
Chapter 6

Cartan’s Criteria for
Solvability and
Semisimplicity

In this section we define an important symmetric bilinear form on a Lie algebra
g and derive conditions on this form which are necessary and sufficient for g to
be solvable, as well as conditions on the form which are necessary and sufficent
for g to be semisimple.

6.1 The Killing Form

For any elements x and y of g, the map adx ◦ ad y is a linear operator on g, so
we may consider its trace.

Definition 6.1.1. Let g be a Lie algebra over F. The Killing form on g is the
map

B : g× g → F
(x, y) 7→ tr (adx ◦ ad y) (6.1)

Thus, B(x, y) = tr (adx ◦ ad y).

Note that B(y, x) = tr (ad y ◦ adx) = tr (adx ◦ ad y) = B(x, y), so the Killing
form B is symmetric.

Since the adjoint map ad and the trace are linear, it is also easy to see that
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B(x, y) is a bilinear form:

B(αx1 + βx2, y) = tr (ad(c x1 + x2) ◦ ad y)
= tr ((α adx1 + β adx2) ◦ ad y)
= α tr (adx1 ◦ ad y) + βtr (adx2 ◦ ad y)
= αB(x1, y) + βB(x2, y),

for all x1, x2, y ∈ g, and all α, β ∈ F. (The linearity of B in the second argument
follows from its the above and the fact that B is symmetric.)

Exercise 6.1.2. (Graduate Exercise.) Suppose that g is the Lie algebra of a
compact Lie group G. Prove that B is negative semidefinite; i.e., B(x, x) ≤ 0
for all x ∈ g. If c = {0}, show that B is negative definite. (Hint: There exists
an inner product Q on g invariant under adG: B(Ad g (x),Ad g (y)) = B(x, y)
for all x, y ∈ g and all g ∈ G.)

Our objective in this section is to prove the following theorems.

Theorem 6.1.3. (Cartan’s Criterion for Solvability) Let g be a Lie algebra over
F. Then g is solvable if and only if B(x, y) = 0 for all x ∈ [g, g] and y ∈ g.

Theorem 6.1.4. (Cartan’s Criterion for Semisimplicity) Let g be a Lie algebra
over F. Then g is semisimple if and only if the Killing form B is nondegenerate.

We will first prove Theorem 6.1.3 for complex Lie subalgebras of gl (V ), where
V is a complex vector space. Then, in order to prove it for real Lie algebras,
we will need to use the notion of complexification. Theorem 6.1.4 will then
essentially be a corollary of Theorem 6.1.3.

Let us now develop the necessary machinery.

6.2 The Complexification of a Real Lie Algebra

A vector space V over R is said to have a complex structure if there is a J ∈ L(V )
such that J2 = −IV . Note that, by definition, J is R-linear, and that the
condition J2 = −IV means that it is invertible. Note also that J has no real
eigenvalues, since its only possible eigenvalues are ±i.

The operator J turns the vector space V into a complex vector space in which
scalar multiplication by z = α+ βi (with α, β ∈ R) is given by

(α+ βi) v = α v + β Jv, (6.2)

for all v ∈ V . The routine verification that V is indeed a complex vector space
will be left to the reader.



6.2. THE COMPLEXIFICATION OF A REAL LIE ALGEBRA 93

Example 6.2.1. For any real vector space U , let V be the external direct sum
V = U ⊕U . Then the linear operator J on V given by J (u1, u2) = (−u2, u1) is
a complex structure on V . Since (u1, u2) = (u1, 0)+J(u2, 0) = (u1, 0)+ i(u2, 0),
it is often convenient to identify U with the subspace {(u, 0) |u ∈ U}, and thus
write the element (u1, u2) as u1+Ju2. Since V now has a complex vector space
structure, we call V the complexification of U , and denote it by U c.

Note: Complexification can also be carried out using tensor products: V =
U ⊗R C, but we’ll not go through this route.

Suppose that J is a complex structure on a real vector space V . Then V becomes
a complex vector space, with scalar multiplcation given by (6.2) above. Since
any R-spanning set in V is also a C-spanning set, it is obvious that V is finite-
dimensional as a complex vector space. Now let (u1, . . . , un) be a C-basis of V .
Then (u1, . . . , un, Ju1, . . . , Jun) is an R-basis of V : in fact, any v ∈ V can be
written as a unique linear combination

v =

nX

j=1

(αj + iβj)uj =

nX

j=1

αj uj +

nX

j=1

βj Juj (αj ,βj ∈ R)

Now if we let U be the real subspace Ru1+· · ·+Run of V , we see that V = U⊕JU
(as a real vector space), and is thus easy to see that V ∼= U c. In particular,
dimR V = 2n = 2dimC V , so any real vector space with a complex structure is
even-dimensional over R. The subspace U is called a real form of V .

