
Chapter 5

Nilpotent Lie Algebras and
Engel’s Theorem

5.1 Nilpotent Lie Algebras

For any Lie algebra g over F, we define a sequence of subspaces of g as follows.
Let C1(g) = g, C2(g) = g′ = [g, g], and inductively, let Ci+1(g) = [Ci(g), g] for
all i.

Proposition 5.1.1. The subspaces Ci(g) satisfy the following properties:

1. Each Ci(g) is a characteristic ideal of g.

2. C1(g) ⊃ C2(g) ⊃ · · · ⊃ Ci(g) ⊃ · · ·
3. Ci(g)/Ci+1(g) lies inside the center of g/Ci+1(g)

Proof. We prove (1) by induction on i, the case i = 1 being trivial. Suppose
that Ci(g) is a characteristic ideal of g. Then

[g, Ci+1(g)] = [g, [Ci(g), g]] ⊂ [g, Ci(g)] = Ci+1(g),

proving that Ci+1(g) is an ideal of g. Moreover, for any derivation D of g, we
have

D(Ci+1(g)) = D([Ci(g), g])

⊂ [D(Ci(g)), g] + [Ci(g), Dg]

⊂ [Ci(g), g] + [Ci(g), g]

= Ci+1(g),
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proving that Ci+1(g) is characteristic.

Note that since Ci+1(g) is an ideal of g, it is also an ideal of Ci(g).

Likewise, for (2), we prove the inclusion Ci+1(g) ⊂ Ci(g) by induction on i, with
the case i = 1 corresponding to the trivial inclusion [g, g] ⊂ g. Assume, then,
that Ci+1(g) ⊂ Ci(g). Then Ci+2(g) = [Ci+1(g), g] ⊂ [Ci(g), g] = Ci+1(g).

Finally, for (3), let x ∈ Ci(g). Then for any y ∈ g, we have [x, y] ∈ Ci+1(g).
Hence in the quotient algebra g/Ci+1(g), we have

[x+ Ci+1(g), y + Ci+1(g)] = [x, y] + Ci+1(g) = Ci+1(g)

It follows that every element of Ci(g)/Ci+1(g) is an element of the center of
g/Ci+1(g).

Definition 5.1.2. The descending central series for g is the sequence of ideals
g = C1(g) ⊃ C2(g) ⊃ · · · ⊃ Ci(g) ⊃ · · · . (Since dim g is finite, it is clear that
this series stabilizes after some point.) The Lie algebra g is said to be nilpotent
if Ck(g) = {0} for some k.

Note that the term “central” is appropriate since Ci(g)/Ci+1(g) ⊂ c(g/Ci+1(g)).

Definition 5.1.3. Let C0 = {0}, C1 = c(g) and, recursively, let Ci be the ideal
in g such that Ci/Ci−1 = c(g/Ci−1). (This ideal exists and is unique because of
the Correspondence Theorem (Theorem 3.2.6).) The ascending central series is
the sequence of ideals {0} = C0 ⊂ C1 ⊂ · · · ⊂ Ci ⊂ · · · . (Since dim g is finite,
this series stabilizes after some point.)

Proposition 5.1.4. The Lie algebra g is nilpotent if and only if Cs = g for
some positive integer s.

Proof. We may assume that g ̸= {0}; otherwise, there is nothing to prove.

Suppose first that g is nilpotent. Let k be the smallest (necessarily positive)
integer such that Ck(g) = {0}. For any integer i, with 0 ≤ i ≤ k, we claim that
Ci ⊃ Ck−i(g). From this, it will follow that Ck ⊃ C0(g) = g.

