Chapter 4

Solvable Lie Algebras and Lie's Theorem

4.1 Solvable Lie Algebras

Definition 4.1.1. The *derived algebra* of a Lie algebra \mathfrak{g} is $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$.

 \mathfrak{g}' is an ideal of \mathfrak{g} , since \mathfrak{g}' is spanned by the products [x, y], for all $x, y \in \mathfrak{g}$, and $[[x, y], z] \in [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}'$, for all $x, y, z \in \mathfrak{g}$.

We could abbreviate the argument that \mathfrak{g}' is an ideal by writing $[\mathfrak{g}',\mathfrak{g}] = [[\mathfrak{g},\mathfrak{g}],\mathfrak{g}] \subset [\mathfrak{g},\mathfrak{g}] = \mathfrak{g}'$.

Theorem 4.1.2. $\mathfrak{g}/\mathfrak{g}'$ is abelian, and for any ideal \mathfrak{a} , $\mathfrak{g}/\mathfrak{a}$ is abelian $\iff \mathfrak{g}' \subset \mathfrak{a}$.

Proof. For any $x, y \in \mathfrak{g}$, we have $[x + \mathfrak{g}', y + \mathfrak{g}'] = [x, y] + \mathfrak{g}' = \mathfrak{g}'$, so $\mathfrak{g}/\mathfrak{g}'$ is abelian.

Let us now prove the second assertion. Now

$$\begin{split} \mathfrak{g}/\mathfrak{a} \text{ is abelian } & \Longleftrightarrow \ [x+\mathfrak{a},y+\mathfrak{a}] = [x,y] + \mathfrak{a} = \mathfrak{a} \text{ for all } x,y \in \mathfrak{g} \\ & \Longleftrightarrow \ [x,y] \in \mathfrak{a} \text{ for all } x,y \in \mathfrak{g} \\ & \Longleftrightarrow \ \mathfrak{g}' = [\mathfrak{g},\mathfrak{g}] \subset \mathfrak{a} \end{split}$$

Definition 4.1.3. A characteristic ideal of \mathfrak{g} is an ideal \mathfrak{a} such that $D(\mathfrak{a}) \subset \mathfrak{a}$ for every derivation D of \mathfrak{g} .

The derived ideal \mathfrak{g}' is a characteristic ideal: for every derivation D, we have $D(\mathfrak{g}') = D[\mathfrak{g}, \mathfrak{g}] = [D(\mathfrak{g}), \mathfrak{g}] + [\mathfrak{g}, D(\mathfrak{g})] \subset [\mathfrak{g}, \mathfrak{g}] + [\mathfrak{g}, \mathfrak{g}] = [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}'.$

Proposition 4.1.4. Let \mathfrak{h} be any vector subspace of the Lie algebra \mathfrak{g} such that $\mathfrak{g}' \subset \mathfrak{h}$. Then \mathfrak{h} is an ideal of \mathfrak{g} .

Proof. We have
$$[\mathfrak{g},\mathfrak{h}] \subset [\mathfrak{g},\mathfrak{g}] = \mathfrak{g}' \subset \mathfrak{h}$$
.

Let $\mathfrak{g}^{(0)} = \mathfrak{g}, \mathfrak{g}^{(1)} = \mathfrak{g}'$, and for any $i \geq 2$, define $\mathfrak{g}^{(i)}$ inductively by $\mathfrak{g}^{(i)} = [\mathfrak{g}^{(i-1)}, \mathfrak{g}^{(i-1)}].$

Definition 4.1.5. We call $\mathfrak{g}^{(i)}$ the *i*th derived algebra of \mathfrak{g} . The derived series of \mathfrak{g} is

$$\mathfrak{g}^{(0)} \supset \mathfrak{g}^{(1)} \supset \mathfrak{g}^{(2)} \supset \cdots \supset \mathfrak{g}^{(i)} \supset \mathfrak{g}^{(i+1)} \supset \cdots$$

$$(4.1)$$

Proposition 4.1.6. The derived series consists of a decreasing sequence of characteristic ideals of \mathfrak{g} .

