
Chapter 7

Semisimple Lie Algebras:
Basic Structure and
Representations

7.1 The Basic Structure of a Semisimple Lie Al-
gebra

The rest of the text is essentially going to be devoted to the structure theory
of semisimple and simple Lie algebras over R and C. We start off with an
important consequence of Cartan’s criterion for semisimplicity.

We say that a Lie algebra g is a direct sum of ideals if there exist ideals a1, . . . , ak
of g such that g = a1 ⊕ · · ·⊕ ak. Note that if i ̸= j, then [ai, aj ] ⊂ ai ∩ aj = {0}.

Theorem 7.1.1. Let g be a semisimple Lie algebra over F. Then g is a direct
sum of simple ideals

g = g1 ⊕ · · ·⊕ gk. (7.1)

Any simple ideal of g is one of the ideals gi. Any ideal of g is a direct sum of
some of the gi’s.

Proof. If g is already simple, then we’re done. So assume that g is not simple.
Then g has ideals ̸= {0} and ̸= g. Let g1 be a non-zero ideal of g of minimal
dimension.

The subspace g⊥1 = {x ∈ g |B(x, y) = 0 for all y ∈ g1} is an ideal of g. In fact,
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if x ∈ g⊥1 and y ∈ g, then for any z ∈ g1, we have by Lemma 6.4.1,

B([x, y], z) = B(x, [y, z]|{z}
in g1

) = 0, (7.2)

so [x, y] ∈ g⊥1 .

Next we prove that [g1, g
⊥
1 ] = {0}. For this, let u ∈ g1 and v ∈ g⊥1 . Then for

any w ∈ g, we have
B([u, v], w) = B(u, [v, w]| {z }

in g⊥
1

) = 0.

Since B is nondegenerate, we conclude that [u, v] = 0.

It follows that
[g1 ∩ g⊥1 , g1 ∩ g⊥1 ] ⊂ [g1, g

⊥
1 ] = {0},

and hence g1∩g⊥1 is an abelian ideal of g. But since g is semisimple, this means
that g1 ∩ g⊥1 = {0}.

In addition, since B is nondegenerate, equation (1.34) says that dim g = dim g1+
dim g⊥1 . Together with our observation that g1 ∩ g⊥1 = {0}, we see that

g = g1 ⊕ g⊥1 . (7.3)

Now, by Proposition 6.4.3, the Killing form on the ideal g⊥1 is the restriction
of B to g⊥1 × g⊥1 . But B is nondegenerate on g⊥1 . In fact, if x ∈ g⊥1 satisfies
B(x, g⊥1 ) = {0}, then we also have B(x, g) = B(x, g1 ⊕ g⊥1 ) = {0}, so x = 0. By
Cartan’s criterion for semisimplicity, we conclude that g⊥1 is semisimple.

Next we observe that g1 is a simple ideal of g. In fact, by the decomposition
(7.3), any ideal of g1 is also an ideal of g. Then, by the minimality of dim g1,
such an ideal is either {0} or g1.

We now apply the procedure above to the semisimple ideal g⊥1 in place of g to
produce ideals g2 and g′′ of g⊥1 , with g2 simple and g′′ semisimple, such that

g⊥1 = g2 ⊕ g′′.

Then by (7.3),
g = g1 ⊕ g2 ⊕ g′′.

The decomposition above shows that both g2 and g′′ are ideals of g. We then
apply the same procedure to g′′, etc., to produce the direct sum (7.1) of simple
ideals of g.

Now suppose that m is an ideal of g. Let I = {i | gi ⊂ m} and let J = {1, . . . , k}\
I. We claim that m =

L
i∈I gi. Certainly, m ⊃ L

i∈I gi. Now suppose that
x ∈ m \Li∈I gi. We decompose x according to the direct sum (7.1) to obtain

x = xI + xJ ,
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where

xI ∈ gI :=
M

i∈I

gi and xJ ∈ gJ :=
M

j∈J

gj .