Of course, any complex vector space V is a real vector space equipped with a
complex structure: Jv = iv, for all v ∈ V . In the future, we will nonetheless
have occasion to complexify a complex vector space (considered as a real vector
space) using the construction in Example 6.2.1.

So suppose that U is a complex vector space. Considering U as a real vector
space, we can then complexify U in accordance with Example 6.2.1. Now the
external direct sum U c = U ⊕ U = U × U is already a complex vector space,
since each factor is a complex vector space. The complex structure J on U ⊕U
commutes with multiplication by i, since

J(i(u1, u2)) = J(iu1, iu2) = (−iu2, iu1) = i(−u2, u1) = iJ(u1, u2).

Thus J is a C-linear map on U ⊕ U . U ⊕ U decomposes into a direct sum of
±i-eigenspaces of J :

(u1, u2) =
1

2
(u1 + iu2, u2 − iu1) +

1

2
(u1 − iu2, u2 + iu1),

so
U c = {(v,−iv) | v ∈ U} ⊕ {(w, iw) |w ∈ U}.

If U is a real form of complex vector space V , we define the conjugation τU
of V with respect to U as follows: for any v ∈ V , we can write v uniquely as
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v = u1 + iu2, where u1, u2 ∈ U ; put τU (v) = u1 − iu2. Then τU is an R-linear
map of V satisfying τ2U = IV . It is easy to check that τU is conjugate-linear:
τU (zv) = z τU (v), for all v ∈ V and z ∈ C.

Exercise 6.2.2. (i) Suppose that T is a C-linear operator on a complex vector
space V . Show that if TR denotes T considered as an R-linear operator on V ,
then tr (TR) = 2Re(tr (T )). (ii) Next suppose that T is an R-linear operator
on a real vector space U . Show that T has a unique natural extension T c to a
C-linear map on U c, and that tr (Tc) = tr (T ).

Now suppose that g is a real Lie algebra equipped with a complex structure
J . J is said to be compatible with the Lie bracket in g if [Jx, y] = J [x, y]
for all x, y ∈ g. (Then, of course [x, Jy] = J [x, y] for all x, y.) If g is given
the complex vector space structure from (6.2), then multiplication by complex
scalars commutes with the Lie bracket, since

i [x, y] = J [x, y] = [Jx, y] = [ix, y] = [x, Jy] = [x, iy].

Hence, g has the structure of a complex Lie algebra. Of course, the Lie bracket
of any complex Lie algebra is compatible with its complex structure.

A real form of a complex Lie algebra g is a real Lie subalgebra g0 of g such that
g = g0 ⊕ ig0. (A real form of g (as vector space) is not necessarily a real Lie
subalgebra of g. For example, Re+Rf +Rih is a real form of the vector space
sl(2,C) but is not a real Lie subalgebra.) It is easy to check that if τ denotes
the conjugation of g with respect to g0, then τ [x, y] = [τx, τy], for all x, y ∈ g.

Exercise 6.2.3. Let u(n) denote the Lie algebra of skew-Hermitian matrices;
i.e., u(n) = {X ∈ gl(n,C) | tX = −X}. (See Example 2.1.22.) Prove that u(n)
is a real form of gl(n,C). If τ denotes the conjugation of gl(n,C) with respect
to u(n), show that τ(X) = −tX for all X ∈ gl(n,C).

Next, suppose that g0 is a real Lie algebra. The Lie bracket in g0 can be
extended to its vector space complexification g = gc0 = g0 ⊕ Jg0 via

[x1 + Jx2, y1 + Jy2] = [x1, y1]− [x2, y2] + J([x1, y2] + [x2, y1]).

The operation above is R-bilinear and can be routinely verified to be anticom-
mutative and to satisfy the Jacobi identity. Moreover

J [x1 + Jx2, y1 + Jy2] = −([x1, y2] + [x2, y1]) + J([x1, y1]− [x2, y2])

= [−x2 + Jx1, y1 + Jy2]

= [J(x1 + Jx2), y1 + Jy2],

and so it follows that this extension of the Lie bracket to g is C-bilinear. Thus
the complexification g has the structure of a complex Lie algebra, and of course,
g0 is a real form of g.
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Example 6.2.4. It is obvious that gl(n,R) is a real form of gl(n,C). We can
express this as (gl(Rn))c = gl(Cn). Now any real vector space V is (duh) a
real form of its complexification V c. If we fix a basis B of V , then the map
T 7→ MB,B(T ) identifies gl(V ) with gl(n,R). Complexifying this identification,
we see that (gl(V ))c ∼= (gl(Rn))c ∼= gl(Cn) ∼= gl(V c). This identification of
(gl(V ))c with gl(V c) is concretely given by

(T1 + iT2) (v1 + iv2) = T1v1 − T2v2 + i(T1v2 + T2v1),

for all T1, T2 ∈ gl(V ) and all v1, v2 ∈ V .

If g is a Lie subalgebra of gl(V ), then its complexification gc may be viewed as
a complex Lie subalgebra of gl(V c).