To prove the claim, we first note that C0 = {0} = Ck(g), so the claim is certainly
true for k = 0. Assume, inductively, that Ci ⊃ Ck−i(g). By statement (3) of the
Isomorphism Theorem (Theorem 3.2.7) and its proof, the map φ : x+Ck−i(g) 7→
x + Ci is a surjective Lie algebra homomorphism of g/Ck−i(g) onto g/Ci, with
kernel Ci/Ck−i(g). By Proposition 3.3.3, φmaps the center of g/Ck−i(g) into the
center Ci+1/Ci of g/Ci. But by part (3) of Proposition 5.1.1, Ck−i−1(g)/Ck−i(g)
lies in the center of g/Ck−i(g). Hence φ maps Ck−i−1(g)/Ck−i(g) into Ci+1/Ci.
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Thus, if x ∈ Ck−i−1(g), then x+ Ci ∈ Ci+1/Ci, and hence x ∈ Ci+1. This shows
that Ck−i−1(g) ⊂ Ci+1, completing the induction and proving the claim.

Next we assume that Cs = g, for some s. Let k be the smallest integer such
that Ck = g. Since g ̸= {0}, this k is necessarily positive. We now prove, by
induction on i, that Ci(g) ⊂ Ck−i. When i = 0, this inclusion is just C0(g) =
g = Ck, which is already true. Now assume that for i ≥ 0, Ci(g) ⊂ Ck−i. Then
Ci+1(g) = [g, Ci(g)] ⊂ [g, Ck−i] ⊂ Ck−i−1, the last inclusion arising from the
condition that Ck−i ⊂ c(g/Ck−i−1). This completes the induction.

When i = k, we therefore obtain Ck(g) ⊂ C0 = {0}. Hence g is nilpotent.

Exercise 5.1.5. Show that g is nilpotent if and only if it has a central series
which reaches {0}; that is, there is a descending sequence of ideals of g:

g ⊃ g1 ⊃ · · · ⊃ gm = {0}

where gi/gi+1 ⊂ c(g/gi+1).

Exercise 5.1.6. Prove that if g is nilpotent, then g is solvable.

Example 5.1.7. Recall that g = Tn(F) is the solvable Lie algebra of n×n upper
triangular matrices over F. Then Tn(F) = Dn(F) ⊕ Un(F), where Dn(F) is the
vector space of diagonal n×n matrices and Un(F) is the vector space of strictly
upper triangular n× n matrices. We saw in Example 4.1.9 that g′ ⊂ Un(F).

In fact g′ = Un(F), since Un(F) has basis {Eij}i<j , and

Eij = [Eii, Eij ].

The above equation also shows that [Dn(F), Un(F)] = Un(F). Hence C2(g) =
[g, g′] ⊃ [Dn(F), Un(F)] = Un(F) = g′, so C2(g) = g′, and it follows that Ci(g) =
g′ for all i ≥ 1. Thus Tn(F) is not nilpotent.

On the other hand, the Lie algebra h = Un(F) is nilpotent. Using the notation of
Example 4.1.9, let gr denote the subspace of Tn(F) consisting of those matrices
with 0’s below the diagonal r steps above the main diagonal. We claim, using
induction on r, that Cr(h) = gr for all r ≥ 1. For r = 1, this is just the equality
g1 = Un(F) = h. Assuming that the claim is true for r, the corresponding
equality for r + 1 will follow if we can show that [g1, gr] = gr+1. Now gr
is spanned by the elementary matrices Ekl, where l ≥ k + r. Suppose that
Eij ∈ g1 and Ekl ∈ gr. Then, equation (4.4) says that

[Eij , Ekl] = δjkEil − δliEkj .

If j = k, then l ≥ k + r = j + r ≥ i + 1 + r, so Eil ∈ gr+1. If l = i, then
j ≥ i+ 1 = l+ 1 ≥ k + r + 1, so Ekj ∈ gr+1. Either way, the Lie bracket above
belongs to gr+1, and this shows that [g1, gr] ⊂ gr+1.
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On the other hand, if l ≥ k + r + 1, then

Ekl = Ek,k+1 Ek+1,l = [Ek,k+1, Ek+1,l] ∈ [g1, gr],

so gr+1 ⊂ [g1, gr]. We have thus proved that [g1, gr] = gr+1.