Since x /∈ gI , we have xJ ̸= 0. But xI ∈ gI ⊂ m, so we see that xJ ∈ m. If
[xJ , gj ] = {0} for all j ∈ J , then [xJ , g] = {0}, so xJ lies in the center c of g,
so xJ = 0, contrary to xJ ̸= 0. Thus [xJ , gj ] ̸= {0} for some j ∈ J . For this j,
we conclude that [m, gj ] ̸= {0}, and hence m ∩ gj ̸= {0}. Since gj is simple, it
follows that gj ⊂ m, so j ∈ I, a contradiction. This shows that m =

L
i∈I gi.

Finally, if m is a simple ideal of g, then there is only one summand in m =L
i∈I gi, so m = gi for some i.

Corollary 7.1.2. Let g be a semisimple Lie algebra over F. Then [g, g] = g.

Proof. By Theorem 7.1.1, g is a direct sum of simple ideals: g =
Lk

i=1 gi. Since
each gi is simple, we have [gi, gi] = gi, and since the sum is direct, we have
[gi, gj ] ⊂ gi ∩ gj = {0} for i ̸= j. Hence

[g, g] =




kM

i=1

gi,

kM

j=1

gj




=
X

i,j

[gi, gj ]

=
X

i

gi

=

kM

i=1

gi

= g.

Exercise 7.1.3. Prove the converse to Theorem 7.1.1: If g is a direct sum of
simple ideals, then g is semisimple.

Theorem 7.1.1 and Exercise 7.1.3 show that the study of semisimple Lie algebras
over F essentially reduces to the study of simple Lie algebras over F.

Corollary 7.1.4. If g is a semisimple Lie algebra over F, then so are all ideals
of g and all homomorphic images of g.
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Proof. By Theorem 7.1.1, g is a direct sum of simple ideals g =
Lk

i=1 gi, and
any ideal of g is a direct sum of some of the gi. By Exercise 7.1.3, any such
ideal must be semisimple.

If m is a homomorphic image of g, then m ∼= g/a, where a is an ideal of g.
Now a is a direct sum a =

L
i∈I gi, for some subset I ⊂ {1, . . . , k}. Put

J = {1, . . . , n} \ I. Then m ∼=
L

j∈J gj , a semisimple Lie algebra by Exercise
7.1.3.

Theorem 7.1.5. Let g be a semsimple Lie algebra over F. Then g is complete,
that is, ad g = Der g.

We conclude this section with an important theorem, whose proof we shall omit.
(See [Jac79], Chapter III, §9.)

Theorem 7.1.6. (The Levi Decomposition) Let g be a Lie algebra over C, and
let Rs be its solvable radical. Then g is a direct sum of ideals g = Rs⊕I, where
the ideal I is semisimple.

The semisimple ideal I, which is not unique, is called a Levi factor of g. If
I1 is another Levi factor of g, then there is an automorphism φ of g such that
φ(I) = I1.

7.2 Simple Lie Algebras over R

In this section we obtain a general characterization of simple Lie algebras over
R. It turns out that there are essentially two types, depending on their com-
plexifications.

Theorem 7.2.1. Let g be a simple Lie algebra over R. Then g is exactly one
of the following two types:

1. A real form of a simple Lie algebra over C

2. A simple Lie algebra over C, considered as a real Lie algebra.

g is of the second type if and only if its complexification gc is the direct sum of
two simple ideals, both isomorphic (as real Lie algebras) to g.

Proof. We can assume that g ̸= {0}. The Lie algebra g is, of course, semisimple
because of Exercise 7.1.3. Then by Lemma 6.4.7, the complexification gc of g is
semisimple. By Theorem 7.1.1, gc is the direct sum of simple ideals

gc = g1 ⊕ g2 ⊕ · · ·⊕ gm. (7.4)
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Now let σ denote the conjugation of gc with respect to its real form g. The
image σ(g1) is closed with respect to multiplication by complex scalars, since if
z ∈ C and v ∈ g1, then z σ(v) = σ(z v) ∈ σ(g1). Thus σ(g1) is a complex vector
subspace of gc. It is also an ideal of gc since

[σ(g1), g
c] = [σ(gc),σ(g1)]

= σ ([gc, g1])

= σ(g1).

