of Lemma 8.2.12,

2
B(cα,α)

B(α,α)
= 2c ∈ Z,

and hence c = m/2 for some nonzero integer m. Thus any multiple of a root
which is also a root must be a half integer multiple of that root. If |c| > 1,
then, since α = (1/c)β, and |1/c| < 1, this forces 1/c = ±1/2; that is c = ±2.
If |c| < 1, then we must have c = ±1/2.
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We conclude, therefore, that the only multiples of α, besides ±α, which can be
roots are ±α/2 and ±2α. It is clear that α/2 and 2α cannot both be roots, since
α/2 = (1/4) 2α.

Let us now show that the root space gα is one-dimensional and that 2α cannot
be a root. For this, let s be the subspace of g given by

s = Cfα ⊕ Ch∗
α ⊕ gα ⊕ g2α.

It is straightforward to show, using Theorem 8.2.11, Part (d), and the fact that
kα is not a root, for k > 2, that s is a Lie subalgebra of g, and that h∗

α ∈ [s, s].
Let ads denote the adjoint representation on s. Since h∗

α ∈ s′, we see that
tr (ads h

∗
α) = 0. But since α(h∗

α) = 2,

tr (ads h
∗
α) = −α(h∗

α) + 0 + (dim gα)α(h
∗
α) + (dim g2α) 2α(h

∗
α)

= −2 + 0 + 2 dim gα + 4 dim g2α

Since dim gα ≥ 1, we therefore conclude that dim gα = 1 and dim g2α = 0. In
particular, 2α /∈ ∆.

From this, we also see that α/2 cannot be a root. If it were, then by the
argument above, 2(α/2) = α cannot be a root, a contradiction.

This completes the proof of Theorem 8.2.13.

The following theorem is a direct consequence of the representation theorem
of sl(2,C) (Theorem 7.3.12) and is a basis of the theory of Weyl groups and
general Coxeter groups.

Theorem 8.2.14. Suppose that α and β are roots of a complex semsimple Lie
algebra g relative to a Cartan subalgebra h, with α ̸= ±β. Let q be the largest
integer j such that β+ jα is a root, and let p be the smallest integer k such that
β + kα is a root. Then:

(i) For every j between p and q, β + jα is a root.

(ii) β(h∗
α) = 2B(β,α)/B(α,α) = −(p+ q).

(iii) β − β(h∗
α)α is a root.

(iv) [gβ , gα] = gβ+α if β + α is a root.

Remark: By Part (i), the set of roots {β + jα | p ≤ j ≤ q} forms a connected
string, which we call the α-string through β.

Proof of Theorem 8.2.14: Note that q ≥ 0 and p ≤ 0.
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As in the proof of the Lemma 8.2.12, we let g(α) be the three-dimensional simple
Lie subalgebra of g with basis (eα, fα, h

∗
α), which, by Theorem 8.2.11, Part (f),

is isomorphic to sl(2,C). Now let V be the subspace of g given by

V =

qM

j=p

gβ+jα, (8.13)

where of course gβ+jα = {0} if β+jα is not a root. It is clear that V is invariant
under ad eα, ad fα, and adh∗

α, and so V is ad g(α)-invariant. By Weyl’s theorem
(Theorem 7.3.7), V therefore decomposes into a direct sum of irreducible ad g(α)-
invariant subspaces:

V = V1 ⊕ · · ·⊕ Vl (8.14)

By Theorem 7.3.12, each invariant irreducible subspace Vi further decomposes
into a direct sum of one-dimensional eigenspaces of adh∗

α, with the eigenvalues
of adh∗

α on each Vi being integers all having the same parity (i.e., all odd or
all even), and corresponding to a symmetric string {k, k − 2, . . . ,−(k − 2),−k}
about 0. Thus V has a basis consisting of eigenvectors of adh∗

α, a fact already
evident from (8.13).

