
Chapter 4

Solvable Lie Algebras and
Lie’s Theorem

4.1 Solvable Lie Algebras

Definition 4.1.1. The derived algebra of a Lie algebra g is g′ = [g, g].

g′ is an ideal of g, since g′ is spanned by the products [x, y], for all x, y ∈ g, and
[[x, y], z] ∈ [g, g] = g′, for all x, y, z ∈ g.

We could abbreviate the argument that g′ is an ideal by writing [g′, g] =
[[g, g], g] ⊂ [g, g] = g′.

Theorem 4.1.2. g/g′ is abelian, and for any ideal a, g/a is abelian ⇐⇒ g′ ⊂
a.

Proof. For any x, y ∈ g, we have [x + g′, y + g′] = [x, y] + g′ = g′, so g/g′ is
abelian.

Let us now prove the second assertion. Now

g/a is abelian ⇐⇒ [x+ a, y + a] = [x, y] + a = a for all x, y ∈ g

⇐⇒ [x, y] ∈ a for all x, y ∈ g

⇐⇒ g′ = [g, g] ⊂ a

Definition 4.1.3. A characteristic ideal of g is an ideal a such that D(a) ⊂ a
for every derivation D of g.
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The derived ideal g′ is a characteristic ideal: for every derivation D, we have
D(g′) = D[g, g] = [D(g), g] + [g, D(g)] ⊂ [g, g] + [g, g] = [g, g] = g′.

Proposition 4.1.4. Let h be any vector subspace of the Lie algebra g such that
g′ ⊂ h. Then h is an ideal of g.

Proof. We have [g, h] ⊂ [g, g] = g′ ⊂ h.

Let g(0) = g, g(1) = g′, and for any i ≥ 2, define g(i) inductively by g(i) =
[g(i−1), g(i−1)].

Definition 4.1.5. We call g(i) the ith derived algebra of g. The derived series
of g is

g(0) ⊃ g(1) ⊃ g(2) ⊃ · · · ⊃ g(i) ⊃ g(i+1) ⊃ · · · (4.1)

Proposition 4.1.6. The derived series consists of a decreasing sequence of
characteristic ideals of g.

Proof. We need to prove that each g(i) is a characteristic ideal of g. This is done
by induction on i, noting that there is nothing to prove for i = 0, and that we
have already proved that g(1) = g′ is a characteristic ideal in the remark before
Definition 4.1.5. So assume that g(i) is a characteristic ideal of g. Then by the
Jacobi identity and the induction hypothesis,

[g, g(i+1)] = [g, [g(i), g(i)]] ⊂ [g(i), [g, g(i)]] + [g(i), [g(i), g]] ⊂ [g(i), g(i)] = g(i+1).

It follows that g(i+1) is an ideal of g. Next, for any D ∈ Der g, we have

D(g(i+1)) = D[g(i), g(i)]

= [D(g(i)), g(i)] + [g(i), D(g(i))]

⊂ [g(i), g(i)] + [g(i), g(i)] (by the induction hypothesis)

= g(i+1).

Definition 4.1.7. g is said to be solvable if g(k) = {0} for some k ∈ Z+.

Exercise 4.1.8. Show that g is solvable if and only if there is a nested sequence
of ideals g = g0 ⊃ g1 ⊃ · · · ⊃ gm = {0} such that gi+1 is an ideal of gi and
gi/gi+1 is abelian.



4.1. SOLVABLE LIE ALGEBRAS 73

Note that no simple Lie algebra can be solvable. In fact, if g is simple, then
g′ = [g, g] is a nonzero ideal of g (since g is, by definition, non-abelian); hence
g′ = g. Thus g′′ = g′ = g, etc, and the derived series is constant. In particular,
sl(2,C) is not solvable.

Example 4.1.9. Let g = Tn(F) be the vector space of upper triangular n× n
matrices over F. If A and B are upper triangular matrices

A =




s1 ∗
0 s2

. . .

0 sn


 , B =




t1 ∗
0 t2

. . .