Proof. We need to prove that each $\mathfrak{g}^{(i)}$ is a characteristic ideal of \mathfrak{g} . This is done by induction on i, noting that there is nothing to prove for i = 0, and that we have already proved that $\mathfrak{g}^{(1)} = \mathfrak{g}'$ is a characteristic ideal in the remark before Definition 4.1.5. So assume that $\mathfrak{g}^{(i)}$ is a characteristic ideal of \mathfrak{g} . Then by the Jacobi identity and the induction hypothesis,

$$[\mathfrak{g},\mathfrak{g}^{(i+1)}] = [\mathfrak{g},[\mathfrak{g}^{(i)},\mathfrak{g}^{(i)}]] \subset [\mathfrak{g}^{(i)},[\mathfrak{g},\mathfrak{g}^{(i)}]] + [\mathfrak{g}^{(i)},[\mathfrak{g}^{(i)},\mathfrak{g}]] \subset [\mathfrak{g}^{(i)},\mathfrak{g}^{(i)}] = \mathfrak{g}^{(i+1)}.$$

It follows that $\mathfrak{g}^{(i+1)}$ is an ideal of \mathfrak{g} . Next, for any $D \in \text{Der } \mathfrak{g}$, we have

$$D(\mathfrak{g}^{(i+1)}) = D[\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}]$$

= $[D(\mathfrak{g}^{(i)}), \mathfrak{g}^{(i)}] + [\mathfrak{g}^{(i)}, D(\mathfrak{g}^{(i)})]$
 $\subset [\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}] + [\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}]$ (by the induction hypothesis)
 $= \mathfrak{g}^{(i+1)}.$

Definition 4.1.7. \mathfrak{g} is said to be *solvable* if $\mathfrak{g}^{(k)} = \{0\}$ for some $k \in \mathbb{Z}^+$.

Exercise 4.1.8. Show that \mathfrak{g} is solvable if and only if there is a nested sequence of ideals $\mathfrak{g} = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_m = \{0\}$ such that \mathfrak{g}_{i+1} is an ideal of \mathfrak{g}_i and $\mathfrak{g}_i/\mathfrak{g}_{i+1}$ is abelian.

Note that no simple Lie algebra can be solvable. In fact, if \mathfrak{g} is simple, then $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ is a nonzero ideal of \mathfrak{g} (since \mathfrak{g} is, by definition, non-abelian); hence $\mathfrak{g}' = \mathfrak{g}$. Thus $\mathfrak{g}'' = \mathfrak{g}' = \mathfrak{g}$, etc, and the derived series is constant. In particular, $\mathfrak{sl}(2, \mathbb{C})$ is not solvable.

Example 4.1.9. Let $\mathfrak{g} = T_n(\mathbb{F})$ be the vector space of upper triangular $n \times n$ matrices over \mathbb{F} . If A and B are upper triangular matrices

$$A = \begin{pmatrix} s_1 & & * \\ 0 & s_2 & & \\ & & \ddots & \\ 0 & & & s_n \end{pmatrix}, \qquad B = \begin{pmatrix} t_1 & & * \\ 0 & t_2 & & \\ & & \ddots & \\ 0 & & & t_n \end{pmatrix}$$

then the product AB has the form

$$AB = \begin{pmatrix} s_1t_1 & & * \\ 0 & s_2t_2 & & \\ & & \ddots & \\ 0 & & & s_nt_n \end{pmatrix}$$

and likewise, BA has the same form. Hence the commutator AB - BA is strictly upper triangular

$$AB - BA = \begin{pmatrix} 0 & & * \\ & 0 & & \\ & & \ddots & \\ 0 & & & 0 \end{pmatrix}$$
(4.2)

Thus the elements of \mathfrak{g}' consist of strictly upper triangular matrices. With a bit of thought, one can see that the elements of $\mathfrak{g}^{(2)}$ are matrices whose entries are 0's below the diagonal 2 steps above the main diagonal; that is, $\mathfrak{g}^{(2)}$ consists of matrices (a_{ij}) such that $a_{ij} = 0$ whenever $i \geq j - 1$.

$$\left(\begin{array}{ccccccc} 0 & 0 & * & * & * \\ 0 & 0 & * & * \\ & 0 & 0 & & \\ & & \ddots & \ddots & * \\ & & & 0 & 0 \\ 0 & & & & 0 \end{array}\right)$$

The $\mathfrak{g}^{(3)}$ matrices have 0's below the diagonal 2^2 steps above the main diagonal. Generally, $\mathfrak{g}^{(i)}$ matrices have 0's below the diagonal 2^{i-1} steps above the main diagonal.

We can also use Exercise 4.1.8 to show that $T_n(\mathbb{F})$ is solvable. First, for any i, j, let E_{ij} be the $n \times n$ matrix whose (i, j) entry is a 1 and all of whose other

entries are 0. Then $\{E_{ij}\}_{1 \leq i,j \leq n}$ is a basis of $\mathfrak{gl}(n,\mathbb{F})$. The E_{ij} satisfy the multiplication rules

$$E_{ij}E_{kl} = \delta_{jk}E_{il},\tag{4.3}$$

and so

$$[E_{ij}, E_{kl}] = E_{ij}E_{kl} - E_{kl}E_{ij} = \delta_{jk}E_{il} - \delta_{li}E_{kj}$$