Exercise 6.2.5. Let g be a complex Lie algebra, and let gR denote g, considered
as a real Lie algebra. If B and BR are the Killing forms on g and gR, respectively,
show that BR(x, y) = 2Re (B(x, y), for all x, y ∈ g. Then show that B is
nondegenerate ⇐⇒ BR is nondegenerate.

(Note: If you don’t know anything about Lie groups, you may safely skip this
paragraph.) A real Lie algebra u is said to be compact if u is the Lie algebra of a
compact Lie goup U . Here are two interesting and useful facts about compact
Lie algebras (cf. [?], Chapter 3):

1. If u is compact, then u = c⊕ [u, u], where c is the center of u and [u, u] is
compact and semisimple.

2. Any complex semisimple Lie algebra g has a compact real form u. This
remarkable fact is a cornerstone of representation theory. In a later section,
we will consider how to obtain such a real form.

6.3 Cartan’s Criterion for Solvability

Lemma 6.3.1. Let V be a vector space over C, and let X ∈ gl(V ). If X is
semisimple, then so is adX. If X is nilpotent, then so is adX.

Proof. If X is nilpotent, then so is adX by Step 1 in the proof of Lemma 5.2.2.

Suppose that X is semisimple. Let B = (v1, . . . , vn) be a basis of of V consisting
of eigenvectors of X, corresponding to the eigenvalues λ1, . . . ,λn, respectively.
Next, we abuse notation and let, for any i, j in {1, . . . , n}, Eij be the linear
operator on V whose matrix with respect to B is the elementary matrix Eij :

Eij(vk) := δjk vi
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Then (Eij)1≤i,j≤n is a basis of gl(V ). By matrix multiplication, we see that

[X, Eij ] = (λi − λj) Eij . (6.3)

Thus, each Eij is an eigenvector of adX with eigenvalue λi − λj , and so gl(V )
has basis (Eij) consisting of eigenvectors of adX. Thus adX is semisimple.

Lemma 6.3.2. Suppose that X ∈ gl(V ) has Jordan-Chevalley decomposition
X = Xs+Xn, with Xs semisimple and Xn nilpotent. Then the Jordan-Chevalley
decomposition for adX is adX = adXs + adXn.

Proof. By the preceding lemma, adXs and adXn are semisimple and nilpotent
linear operators on gl(V ), respectively. Moreover, adXs and adXn commute:

[adXs, adXn] = ad[Xs, Xn]

= ad(XsXn −XnXs)

= 0,

since Xs and Xn commute. By the uniqueness of the Jordan-Chevalley de-
composition, it follows that adX = adXs + adXn is the Jordan-Chevalley
decomposition of adX.

Lemma 6.3.3. Let x0, x1, . . . , xn be distinct numbers in F, and let C0, C1, . . . , Cn

be any numbers in F. Then there exists a polynomial P (x) in the variable x,
with coefficients in F, of degree ≤ n, such that P (xi) = Ci, for all i.

Proof. According to the Lagrange Interpolation Formula, this polynomial is
given by

P (x) =

Q
i̸=0(x− xi)Q
i̸=0(x0 − xi)

C0 +

Q
i̸=1(x− xi)Q
i̸=1(x1 − xi)

C1 + · · ·+
Q

i̸=n(x− xi)Q
i̸=n(xn − xi)

Cn

It is easy to see that this P (x) satisfies the properties asserted in the lemma.

Exercise 6.3.4. (Graduate Exercise.) Show that any polynomial satisfying the
conclusion of Lemma 6.3.3 is unique. (Hint: The formula above comes from a
linear system whose coefficient matrix is Vandermonde.)

The following is a technical lemma whose proof features some “out of the box”
thinking.

Lemma 6.3.5. Let V be a vector space over C, and let A ⊂ B be subspaces of
gl(V ). Let m = {X ∈ gl(V ) | [X,B] ⊂ A}. Suppose that some X ∈ m has the
property that tr (XY ) = 0 for all Y ∈ m. Then X is nilpotent.
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Proof. Let S = (v1, . . . , vn) be a Jordan basis of V corresponding to X. If
X = Xs +Xn is the Jordan-Chevalley decomposition of X, then S consists of
eigenvectors of Xs, and the matrix of Xs with respect to S is diagonal, of the
form 


λ1

. . .

λn


 (6.4)

The matrix of Xn with respect to S is strictly upper triangular, with some 1’s
right above the diagonal. We want to show that λi = 0 for all i. This will
establish that Xs = 0, and so X = Xn.

Let E ⊂ C be the vector space over Q (= the rationals) spanned by λ1, . . . ,λn.
We will show that E = {0}. This will, of course, show that each λi = 0. If
E∗ denotes the dual space (over Q) of E, standard linear algebra says that
dimQ E∗ = dimQ E. (See Subsection 1.3.) Thus it’s sufficient to prove that
E∗ = {0}. That is, we will prove that any Q-linear functional on E must vanish
identically.