From equation (8.13), the eigenvalues of adh∗
α on V are of the form (β +

jα)(h∗
α) = β(h∗

α) + 2j, so they all have the same parity; moreover, the cor-
responding eigenspaces gβ+jα are all at most one-dimensional. It follows that
there is just one irreducible component in the sum (8.14); that is, V is already
irreducible.

We now apply Theorem 7.3.12 to V . The largest eigenvalue of adh∗
α on V is

(β+qα)(h∗
α) = β(h∗

α)+2q, the smallest eigenvalue is (β+pα)(h∗
α) = β(h∗

α)+2p,
and they are negatives of each other: β(h∗

α) + 2p = −(β(h∗
α) + 2q). This proves

(ii). Moreover, the integers in the string β(h∗
α)+2j, p ≤ j ≤ q are all eigenvalues

of adh∗
α. Hence gβ+jα ̸= {0} for all p ≤ j ≤ q. This proves (i).

Since q ≥ 0 and p ≤ 0, we have p ≤ p + q ≤ q, so by (ii), β − β(h∗
α)α =

β + (p + q)α ∈ ∆. This proves (iii). Finally, if β + α ∈ ∆, then q ≥ 1, so by
Theorem 7.3.12, Part (6), ad eα (gβ) ̸= {0}. Hence [gα, gβ ] ̸= {0}. This proves
(iv).

Theorem 8.2.15. Let α and β be roots, and let β + kα (p ≤ k ≤ q) be the
α-string through β. Let xα, x−α, and xβ be any vectors in gα, g−α, and gβ,
respectively. Then

[x−α, [xα, xβ ]] =
q(1− p)α(hα)

2
B(xα, x−α)xβ . (8.15)

Proof. Note that if any of xα, x−α, or xβ is 0, then both sides in equation (8.15)
equal 0. Hence we may assume that these vectors are all nonzero.
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Let (eα, fα, h
∗
α) be the sl2-triple whose existence is guaranteed by Theorem

8.2.11, Part (f), and let g(α) denote the subalgebra, isomorphic to sl(2,C), it
generates in g.

Since gα and g−α are one-dimensional, there exist nonzero complex constants
cα and c−α such that xα = cα eα and x−α = c−α fα. By Theorem 8.2.11, Part
(c), we can obtain a relation between cα and c−α:

B(xα, x−α)hα = [xα, x−α]

= cα c−α [eα, fα]

= cα c−α h∗
α

= 2
cα c−α

α(hα)
hα.

Hence

cα c−α =
α(hα)

2
B(xα, x−α).

By the proof of Theorem 8.2.14, g(α) acts irreducibly on the subspace⊕q
k=pgβ+jα

of g via the adjoint representation, with highest weight n = (β + qα)(h∗
α) =

−(p+ q) + 2q = q − p.

Let v0 be any nonzero element of gβ+qα. Then by the representation theo-
rem for sl(2,C) (Theorem 7.3.12), we know that (ad fα)

q
(v0) = c xβ , for some

nonzero constant c. Now replace v0 by (1/c) v0, so that we may assume that
(ad fα)

q
(v0) = xβ .

According to the notation of Theorem 7.3.12, (ad fα)
q
(v0) is the vector vq.

From Part 6 of that theorem, we obtain the relation

ad eα (vq) = q(n− q + 1)vq−1

and so
ad fα ◦ ad eα (vq) = q(n− q + 1) vq.

Thus,
[fα, [eα, xβ ]] = q(1− p)xβ .

Multiplying both sides above by cα c−α, we obtain

[x−α, [xα, xβ ]] = q(1− p)
α(hα)

2
B(xα, x−α)xβ ,

as desired.

For the rest of this section, we assume that ∆ is the set of roots of a complex
semisimple Lie algebra g relative to a Cartan subalgebra h. Our next objective
is to show that the Killing form B is positive definite on the real linear span of
the root vectors hα, for all α ∈ ∆. This linear span, which we denote by hR,
will thus be a real inner product space.
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Theorem 8.2.16. Let B = (α1, . . . ,αr) be any basis of h∗ consisting of roots.
(This is possible by Theorem 8.2.11, Part (a).) Then any root β is a linear
combination of the αj, with rational coefficients.