$$(4.4)$$

Now

$$T_n(\mathbb{F}) = \bigoplus_{i \le j} (\mathbb{F}E_{ij}).$$

For each integer $r \ge 0$, let \mathfrak{g}_r denote the subspace of $T_n(\mathbb{F})$ consisting of those matrices whose entries below the diagonal r steps above the main diagonal are 0. Then

$$\mathfrak{g}_r = \bigoplus_{k \le l-r} (\mathbb{F}E_{kl})$$

Note that $T_n(\mathbb{F}) = \mathfrak{g}_0 \supset \mathfrak{g}_1 \supset \cdots \supset \mathfrak{g}_n \supset \mathfrak{g}_{n+1} = \{0\}$. We claim that \mathfrak{g}_r is an ideal of $T_n(\mathbb{F})$ and that $\mathfrak{g}_r/\mathfrak{g}_{r+1}$ is abelian.

To prove that \mathfrak{g}_r is an ideal of $T_n(\mathbb{F})$, we just need to prove that $[E_{ij}, E_{kl}] \in \mathfrak{g}_r$ whenever $E_{ij} \in T_n(\mathbb{F})$ and $E_{kl} \in \mathfrak{g}_r$. For this, we apply the commutation rule (4.4). The right hand side of (4.4) is nonzero only if j = k or l = i. If j = k, then $i \leq j = k \leq l - r$, so $E_{il} \in \mathfrak{g}_r$. If l = i, then $k \leq l - r = i - r \leq j - r$, so $E_{kj} \in \mathfrak{g}_r$. Either way, we get $[E_{ij}, E_{kl}] \in \mathfrak{g}_r$.

The condition that $\mathfrak{g}_r/\mathfrak{g}_{r+1}$ is abelian is the same as the condition that $[\mathfrak{g}_r, \mathfrak{g}_r] \subset \mathfrak{g}_{r+1}$. For r = 0, the proof is the same as the argument leading up to equation (4.2).

For $r \geq 1$, we will show that if E_{ij} and E_{kl} are in \mathfrak{g}_r , then $[E_{ij}, E_{kl}] \in \mathfrak{g}_{r+1}$. For this, it suffices, in turn, to show that the matrix product $E_{ij}E_{kl}$ lies in \mathfrak{g}_{r+1} . (The argument that $E_{kl}E_{ij} \in \mathfrak{g}_{r+1}$ is the same.)

Now, by (4.3), $E_{ij}E_{kl}$ is nonzero if and only if j = k, in which case the product is E_{il} . But this means that $i \leq j - r = k - r \leq l - 2r \leq l - (r+1)$, since $r \geq 1$. Thus $E_{il} \in \mathfrak{g}_{r+1}$.

We have thus shown that for all $r \geq 0$, $[\mathfrak{g}_r, \mathfrak{g}_r] \subset \mathfrak{g}_{r+1}$, and hence $\mathfrak{g} = T_n(\mathbb{F})$ is solvable.

We now make the following observations about solvable Lie algebras. First, if \mathfrak{g} is solvable, then so is any subalgebra \mathfrak{h} of \mathfrak{g} . This is because if $\mathfrak{h}^{(i)}$ is the *i*th term in the derived series for \mathfrak{h} , then a simple induction argument shows that $\mathfrak{h}^{(i)} \subset \mathfrak{g}^{(i)}$ for all *i*. The second observation is that if \mathfrak{g} is solvable, then so is any homomorphic image of \mathfrak{g} . In fact, suppose that $\varphi : \mathfrak{g} \to \mathfrak{m}$ is a Lie algebra homomorphism. Then the image $\mathfrak{q} = \varphi(\mathfrak{g})$ is a subalgebra of \mathfrak{m} , and it is easy to see, using another simple induction argument, that $\varphi(\mathfrak{g}^{(i)}) = \mathfrak{q}^{(i)}$ for all *i*. **Proposition 4.1.10.** If \mathfrak{g} is a Lie algebra and \mathfrak{a} is an ideal of \mathfrak{g} , then \mathfrak{g} is solvable \iff both \mathfrak{a} and $\mathfrak{g}/\mathfrak{a}$ are solvable.

Proof. If \mathfrak{g} is solvable, then so is \mathfrak{a} , since the ideal \mathfrak{a} is also a subalgebra of \mathfrak{g} . The quotient algebra $\mathfrak{g}/\mathfrak{a}$ is the homomorphic image of \mathfrak{g} under the projection $\pi : \mathfrak{g} \to \mathfrak{g}/\mathfrak{a}$, so it must also be solvable.