0 tn




then the product AB has the form

AB =




s1t1 ∗
0 s2t2

. . .

0 sntn




and likewise, BA has the same form. Hence the commutator AB−BA is strictly
upper triangular

AB −BA =




0 ∗
0

. . .

0 0


 (4.2)

Thus the elements of g′ consist of strictly upper triangular matrices. With a bit
of thought, one can see that the elements of g(2) are matrices whose entries are
0’s below the diagonal 2 steps above the main diagonal; that is, g(2) consists of
matrices (aij) such that aij = 0 whenever i ≥ j − 1.




0 0 ∗ ∗ ∗
0 0 ∗ ∗

0 0
. . .

. . . ∗
0 0

0 0




The g(3) matrices have 0’s below the diagonal 22 steps above the main diagonal.
Generally, g(i) matrices have 0’s below the diagonal 2i−1 steps above the main
diagonal.

We can also use Exercise 4.1.8 to show that Tn(F) is solvable. First, for any
i, j, let Eij be the n× n matrix whose (i, j) entry is a 1 and all of whose other
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entries are 0. Then {Eij}1≤i,j≤n is a basis of gl(n,F). The Eij satisfy the
multiplication rules

EijEkl = δjkEil, (4.3)

and so
[Eij , Ekl] = EijEkl − EklEij = δjkEil − δliEkj (4.4)

Now
Tn(F) =

M

i≤j

(FEij).

For each integer r ≥ 0, let gr denote the subspace of Tn(F) consisting of those
matrices whose entries below the diagonal r steps above the main diagonal are
0. Then

gr =
M

k≤l−r

(FEkl)

Note that Tn(F) = g0 ⊃ g1 ⊃ · · · ⊃ gn ⊃ gn+1 = {0}. We claim that gr is an
ideal of Tn(F) and that gr/gr+1 is abelian.

To prove that gr is an ideal of Tn(F), we just need to prove that [Eij , Ekl] ∈ gr
whenever Eij ∈ Tn(F) and Ekl ∈ gr. For this, we apply the commutation rule
(4.4). The right hand side of (4.4) is nonzero only if j = k or l = i. If j = k,
then i ≤ j = k ≤ l − r, so Eil ∈ gr. If l = i, then k ≤ l − r = i− r ≤ j − r, so
Ekj ∈ gr. Either way, we get [Eij , Ekl] ∈ gr.

The condition that gr/gr+1 is abelian is the same as the condition that [gr, gr] ⊂
gr+1. For r = 0, the proof is the same as the argument leading up to equation
(4.2).

For r ≥ 1, we will show that if Eij and Ekl are in gr, then [Eij , Ekl] ∈ gr+1. For
this, it suffices, in turn, to show that the matrix product EijEkl lies in gr+1.
(The argument that EklEij ∈ gr+1 is the same.)

Now, by (4.3), EijEkl is nonzero if and only if j = k, in which case the product
is Eil. But this means that i ≤ j − r = k− r ≤ l− 2r ≤ l− (r+1), since r ≥ 1.
Thus Eil ∈ gr+1.

We have thus shown that for all r ≥ 0, [gr, gr] ⊂ gr+1, and hence g = Tn(F) is
solvable. □

We now make the the following observations about solvable Lie algebras. First,
if g is solvable, then so is any subalgebra h of g. This is because if h(i) is the ith
term in the derived series for h, then a simple induction argument shows that
h(i) ⊂ g(i) for all i. The second observation is that if g is solvable, then so is
any homomorphic image of g. In fact, suppose that φ : g → m is a Lie algebra
homomorphism. Then the image q = φ(g) is a subalgebra of m, and it is easy
to see, using another simple induction argument, that φ(g(i)) = q(i) for all i.
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Proposition 4.1.10. If g is a Lie algebra and a is an ideal of g, then g is
solvable ⇐⇒ both a and g/a are solvable.

Proof. If g is solvable, then so is a, since the ideal a is also a subalgebra of g.
The quotient algebra g/a is the homomorphic image of g under the projection
π : g → g/a, so it must also be solvable.