Proof. Let β ∈ ∆. Then we can certainly write β =
Pr

j=1 cj αj , where cj ∈ C
for all j. Hence, for any i, we obtain

B(β,αi) =

rX

j=1

cj B(αj ,αi).

By Theorem 8.2.11, Part (e), B(αi,αi) ̸= 0. Hence

2B(β,αi)

B(αi,αi)
=

rX

j=1

cj
2B(αj ,αi)

B(αi,αi)
(8.16)

For any i and j in {1, . . . , r}, let

ni = 2
B(β,αi)

B(αi,αi)
and Aji = 2

B(αj ,αi)

B(αi,αi)
.

Then by Theorem 8.2.14, Part (ii), or by Lemma 8.2.12, all the ni and Aji are
integers. Now the linear system (8.16) corresponds to the matrix equation

�
c1 · · · cr

�



A11 · · · A1r

...
. . .

...
Ar1 · · · Arr


 =

�
n1 · · · nr

�
. (8.17)

The coefficient matrix (Aji) of the above matrix equation is equals the product




B(α1,α1) · · · B(α1,αr)
...

. . .
...

B(αr,α1) · · · B(αr,αr)







2/B(α1,α1) 0
. . .

0 2/B(αr,αr)




Since B is nondegenerate on h∗, the matrix on the left above is nonsingular
by Theorem 1.10.5; the matrix on the right is clearly nonsingular since it is a
diagonal matrix with nonzero entries on the diagonal. This shows that (Aji)
is a nonsingular matrix with integer entries. Its inverse (Aji)

−1 is therefore a
matrix with rational entries. Now we can solve for the coefficients cj in the
system (8.17) by multiplying both sides on the right by(Aji)

−1:

�
c1 · · · cr

�
=

�
n1 · · · nr

�



A11 · · · A1r

...
. . .

...
Ar1 · · · Arr




−1

.

This shows that cj ∈ Q, for all j.
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Lemma 8.2.17. Let α and β be roots. Then B(α,β) ∈ Q.

Proof. For any h ∈ h, the root space decomposition g = h ⊕Pσ∈∆ gσ is a
decomposition of g into eigenspaces of adh with eigenvalues 0, of multiplicity
dim h, and σ(h) (for all σ ∈ ∆), of multiplicity 1.

For α and β in ∆, let hα and hβ be the corresponding vectors in h, in accordance
with Definition 8.2.10. Then

B(α,β) = B(hα, hβ)

= tr (adhα ◦ adhβ)

=
X

σ∈∆

σ(hα)σ(hβ)

=
X

σ∈∆

B(σ,α)B(σ,β). (8.18)

By Theorem 8.2.11 Part (e), B(α,α) ̸= 0 and B(β,β) ̸= 0. Hence we can divide
both sides of (8.18) by these to get

4B(α,β)

B(α,α)B(β,β)
=
X

σ∈∆

2B(σ,α)

B(α,α)
· 2B(σ,β)

B(β,β)
(8.19)

Now by Theorem 8.2.14, Part (ii), the terms in the sum in the right hand side
of (8.19) are integers. Hence the left hand side of (8.19) is an integer.

We want to prove that B(α,β) is rational. If B(α,β) = 0, there is nothing to
prove, so let us assume that B(α,β) ̸= 0. Then, again from Theorem 8.2.14,
Part (ii), the fraction

4B(α,β)2

B(α,α)B(β,β)
=

2B(β,α)

B(α,α)
· 2B(α,β)

B(β,β)

is an integer. Dividing this by the (nonzero) integer representing the left hand
side of (8.19), we see that

B(α,β) =

4B(α,β)2

B(α,α)B(β,β)

4B(α,β)

B(α,α)B(β,β)

is rational.