Of course, when r = n, we get Cn(h) = gn+1 = {0}. Thus h = Un(F) is
nilpotent.

Exercise 5.1.8. Prove that the Lie algebras Tn(F) and Un(F) both have centers
of dimension 1.

Exercise 5.1.9. (See the book by Binz and Pods [BP08]) The general Heisen-
berg Lie algebra hn is defined as the space of (n+ 2)× (n+ 2) matrices over F
which have block form 


0 tv c
0 0n w
0 0 0


 , (5.1)

where v, w ∈ Fn, c ∈ F, and 0n is the zero n × n matrix. Prove that hn is a
nilpotent Lie algebra of dimension 2n + 1. What is the minimum k such that
Ck(hn) = {0}? (The algebra hn is the Lie algebra of the Heisenberg group, which
in the case F = R is used in the description of n-dimension quantum mechanical
systems.)

Exercise 5.1.10. Show that any non-abelian two-dimensional Lie algebra over
F is solvable, but not nilpotent. (See Exercise 3.2.2.)

Let φ : g → h be a Lie algebra homorphism. Then the image φ(g) is a Lie
subalgebra of h, and it is clear that φ(Ci(g)) = Ci(φ(g)), for all i. Thus, if g is
nilpotent, then so are all homomorphic images of g.

Exercise 5.1.11. Suppose that g is nilpotent. Prove that:

1. All subalgebras of g are nilpotent.

2. If g ̸= {0}, then its center c ̸= {0}.

Proposition 5.1.12. Let g be a Lie algebra, with center c. Then g is nilpotent
if and only if g/c is nilpotent.

Proof. Suppose that g is nilpotent. Then g/c is the homomorphic image of g
under the projection π : g → g/c. Thus g/c is nilpotent.

Conversely, suppose that g/c is nilpotent. If π : g → g/c is the natural pro-
jection, then π(Ci(g)) = Ci(g/c). By hypothesis, Ck(g/c) = {c} (the zero
subspace in g/c) for some k. Thus, Ck(g) ⊂ c, from which we conclude that
Ck+1(g) = [g, Ck(g)] ⊂ [g, c] = {0}.
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Exercise 5.1.13. Prove or give a counterexample: suppose that a is an ideal
of g. If a and g/a are nilpotent, then g is nilpotent. (See Proposition 4.1.10.)

5.2 Engel’s Theorem

In this section, our objective is is to prove the following important result.

Theorem 5.2.1. (Engel’s Theorem) Let g be a Lie algebra over F. Then g is
nilpotent if and only if, for all x ∈ g, adx is a nilpotent linear operator on g.

It is easy to prove that if g is a nilpotent Lie algebra, then adx is a nilpotent
linear transformation, for all x ∈ g. Indeed, for any y ∈ g and k ≥ 1, we have

(adx)k(y) = [x, [x, [· · · , [x| {z }
k times

, y]]]] ∈ Ck(g).

Thus, if Ck(g) = {0}, then (adx)k = 0 for all x ∈ g.

To prove the opposite implication, we make use of the following lemma, which
like Dynkin’s lemma (Lemma 4.2.1), asserts the existence of a common eigen-
vector.

Lemma 5.2.2. (Engel) Let V be a vector space over F. Suppose that g is a
subalgebra of gl(V ) consisting of nilpotent linear operators on V . Then there
exists a vector v ̸= 0 in V such that X(v) = 0 for all X ∈ g.

Proof. We prove this lemma by induction on dim g. If dim g = 0, there is
nothing to prove.

Therefore, we may assume that n ≥ 1 and that the lemma holds for all Lie
subalgebras, of dimension < n, of all gl(W ), for all vector spaces W over F.
Then, let g be an n-dimensional Lie subalgebra of gl(V ), for some vector space
V , such that the elements of g are all nilpotent linear maps on V . The induction
proceeds along several steps:

Step 1: g acts on itself via the adjoint representation. We claim that adX is a
nilpotent linear map on g, for each X ∈ g.