So let f ∈ E∗. Then let Y ∈ gl(V ) be the linear map on V whose matrix with
respect to the basis S above is the diagonal matrix




f(λ1)
. . .

f(λn)




We will prove that adY is a polynomial in adX, with zero constant term, using
the interpolation result established above.

By equation (6.3), the semisimple operator Xs satisfies

adXs (Eij) = (λi − λj)Eij . (6.5)

For the same reason, the semisimple operator Y satisfies

adY (Eij) = (f(λi)− f(λj))Eij . (6.6)

According to Lemma 6.3.3, there exists a polynomial G(x) in the variable x,
with complex coefficients, such that

G(0) = 0,

G(λi) = f(λi) for all i = 1, . . . , n

G(λi − λj) = f(λi)− f(λj) for all i, j = 1, . . . , n

This polynomial is well-defined, since if λi −λj = λk −λl, then f(λi)− f(λj) =
f(λi−λj) = f(λk−λl) = f(λk)−f(λl). There are at most 2

�
n
2

�
+n+1 = n2+1
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elements in the set {0} ∪ {λi}ni=1 ∪ {λi − λj}ni,j=1, so G(x) can be assumed to

have degree ≤ n2, but this does not matter.

Let us now compute the linear operator G(adXs) on gl(V ). It suffices to do
this on each elementary matrix Eij . Now, by equation (6.5), adXs (Eij) =
(λi − λj)Eij , and so

G(adXs) (Eij) = G(λi − λj)Eij

= (f(λi)− f(λj))Eij

= adY (Eij),

the last equation coming from (6.6). It follows that G(adXs) = adY . (Note
also that the condition G(λi) = f(λi) for all i implies that G(Xs) = Y .)

Now by Lemma 6.3.2, the semisimple part of adX is adXs, which by Theorem
1.9.14 is a polynomial in adX with zero constant term. Since the polynomial
G(x) also has zero constant term, we see that adY = G(adXs) is a polynomial
in adX with zero constant term:

adY = ar (adX)r + ar−1 (adX)r−1 + · · ·+ a1 adX.

Since, by hypothesis, adX (B) ⊂ A, it follows from the above (and the fact
that A ⊂ B) that adY (B) ⊂ A. Therefore, by the definition of m, we see that
Y ∈ m.

Now by the hypothesis on X, we have tr (XY ) = 0. With respect to the basis
S of V , the product XY has matrix




λ1 ∗
. . .

0 λn







f(λ1) 0
. . .

0 f(λn)


 =




λ1f(λ1) ∗
. . .

0 λnf(λn)




and so tr (XY ) =
Pn

i=1 λif(λi).

Thus 0 =
Pn

i=1 λif(λi). Applying the linear functional f to this equality, we
get 0 =

Pn
i=1 f(λi)

2. Since the f(λi) are all in Q, we conclude that f(λi) = 0
for all i. Thus f = 0, so E∗ = {0}, so E = {0}, and so λi = 0 for all i.

We conclude that X = Xn, and the lemma is proved.

Lemma 6.3.6. Let V be a vector space over F. If X, Y, Z ∈ gl(V ), then
tr ([X,Y ]Z) = tr (X[Y, Z]).
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This follows from

tr ([X,Y ]Z) = tr ((XY − Y X)Z)

= tr (XY Z − Y XZ)

= tr (XY Z)− tr (Y XZ)

= tr (XY Z)− tr (XZY )

= tr (X(Y Z − ZY ))

= tr (X[Y, Z]).

The following theorem gives the version of Cartan’s solvability criterion (Theo-
rem 6.1.3) for Lie subalgebras of gl(V ).

Theorem 6.3.7. (Cartan’s Criterion for gl(V ), V complex.) Let V be a vector
space over C, and let g be a Lie subalgebra of gl(V ). Then g is solvable if and
only if tr (XY ) = 0 for all X ∈ [g, g] and all Y ∈ g.

Proof. Suppose that g is solvable. Then by Lie’s Theorem (Theorem 4.2.3),
there is a basis S of V relative to which every element of g has an upper tri-
angular matrix. It follows that every element of g′ = [g, g] has a strictly upper
triangular matrix relative to this basis. If X ∈ g′ and Y ∈ g, it is easy to see
that the matrix of XY with respect to S is also strictly upper triangular. Thus
tr (XY ) = 0.

Conversely, suppose that tr (XY ) = 0 for all X ∈ g′ and Y ∈ g. We want to
prove that g is solvable. By Theorem 5.2.5, it suffices to prove that g′ is nilpo-
tent. For this, it suffices in turn to prove that every X ∈ g′ is a nilpotent linear
operator on V . For then, by Step 1 in the proof of Engel’s Lemma (Lemma
5.2.2), adX is nilpotent, and so by Engel’s Theorem (Theorem 5.2.1), g′ is
nilpotent.