Theorem 8.2.18. Let hR =
P

α∈∆ Rhα, the real vector space spanned by the
vectors hα (α ∈ ∆). Then the Killing form B is positive definite on hR.

Proof. Certainly, Lemma 8.2.17 implies that B(h1, h2) ∈ R for all h1, h2 ∈ hR.
Thus B is a real-valued symmetric bilinear form on hR. We want to prove that
B(h, h) > 0 for all nonzero vectors h in hR.
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For any h ∈ h, the root space decomposition (8.9) shows that the eigenvalues
of the semisimple linear operator adh on g are 0 and α(h), for all α ∈ ∆.
Thus, if α(h) = 0 for all roots α, it would follow that adh = 0, and so h = 0.
Consequently, if h ̸= 0 in h, then α(h) ̸= 0 for some root α.

Now suppose that h ∈ hR. Then h =
P

α∈∆ cαhα for some scalars cα ∈ R. For
any root σ, the scalar σ(h) =

P
α∈∆ cασ(hα) =

P
α∈∆ cα B(σ,α) is real, by

Lemma 8.2.17. Therefore, by the root space decomposition,

B(h, h) = tr (adh ◦ adh)
=
X

σ∈∆

σ(h)2 > 0

whenever h ̸= 0 in hR.

We conclude from this theorem that hR is a real inner product space, with inner
product given by the Killing form B. The map h 7→ B(h, ·) (which takes hα to
α, for all α ∈ ∆) identifies hR with its real dual h∗R.

Corollary 8.2.19. Suppose α and β are roots such that B(β,α) < 0. Then
β + α is a root. If B(β,α) > 0, then β − α is a root.

Proof. Suppose thatB(β,α) < 0. Now by Theorem 8.2.14, Part (ii), 2B(β,α)/B(α,α) =
−(p + q). Since B(α,α) = B(hα, hα) > 0, this implies that q > 0. Hence by
Part (i), β + α is a root. If B(β,α) > 0, then p < 0, so β − α is a root.

8.3 Uniqueness of the Root Pattern

In this section our objective is to prove that if two complex semisimple Lie
algebras g and g′ have the same root pattern, then they are isomorphic. More
precisely, we will prove the following theorem.

Theorem 8.3.1. Suppose that g and g′ are complex semisimple Lie algebras
with Cartan subalgebras h and h′, respectively. Let ∆ be the set of roots of g
relative to h and let ∆′ be the set of roots of g′ relative to h′. If φ : h → h′ is
a linear bijection such that tφ(∆′) = ∆, then φ extends to an isomorphism of g
onto g′.

(Note: Here g′ does not refer to the derived algebra of g. It is just some other
complex semisimple Lie algebra.)

Recall that tφ is the linear map from the dual space (h′)∗ into the dual space
h∗ given by tφ(λ) = λ ◦ φ, for all λ ∈ (h′)∗. Since ∆ ⊂ h∗ and ∆′ ⊂ (h′)∗, the
requirement tφ(∆′) = ∆ in the theorem above makes sense.
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We will follow the arguments in [?], Chapter 3, §5.

For now, we focus on a complex semisimple Lie algebra g, its Cartan subalgebra
h, and the set of roots ∆ of g relative to h. For each α ∈ ∆, we choose fix a
vector eα ∈ gα. We can choose the eα to have the property that B(eα, e−α) = 1
for all α ∈ ∆. Then by Theorem 8.2.11 Part (c), [eα, e−α] = hα, for all α ∈ ∆.

Now let S be a subset of ∆. The hull S of S is the set of all roots of the form
±α, ±(α+ β), for all α, β ∈ S. Thus S ⊂ ∆.

Suppose that γ and δ are in the hull S with γ + δ ̸= 0, and suppose that either
γ + δ ∈ S or γ + δ /∈ ∆. We define the complex scalar Nγ,δ as follows. If
γ + δ ∈ S, then [eγ , eδ] ∈ gγ+δ, so we have [eγ , eδ] = Nγ,δeγ+δ, where Nγ,δ is
uniquely determined. If γ + δ /∈ ∆, put Nγ,δ = 0.

