
Chapter 3

Basic Algebraic Facts

In this section we explore the basic algebraic properties satisfied by all Lie
algebras. Many of these properties, properly formulated, are shared by general
algebras.

3.1 Structure Constants.

Suppose that g is a Lie algebra over F, and that B = (x1, . . . , xn) is a basis of
g. Then there exist unique scalars ckij (1 ≤ k ≤ n) such that

[xi, xj ] =

nX

k=1

ckijxk (3.1)

for all 1 ≤ i, j ≤ n. The scalars ckij are called the structure constants of g relative
to the given basis B. Since every element of g is a unique linear combination of
the basis vectors in B, we see that the structure constants completely determine
the Lie bracket [x, y], for any x, y ∈ g.

From the anticommutativity (2.3) and the Jacobi identity (2.4), we see that the
structure constants ckij satsify the relations

ckji = −ckij (3.2)
nX

r=1

(cmirc
r
jk+cmjrc

r
ki + cmkrc

r
ij) = 0, (3.3)

for all i, j, k,m.

Conversely, suppose that there exist n3 constants ckij in F satisfying the relations
(3.2) and (3.3). Then it can be shown, by a straightforward computation, that
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if g is a vector space with basis B = (x1, . . . , xn) and we define a bilinear binary
operation [ , ] on g via (3.1), then this binary operation is anticommutative
and satisfies the Jacobi identity.

Thus a Lie algebra g is completely determined by its structure constants and
the relations (3.1) on a given basis (x1, . . . , xn).

In this course, we will not be making much use of structure constants.

3.2 Quotient Algebras, Homomorphisms, and Iso-
morphisms.

Let h and u be subalgebras of a Lie algebra g. Then the subspace h∩ u is easily
checked to be a Lie subalgebra of g. In addition, if one of them is an ideal of g,
then h+ u is a subalgebra of g.

If U and W are nonempty subsets of g, we define [U,W ] to be the subspace
spanned by all [u,w], where u ∈ U, w ∈ W . Thus a subspace U of g is a
subalgebra if and only if [U,U ] ⊂ U .

Let a be an ideal of a Lie algebra g. The quotient space g/a has a (natural) Lie
algebra structure, in which the Lie bracket is defined by

[x+ a, y + a] = [x, y] + a. (3.4)

The binary operation on g/a given by 3.4 is well-defined: if x+ a = x1 + a and
y + a = y1 + a, then x1 − x ∈ a and y1 − y ∈ a, so

[x1, y1] = [x+ (x1 − x), y + (y1 − y)]

= [x, y] + [x1 − x, y] + x, y1 − y] + [x1 − x, y1 − y].

Since the last three terms above belong to a, we therefore have [x1, y1] + a =
[x, y] + a. It is easy to verify that the binary operation (3.4) on g/a is a Lie
bracket on g/a. We call the quotient space g/a, equipped with this Lie bracket,
the quotient Lie algebra of g by a.

Example 3.2.1. We saw in Example 2.1.14 that sl(n,F) is an ideal of gl(n,F),
of dimension n2 − 1. The quotient Lie algebra k = gl(n,F)/sl(n,F) is one-
dimensional, and so must be abelian. The fact that k is abelian is also easy to
see because [X,Y ] ∈ sl(n,F) for all X, Y ∈ gl(n,F).

Let g and m be Lie algebras. A homomorphism from g to m is a linear map
φ : g → m such that

φ[x, y] = [φ(x),φ(y)],
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for all x, y ∈ g. An isomorphism is a one-to-one, onto, homomorphism. We
say that Lie algebras g and m are isomorphic, written g ∼= m, if there exists an
isomorphism φ : g → m. An automorphism of g is an isomorphism of g onto g.

As an example, if a is an ideal of g, then the natural projection

π :g → g/a

x 7→ x+ a

is a surjective Lie algebra homomorphism.

If φ : g → m is a homomorphism, then kerφ is an ideal of g. In fact, if x ∈ kerφ
and y ∈ g, then

φ[x, y] = [φ(x),φ(y)] = [0,φ(y)] = 0,

so [x, y] ∈ kerφ.