Proof of Step 1: Since g ⊂ gl(V ), the Lie bracket in g is the commutator product:
[X,Y ] = XY −Y X. For X ∈ L(V ), denote by LX and RX the operators defined
on L(V ) by multiplication by X on the left and on the right respectively:

LX : Y 7−→ XY , RX : Y 7−→ Y X,

so that
adX = LX −RX .
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Notice that LX and RX commute as linear maps on L(V ):

LX ◦RX(Y ) = XYX = RX ◦ LX(Y ).

Hence, by the binomial formula,

(adX)
m
(Y ) = (LX −RX)m(Y )

=

mX

j=0

�
m

j

�
Lj
X ◦ (−RX)m−j (Y )

=
mX

j=0

(−1)m−j

�
m

j

�
Xj Y Xm−j ,

for all X, Y ∈ g. Now each X ∈ g is a nilpotent linear map on V , so Xk = 0 for
some k. If we let m = 2k in the above equation, we see that (adX)m(Y ) = 0
for all Y ∈ g. Hence adX is nilpotent.

Step 2: Let m be a maximal proper subalgebra of g. Then there exists an
X0 ∈ g \m such that [X0,m] ⊂ m.

Proof of Step 2: Recall that m proper means that m ⊊ g (however, m could very
well be {0}). The algebra m acts on the vector space g/m via ad, that is, for

each Z ∈ m, define the map fadZ on g/m by

fadZ (Y +m) = adZ (Y ) +m.

It is easy to check that fadZ is a well-defined linear map on g/m. For each

Z ∈ m, it follows from Step 1 that fadZ is a nilpotent linear map, since
�
fadZ

�m

(Y +m) = (adZ)
m

(Y ) +m = m,

for sufficiently large m.

Moreover, the map Z 7→ fadZ is easily seen to be a Lie algebra homomorphism

from m into gl (g/m). (It suffices to show that fad [Z1, Z2] = [fadZ1,fadZ2] for
Z1, Z2 ∈ m, which follows immediately from the same relation for ad.) Thus
fadm is a Lie subalgebra of gl (g/m) consisting of nilpotent linear maps on g/m.

Since dim (fadm) ≤ dimm < dim g, the induction hypothesis says that there

exists a nonzero element X0 + m ∈ g/m such that fadZ(X0 + m) = m for all
Z ∈ m. This means that the representative X0 ∈ g satisfies X0 /∈ m and
adZ (X0) ∈ m for all Z ∈ m.

Step 3: m+ FX0 = g, and m is an ideal of g.

Proof of Step 3: The sum m+ FX0 is a subalgebra of g, since

[m+ FX0,m+ FX0] ⊂ [m,m] + [m,FX0] + [FX0,m] ⊂ m. (5.2)
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Since X0 /∈ m, m + FX0 is a subalgebra of g properly containing m. But m is
a maximal proper subalgebra of g; thus g = m + FX0. Equation (5.2) above
shows that m is an ideal of g.

Step 4: There exists a nonzero vector v ∈ V such that X(v) = 0 for all X ∈ g.

Proof of Step 4: Now m is a subalgebra of gl(V ) whose elements are all nilpotent.
Since dimm < dim g, we can again apply the induction hypothesis to conclude
that

W := {v ∈ V |Z(v) = 0 for all Z ∈ m} ̸= {0}.

W is a joint eigenspace of m, corresponding to the zero linear functional, so is a
subspace of V . Moreover W is X0-invariant: in fact, for any w ∈ W and Z ∈ m,
we have

Z(X0 (w)) = (ZX0 −X0Z)(w) +X0Z (w)

= [Z,X0](w) +X0(0)

= 0,

since [Z,X0] ∈ m. ThusX0(w) ∈ W , andW isX0-invariant. Now the restriction
X0|W is a nilpotent linear map on W , so X0 annihilates a nonzero vector w0 ∈
W : X0(w0) = 0. Since m also annihilates w0 and g = m + FX0, we see that
Y (w0) = 0 for all Y ∈ g. Putting v = w0, our lemma is proved.

