Chapter 6

Cartan's Criteria for Solvability and Semisimplicity

In this section we define an important symmetric bilinear form on a Lie algebra \mathfrak{g} and derive conditions on this form which are necessary and sufficient for \mathfrak{g} to be solvable, as well as conditions on the form which are necessary and sufficient for \mathfrak{g} to be semisimple.

6.1 The Killing Form

For any elements x and y of \mathfrak{g} , the map ad $x \circ \operatorname{ad} y$ is a linear operator on \mathfrak{g} , so we may consider its trace.

Definition 6.1.1. Let \mathfrak{g} be a Lie algebra over \mathbb{F} . The *Killing form* on \mathfrak{g} is the map

$$B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{F}$$
$$(x, y) \mapsto \operatorname{tr} (\operatorname{ad} x \circ \operatorname{ad} y)$$
(6.1)

Thus, $B(x, y) = \operatorname{tr} (\operatorname{ad} x \circ \operatorname{ad} y).$

Note that $B(y, x) = tr(ad y \circ ad x) = tr(ad x \circ ad y) = B(x, y)$, so the Killing form B is symmetric.

Since the adjoint map ad and the trace are linear, it is also easy to see that

B(x, y) is a bilinear form:

$$B(\alpha x_1 + \beta x_2, y) = \operatorname{tr} \left(\operatorname{ad}(c x_1 + x_2) \circ \operatorname{ad} y\right)$$

= tr ((\alpha ad x_1 + \beta ad x_2) \circ ad y)
= \alpha tr (ad x_1 \circ ad y) + \beta tr (ad x_2 \circ ad y)
= \alpha B(x_1, y) + \beta B(x_2, y),

for all $x_1, x_2, y \in \mathfrak{g}$, and all $\alpha, \beta \in \mathbb{F}$. (The linearity of B in the second argument follows from its the above and the fact that B is symmetric.)

Exercise 6.1.2. (Graduate Exercise.) Suppose that \mathfrak{g} is the Lie algebra of a compact Lie group G. Prove that B is negative semidefinite; i.e., $B(x, x) \leq 0$ for all $x \in \mathfrak{g}$. If $\mathfrak{c} = \{0\}$, show that B is negative definite. (*Hint:* There exists an inner product Q on \mathfrak{g} invariant under ad G: $B(\operatorname{Ad} g(x), \operatorname{Ad} g(y)) = B(x, y)$ for all $x, y \in \mathfrak{g}$ and all $g \in G$.)

Our objective in this section is to prove the following theorems.

Theorem 6.1.3. (*Cartan's Criterion for Solvability*) Let \mathfrak{g} be a Lie algebra over \mathbb{F} . Then \mathfrak{g} is solvable if and only if B(x, y) = 0 for all $x \in [\mathfrak{g}, \mathfrak{g}]$ and $y \in \mathfrak{g}$.

Theorem 6.1.4. (Cartan's Criterion for Semisimplicity) Let \mathfrak{g} be a Lie algebra over \mathbb{F} . Then \mathfrak{g} is semisimple if and only if the Killing form B is nondegenerate.

We will first prove Theorem 6.1.3 for complex Lie subalgebras of $\mathfrak{gl}(V)$, where V is a complex vector space. Then, in order to prove it for real Lie algebras, we will need to use the notion of complexification. Theorem 6.1.4 will then essentially be a corollary of Theorem 6.1.3.

Let us now develop the necessary machinery.

6.2 The Complexification of a Real Lie Algebra

A vector space V over \mathbb{R} is said to have a *complex structure* if there is a $J \in \mathcal{L}(V)$ such that $J^2 = -I_V$. Note that, by definition, J is \mathbb{R} -linear, and that the condition $J^2 = -I_V$ means that it is invertible. Note also that J has no real eigenvalues, since its only possible eigenvalues are $\pm i$.

The operator J turns the vector space V into a complex vector space in which scalar multiplication by $z = \alpha + \beta i$ (with $\alpha, \beta \in \mathbb{R}$) is given by

$$(\alpha + \beta i)v = \alpha v + \beta Jv, \tag{6.2}$$

for all $v \in V$. The routine verification that V is indeed a complex vector space will be left to the reader.

Example 6.2.1. For any real vector space U, let V be the external direct sum $V = U \oplus U$. Then the linear operator J on V given by $J(u_1, u_2) = (-u_2, u_1)$ is a complex structure on V. Since $(u_1, u_2) = (u_1, 0) + J(u_2, 0) = (u_1, 0) + i(u_2, 0)$, it is often convenient to identify U with the subspace $\{(u, 0) | u \in U\}$, and thus write the element (u_1, u_2) as $u_1 + Ju_2$. Since V now has a complex vector space structure, we call V the *complexification of* U, and denote it by U^c .

Note: Complexification can also be carried out using tensor products: $V = U \otimes_{\mathbb{R}} \mathbb{C}$, but we'll not go through this route.

Suppose that J is a complex structure on a real vector space V. Then V becomes a complex vector space, with scalar multiplcation given by (6.2) above. Since any \mathbb{R} -spanning set in V is also a \mathbb{C} -spanning set, it is obvious that V is finitedimensional as a complex vector space. Now let (u_1, \ldots, u_n) be a \mathbb{C} -basis of V. Then $(u_1, \ldots, u_n, Ju_1, \ldots, Ju_n)$ is an \mathbb{R} -basis of V: in fact, any $v \in V$ can be written as a *unique* linear combination

$$v = \sum_{j=1}^{n} (\alpha_j + i\beta_j) u_j = \sum_{j=1}^{n} \alpha_j u_j + \sum_{j=1}^{n} \beta_j J u_j \qquad (\alpha_j, \beta_j \in \mathbb{R})$$

Now if we let U be the real subspace $\mathbb{R}u_1 + \cdots + \mathbb{R}u_n$ of V, we see that $V = U \oplus JU$ (as a real vector space), and is thus easy to see that $V \cong U^c$. In particular, $\dim_{\mathbb{R}} V = 2n = 2 \dim_{\mathbb{C}} V$, so any real vector space with a complex structure is even-dimensional over \mathbb{R} . The subspace U is called a *real form* of V.

Of course, any complex vector space V is a real vector space equipped with a complex structure: Jv = iv, for all $v \in V$. In the future, we will nonetheless have occasion to complexify a *complex* vector space (considered as a real vector space) using the construction in Example 6.2.1.