Exercise 3.2.2.

Exercise 3.2.3.

Theorem 3.2.4. (The Homomorphism Theorem) Let a be an ideal of g, and
let π : g → g/a be the natural projection. Suppose that φ : g → m is a homomor-
phism such that a ⊂ kerφ. Then there is a unique homomorphism eφ : g/a → m
satisfying eφ ◦ π = φ.

Proof. Let eφ : g/a → m be given by eφ(x + a) = φ(x), for all x ∈ a. Since
φ(a) = 0, eφ is well-defined. It is a homomorphism since eφ[x + a, y + a] =
eφ([x, y]+a) = φ[x, y] = [φ(x),φ(y)] = [eφ(x+a), eφ(y+a)]. And it is unique, since
the condition eφ◦π = φ means that, for all x ∈ g, eφ(x+a) = eφ◦π(x) = φ(x).

Corollary 3.2.5. Let φ : g → m be a Lie algebra homomorphism. Then the
image φ(g) is a Lie subalgebra of m, and the resulting map eφ : g/ kerφ → φ(g)
is a Lie algebra isomorphism. Thus, if φ is onto, then eφ is an isomorphism of
g/ kerφ onto m.

Proof. For any x, y ∈ g, we have [φ(x),φ(y)] = φ[x, y] ∈ φ(g), so φ(g) is a
subalgebra of m. Put a = kerφ in Theorem 3.2.4. Then eφ is injective since if
eφ(x + a) = 0, then φ(x) = 0, so x ∈ a, and thus x + a = a. Thus the map
eφ : g/ kerφ → φ(g) is an isomorphism.

If kerφ = {0}, then g is isomorphic to its image φ(g) in m. In this case, we say
that g is embedded in m.

Theorem 3.2.6. (The Correspondence Theorem) Let φ : g → m be a surjective
homomorphism.

1. If a is an ideal of g, then φ(a) is an ideal of m.
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2. If s is an ideal of m, the φ−1(s) is an ideal of g which contains kerφ.

3. The mappings a 7→ φ(a) and s 7→ φ−1(s) are inverse mappings between
the set of all ideals of g which contain kerφ and the set of all ideals of m,
so the two sets of ideals are in one-to-one correspondence.

4. g/a ∼= m/φ(a) for all ideals a of g containing kerφ.

5. The correspondence in (3) preserves inclusion:

kerφ ⊂ a1 ⊂ a2 ⇐⇒ φ(a1) ⊂ φ(a2).

Proof.

1. For any y ∈ m and v ∈ a, we have y = φ(x) for some x ∈ g, so

[y,φ(v)] = [φ(x),φ(v)]

= φ[x, v] ∈ φ(a).

Hence [m,φ(a)] ⊂ φ(a), and φ(a) is an ideal of m.

2. Let v ∈ φ−1(s). Then for any x ∈ g, we have

φ[x, v] = [φ(x),φ(v)] ∈ [m, s] ⊂ s,

so [x, v] ∈ φ−1(s).

3. We first claim that if a is an ideal of g containing kerφ, then φ−1(φ(a)) =
a. Since clearly a ⊂ φ−1(φ(a)), it suffices to prove that φ−1(φ(a)) ⊂ a.
But if x ∈ φ−1(φ(a)), then φ(x) = φ(v) for some v ∈ a, so x− v ∈ kerφ,
and hence x ∈ v + kerφ ⊂ a+ a = a.

Next, it is clear from the surjectivity of φ that if A is any subset of m,
then φ(φ−1(A)) = A. Thus, in particular, if s is an ideal of m, then
φ(φ−1(s)) = s.

From the above, we see that a 7→ φ(a) is a bijection between the sets in
question, with inverse s 7→ φ−1(s).

4. Consider the following diagram of homomorphisms

g
φ - m

g/a

π

?
............

φ1

- m/φ(a)

p

?