To this end, we will use Lemma 6.3.5 with A = g′ and B = g. The subspace
m will then be {Y ∈ gl(V ) | [Y, g] ⊂ g′}. Clearly, g′ ⊂ m. (In fact, g ⊂ m.) To
apply the lemma, we will need to prove that tr (XY ) = 0 for all X ∈ g′ and all
Y ∈ m.

Now g′ is spanned by the brackets [Z,W ], for all Z, W ∈ g. Suppose that
Y ∈ m. By Lemma 6.3.6, tr ([Z,W ]Y ) = tr (Z[W,Y ]) = tr ([W,Y ]Z). But
[W,Y ] ∈ g′ (by the definition of m). So, by our underlined hypothesis above,
tr ([W,Y ]Z) = 0.

This shows that tr (XY ) = 0 for all generators X = [Z,W ] of g′ and all Y ∈ m.
Since the trace is linear, we conclude that tr (XY ) = 0 for all X ∈ g′ and
Y ∈ m. Hence, by Lemma 6.3.5, each X ∈ g′ is nilpotent, and the theorem is
proved.
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Corollary 6.3.8. (Cartan’s Criterion for gl(V ), V real.) Let V be a vector
space over R, and let g be a Lie subalgebra of gl(V ). Then g is solvable if and
only if tr (XY ) = 0 for all X ∈ g′ and all Y ∈ g.

Proof. Let B = (v1, . . . , vn) be a fixed basis of V . Then B is also a complex
basis of V c. As remarked earlier, the map T 7→ MB,B(T ) is a Lie algebra
isomorphism of gl(V ) onto gl(n,R) and gl(V c) onto gl(n,C). Thus it suffices to
prove this corollary for Lie subalgebras g of gl(n,R).

The derived algebra (gc)′ is the linear span of elements of the form [X1+iX2, Y1+
iY2] = [X1, X2]− [Y1, Y2]+ i([X1, Y2]+ [X2, Y1]), where the Xi, Yj ∈ g, and from
this it is not hard to see that (gc)′ = (g′)c. By induction, we conclude that
(gc)(r) = (g(r))c. This in turn shows that g is solvable ⇐⇒ gc is solvable.

Now if g is solvable, then gc is a solvable Lie subalgebra of gl(n,C). Hence by
Theorem 6.3.7, tr (XY ) = 0 for all X ∈ (gc)′ and all Y ∈ gc. In particular,
tr (XY ) = 0 for all X ∈ g′ and Y ∈ g.

Conversely, suppose that tr (XY ) = 0 for all X ∈ g′ and Y ∈ g. We want
to prove that tr (ZW ) = 0 for all Z ∈ (gc)′ and all W ∈ gc. But then we
can resolve Z into its real and imaginary components: Z = X1 + iX2, where
X1, X2 ∈ g′. Likewise, W = Y1 + iY2, with Y1, Y2 ∈ g. Thus tr (ZW ) =
tr (X1Y1−X2Y2)+ itr (X1Y2+X2Y1) = 0. By Theorem 6.3.7, we conclude that
gc is solvable, and hence g also is.

We are now ready to prove Cartan’s criterion for solvability.

Proof of Theorem 6.1.3: Suppose first that g is solvable. Then ad g is solvable as
the homomorphic image of a solvable algebra. Thus ad g is a solvable subalgebra
of gl(g), and so by the “only if” part of Theorem 6.3.7 (for F = C) or Corollary
6.3.8 (for F = R), we conclude that B(x, y) = tr (adx◦ad y) = 0 for all x ∈ [g, g]
and all y ∈ g.

Conversely, suppose that B(x, y) = 0 for all x ∈ g′ and all y ∈ g. This translates
to the condition that tr (adx◦ad y) = 0 for all adx ∈ ad[g, g] and all ad y ∈ ad g.
By the “if” part of Theorem 6.3.7 or Corollary 6.3.8, we conclude that ad g is
a solvable subalgebra of gl(g). But ad g = g/c, so, since c is obviously solvable,
Proposition 4.1.10 implies that g is solvable. □

The argument above can be summarized in the following string of equivalences,
using Proposition 4.1.10 in the first step:

g is solvable ⇐⇒ ad g ∼= g/c is a solvable subalgebra of gl(g) ⇐⇒ tr (adx ◦
ad y) = 0 for all adx ∈ (ad g)′ and all ad y ∈ ad g ⇐⇒ tr (adx ◦ ad y) = 0 for
all x ∈ g′ and all y ∈ g ⇐⇒ B(x, y) = 0 for all x ∈ g′ and all y ∈ g.
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6.4 Cartan’s Criterion for Semisimplicity

We’ve already seen that the Killing form B on a Lie algebra g over F is an
F-valued symmetric bilinear form. The following lemma gives an invariance
property satisfied by B:

Lemma 6.4.1. The Killing form B satisfies the property that

B([x, y], z) = B(x, [y, z]) (6.7)

for all x, y, z ∈ g.