Conversely, suppose that both \mathfrak{a} and $\mathfrak{g}/\mathfrak{a}$ are solvable. Since $\mathfrak{g}/\mathfrak{a}$ is solvable, we must have $(\mathfrak{g}/\mathfrak{a})^{(k)} = \{0\}$, for some k. (The "0" here refers to the zero vector in $\mathfrak{g}/\mathfrak{a}$.) But $(\mathfrak{g}/\mathfrak{a})^{(k)} = \pi(\mathfrak{g})^{(k)} = \pi(\mathfrak{g})^{(k)})$. It follows that $\mathfrak{g}^{(k)} \subset \mathfrak{a}$, and from this, it follows that $\mathfrak{g}^{(k+r)} \subset \mathfrak{a}^{(r)}$, for all r. But then \mathfrak{a} is solvable, so $\mathfrak{a}^{(m)} = \{0\}$ for some m, whence $\mathfrak{g}^{(k+m)} = \{0\}$. Therefore, \mathfrak{g} is solvable.

Corollary 4.1.11. Suppose that \mathfrak{a} and \mathfrak{b} are solvable ideals of any Lie algebra \mathfrak{g} . Then $\mathfrak{a} + \mathfrak{b}$ is a solvable ideal of \mathfrak{g} .

Proof. It is easy to see that $\mathfrak{a} + \mathfrak{b}$ is an ideal of \mathfrak{g} . Now \mathfrak{b} is also an ideal of $\mathfrak{a} + \mathfrak{b}$, and by the Isomorphism Theorem (Theorem 3.2.7), $(\mathfrak{a} + \mathfrak{b})/\mathfrak{b} \cong \mathfrak{a}/(\mathfrak{a} \cap \mathfrak{b})$. But the quotient algebra $\mathfrak{a}/(\mathfrak{a} \cap \mathfrak{b})$ is solvable by the preceding proposition. Hence both $(\mathfrak{a} + \mathfrak{b})/\mathfrak{b}$ and \mathfrak{b} are solvable, so again by the preceding proposition, we see that $\mathfrak{a} + \mathfrak{b}$ is solvable.

Theorem 4.1.12. Any (finite-dimensional) Lie algebra \mathfrak{g} has a maximal solvable ideal \mathfrak{R}_s , which contains every solvable ideal of \mathfrak{g} .

Proof. Since $\{0\}$ is a solvable ideal of \mathfrak{g} , the collection of all solvable ideals of \mathfrak{g} is nonempty. In this collection, let \mathfrak{R}_s be a solvable ideal of *maximal* dimension. If \mathfrak{a} is any solvable ideal, then by Corollary 4.1.11, $\mathfrak{R}_s + \mathfrak{a}$ is a solvable ideal of \mathfrak{g} , whence by the maximality of \mathfrak{R}_s , we conclude that $\mathfrak{R}_s + \mathfrak{a} = \mathfrak{R}_s$, and so $\mathfrak{a} \subset \mathfrak{R}_s$.

Definition 4.1.13. \mathfrak{R}_s is called the *solvable radical* of \mathfrak{g} . The Lie algebra \mathfrak{g} is said to be *semisimple* if $\mathfrak{R}_s = \{0\}$.

Corollary 4.1.14. If \mathfrak{g} is simple, then \mathfrak{g} is semisimple.

Proof. We had previously observed that since \mathfrak{g} is simple, the derived series for \mathfrak{g} is constant: $\mathfrak{g}^{(i)} = \mathfrak{g}$ for all *i*. Thus, $\mathfrak{g} \neq \mathfrak{R}_s$, but \mathfrak{R}_s is an ideal of \mathfrak{g} , so this forces $\mathfrak{R}_s = \{0\}$.

Are there semisimple Lie algebras which are not simple? Sure! For an example, we first introduce the notion of an external direct sum of Lie algebras.

Let V and W be vector spaces over F. The Cartesian product $V \times W$ has the structure of a vector space, where addition and scalar multiplication are defined by

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

 $\alpha (v, w) = (\alpha v, \alpha w),$

for all $v, v_1, v_2 \in V$, all $w, w_1, w_2 \in W$, and all $\alpha \in \mathbb{F}$. Equipped with this vector space structure, we call $V_1 \times V_2$ the *external direct sum* of V_1 and V_2 .

The external direct sum $V_1 \times V_2 \times \cdots \times V_k$ of k vector spaces is defined similarly.

Exercise 4.1.15. (Easy)

Exercise 4.1.16. (Straightforward)

Exercise 4.1.17.

Corollary 4.1.18. If \mathfrak{g} is any Lie algebra and \mathfrak{R}_s is its solvable radical, then the quotient algebra $\mathfrak{g}/\mathfrak{R}_s$ is semisimple.