Conversely, suppose that both a and g/a are solvable. Since g/a is solvable, we
must have (g/a)(k) = {0}, for some k. (The “0” here refers to the zero vector
in g/a.) But (g/a)(k) = π(g)(k) = π((g)(k)). It follows that g(k) ⊂ a, and from
this, it follows that g(k+r) ⊂ a(r), for all r. But then a is solvable, so a(m) = {0}
for some m, whence g(k+m) = {0}. Therefore, g is solvable.

Corollary 4.1.11. Suppose that a and b are solvable ideals of any Lie algebra
g. Then a+ b is a solvable ideal of g.

Proof. It is easy to see that a+b is an ideal of g. Now b is also an ideal of a+b,
and by the Isomorphism Theorem (Theorem 3.2.7), (a+ b)/b ∼= a/(a ∩ b). But
the quotient algebra a/(a ∩ b) is solvable by the preceding proposition. Hence
both (a+ b)/b and b are solvable, so again by the preceding proposition, we see
that a+ b is solvable.

Theorem 4.1.12. Any (finite-dimensional) Lie algebra g has a maximal solv-
able ideal Rs, which contains every solvable ideal of g.

Proof. Since {0} is a solvable ideal of g, the collection of all solvable ideals of g
is nonempty. In this collection, let Rs be a solvable ideal of maximal dimension.
If a is any solvable ideal, then by Corollary 4.1.11, Rs + a is a solvable ideal
of g, whence by the maximality of Rs, we conclude that Rs + a = Rs, and so
a ⊂ Rs.

Definition 4.1.13. Rs is called the solvable radical of g. The Lie algebra g is
said to be semisimple if Rs = {0}.

Corollary 4.1.14. If g is simple, then g is semisimple.

Proof. We had previously observed that since g is simple, the derived series for
g is constant: g(i) = g for all i. Thus, g ̸= Rs, but Rs is an ideal of g, so this
forces Rs = {0}.
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Are there semisimple Lie algebras which are not simple? Sure! For an example,
we first introduce the notion of an external direct sum of Lie algebras.

Let V and W be vector spaces over F. The Cartesian product V ×W has the
structure of a vector space, where addition and scalar multiplication are defined
by

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

α (v, w) = (αv,αw),

for all v, v1, v2 ∈ V , all w,w1, w2 ∈ W , and all α ∈ F. Equipped with this vector
space structure, we call V1 × V2 the external direct sum of V1 and V2.

The external direct sum V1×V2×· · ·×Vk of k vector spaces is defined similarly.

Exercise 4.1.15. (Easy)

Exercise 4.1.16. (Straightforward)

Exercise 4.1.17.

Corollary 4.1.18. If g is any Lie algebra and Rs is its solvable radical, then
the quotient algebra g/Rs is semisimple.

Proof. Let I denote the solvable radical of g/Rs. Then, by the Correspon-
dence Theorem (Theorem 3.2.6), we have I = R/Rs, where R is an ideal of
g containing Rs. But since both R/Rs and Rs are solvable, it follows from
Corollary 4.1.11 that R is solvable. Since Rs is maximal solvable, we conclude
that R = Rs, so I = {0}. This shows that g/Rs is semisimple.

Exercise 4.1.19. Suppose that g is solvable. Show that g has no semisimple
subalgebra ̸= {0}.

4.2 Lie’s Theorem

Let V be a nonzero vector space over F. Let us recall that gl(V ) is the Lie
algebra of all linear operators on V (same as L(V )), in which the Lie bracket
is the commutator [A,B] = AB − BA. If we fix a basis B of V , then the map
which takes any T ∈ gl(V ) into its matrix M(T ) with respect to B is a Lie
algebra isomorphism from gl(V ) onto gl(n,F).



4.2. LIE’S THEOREM 77

Our objective now is to prove Lie’s Theorem, which says that, when V is a com-
plex vector space, then any solvable subalgebra of gl(V ) is essentially an algebra
of upper triangular matrices; i.e., a subalgebra of Tn(C) (wherein we identify
an operator T with its matrix M(T ) under the isomorphism given above).