So suppose that U is a complex vector space. Considering U as a real vector space, we can then complexify U in accordance with Example 6.2.1. Now the external direct sum $U^c = U \oplus U = U \times U$ is already a complex vector space, since each factor is a complex vector space. The complex structure J on $U \oplus U$ commutes with multiplication by i, since

$$J(i(u_1, u_2)) = J(iu_1, iu_2) = (-iu_2, iu_1) = i(-u_2, u_1) = iJ(u_1, u_2).$$

Thus J is a \mathbb{C} -linear map on $U \oplus U$. $U \oplus U$ decomposes into a direct sum of $\pm i$ -eigenspaces of J:

$$(u_1, u_2) = \frac{1}{2} (u_1 + iu_2, u_2 - iu_1) + \frac{1}{2} (u_1 - iu_2, u_2 + iu_1),$$

 \mathbf{so}

$$U^{c} = \{(v, -iv) \mid v \in U\} \oplus \{(w, iw) \mid w \in U\}.$$

If U is a real form of complex vector space V, we define the conjugation τ_U of V with respect to U as follows: for any $v \in V$, we can write v uniquely as $v = u_1 + iu_2$, where $u_1, u_2 \in U$; put $\tau_U(v) = u_1 - iu_2$. Then τ_U is an \mathbb{R} -linear map of V satisfying $\tau_U^2 = I_V$. It is easy to check that τ_U is conjugate-linear: $\tau_U(zv) = \overline{z} \tau_U(v)$, for all $v \in V$ and $z \in \mathbb{C}$.

Exercise 6.2.2. (i) Suppose that T is a \mathbb{C} -linear operator on a complex vector space V. Show that if T_R denotes T considered as an \mathbb{R} -linear operator on V, then tr $(T_R) = 2 \operatorname{Re}(\operatorname{tr}(T))$. (ii) Next suppose that T is an \mathbb{R} -linear operator on a real vector space U. Show that T has a unique natural extension T^c to a \mathbb{C} -linear map on U^c , and that tr $(T_c) = \operatorname{tr}(T)$.

Now suppose that \mathfrak{g} is a real Lie algebra equipped with a complex structure J. J is said to be *compatible* with the Lie bracket in \mathfrak{g} if [Jx, y] = J[x, y] for all $x, y \in \mathfrak{g}$. (Then, of course [x, Jy] = J[x, y] for all x, y.) If \mathfrak{g} is given the complex vector space structure from (6.2), then multiplication by complex scalars commutes with the Lie bracket, since

$$i[x, y] = J[x, y] = [Jx, y] = [ix, y] = [x, Jy] = [x, iy].$$

Hence, \mathfrak{g} has the structure of a complex Lie algebra. Of course, the Lie bracket of any complex Lie algebra is compatible with its complex structure.

A real form of a complex Lie algebra \mathfrak{g} is a real Lie subalgebra \mathfrak{g}_0 of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{g}_0 \oplus i\mathfrak{g}_0$. (A real form of \mathfrak{g} (as vector space) is not necessarily a real Lie subalgebra of \mathfrak{g} . For example, $\mathbb{R}e + \mathbb{R}f + \mathbb{R}ih$ is a real form of the vector space $\mathfrak{sl}(2,\mathbb{C})$ but is not a real Lie subalgebra.) It is easy to check that if τ denotes the conjugation of \mathfrak{g} with respect to \mathfrak{g}_0 , then $\tau[x,y] = [\tau x, \tau y]$, for all $x, y \in \mathfrak{g}$.

Exercise 6.2.3. Let u(n) denote the Lie algebra of *skew-Hermitian matrices*; i.e., $u(n) = \{X \in \mathfrak{gl}(n, \mathbb{C}) \mid {}^{t}\overline{X} = -X\}$. (See Example 2.1.22.) Prove that u(n) is a real form of $\mathfrak{gl}(n, \mathbb{C})$. If τ denotes the conjugation of $\mathfrak{gl}(n, \mathbb{C})$ with respect to u(n), show that $\tau(X) = -{}^{t}\overline{X}$ for all $X \in \mathfrak{gl}(n, \mathbb{C})$.

Next, suppose that \mathfrak{g}_0 is a real Lie algebra. The Lie bracket in \mathfrak{g}_0 can be extended to its vector space complexification $\mathfrak{g} = \mathfrak{g}_0^c = \mathfrak{g}_0 \oplus J\mathfrak{g}_0$ via

$$[x_1 + Jx_2, y_1 + Jy_2] = [x_1, y_1] - [x_2, y_2] + J([x_1, y_2] + [x_2, y_1]).$$

The operation above is \mathbb{R} -bilinear and can be routinely verified to be anticommutative and to satisfy the Jacobi identity. Moreover

$$\begin{split} J[x_1 + Jx_2, y_1 + Jy_2] &= -([x_1, y_2] + [x_2, y_1]) + J([x_1, y_1] - [x_2, y_2]) \\ &= [-x_2 + Jx_1, y_1 + Jy_2] \\ &= [J(x_1 + Jx_2), y_1 + Jy_2], \end{split}$$

and so it follows that this extension of the Lie bracket to \mathfrak{g} is \mathbb{C} -bilinear. Thus the complexification \mathfrak{g} has the structure of a complex Lie algebra, and of course, \mathfrak{g}_0 is a real form of \mathfrak{g} .

Example 6.2.4. It is obvious that $\mathfrak{gl}(n,\mathbb{R})$ is a real form of $\mathfrak{gl}(n,\mathbb{C})$. We can express this as $(\mathfrak{gl}(\mathbb{R}^n))^c = \mathfrak{gl}(\mathbb{C}^n)$. Now any real vector space V is (duh) a real form of its complexification V^c . If we fix a basis B of V, then the map $T \mapsto M_{B,B}(T)$ identifies $\mathfrak{gl}(V)$ with $\mathfrak{gl}(n,\mathbb{R})$. Complexifying this identification, we see that $(\mathfrak{gl}(V))^c \cong (\mathfrak{gl}(\mathbb{R}^n))^c \cong \mathfrak{gl}(\mathbb{C}^n) \cong \mathfrak{gl}(V^c)$. This identification of $(\mathfrak{gl}(V))^c$ with $\mathfrak{gl}(V^c)$ is concretely given by

$$(T_1 + iT_2)(v_1 + iv_2) = T_1v_1 - T_2v_2 + i(T_1v_2 + T_2v_1),$$

for all $T_1, T_2 \in \mathfrak{gl}(V)$ and all $v_1, v_2 \in V$.

If \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(V)$, then its complexification \mathfrak{g}^c may be viewed as a complex Lie subalgebra of $\mathfrak{gl}(V^c)$.

Exercise 6.2.5. Let \mathfrak{g} be a complex Lie algebra, and let \mathfrak{g}_R denote \mathfrak{g} , considered as a real Lie algebra. If B and B_R are the Killing forms on \mathfrak{g} and \mathfrak{g}_R , respectively, show that $B_R(x,y) = 2 \operatorname{Re}(B(x,y))$, for all $x, y \in \mathfrak{g}$. Then show that B is nondegenerate $\iff B_R$ is nondegenerate.

(Note: If you don't know anything about Lie groups, you may safely skip this paragraph.) A real Lie algebra \mathfrak{u} is said to be *compact* if \mathfrak{u} is the Lie algebra of a compact Lie goup U. Here are two interesting and useful facts about compact Lie algebras (cf. [?], Chapter 3):

- 1. If \mathfrak{u} is compact, then $\mathfrak{u} = \mathfrak{c} \oplus [\mathfrak{u}, \mathfrak{u}]$, where \mathfrak{c} is the center of \mathfrak{u} and $[\mathfrak{u}, \mathfrak{u}]$ is compact and semisimple.
- 2. Any complex semisimple Lie algebra \mathfrak{g} has a compact real form \mathfrak{u} . This remarkable fact is a cornerstone of representation theory. In a later section, we will consider how to obtain such a real form.