Proof. Let \mathfrak{I} denote the solvable radical of $\mathfrak{g}/\mathfrak{R}_s$. Then, by the Correspondence Theorem (Theorem 3.2.6), we have $\mathfrak{I} = \overline{\mathfrak{R}}/\mathfrak{R}_s$, where $\overline{\mathfrak{R}}$ is an ideal of \mathfrak{g} containing \mathfrak{R}_s . But since both $\overline{\mathfrak{R}}/\mathfrak{R}_s$ and \mathfrak{R}_s are solvable, it follows from Corollary 4.1.11 that $\overline{\mathfrak{R}}$ is solvable. Since \mathfrak{R}_s is maximal solvable, we conclude that $\overline{\mathfrak{R}} = \mathfrak{R}_s$, so $\mathfrak{I} = \{0\}$. This shows that $\mathfrak{g}/\mathfrak{R}_s$ is semisimple.

Exercise 4.1.19. Suppose that \mathfrak{g} is solvable. Show that \mathfrak{g} has no semisimple subalgebra $\neq \{0\}$.

4.2 Lie's Theorem

Let V be a nonzero vector space over \mathbb{F} . Let us recall that $\mathfrak{gl}(V)$ is the Lie algebra of all linear operators on V (same as $\mathcal{L}(V)$), in which the Lie bracket is the commutator [A, B] = AB - BA. If we fix a basis B of V, then the map which takes any $T \in \mathfrak{gl}(V)$ into its matrix M(T) with respect to B is a Lie algebra isomorphism from $\mathfrak{gl}(V)$ onto $\mathfrak{gl}(n, \mathbb{F})$.

Our objective now is to prove Lie's Theorem, which says that, when V is a *complex* vector space, then any solvable subalgebra of $\mathfrak{gl}(V)$ is essentially an algebra of upper triangular matrices; i.e., a subalgebra of $T_n(\mathbb{C})$ (wherein we identify an operator T with its matrix M(T) under the isomorphism given above).

Let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$, and suppose that f is a linear functional on \mathfrak{g} . The *joint eigenspace of* \mathfrak{g} *corresponding to* f is the subset of V given by

$$V_f = \{ v \in V \mid T(v) = f(T) v \text{ for all } T \in \mathfrak{g} \}$$

$$(4.5)$$

The joint eigenspace V_f is easily shown to be a subspace of V: supposing that $v_1, v_2 \in V_f$ and $\alpha \in \mathbb{C}$, then $T(v_1 + v_2) = T(v_1) + T(v_2) = f(T)v_1 + f(T)v_2 = f(T)(v_1 + v_2)$; and similarly, $T(\alpha v_1) = \alpha T(v_1) = \alpha f(T)v_1 = f(T)(\alpha v_1)$, for all $T \in \mathfrak{g}$.

Of course, for a given f, V_f could very well be the trivial subspace $\{0\}$ of V. Any nonzero element of a joint eigenspace of \mathfrak{g} is called a *joint eigenvector* of \mathfrak{g} .

Any nonzero vector $v \in V$ which is an eigenvector of each $T \in \mathfrak{g}$ is necessarily a joint eigenvector of \mathfrak{g} . For this, we simply define the function $f : \mathfrak{g} \to \mathbb{F}$ by the requirement that

$$T v = f(T) v,$$

for all $T \in \mathfrak{g}$. It is easy to show that f is a linear functional on \mathfrak{g} , and that therefore v is a nonzero element of V_f .

The following important lemma is the key to Lie's Theorem.

Lemma 4.2.1. (E.B. Dynkin) Let V be a nonzero vector space over \mathbb{F} , and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$. Suppose that \mathfrak{a} is an ideal of \mathfrak{g} , and that f is a linear functional on \mathfrak{a} . If V_f is the joint eigenspace of \mathfrak{a} corresponding to f, then V_f is invariant under \mathfrak{g} . That is, $X(V_f) \subset V_f$ whenever $X \in \mathfrak{g}$.

Proof. Let $X \in \mathfrak{g}$ and $v \in V_f$. We want to prove that $X(v) \in V_f$. That is, we want to prove that T(X(v)) = f(T) X(v) for any $T \in \mathfrak{a}$. For v = 0, this result trivially holds, so we may assume that $v \neq 0$.

Note that for any $T \in \mathfrak{a}$,

$$T(X(v)) = X(T(v)) + (TX - XT)(v)$$

= $X(T(v)) + [T, X](v)$
= $X(f(T)v) + f([T, X])v$ (since $[T, X] \in \mathfrak{a}$)
= $f(T)X(v) + f([T, X])v$ (4.6)

The proof will be complete once we prove that f([T, X]) = 0.