Finally, σ(g1) is a simple ideal of gc: if a is any ideal of σ(g1), then σ(a) is an
ideal of g1, so σ(a) = g1 or σ(a) = {0}. Since σ is bijective, this forces a = σ(g1)
or a = {0}.

Thus σ(g1) must be one of the ideals g1, . . . , gm. Suppose first that σ(g1) = g1.
Then g1 is σ-invariant. Let a = {v ∈ g1 |σ(v) = v}. Clearly, a = g ∩ g1, so a is
an ideal of g. Each x ∈ g1 can be written as

x =
x+ σ(x)

2
+ i

i(σ(x)− x)

2

Both (x+ σ(x)/2 and i(σ(x)− x)/2 belong to a, which shows that

g1 = a⊕ ia

as real vector spaces. We conclude that a is a non-zero ideal of g, whence a = g.
Thus g1 = g⊕ ig = gc, and so g is a real form of the complex simple Lie algebra
g1.

Suppose next that σ(g1) = gj for some j ≥ 2. Let h = g1 ⊕ σ(g1). h is then a
non-zero σ-invariant ideal of gc. The same reasoning as that in the preceding
paragraph then shows that h = gc, and so

gc = g1 ⊕ σ(g1).

Thus gc is the direct sum of two simple (complex) ideals. The map

x 7→ x+ σ(x)

is then easily shown to be a real Lie algebra isomorphism from g1 onto g. (See
the exercise below.) Thus g is isomorphic to a complex simple Lie algebra,
considered as a real Lie algebra.

Exercise 7.2.2. In the last part of the proof of Theorem 7.2.1, show that
x 7→ x+ σ(x) is an real Lie algebra isomorphism of g1 onto g.

The complete classification of complex simple Lie algebras was carried out by
Cartan and Killing in the early part of the twentieth century. This also classifies
the real simple Lie algebras of type (2) above. The classification of the real forms
of complex simple Lie algebras is a much harder problem, and is related to the
classification of symmetric spaces. This was also completed by Cartan in the
1930’s.
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7.3 Basic Representation Theory

In this section, we introduce some of the basic terminology and results of the
representation theory of Lie algebras, such as the complete reducibility of g-
modules when g is semisimple, Schur’s Lemma, and the representation theory
of sl(2,C).

Definition 7.3.1. Let g be a Lie algebra over F. A vector space V over F is
called a g-module if there is a representation π of g on V .

Recall that we also say that g acts on V .

Definition 7.3.2. Let π1 : g → gl(V ) and π2 : g → gl(W ) be representations
of the Lie algebra g. A linear map T : V → W is said to intertwine π1 and π2 if
π2(x) ◦ T = T ◦ π1(x), for all x ∈ g. We also say that T is a g-equivariant linear
map from the g-module V to the g-module W .

Thus T intertwines the representations π1 and π2 if, for all x ∈ g, the following
diagram commutes:

V
π1(x)- V

W

T

?

π2(x)
- W

T

?

If T is a linear isomorphism, we call T a g-module isomorphism. In this case, it
is clear that T−1 is also a g-module isomorphism from W onto V .

Definition 7.3.3. Let V be a g-module, via the representation π. A subspace
U of V is called a g-submodule if W is invariant under all operators π(x), for
all x ∈ g. Thus the map πU : g → gl(U) given by πU (x) = π(x)|U is a
representation of g on U .

If U is a g-submodule of V , we also say that U is a g-invariant subspace of V .
Note that the sum and the intersection of g-invariant subspaces is a g-invariant
subspace. In addition, if U is a g-invariant subspace, then the quotient space
V/U is a g-module via the quotient representation π′ given by

π′(x) (v + U) = π(x) (v) + U (7.5)

for all x ∈ g and all v ∈ V . (The relation π′[x, y] = [π′(x),π′(y)] follows
immediately from π[x, y] = [π(x),π(y)].) We call V/U a quotient module.

Definition 7.3.4. A representation π of g on a vector space V is said to be
irreducible if V has no g-submodules other than {0} and V . We also say that
V is an irreducible g-module.
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One more definition:

Definition 7.3.5. A representation π of g on a vector space V is said to be
completely reducible if, for any g-invariant subspace U of V , there exists a g-
invariant subspace W of V such that V = U ⊕W .