Let g be a Lie subalgebra of gl(V ), and suppose that f is a linear functional on
g. The joint eigenspace of g corresponding to f is the subset of V given by

Vf = {v ∈ V |T (v) = f(T ) v for all T ∈ g} (4.5)

The joint eigenspace Vf is easily shown to be a subspace of V : supposing that
v1, v2 ∈ Vf and α ∈ C, then T (v1 + v2) = T (v1) + T (v2) = f(T ) v1 + f(T ) v2 =
f(T ) (v1 + v2); and similarly, T (αv1) = αT (v1) = α f(T ) v1 = f(T ) (αv1), for
all T ∈ g.

Of course, for a given f , Vf could very well be the trivial subspace {0} of V .
Any nonzero element of a joint eigenspace of g is called a joint eigenvector of g.

Any nonzero vector v ∈ V which is an eigenvector of each T ∈ g is necessarily a
joint eigenvector of g. For this, we simply define the function f : g → F by the
requirement that

T v = f(T ) v,

for all T ∈ g. It is easy to show that f is a linear functional on g, and that
therefore v is a nonzero element of Vf .

The following important lemma is the key to Lie’s Theorem.

Lemma 4.2.1. (E.B. Dynkin) Let V be a nonzero vector space over F, and let
g be a Lie subalgebra of gl(V ). Suppose that a is an ideal of g, and that f is
a linear functional on a. If Vf is the joint eigenspace of a corresponding to f ,
then Vf is invariant under g. That is, X(Vf ) ⊂ Vf whenever X ∈ g.

Proof. Let X ∈ g and v ∈ Vf . We want to prove that X(v) ∈ Vf . That is, we
want to prove that T (X(v)) = f(T )X(v) for any T ∈ a. For v = 0, this result
trivially holds, so we may assume that v ̸= 0.

Note that for any T ∈ a,

T (X(v)) = X(T (v)) + (TX −XT )(v)

= X(T (v)) + [T,X](v)

= X(f(T ) v) + f([T,X]) v (since [T,X] ∈ a)

= f(T )X(v) + f([T,X]) v (4.6)

The proof will be complete once we prove that f([T,X]) = 0.

Let v0 = v, v1 = X(v), v2 = X2(v), . . . , vj = Xj(v), . . .. Next, for each
j ≥ 0, let Vj be the subspace of V spanned by (v0, . . . , vj). Since V is finite-
dimensional, there is an integer k ≥ 0 such that (v0, . . . , vk) is linearly indepen-
dent but (v0, . . . , vk, vk+1) is not. Let k be the smallest such integer.
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We claim that for each j such that 0 ≤ j ≤ k, the subspace Vj is invariant under
any T ∈ a and that the matrix of T |Vj with respect to the basis (v0, . . . , vj) of
Vj is upper triangular of the form




f(T ) ∗
. . .

0 f(T )


 (4.7)

If k = 0, then this is obvious, since Vj = Vk = V0 = Fv0, and T (v0) = f(T ) v0,
because v0 ∈ Vf .

So assume that k ≥ 1. Equation (4.6) says that for any T ∈ a,

T (v1) = f(T ) v1 + f([T,X]) v0,

which shows that the subspace V1 = Fv0 + Fv1 is invariant under T . Moreover,
relative to the basis (v0, v1) of V1, the matrix of the restriction T |V1

is

�
f(T ) f([T,X])
0 f(T )

�

We will now use induction on j to prove the same thing for Vj , for any j ≤ k.
So assume that Vj−1 is T -invariant, and that, for any T ∈ a, the matrix of the
restriction T |Vj−1

with respect to the basis (v0, . . . , vj−1) of Vj−1 is of the form
4.7. Now for any T ∈ a, we have,

T (vj) = T (Xj(v))

= T X (Xj−1(v))

= X T (Xj−1(v)) + [T,X]Xj−1(v)