Let $v_0 = v$, $v_1 = X(v)$, $v_2 = X^2(v), \ldots, v_j = X^j(v), \ldots$ Next, for each $j \ge 0$, let V_j be the subspace of V spanned by (v_0, \ldots, v_j) . Since V is finitedimensional, there is an integer $k \ge 0$ such that (v_0, \ldots, v_k) is linearly independent but $(v_0, \ldots, v_k, v_{k+1})$ is not. Let k be the smallest such integer. We claim that for each j such that $0 \le j \le k$, the subspace V_j is invariant under any $T \in \mathfrak{a}$ and that the matrix of $T|_{V_j}$ with respect to the basis (v_0, \ldots, v_j) of V_j is upper triangular of the form

$$\left(\begin{array}{ccc}
f(T) & * \\
& \ddots & \\
0 & f(T)
\end{array}\right)$$
(4.7)

If k = 0, then this is obvious, since $V_j = V_k = V_0 = \mathbb{F}v_0$, and $T(v_0) = f(T)v_0$, because $v_0 \in V_f$.

So assume that $k \ge 1$. Equation (4.6) says that for any $T \in \mathfrak{a}$,

$$T(v_1) = f(T)v_1 + f([T, X])v_0$$

which shows that the subspace $V_1 = \mathbb{F}v_0 + \mathbb{F}v_1$ is invariant under T. Moreover, relative to the basis (v_0, v_1) of V_1 , the matrix of the restriction $T|_{V_1}$ is

$$\left(\begin{array}{cc} f(T) & f([T,X]) \\ 0 & f(T) \end{array}\right)$$

We will now use induction on j to prove the same thing for V_j , for any $j \leq k$. So assume that V_{j-1} is T-invariant, and that, for any $T \in \mathfrak{a}$, the matrix of the restriction $T|_{V_{j-1}}$ with respect to the basis (v_0, \ldots, v_{j-1}) of V_{j-1} is of the form 4.7. Now for any $T \in \mathfrak{a}$, we have,

$$T(v_j) = T(X^j(v))$$

= $T X (X^{j-1}(v))$
= $X T (X^{j-1}(v)) + [T, X] X^{j-1}(v)$
= $X T(v_{j-1}) + [T, X](v_{j-1})$
= $X (f(T)v_{j-1} + \sum_{i < j-1} c_i v_i) + (f([T, X]) v_{j-1} + \sum_{i < j-1} d_i v_i)$

by the induction hypothesis, where the c_i and the d_i are constants. The last expression above then equals

$$\begin{aligned} f(T) X(v_{j-1}) + \sum_{i < j-1} c_i X(v_i) + f([T, X]) v_{j-1} + \sum_{i < j-1} d_i v_i \\ &= f(T) v_j + \sum_{i < j-1} c_i v_{i+1} + f([T, X]) v_{j-1} + \sum_{i < j-1} d_i v_i \\ &= f(T) v_j + (a \text{ linear combination of } (v_0, \dots, v_{j-1})) \end{aligned}$$

This proves our claim. In particular, V_k is invariant under any $T \in \mathfrak{a}$, and the matrix of $T|_{V_k}$ is of the form 4.7.

This means that for any $T \in \mathfrak{a}$, the trace of $T|_{V_k}$ is (k+1)f(T). Hence, the trace of the restriction $[T, X]|_{V_k}$ is (k+1)f([T, X]). But then, this trace also equals

$$\operatorname{tr}(TX - XT)|_{V_k} = \operatorname{tr}(T|_{V_k}X|_{V_k}) - \operatorname{tr}(X|_{V_k}T|_{V_k}) = 0.$$

Thus (k+1) f([T,X]) = 0, whence f([T,X]) = 0, proving the lemma.

The following theorem can be construed as a generalization of Theorem 1.5.2, which states that any linear operator on a complex vector space has an eigenvector.

Theorem 4.2.2. Let V be a nonzero vector space over \mathbb{C} , and let \mathfrak{g} be a solvable Lie subalgebra of $\mathfrak{gl}(V)$. Then \mathfrak{g} has a joint eigenvector.

This theorem asserts that there exists a nonzero vector $v \in V$ and a linear functional f on \mathfrak{g} such that T(v) = f(T)v, for all $T \in \mathfrak{g}$.

Proof. We prove the theorem by induction on dim \mathfrak{g} . If dim $\mathfrak{g} = 1$, then $\mathfrak{g} = \mathbb{C}T$, where T is a linear operator on V. By Theorem 1.5.2, T has an eigenvalue λ . Let v be an eigenvector corresponding to λ . For any $S \in \mathfrak{g}$, we have S = cT, so $S(v) = cT(v) = c\lambda v$, so we can put $f(cT) = c\lambda$. Clearly, $f \in \mathfrak{g}^*$.