(3.5)

where π and p are projections. Now p ◦ φ is a homomorphism of g onto
m/φ(a) whose kernel is φ−1(φ(a)) = a. Hence by the Homomorphism
Theorem (Theorem 3.2.4)and its corollary, there is a isomorphism φ1 from
g/a onto m/φ(a) such that φ1 ◦ π = p ◦ φ.
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5. Obvious.

Theorem 3.2.7. (The Isomorphism Theorem) If g is a Lie algebra, and s a
subalgebra and a an ideal of g, then

1. s ∩ a is an ideal of s

2. s/(s ∩ a) ∼= (s+ a)/a

3. If b is an ideal of g such that b ⊂ a, then (g/b)/(a/b) ∼= g/a.

Proof. 1. Easy.

2. We already know that s+ a is a subalgebra of g. Consider the diagram

s
π- s/(s ∩ a)

s+ a

i

? p- (s+ a)/a

i′

?

................

where π and p are projections, and i is the inclusion map of s into s+ a.
p ◦ i is obviously a homomorphism, and it is surjective, since any element
of (s + a)/a is of the form v + w + a, where v ∈ s and w ∈ a, and this
element is of course the same as v + a = p ◦ i(v). The kernel of p ◦ i is
{v ∈ s | v + a = a} = {v ∈ s | v ∈ a} = s ∩ a. Thus by the Homomorphism
Theorem, the resulting map i′ : s/(s ∩ a) → (s+ a)/a is an isomorphism.

3. Consider the map h : g/b → g/a given by x + b 7→ x + a. h is well-
defined, since b ⊂ a and is easily checked to be a surjective Lie algebra
homomorphism. Its kernel is the ideal {x + b |x + a = a} = {x + b |x ∈
a} = a/b of g/b. Thus, by the Homomorphism Theorem, the algebras
(g/b)/(a/b) and g/a are isomorphic.

Exercise 3.2.8. (Graduate Exercise.) Suppose that φ is an involution of a
Lie algebra g; i.e., an automorphism φ of g such that φ2 = Ig. Let h = {x ∈
g |φ(x) = x} be the +1 eigenspace and q = {x ∈ g |φ(x) = −x} the −1-
eigenspace of φ, respectively. Prove that g = h⊕ q, and that [h, h] ⊂ h (so that
h is a subalgebra), [h, q] ⊂ q, [q, q] ⊂ h.

Definition 3.2.9. A representation of a Lie algebra g on a vector space V is a
Lie algebra homomorphism π : g → gl(V ). V is called the representation space
of π. If there is a representation of g on V , then we say that g acts on V .
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If π is a representation of g on V , then of course π(x) is a linear map on V for
any x ∈ g.

Example 3.2.10. If V is any vector space, then gl(V ) acts on V , via the
identity map id : gl(V ) → gl(V ). Any Lie subalgebra g of gl(V ) likewise acts
on V , via the inclusion map ι : g ,→ gl(V ). This action is called the standard
representation of g on V .

Note that sl(n,F), so(n,F) and sp(n,F) ((Examples 2.1.14), 2.1.17, and 2.1.18,
respectively) are Lie algebras of matrices acting on Fn, Fn, and F2n under their
respective standard representations.

Example 3.2.11. The trivial representation of g on V is the map π : g → gl(V )
such that π(x) = 0, for all x ∈ g.

In representation theory, one studies representations of Lie algebras, and their
associated Lie groups, on finite and infinite-dimensional vector spaces. Repre-
sentation theory has intimate connections to number theory, physics, differential
and symplectic geometry, and harmonic and geometric analysis, to mention but
a few fields. It is an extremely active and vibrant field of mathematics.

3.3 Centers, Centralizers, Normalizers, and Sim-
ple Lie Algebras

The center of a Lie algebra g is the set c = {c ∈ g | [c, v] = 0 for all v ∈ g}.
It is obvious that c is an ideal of g. If A is a nonempty subset of g, then the
centralizer of A is the set c(A) = {x ∈ g | [x, v] = 0 for all v ∈ A}. It is easily
checked that c(A) is a subspace of g. Note that c = c(g).