Proof. By Lemma 6.3.6, we have

tr ([adx, ad y] ◦ ad z) = tr (adx ◦ [ad y, ad z]),

and so

tr (ad[x, y] ◦ ad z) = tr (adx ◦ ad[y, z]),

which implies the result.

The radical of B is the subspace of g given by g⊥ := {x ∈ g |B(x, y) =
0 for all y ∈ g}. Note that by Theorem 1.10.5, B is nondegenerate if and
only if g⊥ = {0}.

Corollary 6.4.2. g⊥ is an ideal of g.

Proof. Let x ∈ g⊥. Then for all y ∈ g, we claim that [x, y] ∈ g⊥. This is
easy: for any z ∈ g, we have B([x, y], z) = B(x, [y, z]) = 0, so it follows that
[x, y] ∈ g⊥

Proposition 6.4.3. Let g be a Lie algebra over F and a an ideal of g. If Ba

denotes the Killing form of the Lie algebra a, then Ba(x, y) = B(x, y) for all
x, y ∈ a. Thus, Ba equals the restriction of B to a× a.

Proof. Let r be any subspace of g complementary to a, so that g = a⊕ r. Next
let B′ and B′′ be bases of a and r, respectively. If x and y belong to a, then adx
and ad y both map g to a; thus, relative to the basis (B′, B′′) of g, the matrices
of adx and ad y have block form

adx =

�
R1 S1

0 0

�
and ad y =

�
R2 S2

0 0

�
,
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respectively. In the above, R1 is the matrix of the restriction adx|a with respect
to the basis B′ of a. Likewise, R2 is the matrix of ad y|a with respect to B′.
Hence

B(x, y) = tr adx ◦ ad y

= tr

�
R1R2 R1S2

0 0

�

= tr (R1R2)

= tr adx|a ◦ ad y|a
= Ba(x, y).

Example 6.4.4. In Example 3.4.1, we saw that for the basis (e, f, h) of sl(2,C),
we could represent ad e, ad f , and adh by the following matrices relative to this
basis:

ad e =




0 0 −2
0 0 0
0 1 0


 , ad f =




0 0 0
0 0 2

−1 0 0


 , adh =




2 0 0
0 −2 0
0 0 0




Thus,

B(e, e) = tr (ad e ◦ ad e) = tr




0 −2 0
0 0 0
0 0 0


 = 0

B(e, f) = tr (ad e ◦ ad f) = tr




2 0 0
0 0 0
0 0 2


 = 4

B(e, h) = tr (ad e ◦ adh) = tr




0 0 0
0 0 0
0 −2 0


 = 0

B(f, f) = tr (ad f ◦ ad f) = tr




0 0 0
−2 0 0
0 0 0


 = 0

B(f, h) = tr (ad f ◦ ad f) = tr




0 0 0
0 0 0

−2 0 0


 = 0

B(h, h) = tr (ad f ◦ ad f) = tr




4 0 0
0 4 0
0 0 0


 = 8

Thus the matrix of the bilinear form B with respect to (e, f, h) is



0 4 0
4 0 0
0 0 8


 .
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The determinant of this matrix is −128 ̸= 0. Thus, by Theorem 1.10.5, B is
nondegenerate.

Lemma 6.4.5. Let g be a Lie algebra over F, and let a be an ideal of g. Then
the derived series a ⊃ a′ ⊃ a(2) ⊃ · · · consists of ideals of g.

Proof. This is an easy induction. Certainly, a = a(0) is an ideal of g by hypoth-
esis. Then, assuming that a(r) is an ideal of g, we have

[a(r+1), g] = [[a(r), a(r)], g]

= [[a(r), g], a(r)] (by the Jacobi identity)

⊂ [a(r), a(r)] (by the induction hypothesis)

= a(r+1),

so a(r+1) is an ideal of g.

Lemma 6.4.6. Let g be a Lie algebra over F. Then g is semisimple if and only
if g has no abelian ideals a ̸= {0}.

Proof. Suppose that g is semisimple. Any abelian ideal a of g is solvable, so
a ⊂ Rs = {0}, and thus a = {0}.

Conversely, suppose that g is not semisimple. Then the solvable radical Rs ̸=
{0}. Let Rs ⊋ R′

s ⊋ · · · ⊋ R(k)
s ⊋ {0} be the derived series for Rs. By the

preceding lemma, each of the R(i)
s is an ideal of g. The last non-zero ideal R(k)

s

is thus a non-zero abelian ideal of g. Thus, g has non-zero abelian ideals.