Now assume that dim $\mathfrak{g} = m > 1$, and that any solvable Lie subalgebra of $\mathfrak{gl}(V)$ of dimension < m has a joint eigenvector. Consider the derived algebra $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$. Since \mathfrak{g} is solvable, \mathfrak{g}' is a proper ideal of \mathfrak{g} , so it is a subalgebra of $\mathfrak{gl}(V)$ of dimension < m.

Next let \mathfrak{h} be *any* vector subspace of \mathfrak{g} , of dimension m-1, such that $\mathfrak{g}' \subset \mathfrak{h}$. Such an \mathfrak{h} of course exists. By Proposition 4.1.4, \mathfrak{h} is an ideal of \mathfrak{g} . Moreover, since \mathfrak{g} is solvable, so is \mathfrak{h} . (See the observations made after Example 4.1.9.)

Thus, by the induction hypothesis, \mathfrak{h} has a joint eigenvector. In other words, \mathfrak{h} has a nonzero joint eigenspace V_{μ} , where μ is a linear functional on \mathfrak{h} .

Since \mathfrak{h} is an ideal of \mathfrak{g} , we conclude, using Lemma 4.2.1, that V_{μ} must be \mathfrak{g} -invariant. Let S be a nonzero element of \mathfrak{g} not in \mathfrak{h} . Then, since dim $\mathfrak{h} = m - 1$, we have $\mathfrak{g} = \mathfrak{h} \oplus \mathbb{C}S$. The subspace V_{μ} is S-invariant, so the restriction $S|_{V_{\mu}}$ must have an eigenvalue λ . Let $v \in V_{\mu}$ be an eigenvector of $S|_{V_{\mu}}$ corresponding to λ .

For any $T \in \mathfrak{g}$, we have T = cS + Y, for unique $Y \in \mathfrak{h}$ and $c \in \mathbb{C}$. Define the map $f : \mathfrak{g} \to \mathbb{C}$ by $f(cS + Y) = c\lambda + \mu(Y)$. It is easy to prove that f is a linear

functional on \mathfrak{g} . Moreover, if $T = cS + Y \in \mathfrak{g}$,

T

$$\begin{aligned} (v) &= (cS+Y)(v) \\ &= c\,S(v) + Y(v) \\ &= c\lambda\,v + \mu(Y)\,v \\ &= (c\lambda + \mu(Y))\,v \\ &= f(T)\,v. \end{aligned}$$

This shows that v is a joint eigenvector of \mathfrak{g} , completing the induction step and proving the theorem.

Theorem 4.2.3. (Lie's Theorem) Let V be a nonzero complex vector space, and let \mathfrak{g} be a solvable Lie subalgebra of $\mathfrak{gl}(V)$. Then V has a basis (v_1, \ldots, v_n) with respect to which every element of \mathfrak{g} has an upper triangular matrix.

Proof. The proof is by induction on dim V. If dim V = 1, there is nothing to prove. So assume that dim V = n > 1, and that Lie's theorem holds for all complex vector spaces of dimension < n.

Now by Theorem 4.2.2, \mathfrak{g} has a joint eigenvector v_1 . Let $V_1 = \mathbb{C} v_1$. Then, for every $T \in \mathfrak{g}$, the subspace V_1 is *T*-invariant; let $\widetilde{T} : V/V_1 \to V/V_1$ be the induced linear map.

The map $T \mapsto \widetilde{T}$ is a Lie algebra homomorphism of \mathfrak{g} into $\mathfrak{gl}(V/V_1)$. It's clearly linear, and the relation $\widetilde{[S,T]} = [\widetilde{S},\widetilde{T}]$ is easily verified by a simple computation. Since homomorphic images of solvable Lie algebras are solvable, the image $\widetilde{\mathfrak{g}}$ of this homomorphism is a solvable Lie subalgebra of $\mathfrak{gl}(V/V_1)$.

Since dim $(V/V_1) = n - 1$, we can now apply the induction hypothesis to obtain a basis $(v_2 + V_1, \ldots, v_n + V_1)$ of V/V_1 for which the elements of $\tilde{\mathfrak{g}}$ are upper triangular.

The list (v_1, v_2, \ldots, v_n) is then a basis of V. For each $T \in \mathfrak{g}$, the matrix of $\widetilde{T}: V/V_1 \to V/V_1$ with respect to $(v_2+V_1, \ldots, v_n+V_1)$ is upper triangular. Hence the matrix of T with respect to (v_1, v_2, \ldots, v_n) is upper triangular, proving the theorem.

A flag in a vector space V is a sequence (V_1, \ldots, V_k) of subspaces of V such that $V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_k$. We say that a linear operator $T \in \mathcal{L}(V)$ stabilizes the flag (V_1, \ldots, V_k) if each V_i is T-invariant. Finally, a Lie subalgebra \mathfrak{g} of $\mathfrak{gl}(V)$ stabilizes the flag (V_1, \ldots, V_k) if each $T \in \mathfrak{g}$ stabilizes the flag.