= X T (vj−1) + [T,X](vj−1)

= X

f(T )vj−1 +

X

i<j−1

civi
�
+


f([T,X]) vj−1 +

X

i<j−1

divi
�
,

by the induction hypothesis, where the ci and the di are constants. The last
expression above then equals

f(T )X(vj−1) +
X

i<j−1

ciX(vi) + f([T,X]) vj−1 +
X

i<j−1

divi

= f(T ) vj +
X

i<j−1

civi+1 + f([T,X]) vj−1 +
X

i<j−1

divi

= f(T ) vj +

a linear combination of (v0, . . . , vj−1)

�

This proves our claim. In particular, Vk is invariant under any T ∈ a, and the
matrix of T |Vk

is of the form 4.7.
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This means that for any T ∈ a, the trace of T |Vk
is (k + 1)f(T ). Hence, the

trace of the restriction [T,X]|Vk
is (k + 1) f([T,X]). But then, this trace also

equals

tr (TX −XT )|Vk
= tr (T |Vk

X|Vk
)− tr (X|Vk

T |Vk
) = 0.

Thus (k + 1) f([T,X]) = 0, whence f([T,X]) = 0, proving the lemma.

The following theorem can be construed as a generalization of Theorem 1.5.2,
which states that any linear operator on a complex vector space has an eigen-
vector.

Theorem 4.2.2. Let V be a nonzero vector space over C, and let g be a solvable
Lie subalgebra of gl(V ). Then g has a joint eigenvector.

This theorem asserts that there exists a nonzero vector v ∈ V and a linear
functional f on g such that T (v) = f(T ) v, for all T ∈ g.

Proof. We prove the theorem by induction on dim g. If dim g = 1, then g = CT ,
where T is a linear operator on V . By Theorem 1.5.2, T has an eigenvalue λ.
Let v be an eigenvector corresponding to λ. For any S ∈ g, we have S = cT , so
S(v) = cT (v) = cλ v, so we can put f(cT ) = cλ. Clearly, f ∈ g∗.

Now assume that dim g = m > 1, and that any solvable Lie subalgebra of
gl(V ) of dimension < m has a joint eigenvector. Consider the derived algebra
g′ = [g, g]. Since g is solvable, g′ is a proper ideal of g, so it is a subalgebra of
gl(V ) of dimension < m.

Next let h be any vector subspace of g, of dimension m − 1, such that g′ ⊂ h.
Such an h of course exists. By Proposition 4.1.4, h is an ideal of g. Moreover,
since g is solvable, so is h. (See the observations made after Example 4.1.9.)

Thus, by the induction hypothesis, h has a joint eigenvector. In other words, h
has a nonzero joint eigenspace Vµ, where µ is a linear functional on h.

Since h is an ideal of g, we conclude, using Lemma 4.2.1, that Vµ must be g-
invariant. Let S be a nonzero element of g not in h. Then, since dim h = m− 1,
we have g = h ⊕ CS. The subspace Vµ is S-invariant, so the restriction S|Vµ

must have an eigenvalue λ. Let v ∈ Vµ be an eigenvector of S|Vµ corresponding
to λ.

For any T ∈ g, we have T = cS + Y , for unique Y ∈ h and c ∈ C. Define the
map f : g → C by f(cS + Y ) = cλ+ µ(Y ). It is easy to prove that f is a linear
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functional on g. Moreover, if T = cS + Y ∈ g,

T (v) = (cS + Y )(v)

= c S(v) + Y (v)

= cλ v + µ(Y ) v

= (cλ+ µ(Y )) v

= f(T ) v.

This shows that v is a joint eigenvector of g, completing the induction step and
proving the theorem.

Theorem 4.2.3. (Lie’s Theorem) Let V be a nonzero complex vector space,
and let g be a solvable Lie subalgebra of gl(V ). Then V has a basis (v1, . . . , vn)
with respect to which every element of g has an upper triangular matrix.

Proof. The proof is by induction on dimV . If dimV = 1, there is nothing to
prove. So assume that dimV = n > 1, and that Lie’s theorem holds for all
complex vector spaces of dimension < n.