6.3 Cartan's Criterion for Solvability

Lemma 6.3.1. Let V be a vector space over \mathbb{C} , and let $X \in \mathfrak{gl}(V)$. If X is semisimple, then so is ad X. If X is nilpotent, then so is ad X.

Proof. If X is nilpotent, then so is ad X by Step 1 in the proof of Lemma 5.2.2.

Suppose that X is semisimple. Let $B = (v_1, \ldots, v_n)$ be a basis of of V consisting of eigenvectors of X, corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$, respectively. Next, we abuse notation and let, for any i, j in $\{1, \ldots, n\}$, \mathcal{E}_{ij} be the linear operator on V whose matrix with respect to B is the elementary matrix E_{ij} :

$$\mathcal{E}_{ij}(v_k) := \delta_{jk} \, v_i$$

Then $(\mathcal{E}_{ij})_{1 \leq i,j \leq n}$ is a basis of $\mathfrak{gl}(V)$. By matrix multiplication, we see that

$$[X, \mathcal{E}_{ij}] = (\lambda_i - \lambda_j) \mathcal{E}_{ij}.$$
(6.3)

Thus, each \mathcal{E}_{ij} is an eigenvector of ad X with eigenvalue $\lambda_i - \lambda_j$, and so $\mathfrak{gl}(V)$ has basis (\mathcal{E}_{ij}) consisting of eigenvectors of ad X. Thus ad X is semisimple. \Box

Lemma 6.3.2. Suppose that $X \in \mathfrak{gl}(V)$ has Jordan-Chevalley decomposition $X = X_s + X_n$, with X_s semisimple and X_n nilpotent. Then the Jordan-Chevalley decomposition for ad X is ad $X = \operatorname{ad} X_s + \operatorname{ad} X_n$.

Proof. By the preceding lemma, ad X_s and ad X_n are semisimple and nilpotent linear operators on $\mathfrak{gl}(V)$, respectively. Moreover, ad X_s and ad X_n commute:

$$[\operatorname{ad} X_s, \operatorname{ad} X_n] = \operatorname{ad} [X_s, X_n]$$
$$= \operatorname{ad} (X_s X_n - X_n X_s)$$
$$= 0,$$

since X_s and X_n commute. By the uniqueness of the Jordan-Chevalley decomposition, it follows that $\operatorname{ad} X = \operatorname{ad} X_s + \operatorname{ad} X_n$ is the Jordan-Chevalley decomposition of $\operatorname{ad} X$.

Lemma 6.3.3. Let x_0, x_1, \ldots, x_n be distinct numbers in \mathbb{F} , and let C_0, C_1, \ldots, C_n be any numbers in \mathbb{F} . Then there exists a polynomial P(x) in the variable x, with coefficients in \mathbb{F} , of degree $\leq n$, such that $P(x_i) = C_i$, for all i.

Proof. According to the Lagrange Interpolation Formula, this polynomial is given by

$$P(x) = \frac{\prod_{i \neq 0} (x - x_i)}{\prod_{i \neq 0} (x_0 - x_i)} C_0 + \frac{\prod_{i \neq 1} (x - x_i)}{\prod_{i \neq 1} (x_1 - x_i)} C_1 + \dots + \frac{\prod_{i \neq n} (x - x_i)}{\prod_{i \neq n} (x_n - x_i)} C_n$$

It is easy to see that this P(x) satisfies the properties asserted in the lemma. \Box

Exercise 6.3.4. (Graduate Exercise.) Show that any polynomial satisfying the conclusion of Lemma 6.3.3 is unique. (*Hint:* The formula above comes from a linear system whose coefficient matrix is Vandermonde.)

The following is a technical lemma whose proof features some "out of the box" thinking.

Lemma 6.3.5. Let V be a vector space over \mathbb{C} , and let $A \subset B$ be subspaces of $\mathfrak{gl}(V)$. Let $\mathfrak{m} = \{X \in \mathfrak{gl}(V) \mid [X, B] \subset A\}$. Suppose that some $X \in \mathfrak{m}$ has the property that tr(XY) = 0 for all $Y \in \mathfrak{m}$. Then X is nilpotent.

Proof. Let $S = (v_1, \ldots, v_n)$ be a Jordan basis of V corresponding to X. If $X = X_s + X_n$ is the Jordan-Chevalley decomposition of X, then S consists of eigenvectors of X_s , and the matrix of X_s with respect to S is diagonal, of the form

$$\left(\begin{array}{ccc}
\lambda_1 & & \\
& \ddots & \\
& & \lambda_n
\end{array}\right)$$
(6.4)

The matrix of X_n with respect to S is strictly upper triangular, with some 1's right above the diagonal. We want to show that $\lambda_i = 0$ for all *i*. This will establish that $X_s = 0$, and so $X = X_n$.

Let $E \subset \mathbb{C}$ be the vector space over \mathbb{Q} (= the rationals) spanned by $\lambda_1, \ldots, \lambda_n$. We will show that $E = \{0\}$. This will, of course, show that each $\lambda_i = 0$. If E^* denotes the dual space (over \mathbb{Q}) of E, standard linear algebra says that $\dim_{\mathbb{Q}} E^* = \dim_{\mathbb{Q}} E$. (See Subsection 1.3.) Thus it's sufficient to prove that $E^* = \{0\}$. That is, we will prove that any \mathbb{Q} -linear functional on E must vanish identically.

So let $f \in E^*$. Then let $Y \in \mathfrak{gl}(V)$ be the linear map on V whose matrix with respect to the basis S above is the diagonal matrix

$$\left(\begin{array}{cc}f(\lambda_1)\\&\ddots\\&&\\&&f(\lambda_n)\end{array}\right)$$

We will prove that $\operatorname{ad} Y$ is a polynomial in $\operatorname{ad} X$, with zero constant term, using the interpolation result established above.

By equation (6.3), the semisimple operator X_s satisfies

ad
$$X_s(E_{ij}) = (\lambda_i - \lambda_j) E_{ij}.$$
 (6.5)

For the same reason, the semisimple operator Y satisfies

ad
$$Y(E_{ij}) = (f(\lambda_i) - f(\lambda_j)) E_{ij}.$$
 (6.6)

According to Lemma 6.3.3, there exists a polynomial G(x) in the variable x, with complex coefficients, such that

$$G(0) = 0,$$

$$G(\lambda_i) = f(\lambda_i) \qquad \text{for all } i = 1, \dots, n$$

$$G(\lambda_i - \lambda_j) = f(\lambda_i) - f(\lambda_j) \qquad \text{for all } i, j = 1, \dots, n$$

This polynomial is well-defined, since if $\lambda_i - \lambda_j = \lambda_k - \lambda_l$, then $f(\lambda_i) - f(\lambda_j) = f(\lambda_i - \lambda_j) = f(\lambda_k - \lambda_l) = f(\lambda_k) - f(\lambda_l)$. There are at most $2\binom{n}{2} + n + 1 = n^2 + 1$

elements in the set $\{0\} \cup \{\lambda_i\}_{i=1}^n \cup \{\lambda_i - \lambda_j\}_{i,j=1}^n$, so G(x) can be assumed to have degree $\leq n^2$, but this does not matter.