We are now ready to prove Cartan’s criterion for semisimplicity:

Proof of Theorem 6.1.4: To avoid the obvious triviality, we may assume that g ̸=
{0}. Suppose first that g is a Lie algebra over F such that B is nondegenerate.
To prove that g is semisimple, it suffices, by Lemma 6.4.6, to prove that g has
no non-zero abelian ideals. Suppose that a is an abelian ideal. then for x ∈ a
and y, z ∈ g, we have

(adx ◦ ad y)2 (z) = [x, [y, [x, [y, z]]]] ∈ [a, a] = {0},

so (adx ◦ ad y)2 = 0. Thus, adx ◦ ad y is nilpotent. This implies that tr (adx ◦
ad y) = 0. (See equation 1.17.) Hence B(x, y) = 0 for all x ∈ a and all y ∈ g.
Therefore, a ⊂ g⊥ = {0}, and so a = {0}. Hence any abelian ideal of g is {0},
and so g is semisimple.

Conversely, suppose that g is semisimple. We need to show in this case that
g⊥ = {0}. Now by definition, B(x, y) = 0 for all x ∈ g⊥ and y ∈ g. Hence
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B(x, y) = 0 for all x ∈ g⊥ and y ∈ [g⊥, g⊥]. By Proposition 6.4.3, we see that
Bg⊥(x, y) = 0 for all x ∈ g⊥ and y ∈ [g⊥, g⊥]. Then by Cartan’s solvability
criterion (Theorem 6.1.3), we see that g⊥ is solvable. Since it is an ideal by
Corollary 6.4.2, it follows that a ⊂ Rs = {0}, and so B is nondegenerate. □

Corollary 6.4.7. Let g be a Lie algebra over R. Then g is semisimple ⇐⇒ gc

is semisimple.

Proof. Let B and Bc denote the Killing forms on g and gc, respectively. Then
it suffices to prove that B is nondegenerate ⇐⇒ Bc is nondegenerate. Note
that Bc(X,Y ) = B(X,Y ) if X and Y are in g.

Using this last observation, it is not hard to see that (g⊥)c = (gc)⊥, so g⊥ =
{0} ⇐⇒ (gc)⊥ = {0}.

Exercise 6.4.8. Suppose that g is a Lie algebra over C. Let gR be the Lie
algebra g considered as a real Lie algebra. Prove that g is semisimple ⇐⇒ gR
is semisimple.

We next consider a slight variant of the Killing form, called the trace form, on
Lie algebras of linear operators.

Let V be a vector space over F, and let g be a Lie subalgebra of gl(V ). The trace
form on g is the symmetric bilinear form (X,Y ) 7→ tr (XY ), for all X, Y ∈ g.

Proposition 6.4.9. Let g be a Lie subalgebra of gl(V ). If g is semisimple, then
its trace form is nondegenerate.

Proof. The proof is similar to that of Theorem 6.1.4. Let I = {X ∈ g | tr (XY ) =
0 for all Y ∈ g}. Then it follows easily from Lemma 6.3.6 that I is an ideal of
g.

For any X ∈ [I, I] and Y ∈ I, we have tr (XY ) = 0. Hence by Theorem 6.3.7
and Corollary 6.3.8, I is solvable, and so I = {0}. Thus the trace form is
nondegenerate.

Exercise 6.4.10. Is the converse true? Explicitly, suppose that the trace form
on g ⊂ gl(V ) is nondegenerate. Is g semisimple? Prove or give a counterexample.

We conclude this section by calculating the Killing form on the Lie algebras
gl(n,C), gl(n,R), and sl(n,R).

Example 6.4.11. (The Killing form on gl(n,C).) This example requires a little
background (just a tiny bit!) in basic analysis. We will use the steps below to
prove that the Killing form on gl(n,C) is given by the formula

B(X,Y ) = 2n tr (XY )− 2 trX · trY (X, Y ∈ gl(n,C)) (6.8)
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1. Let O = {X ∈ gl(n,C) | each eigenvalue of X has multiplicity 1}. We
claim that O is dense in gl(n,C).

To prove this, recall that gl(n,C) is just Cn2

= Cn×n. The standard inner
product is just the Hilbert-Schmidt inner product:

⟨X,Y ⟩ = tr (X tY ) (X,Y ∈ gl(n,C).)

(See Example 1.11.2.) The resulting (standard) metric is

∥X − Y ∥ =





nX

j=1

nX

k=1

|Xjk − Yjk|2




1/2

.

If T is a fixed non-singular n×n complex matrix, then the conjugation map
cT : X 7→ TXT−1 is a linear operator on gl(n,C), and hence is continuous.
Since cT is bijective (with inverse cT−1), it is a homeomorphism. Moreover,
since the eigenvalues of a matrix are preserved under conjugation, we see
that cT (O) = O.

Suppose now thatX ∈ gl(n,C). Then by Theorem 1.6.2, X is conjugate to
an upper triangular matrix Y . There is a sequence {Yl} of upper triangular
matrices converging to Y such that each Yl has distinct diagonal entries.
(The matrices Yl are obtained by slightly perturbing the diagonal entries
of Y .) This is a sequence in O converging to Y , and by taking the inverse
conjugation, we obtain a sequence {Xl} in O converging to X. This proves
that O is dense in gl(n,C).