Thus Nγ,δ is defined for γ, δ ∈ S when and only when:

1. γ + δ ̸= 0, and

2. γ + δ ∈ S, or γ + δ /∈ ∆.

Clearly, Nδ,γ = −Nγ,δ.

Proposition 8.3.2. Suppose that α, β, γ ∈ S such that α + β + γ = 0. Then
Nα,β = Nβ,γ = Nγ,α.

Proof. Note that the constants Nα,β , Nβ,γ , and Nγ,α are all defined. By the
Jacobi identity

[eα, [eβ , eγ ]] = −[eβ , [eγ , eα]]− [eγ , [eα, eβ ]]

=⇒ Nβ,γ hα = −Nγ,α hβ − Nα,β hγ

But hα = −hβ − hγ , and so

−Nβ,γ hβ − Nβ,γ hγ = −Nγ,α hβ − Nα,β hγ

Now β and γ are linearly independent (otherwise β = ±γ), and so hβ and hγ are
linearly independent. The last equation above thus establishes the proposition.

Corollary 8.3.3. Suppose that α, β ∈ S such that Nα,β exists. Then

Nα,βN−α,−β = −q(1− p)

2
α(hα), (8.20)

where, as usual, β + jα (p ≤ j ≤ q) is the α-string through β.
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Proof. If α + β /∈ ∆, then q = 0, so both sides of (8.20) are 0. Thus we can
assume that α+ β ∈ S. Now by Theorem 8.2.15,

q(1− p)

2
α(hα) eβ = [e−α, [eα, eβ ]]

= N−α,α+β Nα,β eβ ,

and so N−α,α+βNα,β = q(1 − p)α(hα)/2. Applying Proposition 8.3.2 to the
triple −α, α + β, −β, we obtain N−α,α+β = Nα+β,−β = N−β,−α. Then using
N−β,−α = −N−α,−β , we obtain the conclusion.

Proposition 8.3.4. Suppose that α, β, γ, δ ∈ S such that α + β + γ + δ = 0,
and that no two of them sum to 0. Then Nα,βNγ,δ +Nγ,αNβ,δ +Nα,δNβ,γ = 0.

Proof. Since α, β, γ, and δ are all in S and since no two of them sum to 0, all
the N ’s above are defined.

We start with the Jacobi identity on eβ , eγ , and eδ:

[eβ , [eγ , eδ]] + [eγ , [eδ, eβ ]] + [eδ, [eβ , eγ ]] = 0. (8.21)

Since β + γ + δ = −α, each of the three brackets on the left hand side above
belongs to g−α. Consider the first bracket [eβ , [eγ , eδ]]. If γ + δ is a root, then
γ + δ ∈ S and Theorem 8.2.14 implies that Nγ,δ ̸= 0. Hence

[eβ , [eγ , eδ]] = Nβ,γ+δ Nγ,δ e−α.

Now since β+(γ+δ)+α = 0, Proposition 8.3.2 implies that Nβ,γ+δ = Nγ+δ,α =
Nα,β . Thus

[eβ , [eγ , eδ]] = Nα,β Nγ,δ e−α.

If γ + δ is not a root, then [eγ , eδ] = 0 and Nγ,δ = 0 by definition. Thus the
equality above still holds, trivially.

The same reasoning can be applied to the other two brackets in (8.21), and we
obtain

[eγ , [eδ, eβ ]] = Nδ,β Nα,γ e−α, [eδ, [eβ , eγ ]] = Nα,δ Nβ,γ e−α.

Since Nγ,α = −Nα,γ and Nβ,δ = −Nδ,β , equation (8.21) now becomes

(Nα,βNγ,δ +Nγ,αNβ,δ +Nα,δNβ,γ) e−α = 0,

proving the proposition.