Example 7.3.6. A Lie algebra g acts on itself via the adjoint representation
ad : g → gl(g). A subspace a ⊂ g is g-invariant if and only if a is an ideal of g.
The adjoint representation is completely reducible if and only if, for any ideal
a of g, there is another ideal b of g such that g = a⊕ b.

If g is semisimple, then ad is completely reducible. In fact, by Theorem 7.1.1,
g is a direct sum of simple ideals g =

Lk
i=1 gi. If a is any ideal of g, then

a = ⊕i∈Igi, for some subset I of {1, . . . , n}. Put J = {1, . . . , n} \ I, and let
b = ⊕j∈Jgj . Then b is an ideal of g such that g = a⊕ b.

In the above example, there’s nothing special about the representation ad.
What’s important is that g is semisimple, as the following theorem shows:

Theorem 7.3.7. (H. Weyl) Let g be a semismple Lie algebra over F. Then any
representation π of g is completely reducible.

The proof, which we omit, can be found in several places, such as [?], §6. For
convenience, we include a proof in Appendix ??

Here is an equivalent characterization of complete reducibility.

Theorem 7.3.8. Let V be a vector space over F and let π be a representation
of a Lie algebra g on V . Then π is completely reducible if and only if V is a
direct sum of irreducible g-modules:

V = V1 ⊕ · · ·⊕ Vm (7.6)

Proof. Suppose that π is completely reducible. If V is already irreducible, then
there is nothing to prove. Otherwise, choose a g-invariant subspace V1 of V , of
minimum positive dimension. Clearly, V1 is an irreducible g-module. Since π is
completely reducible, V1 has a complementary g-invariant subspace W , so

V = V1 ⊕W (7.7)

If W is irreducible, then let V2 = W , and we are done. If it isn’t, there exists
an g-invariant subspace V2 of W , of minimum positive dimension. Then V2 is
irreducible. Moreover, V2 has a complementary g-invariant subspace W ′ in V :

V = V2 ⊕W ′ (7.8)

We now claim that
W = V2 ⊕ (W ′ ∩W ). (7.9)
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In fact, by equation (7.8) any w ∈ W can be written as w = v2+w′, where v2 ∈
V2 and w′ ∈ W ′. Since v2 ∈ W , it follows that w′ ∈ W , so w′ ∈ W ∩W ′. Thus
W = V2 + (W ∩W ′). The sum is direct, since V2 ∩ (W ∩W ′) ⊂ V2 ∩W ′ = {0}.
This proves (7.9), and so by (7.7),

V = V1 ⊕ V2 ⊕ (W ∩W ′) (7.10)

The subspace W ′′ = W ∩W ′ is an intersection of g-invariant subspaces, which
is g-invariant. Thus V is the direct sum of g-invariant subspaces

V = V1 ⊕ V2 ⊕W ′′ (7.11)

If W ′′ is irreducible, put V3 = W ′′ and we’re done. If not, let V3 be a g-invariant
subspace of W ′′ of minimum positive dimension. Then V3 is irreducible, and,
just as we obtained the decomposition (7.11), we can write V as a direct sum
of g-submodules

V = V1 ⊕ V2 ⊕ V3 ⊕W (3). (7.12)

If we continue this procedure, we will eventually reach the decomposition (7.6)
above, since dimV is finite.

Conversely, suppose that π is a representation of g on V , and that V is a direct
sum (7.6) of irreducible g-modules. We want to prove that π is completely
reducible. Let U be a g-invariant subspace of V , with U ̸= {0} and U ̸= V .

Since U ̸= V , there is a subspace Vi1 among the irreducible subspaces in (7.6)
such that Vi1 ⊈ U . Thus Vi1 ∩ U is a proper g-invariant subspace of Vi1 ; since
Vi1 is irreducible, we conclude that Vi1 ∩U = {0}. Put U2 = U⊕Vi1 . If U2 = V ,
then we can take Vi1 as our complementary g-invariant subspace. if U2 ̸= V ,
there is another irreducible subspace Vi2 in (7.6) such that Vi2 ⊈ U2. Then
Vi2 ∩ U2 = {0}, so we can let

U3 = U2 ⊕ Vi2 = U ⊕ Vi1 ⊕ Vi2 .