Let us now compute the linear operator $G(\operatorname{ad} X_s)$ on $\mathfrak{gl}(V)$. It suffices to do this on each elementary matrix E_{ij} . Now, by equation (6.5), $\operatorname{ad} X_s(E_{ij}) = (\lambda_i - \lambda_j) E_{ij}$, and so

$$G(\operatorname{ad} X_s) (E_{ij}) = G(\lambda_i - \lambda_j) E_{ij}$$

= $(f(\lambda_i) - f(\lambda_j)) E_{ij}$
= $\operatorname{ad} Y (E_{ij}),$

the last equation coming from (6.6). It follows that $G(\operatorname{ad} X_s) = \operatorname{ad} Y$. (Note also that the condition $G(\lambda_i) = f(\lambda_i)$ for all *i* implies that $G(X_s) = Y$.)

Now by Lemma 6.3.2, the semisimple part of $\operatorname{ad} X$ is $\operatorname{ad} X_s$, which by Theorem 1.9.14 is a polynomial in $\operatorname{ad} X$ with zero constant term. Since the polynomial G(x) also has zero constant term, we see that $\operatorname{ad} Y = G(\operatorname{ad} X_s)$ is a polynomial in $\operatorname{ad} X$ with zero constant term:

ad
$$Y = a_r (ad X)^r + a_{r-1} (ad X)^{r-1} + \dots + a_1 ad X.$$

Since, by hypothesis, $\operatorname{ad} X(B) \subset A$, it follows from the above (and the fact that $A \subset B$) that $\operatorname{ad} Y(B) \subset A$. Therefore, by the definition of \mathfrak{m} , we see that $Y \in \mathfrak{m}$.

Now by the hypothesis on X, we have tr(XY) = 0. With respect to the basis S of V, the product XY has matrix

$$\begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \begin{pmatrix} f(\lambda_1) & 0 \\ & \ddots & \\ 0 & & f(\lambda_n) \end{pmatrix} = \begin{pmatrix} \lambda_1 f(\lambda_1) & * \\ & \ddots & \\ 0 & & \lambda_n f(\lambda_n) \end{pmatrix}$$

and so $\operatorname{tr}(XY) = \sum_{i=1}^{n} \lambda_i f(\lambda_i).$

Thus $0 = \sum_{i=1}^{n} \lambda_i f(\lambda_i)$. Applying the linear functional f to this equality, we get $0 = \sum_{i=1}^{n} f(\lambda_i)^2$. Since the $f(\lambda_i)$ are all in \mathbb{Q} , we conclude that $f(\lambda_i) = 0$ for all i. Thus f = 0, so $E^* = \{0\}$, so $E = \{0\}$, and so $\lambda_i = 0$ for all i.

We conclude that $X = X_n$, and the lemma is proved.

Lemma 6.3.6. Let V be a vector space over \mathbb{F} . If $X, Y, Z \in \mathfrak{gl}(V)$, then tr([X,Y]Z) = tr(X[Y,Z]).

This follows from

$$\operatorname{tr} \left([X, Y]Z \right) = \operatorname{tr} \left((XY - YX)Z \right)$$
$$= \operatorname{tr} \left(XYZ - YXZ \right)$$
$$= \operatorname{tr} \left(XYZ \right) - \operatorname{tr} \left(YXZ \right)$$
$$= \operatorname{tr} \left(XYZ \right) - \operatorname{tr} \left(XZY \right)$$
$$= \operatorname{tr} \left(X(YZ - ZY) \right)$$
$$= \operatorname{tr} \left(X[Y, Z] \right).$$

The following theorem gives the version of Cartan's solvability criterion (Theorem 6.1.3) for Lie subalgebras of $\mathfrak{gl}(V)$.

Theorem 6.3.7. (Cartan's Criterion for $\mathfrak{gl}(V)$, V complex.) Let V be a vector space over \mathbb{C} , and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$. Then \mathfrak{g} is solvable if and only if tr(XY) = 0 for all $X \in [\mathfrak{g}, \mathfrak{g}]$ and all $Y \in \mathfrak{g}$.

Proof. Suppose that \mathfrak{g} is solvable. Then by Lie's Theorem (Theorem 4.2.3), there is a basis S of V relative to which every element of \mathfrak{g} has an upper triangular matrix. It follows that every element of $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ has a strictly upper triangular matrix relative to this basis. If $X \in \mathfrak{g}'$ and $Y \in \mathfrak{g}$, it is easy to see that the matrix of XY with respect to S is also strictly upper triangular. Thus tr (XY) = 0.

Conversely, suppose that $\underline{\operatorname{tr}}(XY) = 0$ for all $X \in \mathfrak{g}'$ and $Y \in \mathfrak{g}$. We want to prove that \mathfrak{g} is solvable. By Theorem 5.2.5, it suffices to prove that \mathfrak{g}' is nilpotent. For this, it suffices in turn to prove that every $X \in \mathfrak{g}'$ is a nilpotent linear operator on V. For then, by Step 1 in the proof of Engel's Lemma (Lemma 5.2.2), ad X is nilpotent, and so by Engel's Theorem (Theorem 5.2.1), \mathfrak{g}' is nilpotent.

To this end, we will use Lemma 6.3.5 with $A = \mathfrak{g}'$ and $B = \mathfrak{g}$. The subspace \mathfrak{m} will then be $\{Y \in \mathfrak{gl}(V) \mid [Y, \mathfrak{g}] \subset \mathfrak{g}'\}$. Clearly, $\mathfrak{g}' \subset \mathfrak{m}$. (In fact, $\mathfrak{g} \subset \mathfrak{m}$.) To apply the lemma, we will need to prove that $\operatorname{tr}(XY) = 0$ for all $X \in \mathfrak{g}'$ and all $Y \in \mathfrak{m}$.

Now \mathfrak{g}' is spanned by the brackets [Z, W], for all $Z, W \in \mathfrak{g}$. Suppose that $Y \in \mathfrak{m}$. By Lemma 6.3.6, tr ([Z, W]Y) = tr(Z[W, Y]) = tr([W, Y]Z). But $[W, Y] \in \mathfrak{g}'$ (by the definition of \mathfrak{m}). So, by our underlined hypothesis above, tr ([W, Y]Z) = 0.

This shows that $\operatorname{tr}(XY) = 0$ for all generators X = [Z, W] of \mathfrak{g}' and all $Y \in \mathfrak{m}$. Since the trace is linear, we conclude that $\operatorname{tr}(XY) = 0$ for all $X \in \mathfrak{g}'$ and $Y \in \mathfrak{m}$. Hence, by Lemma 6.3.5, each $X \in \mathfrak{g}'$ is nilpotent, and the theorem is proved. **Corollary 6.3.8.** (Cartan's Criterion for $\mathfrak{gl}(V)$, V real.) Let V be a vector space over \mathbb{R} , and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$. Then \mathfrak{g} is solvable if and only if tr(XY) = 0 for all $X \in \mathfrak{g}'$ and all $Y \in \mathfrak{g}$.