For convenience, we will introduce what is called a lexicographic order to the
real dual space h∗R, and thus to hR. An ordered vector space is a pair (V, >)
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consisting of real vector space V and a total ordering > on V which is preserved
under vector addition and multiplication by positive scalars. Thus we require
that for any u, v, and w in V and any positive scalar c,

u > v =⇒ u+ w > v + w and cu > cv.

Any vector v > 0 is called a positive vector; if v < 0, we call v a negative vector.

Let V be any real vector space. For a fixed basis B = (v1, . . . , vn) of V , we can
turn V into an ordered vector space by introducing the lexicographic ordering
relative to B, defined as follows: for any nonzero vector v ∈ V , let us write
v = a1v1 + · · · + anvn. Let j be the smallest integer such that aj ̸= 0. By
definition, v > 0 iff aj > 0. Then, if v and w are any vectors in V , we define
v > w iff v−w > 0. It is straightforward to prove that > is a total ordering on
V which turns V into an ordered vector space.

Exercise 8.3.5. Suppose that (V, >) is an ordered vector space. Prove that
there is a basis B of V such that the total order > is the lexicographic order
relative to B.

We are now ready to prove Theorem 8.3.1.

Proof of Theorem 8.3.1: Let us first fix notation. For each α ∈ ∆, let α′ be the
unique element of∆′ such that tφ(α′) = α. Thus, in particular, α′(φ(h)) = α(h)
for all h ∈ h.

Let B and B′ denote the Killing forms on g and g′, respectively. The first thing
we’ll do is to prove that φ is an isometry with respect to B and B′. More
precisely, we will prove that

B′(φ(h1),φ(h2)) = B(h1, h2) (8.22)

for all h1, h2 ∈ h.

In fact, if α, β ∈ ∆, then

B′(φ(hα),φ(hβ)) = tr (adφ(hα) ◦ adφ(hβ))

=
X

γ′∈∆′

γ′(φ(hα)) γ
′(φ(hβ))

=
X

γ∈∆

γ(hα) γ(hβ)

= B(hα, hβ)

Since every vector in h is a C-linear combination of the hα, equation (8.22)
follows by bilinearity.

For all α ∈ ∆ and h ∈ h, we then see that B′(φ(hα),φ(h)) = B(hα, h) = α(h) =
α′(φ(h)) = B′(hα′ ,φ(h)). Since B′ is nondegenerate on h′, this implies that
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φ(hα) = hα′ . From this, we obtain B(hα, hβ) = B′(hα′ , hβ′) for all α, β ∈ ∆;
moreover, φ(hR) = h′R.

The real dual space h∗R is the R-linear span
P

α∈∆ Rα, and likewise (h′R)
∗ is the

R-linear span of ∆′. Fix a basis E of (h′R)
∗, and let > be the lexicographic order

on (h′R)
∗ with respect to E. We also let > be the lexicographic order on h∗R with

respect to its basis tφ(E). These orders are obviously compatible in the sense
that λ′ > µ′ iff tφ(λ′) > tφ(µ′) for all λ′, µ′ ∈ (h′R)

∗. In particular, α > β iff
α′ > β′ for all α, β ∈ ∆.

Let us apply the discussion prior to Proposition 8.3.2 to S = ∆. Thus for all
α ∈ ∆, we choose vectors eα ∈ gα such that B(eα, e−α) = 1. Then, for each
pair of roots α, β ∈ ∆ such that α+ β ̸= 0, the scalar Nα,β ∈ C is defined by

[eα, eβ ] = Nα,β eα+β

if α + β ∈ ∆, and Nα,β = 0 if α + β /∈ ∆. The Nα,β satisfy the conclusions of
Proposition 8.3.2, Corollary 8.3.3, and Proposition 8.3.4.