If U3 = V , then we can take our complementary g-invariant subspace to be
W = Vi1 ⊕ Vi2 . If U3 ̸= V , then there is a subspace Vi3 among the irreducible
subspaces in (7.6) such that Vi3 ⊈ U3, and so forth. Since V is finite-dimensional,
this procedure ends after a finite number of steps, and we have

V = U ⊕ Vi1 ⊕ · · ·⊕ Vir .

The subspaceW = Vi1⊕· · ·⊕Vir is then our g-invariant complementary subspace
to U .

Some authors define complete reducibility by means of the decomposition (7.6).
In general, neither this decomposition nor the complementary g-invariant sub-
space in the definition of complete reducibility is unique.
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Example 7.3.9. Consider the representation π of gl(2,C) on itself via matrix
multiplication:

π(X) (Y ) = X Y

It is easy to see that π is indeed a representation, and that the representation
space gl(2,C) decomposes into the direct sum of irreducible subspaces:

gl(2,C) =
��

z1 0
z2 0

� ���� z1, z2 ∈ C
�
⊕

��
0 z3
0 z4

� ���� z3, z4 ∈ C
�

gl(2,C) also decomposes into the following invariant irreducible subspaces

gl(2,C) =
��

z1 z1
z2 z2

� ���� z1, z2 ∈ C
�
⊕

��
z3 −z3
z4 −z4

� ���� z3, z4 ∈ C
�

Theorem 7.3.10. (Schur’s Lemma) Let V be a vector space over F, and let π
be an irreducible representation of g on V . If T ∈ L(V ) commutes with π(x),
for all x ∈ g, then either T = 0 or T is invertible. If F = C, then T is just
scalar multiplication: T = λIV .

Proof. First we observe that both the kernel and the range of T are g-invariant
subspaces of V . In fact, if v ∈ kerT , then T (π(x) v) = π(x) (T (v)) = 0, so
π(x) v ∈ kerT for all x ∈ V . Likewise, π(x) (T (V )) = T (π(x)(V )) ⊂ T (V ).

Since kerT is g-invariant and π is irreducible, we have either kerT = {0} or
kerT = V . In the former case, T is invertible, and in the latter case, T = 0.

Suppose now that F = C. Then our linear operator T has an eigenvalue λ, so
ker (T − λIV ) ̸= {0}. But the operator T − λIV commutes with π(x), for all
x ∈ g. Thus, by the preceding paragraph, T − λIV = 0, and so T = λIV .

Exercise 7.3.11. A symmetric bilinear form Q on a Lie algebra g over F is
called g-invariant provided that

Q([x, y], z) = −Q(x, [y, z])

for all x, y, z ∈ g. For example, the Killing form B on g is g-invariant.

(a) If g is a simple Lie algebra over C, prove that any g-invariant symmetric
bilinear form Q on g is a constant multiple of the Killing form B.

(b) Let V be a vector space over C. Suppose that g is a simple Lie subalgebra
of gl(V ). Prove that the Killing form B is a non-zero multiple of the trace
form Q(X,Y ) = tr (XY ).

Hint for Part (a): Show that there exists a unique linear operator T on g such
that Q(x, y) = B(Tx, y) for all x, y ∈ g. Then show that T ◦ adx = adx ◦ T for
all x ∈ g.
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Now we turn to a simple but important topic: the representation theory of the
three-dimensional simple Lie algebra sl(2,C). As we will see later on, this is the
“glue” by which the structure of any complex simple Lie algebra is built upon.
Now by Weyl’s Theorem (Theorem 7.3.7), any finite-dimensional representation
of sl(2,C) is completely reducible, so to understand the (finite-dimensional)
representation theory of this Lie algebra, it suffices, by Theorem 7.3.8, to study
its irreducible representations.