Proof. Let $B = (v_1, \ldots, v_n)$ be a fixed basis of V. Then B is also a complex basis of V^c . As remarked earlier, the map $T \mapsto M_{B,B}(T)$ is a Lie algebra isomorphism of $\mathfrak{gl}(V)$ onto $\mathfrak{gl}(n, \mathbb{R})$ and $\mathfrak{gl}(V^c)$ onto $\mathfrak{gl}(n, \mathbb{C})$. Thus it suffices to prove this corollary for Lie subalgebras \mathfrak{g} of $\mathfrak{gl}(n, \mathbb{R})$.

The derived algebra $(\mathfrak{g}^c)'$ is the linear span of elements of the form $[X_1+iX_2, Y_1+iY_2] = [X_1, X_2] - [Y_1, Y_2] + i([X_1, Y_2] + [X_2, Y_1])$, where the $X_i, Y_j \in \mathfrak{g}$, and from this it is not hard to see that $(\mathfrak{g}^c)' = (\mathfrak{g}')^c$. By induction, we conclude that $(\mathfrak{g}^c)^{(r)} = (\mathfrak{g}^{(r)})^c$. This in turn shows that \mathfrak{g} is solvable $\iff \mathfrak{g}^c$ is solvable.

Now if \mathfrak{g} is solvable, then \mathfrak{g}^c is a solvable Lie subalgebra of $\mathfrak{gl}(n, \mathbb{C})$. Hence by Theorem 6.3.7, $\operatorname{tr}(XY) = 0$ for all $X \in (\mathfrak{g}^c)'$ and all $Y \in \mathfrak{g}^c$. In particular, $\operatorname{tr}(XY) = 0$ for all $X \in \mathfrak{g}'$ and $Y \in \mathfrak{g}$.

Conversely, suppose that $\operatorname{tr}(XY) = 0$ for all $X \in \mathfrak{g}'$ and $Y \in \mathfrak{g}$. We want to prove that $\operatorname{tr}(ZW) = 0$ for all $Z \in (\mathfrak{g}^c)'$ and all $W \in \mathfrak{g}^c$. But then we can resolve Z into its real and imaginary components: $Z = X_1 + iX_2$, where $X_1, X_2 \in \mathfrak{g}'$. Likewise, $W = Y_1 + iY_2$, with $Y_1, Y_2 \in \mathfrak{g}$. Thus $\operatorname{tr}(ZW) =$ $\operatorname{tr}(X_1Y_1 - X_2Y_2) + i\operatorname{tr}(X_1Y_2 + X_2Y_1) = 0$. By Theorem 6.3.7, we conclude that \mathfrak{g}^c is solvable, and hence \mathfrak{g} also is.

We are now ready to prove Cartan's criterion for solvability.

Proof of Theorem 6.1.3: Suppose first that \mathfrak{g} is solvable. Then $\operatorname{ad} \mathfrak{g}$ is solvable as the homomorphic image of a solvable algebra. Thus $\operatorname{ad} \mathfrak{g}$ is a solvable subalgebra of $\mathfrak{gl}(\mathfrak{g})$, and so by the "only if" part of Theorem 6.3.7 (for $\mathbb{F} = \mathbb{C}$) or Corollary 6.3.8 (for $\mathbb{F} = \mathbb{R}$), we conclude that $B(x, y) = \operatorname{tr} (\operatorname{ad} x \circ \operatorname{ad} y) = 0$ for all $x \in [\mathfrak{g}, \mathfrak{g}]$ and all $y \in \mathfrak{g}$.

Conversely, suppose that B(x, y) = 0 for all $x \in \mathfrak{g}'$ and all $y \in \mathfrak{g}$. This translates to the condition that tr $(\operatorname{ad} x \circ \operatorname{ad} y) = 0$ for all $\operatorname{ad} x \in \operatorname{ad}[\mathfrak{g}, \mathfrak{g}]$ and all $\operatorname{ad} y \in \operatorname{ad} \mathfrak{g}$. By the "if" part of Theorem 6.3.7 or Corollary 6.3.8, we conclude that $\operatorname{ad} \mathfrak{g}$ is a solvable subalgebra of $\mathfrak{gl}(\mathfrak{g})$. But $\operatorname{ad} \mathfrak{g} = \mathfrak{g}/\mathfrak{c}$, so, since \mathfrak{c} is obviously solvable, Proposition 4.1.10 implies that \mathfrak{g} is solvable.

The argument above can be summarized in the following string of equivalences, using Proposition 4.1.10 in the first step:

 \mathfrak{g} is solvable \iff ad $\mathfrak{g} \cong \mathfrak{g}/\mathfrak{c}$ is a solvable subalgebra of $\mathfrak{gl}(\mathfrak{g}) \iff$ tr (ad $x \circ$ ad y) = 0 for all ad $x \in (\operatorname{ad} \mathfrak{g})'$ and all ad $y \in \operatorname{ad} \mathfrak{g} \iff$ tr (ad $x \circ \operatorname{ad} y) = 0$ for all $x \in \mathfrak{g}'$ and all $y \in \mathfrak{g} \iff B(x, y) = 0$ for all $x \in \mathfrak{g}'$ and all $y \in \mathfrak{g}$.

6.4 Cartan's Criterion for Semisimplicity

We've already seen that the Killing form B on a Lie algebra \mathfrak{g} over \mathbb{F} is an \mathbb{F} -valued symmetric bilinear form. The following lemma gives an invariance property satisfied by B:

Lemma 6.4.1. The Killing form B satisfies the property that

$$B([x,y],z) = B(x,[y,z])$$
(6.7)

for all $x, y, z \in \mathfrak{g}$.

Proof. By Lemma 6.3.6, we have

$$\operatorname{tr}\left(\left[\operatorname{ad} x, \operatorname{ad} y\right] \circ \operatorname{ad} z\right) = \operatorname{tr}\left(\operatorname{ad} x \circ \left[\operatorname{ad} y, \operatorname{ad} z\right]\right),$$

and so

$$\operatorname{tr}\left(\operatorname{ad}[x, y] \circ \operatorname{ad} z\right) = \operatorname{tr}\left(\operatorname{ad} x \circ \operatorname{ad}[y, z]\right),$$

which implies the result.

The radical of B is the subspace of \mathfrak{g} given by $\mathfrak{g}^{\perp} := \{x \in \mathfrak{g} | B(x, y) = 0 \text{ for all } y \in \mathfrak{g}\}$. Note that by Theorem 1.10.5, B is nondegenerate if and only if $\mathfrak{g}^{\perp} = \{0\}$.

Corollary 6.4.2. \mathfrak{g}^{\perp} is an ideal of \mathfrak{g} .

Proof. Let $x \in \mathfrak{g}^{\perp}$. Then for all $y \in \mathfrak{g}$, we claim that $[x, y] \in \mathfrak{g}^{\perp}$. This is easy: for any $z \in \mathfrak{g}$, we have B([x, y], z) = B(x, [y, z]) = 0, so it follows that $[x, y] \in \mathfrak{g}^{\perp}$

Proposition 6.4.3. Let \mathfrak{g} be a Lie algebra over \mathbb{F} and \mathfrak{a} an ideal of \mathfrak{g} . If $B_{\mathfrak{a}}$ denotes the Killing form of the Lie algebra \mathfrak{a} , then $B_{\mathfrak{a}}(x,y) = B(x,y)$ for all $x, y \in \mathfrak{a}$. Thus, $B_{\mathfrak{a}}$ equals the restriction of B to $\mathfrak{a} \times \mathfrak{a}$.