We are now ready to finish the proof of Engel’s Theorem.

Proof of Engel’s Theorem. It suffices to prove that if g is a Lie algebra such that
adx is nilpotent for all x ∈ g, then g is nilpotent. We will do this by induction
on dim g, the cases dim g = 0 and dim g = 1 being trivial.

So assume that the result given above holds for all Lie algebras of dimension
< n, and that dim g = n, with adx nilpotent for all x ∈ g.

Then ad g is a Lie subalgebra of gl(g) consisting of nilpotent linear maps, so by
Lemma 5.2.2, there exists a nonzero element z ∈ g such that adx (z) = 0 for all
x ∈ g. This implies that z lies in the center c of g, so c ̸= {0}.

Consider the quotient algebra g/c. Let adc denote its adjoint representation.
Then

adc(x+ c) (y + c) = [x+ c, y + c] = [x, y] + c

For each x ∈ g, adc(x + c) is a nilpotent linear map on g/c. Thus, by the
induction hypothesis (since dim(g/c) < dim g), the Lie algebra g/c is nilpotent.
Then by Proposition 5.1.12, g is nilpotent.

This completes the induction step and the proof of Engel’s Theorem.
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The following theorem is the nilpotent analogue of Lie’s Theorem (Theorem
4.2.3). While Lie’s Theorem only holds for complex vector spaces, the theorem
below holds for F = R or C.

Theorem 5.2.3. (Engel’s Structure Theorem) Let g be a Lie algebra consisting
of nilpotent linear maps acting on a vector space V . Then there is a basis of V
relative to which the matrix of every element of g is strictly upper triangular.

Proof. The proof is by induction on dimV . If dimV = 0 or dimV = 1, this
result is trivial, since any nilpotent linear map on V is just 0.

Assume that the result is true for dimension n− 1, and let V have dimension n.
Now by Lemma 5.2.2, there exists a nonzero vector v1 such that X(v1) = 0 for
all X ∈ g. Let V1 = Fv1. Since V1 is g-invariant, g acts on the quotient space
V/V1 via

X · (v + V1) = X(v) + V1

for all v ∈ V and X ∈ g. Each X ∈ g is clearly a nilpotent linear map on V/V1.
Hence V/V1 has a basis (v2 + V1, . . . , vn + V1) relative to which the matrix of
each X ∈ g is strictly upper triangular. Then (v1, v2, . . . , vn) is a basis of V ,
and it is also clear that the matrix of each X ∈ g with respect to this basis is
strictly upper triangular.

Theorem 5.2.4. Let g be a solvable Lie algebra over C. Then g′ = [g, g] is
nilpotent.

Proof. By Lie’s Theorem (Theorem 4.2.5), there is a basis of g with respect to
which the matrix of adx is upper triangular, for each x ∈ g. Thus, for any
x, y ∈ g, the matrix of ad[x, y] = [adx, ad y] = adx ◦ ad y − ad y ◦ adx with
respect to this basis is strictly upper triangular. Since strictly upper triangular
matrices correspond to nilpotent linear maps, it follows that adw is nilpotent
for each w ∈ g′. Therefore the restriction adw|g′ is also nilpotent. By Engel’s
Theorem, this implies that g′ is nilpotent.

The converse holds for any field F.

Theorem 5.2.5. Let g be a Lie algebra over F such that g′ is nilpotent. Then
g is solvable.

Proof. Since g′ is nilpotent, by Exercise 5.1.6 it is solvable. Moreover, the
quotient Lie algebra g/g′ is abelian, hence solvable. Thus, by Proposition 4.1.10,
g is solvable.
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