Proposition 3.3.1. Let A be a nonempty subset of g. Then its centralizer c(A)
is a subalgebra of g.

Proof. This is an immediate consequence of the Jacobi identity. Let x, y ∈ c(A)
and let a ∈ A. Then

[[x, y], a] = −[[y, a], x]− [[a, x], y] = −[0, x]− [0, y] = 0.

Proposition 3.3.2. If a is an ideal of g, then its centralizer c(a) is an ideal of
g.

Proof. Another immediate consequence of the Jacobi identity: let c ∈ c(a), v ∈
g, and x ∈ a. Then

[[c, v], x] = −[[v, x], c]− [[x, c], v].



3.3. CENTERS, CENTRALIZERS, NORMALIZERS, AND SIMPLE LIE ALGEBRAS67

But c ∈ c, so [x, c] = 0 and [v, x] ∈ a so [[v, x], c] = 0.

Proposition 3.3.3. Let φ be a surjective Lie algebra homomorphism of g onto
m. If c denotes the center of g, then its image φ(c) lies in the center of m.

Proof. m = φ(g), so [m,φ(c)] = [φ(g),φ(c)] = φ([g, c]) = φ({0}) = {0}.

If s is a subalgebra of g, its normalizer is the set n(s) = {x ∈ g | [x, v] ∈
s for all v ∈ s}. n(s) is clearly a subspace of g containing s, and the Jacobi
identity shows that it is in fact a subalgebra of g:

Proposition 3.3.4. n(s) is a subalgebra of g.

Proof. Let x and y be in n(s), and let s ∈ s. Then

[[x, y], s] = −[[y, s], x]− [[s, x], y] ∈ −[s, x]− [s, y] ⊂ s+ s = s.

One more thing: it is easy to see that n(s) is the largest subalgebra of g for
which s is an ideal.

Example 3.3.5. Let g = sl(2,C) = {X ∈ gl(2,C) | tr(X) = 0}. Its standard
basis is given by

e =

�
0 1
0 0

�
, h =

�
1 0
0 −1

�
, f =

�
0 0
1 0

�
. (3.6)

The commutation relations among these basis elements is given by

[h, e] = he− eh = 2e

[h, f ] = hf − fh = −2f (3.7)

[e, f ] = ef − fe = h.

From the above, we see that the one-dimensional algebra Ch is its own nor-
malizer. (Ch is called a Cartan subalgebra of g.) We will see later on that the
commutation relations (3.7) play a key role in the structure and representation
theory of semisimple Lie algebras.

Definition 3.3.6. A Lie algebra g is said to be simple if g is non-abelian and
g has no ideals except {0} and g.

Example 3.3.7. sl(2,C) is simple. Suppose that a ̸= {0} is an ideal of sl(2,C).
Let v ̸= 0 be an element of a, and write v = αe+ βf + γh, where not all of α,β
or γ are 0.
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Assume that α ̸= 0. Then from the commutation relations (3.7), [v, f ] = αh−
2γf ∈ a, and so [[v, f ], f ] = −2αf ∈ a. Hence f ∈ a, and so h = [e, f ] ∈ a and
also e = 1/2[h, e] ∈ a. Thus α ̸= 0 implies a = g. A similar argument shows
that β ̸= 0 implies a = g.

Finally, if γ ̸= 0, then [v, e] = −βh+ 2γe ∈ a, so the argument in the preceding
paragraph shows that a = g.

One of the goals of this course is to obtain Cartan’s classification of all simple Lie
algebras over C. These consist of four (infinite) classes – the so-called classical
simple Lie algebras – and five so-called exceptional Lie algebras.

3.4 The Adjoint Representation.

For each x ∈ g define the linear operator ad x : g → g by ad x (y) = [x, y], for
all y ∈ g. The Jacobi identity shows that ad x is a derivation of g, since for all
u, v ∈ g, we have

ad x [u, v] = [x, [u, v]]

= −[u, [v, x]]− [v, [x, u]]

= [u, [x, v]] + [[x, u], v]

= [u, ad x (v)] + [ad x (u), v].