Theorem 7.3.12. (The Basic Representation Theorem for sl(2,C).) Let (e, f, h)
be the standard basis of g = sl(2,C), with

e =

�
0 1
0 0

�
, f =

�
0 0
1 0

�
, h =

�
1 0
0 −1

�

Let π be an irreducible representation of g on a complex vector space V . Then
there exists an eigenvector v0 of π(h), with eigenvalue λ, such that π(e) v0 = 0.
For each j ∈ Z+, let vj = (π(f))j v0. Then the following properties hold:

1. The eigenvalue λ is a non-negative integer n

2. vn+1 = 0

3. (v0, v1, . . . , vn) is a basis of V

4. π(f) vj = vj+1

5. π(h) vj = (n− 2j) vj, so each basis vector vj is an eigenvector of π(h)

6. π(e) vj = j(n− j + 1)vj−1.

Remark: This theorem implies, among other things, that π(h) is a semisimple
linear operator on V with integer eigenvalues n, (n − 2), . . . ,−(n − 2), −n.
On the other hand, both π(e) and π(f) are nilpotent operators, since their
matrices with respect to the basis (v0, v1, . . . , vn) of V are strictly upper and
lower triangular, respectively.

Proof. Since V is a complex vector space, the linear operator π(h) has a complex
eigenvalue µ. Let v be an eigenvector of π(h) corresponding to µ. We claim
that π(e) v belongs to the eigenspace of π(h) corresponding to the eigenvalue
µ+ 2. In fact,

π(h) (π(e) v) = π(e) (π(h) v) + (π(h)π(e)− π(e)π(h)) (v)

= µπ(e) v + [π(h),π(e)] v

= µπ(e) v + π[h, e] (v)

= µπ(e) v + 2π(e) v

= (µ+ 2) π(e) v.
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A similar argument then shows that π(e)2 (v) = π(e) (π(e) v) belongs to the
eigenspace of π(h) corresponding to the eigenvalue µ + 4. In general, π(e)s v
belongs to the eigenspace of π(h) corresponding to the eigenvalue µ+2s. Since
π(h) has only finitely many eigenvalues, we must have π(e)s v = 0 for some s ∈
N. Let s be the smallest positive integer such that π(e)s v ̸= 0 but π(e)s+1 v = 0.
Put v0 = π(e)s v. Then π(e) v0 = 0, and v0 is an eigenvector of π(h). Let
λ (= µ+ 2s) be its eigenvalue.

Now as prescribed in the statement of the theorem, for each j ∈ N, we define
vj = π(f)j v0. This trivially gives conclusion (4). Let us now prove by induction
that for each j ∈ Z+,

π(h) vj = (λ− 2j) vj . (7.13)

If j = 0, the equation above is just π(h) v0 = λ v0, which is true by the hypoth-
esis on v0. Assume, then, that equation 7.13 is true for vj . Then

π(h) vj+1 = π(h) (π(f) vj)

= π(f) (π(h) vj) + [π(h),π(f)] (vj)

= (λ− 2j)π(f)(vj) + π[h, f ] (vj) (by induction hypothesis)

= (λ− 2j) vj+1 − 2π(f) (vj)

= (λ− 2j) vj+1 − 2 vj+1

= (λ− 2(j + 1)) vj+1,

which proves that equation (7.13) is true for vj+1.

Thus, if vj ̸= 0, it must be an eigenvector of π(h) corresponding to the eigenvalue
λ − 2j. Since eigenvectors corresponding to distinct eigenvalues are linearly
independent and V is finite-dimensional, we conclude that there must be a
j ∈ N such that vj = 0. Let n be the smallest non-negative integer such that
vn ̸= 0 but vn+1 = 0.

We will now prove by induction that for all j ≥ 1,

π(e) vj = j(λ− j + 1) vj−1. (7.14)

Let us first verify equation (7.14) for j = 1. We have

π(e) v1 = π(e) (π(f) v0)

= π(f) (π(e) v0) + π[e, f ] v0

= 0 + π(h) v0

= λ v0,

which is precisely equation (7.14) for j = 1.
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Next assume that equation 7.14 holds for vj (with j ≥ 1). Then

π(e) vj+1 = π(e) (π(f) vj)

= π(f) (π(e) vj) + π[e, f ] vj

= j(λ− j + 1)π(f) vj−1 + π(h) vj (by induction hypothesis)

= j(λ− j + 1) vj + (λ− 2j) vj

= (j + 1)(λ− j) vj

= (j + 1)(λ− (j + 1) + 1) vj ,

proving (7.14) for vj+1.