Proof. Let \mathfrak{r} be any subspace of \mathfrak{g} complementary to \mathfrak{a} , so that $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{r}$. Next let B' and B'' be bases of \mathfrak{a} and \mathfrak{r} , respectively. If x and y belong to \mathfrak{a} , then ad x and ad y both map \mathfrak{g} to \mathfrak{a} ; thus, relative to the basis (B', B'') of \mathfrak{g} , the matrices of ad x and ad y have block form

ad
$$x = \begin{pmatrix} R_1 & S_1 \\ 0 & 0 \end{pmatrix}$$
 and ad $y = \begin{pmatrix} R_2 & S_2 \\ 0 & 0 \end{pmatrix}$,

respectively. In the above, R_1 is the matrix of the restriction ad $x|_{\mathfrak{a}}$ with respect to the basis B' of \mathfrak{a} . Likewise, R_2 is the matrix of ad $y|_{\mathfrak{a}}$ with respect to B'. Hence

$$B(x, y) = \operatorname{tr} \operatorname{ad} x \circ \operatorname{ad} y$$

= $\operatorname{tr} \begin{pmatrix} R_1 R_2 & R_1 S_2 \\ 0 & 0 \end{pmatrix}$
= $\operatorname{tr} (R_1 R_2)$
= $\operatorname{tr} \operatorname{ad} x|_{\mathfrak{a}} \circ \operatorname{ad} y|_{\mathfrak{a}}$
= $B_{\mathfrak{a}}(x, y).$

Example 6.4.4. In Example 3.4.1, we saw that for the basis (e, f, h) of $\mathfrak{sl}(2, \mathbb{C})$, we could represent ad e, ad f, and ad h by the following matrices relative to this basis:

ad
$$e = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, ad $f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}$, ad $h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Thus,

$$B(e, e) = \operatorname{tr} \left(\operatorname{ad} e \circ \operatorname{ad} e \right) = \operatorname{tr} \left(\begin{array}{ccc} 0 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) = 0$$
$$B(e, f) = \operatorname{tr} \left(\operatorname{ad} e \circ \operatorname{ad} f \right) = \operatorname{tr} \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{array} \right) = 4$$
$$B(e, h) = \operatorname{tr} \left(\operatorname{ad} e \circ \operatorname{ad} h \right) = \operatorname{tr} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 0 \end{array} \right) = 0$$
$$B(f, f) = \operatorname{tr} \left(\operatorname{ad} f \circ \operatorname{ad} f \right) = \operatorname{tr} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 0 \end{array} \right) = 0$$
$$B(f, h) = \operatorname{tr} \left(\operatorname{ad} f \circ \operatorname{ad} f \right) = \operatorname{tr} \left(\begin{array}{ccc} 0 & 0 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) = 0$$
$$B(f, h) = \operatorname{tr} \left(\operatorname{ad} f \circ \operatorname{ad} f \right) = \operatorname{tr} \left(\begin{array}{ccc} 0 & 0 & 0 \\ -2 & 0 & 0 \\ -2 & 0 & 0 \end{array} \right) = 0$$
$$B(h, h) = \operatorname{tr} \left(\operatorname{ad} f \circ \operatorname{ad} f \right) = \operatorname{tr} \left(\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{array} \right) = 8$$

Thus the matrix of the bilinear form B with respect to (e, f, h) is

$$\left(\begin{array}{rrr} 0 & 4 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 8 \end{array}\right).$$

The determinant of this matrix is $-128 \neq 0$. Thus, by Theorem 1.10.5, B is nondegenerate.

Lemma 6.4.5. Let \mathfrak{g} be a Lie algebra over \mathbb{F} , and let \mathfrak{a} be an ideal of \mathfrak{g} . Then the derived series $\mathfrak{a} \supset \mathfrak{a}' \supset \mathfrak{a}^{(2)} \supset \cdots$ consists of ideals of \mathfrak{g} .

Proof. This is an easy induction. Certainly, $\mathfrak{a} = \mathfrak{a}^{(0)}$ is an ideal of \mathfrak{g} by hypothesis. Then, assuming that $\mathfrak{a}^{(r)}$ is an ideal of \mathfrak{g} , we have

$$\begin{split} [\mathfrak{a}^{(r+1)},\mathfrak{g}] &= [[\mathfrak{a}^{(r)},\mathfrak{a}^{(r)}],\mathfrak{g}] \\ &= [[\mathfrak{a}^{(r)},\mathfrak{g}],\mathfrak{a}^{(r)}] & \text{(by the Jacobi identity)} \\ &\subset [\mathfrak{a}^{(r)},\mathfrak{a}^{(r)}] & \text{(by the induction hypothesis)} \\ &= \mathfrak{a}^{(r+1)}, \end{split}$$

so $\mathfrak{a}^{(r+1)}$ is an ideal of \mathfrak{g} .

Lemma 6.4.6. Let \mathfrak{g} be a Lie algebra over \mathbb{F} . Then \mathfrak{g} is semisimple if and only if \mathfrak{g} has no abelian ideals $\mathfrak{a} \neq \{0\}$.

Proof. Suppose that \mathfrak{g} is semisimple. Any abelian ideal \mathfrak{a} of \mathfrak{g} is solvable, so $\mathfrak{a} \subset \mathcal{R}_s = \{0\}$, and thus $\mathfrak{a} = \{0\}$.

Conversely, suppose that \mathfrak{g} is not semisimple. Then the solvable radical $\mathcal{R}_s \neq \{0\}$. Let $\mathcal{R}_s \supseteq \mathcal{R}'_s \supseteq \cdots \supseteq \mathcal{R}^{(k)}_s \supseteq \{0\}$ be the derived series for \mathcal{R}_s . By the preceding lemma, each of the $\mathcal{R}^{(i)}_s$ is an ideal of \mathfrak{g} . The last non-zero ideal $\mathcal{R}^{(k)}_s$ is thus a non-zero abelian ideal of \mathfrak{g} . Thus, \mathfrak{g} has non-zero abelian ideals. \Box

We are now ready to prove Cartan's criterion for semisimplicity:

Proof of Theorem 6.1.4: To avoid the obvious triviality, we may assume that $\mathfrak{g} \neq \{0\}$. Suppose first that \mathfrak{g} is a Lie algebra over \mathbb{F} such that B is nondegenerate. To prove that \mathfrak{g} is semisimple, it suffices, by Lemma 6.4.6, to prove that \mathfrak{g} has no non-zero abelian ideals. Suppose that \mathfrak{a} is an abelian ideal. then for $x \in \mathfrak{a}$ and $y, z \in \mathfrak{g}$, we have

$$(\operatorname{ad} x \circ \operatorname{ad} y)^2(z) = [x, [y, [x, [y, z]]]] \in [\mathfrak{a}, \mathfrak{a}] = \{0\},\$$

so $(\operatorname{ad} x \circ \operatorname{ad} y)^2 = 0$. Thus, $\operatorname{ad} x \circ \operatorname{ad} y$ is nilpotent. This implies that tr $(\operatorname{ad} x \circ \operatorname{ad} y) = 0$. (See equation 1.17.) Hence B(x, y) = 0 for all $x \in \mathfrak{a}$ and all $y \in \mathfrak{g}$. Therefore, $\mathfrak{a} \subset \mathfrak{g}^{\perp} = \{0\}$, and so $\mathfrak{a} = \{0\}$. Hence any abelian ideal of \mathfrak{g} is $\{0\}$, and so \mathfrak{g} is semisimple.