2. By the Jordan canonical form (Theorem 1.8.5) (or even just the general
block diagonal form in Proposition 1.8.2), each matrix in O is diagonaliz-
able. Thus the diagonalizable matrices are dense in gl(n,C).
(This is not true, by the way, in gl(n,R). That is, the set of matri-
ces in gl(n,R) conjugate to a real diagonal matrix is not dense. To see
this, note that the coefficients of the characteristic polynomial of a matrix
X ∈ gl(n,R) are polynomials in the entries of X. Thus a slight pertur-
bation of the matrix entries in X will result in a slight perturbation of
its characteristic polynomial. If the characteristic polynomial of X has an
irreducible quadratic factor, so does the characteristic polynomial of any
slight perturbation of X.)

3. We will show that

B(H,H) = 2n tr (H2)− 2 (trH)2 (6.9)

for any diagonalizable H ∈ gl(n,C). Since the diagonalizable matrices are
dense and since the trace function is continuous, (6.9) will then hold for
any H ∈ gl(n,C). Polarizing (6.9) (i.e., replacing H by X +Y and X −Y
and then adding the resulting equalities), we can conclude that the trace
formula (6.8) holds for all X,Y ∈ gl(n,C).
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Let us now prove (6.9). SinceB(H,H), trH, and tr (H2) are all unchanged
when H is replaced by any of its conjugates, we can assume that H is
diagonal:

H =




h1

h2

. . .

hn


 .

Let Ejk be the elementary n× n matrix whose (j, k)-entry is 1, and all of
whose other entries are 0. Then a simple computation shows that

adH(Ejk) = (hj − hk)Ejk

so the set {Ejk} is a basis of gl(n,C) consisting of eigenvectors of adH.
Hence

B(H,H) = tr (adH)2

=

nX

j=1

nX

k=1

(hj − hk)
2

=
nX

j=1

nX

k=1

(h2
j + h2

k)− 2
nX

j=1

nX

k=1

hjhk

= 2n

nX

j=1

h2
j − 2

� nX

j=1

hj

�� nX

k=1

hk

�

= 2n tr (H2)− 2 (trH)
2
.

This proves (6.9), and the Killing form trace formula (6.8).

In the example above, we can avoid appealing to analysis by observing that the
real Lie algebra u(n) of (complex) n×n skew-Hermitian matrices is a real form
of gl(n,C). If X ∈ u(n), then X is normal, so there is a unitary n × n matrix
u such that H = uXu−1 is diagonal. Note that H also belongs to u(n). Since
H is diagonal, the formula (6.9) for B(H,H) applies. Conjugating back to X,
we see that formula (6.9) holds for B(X,X). We then polarize to get formula
(6.8) for all X and Y in u(n), and then use the C-bilinearity of both sides in
that formula (as well as the fact that u(n) is a real form) to conclude that (6.8)
in fact holds for all X and Y in gl(n,C).

Example 6.4.12. (The Killing form on gl(n,R).) The complexification of
gl(n,R) is (obviously) gl(n,C). If B and Bc are the Killing forms on gl(n,R)
and gl(n,C), respectively, the proof of Corollary 6.4.7 shows that B(X,Y ) =
Bc(X,Y ) for all X,Y ∈ gl(n,R). Thus the Killing form on gl(n,R) is also given
by (6.8).

Example 6.4.13. (The Killing form on sl(n,C) and sl(n,R).) Since tr [X,Y ] =
0 for all X, Y ∈ gl(n,C), we see that sl(n,C) is an ideal of gl(n,C). Thus the
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Killing form on sl(n,C) is the restriction of the Killing form on gl(n,C) to
sl(n,C)× sl(n,C). Formula (6.8)then gives the Killing form on sl(n,C):

B(X,Y ) = 2n tr (XY ) (X, Y ∈ sl(n,C).) (6.10)

This is also the Killing form on sl(n,R).

Later in Section ??, we will obtain the Killing form on sl(n,C) by a method
that doesn’t use analysis.

Proposition 6.4.14. The Lie algebras sl(n,R) and sl(n,C) are semisimple.

For sl(n,C), it is enough to note that if X ∈ sl(n,C), then so is tX. Then
B(X, tX) = 2n tr (X tX) is the Hilbert-Schmidt norm of X. This easily implies
that B is nondegenerate.

By Corollary 6.4.7, sl(n,R) is also semisimple. Note that gl(n,C) and gl(n,R)
are not semisimple, since their centers contain the multiples of the identity
matrix, hence are non-zero.

According to Example 3.3.7, the Lie algebra sl(2,C) is simple. It turns out (and
we will show later!) that the Lie algebras sl(n,F) are simple for n ≥ 2.

Exercise 6.4.15. Show that the center of gl(n,F) is one-dimensional.
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