Corollary 4.2.4. If \mathfrak{g} is a solvable Lie subalgebra of $\mathfrak{gl}(V)$, then \mathfrak{g} stabilizes some flag $(\{0\} = V_0, V_1, V_2, \ldots, V_n = V)$.

Proof. Let (v_1, \ldots, v_n) be a basis of V with respect to which the matrix of every element of \mathfrak{g} is upper triangular. Then, for each i, let $V_i = \mathbb{C}v_1 + \cdots + \mathbb{C}v_i$. \Box

Corollary 4.2.5. (Lie's Abstract Theorem) Let \mathfrak{g} be a solvable Lie algebra over \mathbb{C} , of dimension N. Then \mathfrak{g} has a chain of ideals $\{0\} = \mathfrak{g}_0 \subsetneq \mathfrak{g}_1 \gneqq \cdots \gneqq \mathfrak{g}_N = \mathfrak{g}$.

Proof. The adjoint representation $x \mapsto \operatorname{ad} x$ maps \mathfrak{g} onto the solvable Lie subalgebra $\operatorname{ad} \mathfrak{g}$ of $\operatorname{Der} \mathfrak{g} \subset \mathfrak{gl}(\mathfrak{g})$. Thus $\operatorname{ad} \mathfrak{g}$ stabilizes a flag $\{0\} = \mathfrak{g}_0 \subsetneqq \mathfrak{g}_1 \subsetneqq \cdots \subsetneqq \mathfrak{g}_N = \mathfrak{g}$ in \mathfrak{g} . Each subspace \mathfrak{g}_i therefore satisfies $\operatorname{ad} x(\mathfrak{g}_i) \subset \mathfrak{g}_i$, for all $x \in \mathfrak{g}$. This means that \mathfrak{g}_i is an ideal of \mathfrak{g} .

In particular, Corollary 4.2.5 shows that if \mathfrak{g} is a complex solvable Lie algebra and if $0 \leq i \leq \dim \mathfrak{g}$, then \mathfrak{g} has an ideal of dimension *i*.

In Example 4.1.9, we saw that the Lie algebra $T_n(\mathbb{F})$ of all upper triangular $n \times n$ matrices over \mathbb{F} is solvable. If a Lie algebra \mathfrak{g} is solvable and complex, then the following shows that \mathfrak{g} is in some sense just a subalgebra of $T_n(\mathbb{C})$. Thus $T_n(\mathbb{C})$ is *the* "prototypical" solvable complex Lie algebra. For this, we will need the following important theorem.

Theorem 4.2.6. (Ado's Theorem) Let \mathfrak{g} be any nonzero Lie algebra over \mathbb{F} . Then there exists a vector space V over \mathbb{F} and an injective Lie algebra homomorhism φ of \mathfrak{g} into $\mathfrak{gl}(V)$.

We won't be needing Ado's Theorem in the rest of this book, so we omit its proof.

Now suppose that \mathfrak{g} is a solvable complex Lie algebra. Using Ado's Theorem, we may therefore identify \mathfrak{g} with a (solvable) Lie subalgebra of $\mathfrak{gl}(V)$. Then, from Lie's theorem, there is a basis B of V with respect to which the matrix of every element of \mathfrak{g} is upper triangular. Now, for every linear operator T on V, let M(T) be its matrix with respect to B. Then the map $T \mapsto M(T)$ is a Lie algebra isomorphism of $\mathfrak{gl}(V)$ onto $\mathfrak{gl}(n,\mathbb{C})$. The image of \mathfrak{g} under this isomorphism is a Lie subalgebra of $T_n(\mathbb{C})$. Thus \mathfrak{g} may be identified with this Lie subalgebra of $T_n(\mathbb{C})$.

82 CHAPTER 4. SOLVABLE LIE ALGEBRAS AND LIE'S THEOREM

Bibliography

- [Axl97] S. Axler, *Linear Algebra Done Right*, second ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. MR 1482226
- [Dau85] J. W. Dauben, The History of Mathematics from Antiquity to the Present, Bibliographies of the History of Science and Technology, vol. 6, Garland Publishing, Inc., New York, 1985, A selective bibliography, Garland Reference Library of the Humanities, 313. MR 790680
- [Jac79] N. Jacobson, *Lie algebras*, Dover Publications, Inc., New York, 1979, Republication of the 1962 original. MR 559927
- [Rud91] W. Rudin, Functional Analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- [Sch51] E. Schenkman, A theory of subinvariant Lie algebras, Amer. J. Math. 73 (1951), 453–474. MR 42399