Conversely, suppose that \mathfrak{g} is semisimple. We need to show in this case that $\mathfrak{g}^{\perp} = \{0\}$. Now by definition, B(x, y) = 0 for all $x \in \mathfrak{g}^{\perp}$ and $y \in \mathfrak{g}$. Hence

B(x,y) = 0 for all $x \in \mathfrak{g}^{\perp}$ and $y \in [\mathfrak{g}^{\perp}, \mathfrak{g}^{\perp}]$. By Proposition 6.4.3, we see that $B_{\mathfrak{g}^{\perp}}(x,y) = 0$ for all $x \in \mathfrak{g}^{\perp}$ and $y \in [\mathfrak{g}^{\perp}, \mathfrak{g}^{\perp}]$. Then by Cartan's solvability criterion (Theorem 6.1.3), we see that \mathfrak{g}^{\perp} is solvable. Since it is an ideal by Corollary 6.4.2, it follows that $\mathfrak{a} \subset \mathcal{R}_s = \{0\}$, and so B is nondegenerate. \Box

Corollary 6.4.7. Let \mathfrak{g} be a Lie algebra over \mathbb{R} . Then \mathfrak{g} is semisimple $\iff \mathfrak{g}^c$ is semisimple.

Proof. Let B and B^c denote the Killing forms on \mathfrak{g} and \mathfrak{g}^c , respectively. Then it suffices to prove that B is nondegenerate $\iff B^c$ is nondegenerate. Note that $B^c(X,Y) = B(X,Y)$ if X and Y are in \mathfrak{g} .

Using this last observation, it is not hard to see that $(\mathfrak{g}^{\perp})^c = (\mathfrak{g}^c)^{\perp}$, so $\mathfrak{g}^{\perp} = \{0\} \iff (\mathfrak{g}^c)^{\perp} = \{0\}$.

Exercise 6.4.8. Suppose that \mathfrak{g} is a Lie algebra over \mathbb{C} . Let $\mathfrak{g}_{\mathbb{R}}$ be the Lie algebra \mathfrak{g} considered as a real Lie algebra. Prove that \mathfrak{g} is semisimple $\iff \mathfrak{g}_{\mathbb{R}}$ is semisimple.

We next consider a slight variant of the Killing form, called the *trace form*, on Lie algebras of linear operators.

Let V be a vector space over \mathbb{F} , and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$. The *trace* form on \mathfrak{g} is the symmetric bilinear form $(X, Y) \mapsto \operatorname{tr}(XY)$, for all $X, Y \in \mathfrak{g}$.

Proposition 6.4.9. Let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$. If \mathfrak{g} is semisimple, then its trace form is nondegenerate.

Proof. The proof is similar to that of Theorem 6.1.4. Let $\mathcal{I} = \{X \in \mathfrak{g} | \operatorname{tr} (XY) = 0 \text{ for all } Y \in \mathfrak{g}\}$. Then it follows easily from Lemma 6.3.6 that \mathcal{I} is an ideal of \mathfrak{g} .

For any $X \in [\mathcal{I}, \mathcal{I}]$ and $Y \in \mathcal{I}$, we have tr (XY) = 0. Hence by Theorem 6.3.7 and Corollary 6.3.8, \mathcal{I} is solvable, and so $\mathcal{I} = \{0\}$. Thus the trace form is nondegenerate.

Exercise 6.4.10. Is the converse true? Explicitly, suppose that the trace form on $\mathfrak{g} \subset \mathfrak{gl}(V)$ is nondegenerate. Is \mathfrak{g} semisimple? Prove or give a counterexample.

We conclude this section by calculating the Killing form on the Lie algebras $\mathfrak{gl}(n,\mathbb{C}), \mathfrak{gl}(n,\mathbb{R}), \text{ and } \mathfrak{sl}(n,\mathbb{R}).$

Example 6.4.11. (The Killing form on $\mathfrak{gl}(n, \mathbb{C})$.) This example requires a little background (just a tiny bit!) in basic analysis. We will use the steps below to prove that the Killing form on $\mathfrak{gl}(n, \mathbb{C})$ is given by the formula

$$B(X,Y) = 2n \operatorname{tr} (XY) - 2 \operatorname{tr} X \cdot \operatorname{tr} Y \qquad (X, Y \in \mathfrak{gl}(n,\mathbb{C})) \qquad (6.8)$$

1. Let $\mathcal{O} = \{X \in \mathfrak{gl}(n, \mathbb{C}) \mid \text{ each eigenvalue of } X \text{ has multiplicity } 1\}$. We claim that \mathcal{O} is dense in $\mathfrak{gl}(n, \mathbb{C})$.

To prove this, recall that $\mathfrak{gl}(n,\mathbb{C})$ is just $\mathbb{C}^{n^2} = \mathbb{C}^{n \times n}$. The standard inner product is just the Hilbert-Schmidt inner product:

$$\langle X, Y \rangle = \operatorname{tr} \left(X^{t} \overline{Y} \right) \qquad (X, Y \in \mathfrak{gl}(n, \mathbb{C}).)$$

(See Example 1.11.2.) The resulting (standard) metric is

$$||X - Y|| = \left\{ \sum_{j=1}^{n} \sum_{k=1}^{n} |X_{jk} - Y_{jk}|^2 \right\}^{1/2}.$$

If T is a fixed non-singular $n \times n$ complex matrix, then the conjugation map $c_T : X \mapsto TXT^{-1}$ is a linear operator on $\mathfrak{gl}(n, \mathbb{C})$, and hence is continuous. Since c_T is bijective (with inverse $c_{T^{-1}}$), it is a homeomorphism. Moreover, since the eigenvalues of a matrix are preserved under conjugation, we see that $c_T(\mathcal{O}) = \mathcal{O}$.

Suppose now that $X \in \mathfrak{gl}(n, \mathbb{C})$. Then by Theorem 1.6.2, X is conjugate to an upper triangular matrix Y. There is a sequence $\{Y_l\}$ of upper triangular matrices converging to Y such that each Y_l has distinct diagonal entries. (The matrices Y_l are obtained by slightly perturbing the diagonal entries of Y.) This is a sequence in \mathcal{O} converging to Y, and by taking the inverse conjugation, we obtain a sequence $\{X_l\}$ in \mathcal{O} converging to X. This proves that \mathcal{O} is dense in $\mathfrak{gl}(n, \mathbb{C})$.