For each α′ ∈ ∆′, we claim that there exists a vector eα′ ∈ g′α′ such that

B′(eα′ , e−α′) = 1 (8.23)

[eα′ , eβ′ ] = Nα,β eα′+β′ (if α′ + β′ ̸= 0) (8.24)

Assuming that the the vectors eα′ exist, we extend the linear map φ to all of g
by putting φ(eα) = eα′ for all α. Then, for all h ∈ h, we have

[φ(h),φ(eα)] = [φ(h), eα′ ] = α′(φ(h)) eα′ = α(h) eα′ = φ[h, eα].

This relation and (8.24) then show that this extension of φ is our desired iso-
morphism of g onto g′.

So everything hinges on proving the existence of the vectors eα′ satisfying equa-
tions (8.23) and (8.24).

We will do this by “induction” with respect to the lexicographic order > on
h∗R. For each positive root ρ ∈ ∆, let ∆ρ denote the set of all α ∈ ∆ such that
−ρ < α < ρ. For ρ′ ∈ ∆′, define ∆′

ρ′ similarly.

Order the positive roots in ∆ by ρ1 < ρ2 < · · · < ρm, and let ρm+1 be any
vector in h∗R larger than ρm. By induction on j, we will prove the following
claim:

Claim: For each α ∈ ∆ρj , a vector eα′ ∈ g′α′ can be chosen such that equation
(8.23) holds whenever α ∈ ∆ρj and equation (8.24) holds whenever α, β, α+β ∈
∆ρj

.

Since ∆ρm+1
= ∆, the proof will be complete by the (m + 1)st induction step.

Note that for all j ≤ m, ∆ρj+1
= ∆ρj

∪ {ρj , −ρj}.
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For j = 1, we have ∆ρ1 = ∅, so the claim certainly holds vacuously and there
is nothing to prove. So assume that the claim holds for ∆ρj . We wish to prove
it for ∆ρj+1

. For this, we just need to define eρ′
j
and e−ρ′

j
in an appropriate

manner so that the claim still holds for ∆ρj+1
.

If there are no α, β ∈ ∆ρj
such that ρj = α + β, then we can choose eρ′

j
to be

any nonzero vector in g′ρ′
j
, and then let e−ρ′

j
be the vector in g′−ρ′

j
satisfying

B′(eρ′
j
, e−ρ′

j
) = 1. In this case, the claim then holds for ∆ρj+1

. In fact, if
α, β, α + β ∈ ∆ρj+1

, then the only cases that are not necessarily covered by
the induction hypothesis occur when α or β equals ±ρj . If α = ρj , then α+ β
cannot be ±ρj , and so we would have ρj = (α + β) + (−β), where both α + β
and −β are in ∆ρj . This is impossible, since ρj is not the sum of elements in
∆ρj

. The other possibilities α = −ρj , β = ±ρj also cannot occur. Thus, the
only cases that occur are already covered by the induction hypothesis, and so
the claim holds for ∆ρj+1

.

So suppose that there are roots α, β ∈ ∆ρj such that α+β = ρj . Note that any
such pair of roots must be positive: if, for instance, β < 0, then α = ρj−β > ρj ,
contradicting α ∈ ∆ρj

.

Among all such pairs of roots, let α, β be the pair such that α is as small as
possible, with respect to the ordering >. Define eρ′

j
∈ g′ρ′

j
by the condition

[eα′ , eβ′ ] = Nα,β eρ′
j
. (8.25)

Then let e−ρ′
j
be the vector in g′−ρ′

j
such that B′(eρ′

j
, e−ρ′

j
) = 1.

To prove that the claim holds for ∆ρj+1
, we just need to verify that

[eγ′ , eδ′ ] = Nγ,δ eγ′+δ′ (8.26)

whenever γ, δ, γ + δ ∈ ∆ρj+1
. For this, we’ll need to consider several cases:

1. γ, δ, and γ+δ belong to ∆ρj . By the induction hypothesis, equation (8.26)
holds and there is nothing to prove.