Now by Theorem 4.2.2, g has a joint eigenvector v1. Let V1 = C v1. Then,
for every T ∈ g, the subspace V1 is T -invariant; let eT : V/V1 → V/V1 be the
induced linear map.

The map T 7→ eT is a Lie algebra homomorphism of g into gl(V/V1). It’s clearly

linear, and the relation [̂S, T ] = [eS, eT ] is easily verified by a simple computation.
Since homomorphic images of solvable Lie algebras are solvable, the image eg of
this homomorphism is a solvable Lie subalgebra of gl(V/V1).

Since dim(V/V1) = n− 1, we can now apply the induction hypothesis to obtain
a basis (v2 + V1, . . . , vn + V1) of V/V1 for which the elements of eg are upper
triangular.

The list (v1, v2, . . . , vn) is then a basis of V . For each T ∈ g, the matrix of
eT : V/V1 → V/V1 with respect to (v2+V1, . . . , vn+V1) is upper triangular. Hence
the matrix of T with respect to (v1, v2, . . . , vn) is upper triangular, proving the
theorem.

A flag in a vector space V is a sequence (V1, . . . , Vk) of subspaces of V such
that V1 ⫋ V2 ⫋ · · · ⫋ Vk. We say that a linear operator T ∈ L(V ) stabilizes the
flag (V1, . . . , Vk) if each Vi is T -invariant. Finally, a Lie subalgebra g of gl(V )
stabilizes the flag (V1, . . . , Vk) if each T ∈ g stabilizes the flag.

Corollary 4.2.4. If g is a solvable Lie subalgebra of gl(V ), then g stabilizes
some flag ({0} = V0, V1, V2, . . . , Vn = V ).
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Proof. Let (v1, . . . , vn) be a basis of V with respect to which the matrix of every
element of g is upper triangular. Then, for each i, let Vi = Cv1 + · · ·+Cvi.

Corollary 4.2.5. (Lie’s Abstract Theorem) Let g be a solvable Lie algebra over
C, of dimension N . Then g has a chain of ideals {0} = g0 ⫋ g1 ⫋ · · · ⫋ gN = g.

Proof. The adjoint representation x 7→ adx maps g onto the solvable Lie sub-
algebra ad g of Der g ⊂ gl(g). Thus ad g stabilizes a flag {0} = g0 ⫋ g1 ⫋ · · · ⫋
gN = g in g. Each subspace gi therefore satisfies adx (gi) ⊂ gi, for all x ∈ g.
This means that gi is an ideal of g.

In particular, Corollary 4.2.5 shows that if g is a complex solvable Lie algebra
and if 0 ≤ i ≤ dim g, then g has an ideal of dimension i.

In Example 4.1.9, we saw that the Lie algebra Tn(F) of all upper triangular n×n
matrices over F is solvable. If a Lie algebra g is solvable and complex, then the
following shows that g is in some sense just a subalgebra of Tn(C). Thus Tn(C)
is the “prototypical” solvable complex Lie algebra. For this, we will need the
following important theorem.

Theorem 4.2.6. (Ado’s Theorem) Let g be any nonzero Lie algebra over F.
Then there exists a vector space V over F and an injective Lie algebra homo-
morhism φ of g into gl(V ).

We won’t be needing Ado’s Theorem in the rest of this book, so we omit its
proof.

Now suppose that g is a solvable complex Lie algebra. Using Ado’s Theorem,
we may therefore identify g with a (solvable) Lie subalgebra of gl(V ). Then,
from Lie’s theorem, there is a basis B of V with respect to which the matrix
of every element of g is upper triangular. Now, for every linear operator T on
V , let M(T ) be its matrix with respect to B. Then the map T 7→ M(T ) is
a Lie algebra isomorphism of gl(V ) onto gl(n,C). The image of g under this
isomorphism is a Lie subalgebra of Tn(C). Thus g may be identified with this
Lie subalgebra of Tn(C).
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