2. By the Jordan canonical form (Theorem 1.8.5) (or even just the general block diagonal form in Proposition 1.8.2), each matrix in \mathcal{O} is diagonalizable. Thus the diagonalizable matrices are dense in $\mathfrak{gl}(n, \mathbb{C})$.

(This is not true, by the way, in $\mathfrak{gl}(n,\mathbb{R})$. That is, the set of matrices in $\mathfrak{gl}(n,\mathbb{R})$ conjugate to a real diagonal matrix is not dense. To see this, note that the coefficients of the characteristic polynomial of a matrix $X \in \mathfrak{gl}(n,\mathbb{R})$ are polynomials in the entries of X. Thus a slight perturbation of the matrix entries in X will result in a slight perturbation of its characteristic polynomial. If the characteristic polynomial of X has an irreducible quadratic factor, so does the characteristic polynomial of any slight perturbation of X.)

3. We will show that

$$B(H,H) = 2n \operatorname{tr} (H^2) - 2 (\operatorname{tr} H)^2$$
(6.9)

for any diagonalizable $H \in \mathfrak{gl}(n, \mathbb{C})$. Since the diagonalizable matrices are dense and since the trace function is continuous, (6.9) will then hold for any $H \in \mathfrak{gl}(n, \mathbb{C})$. Polarizing (6.9) (i.e., replacing H by X + Y and X - Y and then adding the resulting equalities), we can conclude that the trace formula (6.8) holds for all $X, Y \in \mathfrak{gl}(n, \mathbb{C})$.

Let us now prove (6.9). Since B(H, H), tr H, and tr (H^2) are all unchanged when H is replaced by any of its conjugates, we can assume that H is diagonal:

$$H = \left(\begin{array}{ccc} h_1 & & & \\ & h_2 & & \\ & & \ddots & \\ & & & & h_n \end{array} \right)$$

Let E_{jk} be the elementary $n \times n$ matrix whose (j, k)-entry is 1, and all of whose other entries are 0. Then a simple computation shows that

$$\operatorname{ad} H(E_{jk}) = (h_j - h_k)E_{jk}$$

so the set $\{E_{jk}\}$ is a basis of $\mathfrak{gl}(n,\mathbb{C})$ consisting of eigenvectors of ad H. Hence

$$B(H, H) = \operatorname{tr} (\operatorname{ad} H)^{2}$$

= $\sum_{j=1}^{n} \sum_{k=1}^{n} (h_{j} - h_{k})^{2}$
= $\sum_{j=1}^{n} \sum_{k=1}^{n} (h_{j}^{2} + h_{k}^{2}) - 2 \sum_{j=1}^{n} \sum_{k=1}^{n} h_{j}h_{k}$
= $2n \sum_{j=1}^{n} h_{j}^{2} - 2 \left(\sum_{j=1}^{n} h_{j}\right) \left(\sum_{k=1}^{n} h_{k}\right)$
= $2n \operatorname{tr} (H^{2}) - 2 (\operatorname{tr} H)^{2}$.

This proves (6.9), and the Killing form trace formula (6.8).

In the example above, we can avoid appealing to analysis by observing that the real Lie algebra u(n) of (complex) $n \times n$ skew-Hermitian matrices is a real form of $gl(n, \mathbb{C})$. If $X \in u(n)$, then X is normal, so there is a unitary $n \times n$ matrix u such that $H = uXu^{-1}$ is diagonal. Note that H also belongs to u(n). Since H is diagonal, the formula (6.9) for B(H, H) applies. Conjugating back to X, we see that formula (6.9) holds for B(X, X). We then polarize to get formula (6.8) for all X and Y in u(n), and then use the \mathbb{C} -bilinearity of both sides in that formula (as well as the fact that u(n) is a real form) to conclude that (6.8) in fact holds for all X and Y in $\mathfrak{gl}(n, \mathbb{C})$.

Example 6.4.12. (The Killing form on $\mathfrak{gl}(n,\mathbb{R})$.) The complexification of $\mathfrak{gl}(n,\mathbb{R})$ is (obviously) $\mathfrak{gl}(n,\mathbb{C})$. If B and B^c are the Killing forms on $\mathfrak{gl}(n,\mathbb{R})$ and $\mathfrak{gl}(n,\mathbb{C})$, respectively, the proof of Corollary 6.4.7 shows that $B(X,Y) = B^c(X,Y)$ for all $X, Y \in \mathfrak{gl}(n,\mathbb{R})$. Thus the Killing form on $\mathfrak{gl}(n,\mathbb{R})$ is also given by (6.8).

Example 6.4.13. (The Killing form on $\mathfrak{sl}(n, \mathbb{C})$ and $\mathfrak{sl}(n, \mathbb{R})$.) Since tr [X, Y] = 0 for all $X, Y \in \mathfrak{gl}(n, \mathbb{C})$, we see that $\mathfrak{sl}(n, \mathbb{C})$ is an ideal of $\mathfrak{gl}(n, \mathbb{C})$. Thus the

Killing form on $\mathfrak{sl}(n,\mathbb{C})$ is the restriction of the Killing form on $\mathfrak{gl}(n,\mathbb{C})$ to $\mathfrak{sl}(n,\mathbb{C}) \times \mathfrak{sl}(n,\mathbb{C})$. Formula (6.8)then gives the Killing form on $\mathfrak{sl}(n,\mathbb{C})$:

$$B(X,Y) = 2n \operatorname{tr} (XY) \qquad (X, Y \in \mathfrak{sl}(n,\mathbb{C}).) \tag{6.10}$$

This is also the Killing form on $\mathfrak{sl}(n,\mathbb{R})$.

Later in Section ??, we will obtain the Killing form on $\mathfrak{sl}(n,\mathbb{C})$ by a method that doesn't use analysis.

Proposition 6.4.14. The Lie algebras $\mathfrak{sl}(n,\mathbb{R})$ and $\mathfrak{sl}(n,\mathbb{C})$ are semisimple.

For $\mathfrak{sl}(n, \mathbb{C})$, it is enough to note that if $X \in \mathfrak{sl}(n, \mathbb{C})$, then so is ${}^{t}\overline{X}$. Then $B(X, {}^{t}\overline{X}) = 2n \operatorname{tr}(X {}^{t}\overline{X})$ is the Hilbert-Schmidt norm of X. This easily implies that B is nondegenerate.

By Corollary 6.4.7, $\mathfrak{sl}(n,\mathbb{R})$ is also semisimple. Note that $\mathfrak{gl}(n,\mathbb{C})$ and $\mathfrak{gl}(n,\mathbb{R})$ are not semisimple, since their centers contain the multiples of the identity matrix, hence are non-zero.

According to Example 3.3.7, the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ is simple. It turns out (and we will show later!) that the Lie algebras $\mathfrak{sl}(n,\mathbb{F})$ are simple for $n \geq 2$.

Exercise 6.4.15. Show that the center of $\mathfrak{gl}(n, \mathbb{F})$ is one-dimensional.

108CHAPTER 6. CARTAN'S CRITERIA FOR SOLVABILITY AND SEMISIMPLICITY