2. γ + δ = ρj . In this case, we can assume that {γ, δ} ̸= {α, β}. Note that
γ and δ are positive. Now α + β − γ − δ = 0, and no two of the roots
α, β, −γ, −δ have sum 0. Thus by Proposition 8.3.4 (for S = ∆), we have

Nα,β N−γ,−δ = −N−γ,α Nβ,−δ −Nα,−δ Nβ,−γ (8.27)

Moreover, by Corollary 8.3.3,

Nγ,δ N−γ,−δ = − l(1− k)

2
γ(hγ), (8.28)

where δ + sγ, k ≤ s ≤ l is the γ-string through δ.
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Now this time, let S = {α, β, −γ, −δ}. As in the beginning of this section,
for µ, ν ∈ S such that µ + ν ̸= 0, we define the scalar Mµ,ν under the
condition that either µ+ ν ∈ S or µ+ ν /∈ ∆ by:

[eµ′ , eν′ ] = Mµ,ν eµ′+ν′ if µ+ ν ∈ S (8.29)

Mµ,ν = 0 if µ+ ν /∈ ∆

By construction, we already have Mα,β = Nα,β . In addition, by the
induction hypothesis, we also have Mµ,ν = Nµ,ν whenever µ, ν, and µ+ ν
are in ∆ρj

.

Now by Proposition 8.3.4 applied to the scalars M , we have

Mα,β M−γ,−δ = −M−γ,α Mβ,−δ −Mα,−δ Mβ,−γ . (8.30)

But then the all the terms on the right hand side above coincide with
the corresponding terms on the right hand side of equation (8.27). Hence
M−γ,−δ = N−γ,−δ. Also, by Corollary 8.3.3, we have

Mγ,δ M−γ,−δ = − l′(1− k′)
2

γ′(hγ′) (8.31)

where δ′+sγ′, k′ ≤ s ≤ l′ is the γ′-string through δ′. But γ′(hγ′) = γ(hγ),
and by the hypothesis tφ(∆′) = ∆, we have tφ(δ′ + sγ′) = δ + sγ, for all
s. Hence k = k′ and l = l′. It follows that the right hand side in (8.31)
equals that in (8.28), whence Mγ,δ N−γ,−δ = Nγ,δ N−γ,−δ. It follows that
Mγ,δ = Nγ,δ.

3. γ + δ = −ρj . Then −γ − δ = ρj . By Case 2, we have [e−γ′ , e−δ′ ] =
N−γ,−δ eρ′

j
. Let S = {γ, δ,−ρj}. Then define the scalars Mµ,ν for S in a

manner analogous to (8.29). Then

Mγ,δ M−γ,−δ = − l(1− k)

2
γ(hγ) = Nγ,δ N−γ,−δ,

where δ+sγ, k ≤ s ≤ l is the γ-string through δ. Since M−γ,−δ = N−γ,−δ,
it follows from the above that Mγ,δ = Nγ,δ. Thus, [eγ′ , eδ′ ] = Nγ,δ eγ′+δ′ .

4. One of γ or δ is ±ρj. Suppose, for instance, that γ = −ρj . Then by
−ρj ≤ −ρj + δ ≤ ρj , we obtain δ > 0; since δ ≤ ρj , we then conclude that
−ρj + δ ≤ 0; since −ρj + δ is a root, we must have −ρj + δ < 0. Thus, in
fact δ < ρj .

From this we obtain that ρj = δ+ (ρj − δ), where both ρj − δ and δ lie in
∆ρj

. Now let S = {δ, ρj−δ, −ρj}, and define scalars Mµ,ν for µ, ν ∈ S as
in (8.29). From Case 2, we have Mδ,ρj−δ = Nδ,ρj−δ. Then by Proposition
8.3.2, we have

Mδ,ρj−δ = Mρj−δ,−ρj = M−ρj ,δ.

Since we also have

Nδ,ρj−δ = Nρj−δ,−ρj
= N−ρj ,δ,
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we conclude that M−ρj ,δ = N−ρj ,δ. The cases γ = ρj , δ = ±ρj are treated
in a similar fashion.

This completes the induction step and concludes the proof of Theorem 8.3.1.