If we now apply (7.14) to the vector vn+1 = 0, we get

0 = π(e) vn+1 = (n+ 1)(λ− n) vn.

Since vn ̸= 0, we conclude that (n + 1)(λ − n) = 0, and so λ = n. This proves
conclusion (1). Plugging in λ = n to equation (7.13), we obtain conclusion (5);
and plugging this into equation (7.14) gives us conclusion (6).

It remains to prove conclusion (3), that (v0, . . . , vn) is a basis of V . These
vectors are certainly linearly independent, since by (7.13), they are eigenvectors
of π(h) corresponding to distinct eigenvalues. From conclusions (4), (5), and
(6), we also see that the C-span of (v0, . . . , vn) is invariant under π(e), π(f), and
π(h). Since (e, f, h) is a basis of g, we see that this linear span is a g-invariant
subspace. Since V is an irreducible g-module, we conclude that this span is all
of V . This proves conclusion (3) and finishes the proof of Theorem 7.3.12.

In Theorem 7.3.12, the non-negative integer n is called the highest weight of
the representation π. The vector v0 is called a highest weight vector of π; the
vectors v0, . . . , vn are called weight vectors, and their eigenvalues n, n− 2, n−
4, . . . ,−(n− 2), −n are called the weights of π.

Theorem 7.3.12 says that, up to g-module isomorphism, any finite-dimensional
representation of sl(2,C) is uniquely determined by its highest weight. It also
says that the representation space V has a basis (v0, . . . , vn) satisfying conditions
(4)-(6) in the statement of the theorem.

Exercise 7.3.13. (Converse of Theorem 7.3.12) Fix a positive integer n, let V
be a vector space over C with basis (v0, v1, . . . , vn), and let πn be the linear map
from sl(2,C) to gl(V ) defined on the basis (e, f, h) of sl(2,C) by the relations
(4)-(6) in Theorem 7.3.12. Prove that πn is an irreducible representation of
sl(2,C).

Actually, the representation πn in Theorem 7.3.12 has an explicit realization.
Namely, let V be the vector space of homogeneous degree n polynomials in two
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complex variables z and w, with complex coefficients. Thus the elements of V
are polynomials of the form

p(z, w) = αnz
n + αn−1z

n−1w + · · ·+ α1zw
n−1 + α0w

n,

where αn, · · · ,α0 are complex numbers. The following n+1 degree n monomials

zn, zn−1w, · · · , zwn−1, wn

constitute a basis of V . For each matrix X =

�
a b
c −a

�
∈ sl(2,C), define the

linear map π(X) on V by

�
π

�
a b
c −a

�
p

�
(z, w) = (az + cw)

∂p

∂z
+ (bz − aw)

∂p

∂w

If p(z, w) is homogeneous of degree n, it is clear that the right hand side above
is also homogeneous of degree n. Since π(X) is given by a linear differential
operator, it is therefore clear that π(X) is a linear operator on V .

Exercise 7.3.14. Prove that X 7→ π(X) is a Lie algebra homomorphism of
sl(2,C) into gl (V ). For this you need to show that X 7→ π(X) is linear (straight-
forward), and that π[X,Y ] = [π(X),π(Y )], for all X,Y ∈ sl(2,C). Show that
this amounts to proving that for all polynomials p in two variables z and w,

�
(a1z + c1w)

∂

∂z
+ (b1z − a1w)

∂

∂w
, (a2z + c2w)

∂

∂z
+ (b2z − a2w)

∂

∂w

�
(p)

=

(b1c2−c1b2)z+2(c1a2−a1c2)w

�∂p
∂z

+

2(a1b2−b1a2)z−(b1c2−c1b2)w

� ∂p
∂w

Exercise 7.3.15. Put v0 = zn and for j = 1, . . . , n, put vj = P (n, j)zn−jwj ,
where P (n, j) = n!/(n − j)!. Then V has basis (v0, . . . , vn). Prove that these
basis vectors satisfy the relations (4)-(6) in Theorem 7.3.12.
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