Example 3.4.1. Let g = sl(2,C), with standard basis (e, f, h) given by (3.6).
Using the commutation relations (3.7), we see that the matrices of ad e, ad f ,
and adh with respect to the standard basis are:

ad e =




0 0 −2
0 0 0
0 1 0


 , ad f =




0 0 0
0 0 2

−1 0 0


 , adh =




2 0 0
0 −2 0
0 0 0




Proposition 3.4.2. The map x 7→ ad x is a homomorphism of g into the Lie
algebra Der g.

Proof. First, we show that ad (x+ y) = ad x+ad y. Now for all z ∈ g, we have

ad (x+ y) (z) = [x+ y, z] = [x, z] + [y, z]

= ad x (z) + ad y (z)

= (ad x+ ad y)(z).

Similarly, ad (αx) = α(ad x), since for all z ∈ g, we have ad (αx) (z) = [αx, z] =
α[x, z] = α ad x (z).
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Finally, we prove that ad [x, y] = [ad x, ad y] for all x and y in g. For any z ∈ g,
we have

ad [x, y] (z) = [[x, y], z]

= −[[y, z], x]− [[z, x], y]

= [x, [y, z]]− [y, [x, z]]

= ad x (ad y (z))− ad y (ad x (z))

= (ad x ◦ ad y − ad y ◦ ad x)(z)

= [ad x, ad y](z).

Since the map ad : g → Der g ⊂ gl(g) is a homomorphism, we see that ad is a
representation of g on itself. For this reason, it is called the adjoint representa-
tion of g.

Let ad g denote the subspace of Der g consisting of all ad x, for all x ∈ g.

Proposition 3.4.3. ad g is an ideal of Der g.

Proof. The proposition will follow once we prove that

[D, adx] = ad (Dx). (3.8)

for all x ∈ g and D ∈ Der g. But for any y ∈ g, we have

[D, adx](y) = (D ◦ adx − adx ◦D)(y)

= D[x, y]− [x,Dy]

= [Dx, y]

= ad (Dx) (y), (3.9)

since D is a derivation of g.

We say that g is complete if ad g = Der g.

The kernel of the adjoint representation x 7→ adx of g into Der g consists of all
x ∈ g such that adx = 0; i.e., all x such that [x, y] = 0 for all y ∈ g. This is
precisely the center c of g.

Corollary 3.4.4. If the center c of g is {0} (e.g., when g is simple), then ad
maps g isomorphically onto the ideal ad g of Der g, so g is embedded in Der g.

Proof. c is the kernel of the adjoint representation, so by the Corollary 3.2.5,
ad maps g isomorphically onto ad g.
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Proposition 3.4.5. If c = {0}, then the centralizer c(ad g) in Der g is {0},
hence c(Der g) = {0}, so Der g is embedded in Der (Der g).

Proof. Suppose that D ∈ c(ad g). Then for all x ∈ g, we have by by (3.9),
0 = [D, adx] = ad (Dx). Since c = {0}, we see that Dx = 0 for all x ∈ g, and
hence D = 0. Now since the elements of the center c(Der g) kill everything in
Der g, we see that c(Der g) ⊂ c(ad g), whence c(Der g) = {0}. By the previous
corollary, this implies that Der g is embedded in Der (Der g).

So, amusingly, if the center c of g is {0}, we have an increasing chain of Lie
algebras

g ⊂ Der g ⊂ Der (Der g) ⊂ Der (Der (Der g)) ⊂ · · ·

According to a theorem by Schenkman, this chain eventually stops growing.
(See Schenkmann’s paper [Sch51] or Jacobson’s book ([Jac79] p.56, where it’s
an exercise) for details.)

Definition 3.4.6. Let a and b be ideals of g such that g = a⊕ b. We say that
g is a direct sum of the ideals a and b.

Exercise 3.4.7. If c = {0}, then show that g is complete if and only if g is a
direct summand of any Lie algebra m which contains g as an ideal: m = g⊕ h,
where h is another ideal of m.

Exercise 3.4.8. If g is simple, show that Der g is complete.
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