
Chapter 2

Lie Algebras: Definition
and Basic Properties

2.1 Elementary Properties

Let A be a vector space over F. A is said to be an algebra over F if there is a
binary operation (a “product”) on A

A×A → A
(a, b) 7→ a.b

such that for all a, b, c ∈ A and α ∈ F, we have

a.(b+ c) = a.b+ a.c (2.1)

(a+ b).c = a.c+ b.c

α(a.b) = (αa).b = a.(αb).

(We say the the product is bilinear over F.) The algebra A is commutative, or
abelian, if a.b = b.a for all a, b ∈ A. A is associative if a.(b.c) = (a.b).c for all
a, b, c ∈ A.

There are numerous examples of algebras. Here are but a pitiful few:

1. F[z1, . . . , zn], the algebra of polynomials in the variables z,, . . . , zn, with
coefficients in F, is a commutative, associative algebra over F.

2. The vector space Fn×n of n×n matrices with entries in F is an associative
(but not commutative) algebra over F, of dimension n2.
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3. The vector space L(V ) is an associative algebra under composition of
linear operators. If we fix a basis B of V and identify each T ∈ L(V )
with its matrix MB(T ), then by (1.6), we see that L(V ) is the same as
the algebra MdimV (F).

4. The algebra H of quaternions is the vector space R4, in which each element
is written in the form a = a0 + a1i + a2j + a3k (with a0, . . . , a3 ∈ R),
and in which the multiplication is defined by the following rule, extended
distributively:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i (2.2)

ki = −ik = j.

Then H is a 4-dimensional algebra over R, or a 2-dimensional algebra over
C (with basis (1, j)). It is associative but not commutative.

5. The exterior algebra ΛV of a vector space V over F, with wedge multi-
plication, is an associative, noncommutative algebra over F, of dimension
2dimV .

6. Let G be any group. The group algebra F[G] is an associative algebra
which is constructed as follows. The elements of F[G] are finite linear
combinations of elements of G, with coefficients in F:

X

g∈G

ag g.

In the above sum, ag ∈ F and all but a finite number of ag are 0. Addition
and scalar multiplication are defined componentwise:

X

g∈G

ag g +
X

g∈G

bg g =
X

g∈G

(ag + bg) g

and

c ·
X

g∈G

ag g =
X

g∈G

(cag) g.

Multiplication is defined so as to conform to the conditions (2.1):
�X

g∈G

ag g

��X

h∈G

bh h

�
=

X

g,h∈G

(ag bh) gh.

The right hand side above can also be written as

X

g∈G

�X

u∈G

aubu−1g

�
g.
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7. Let X be a topological space. The vector space F(X) of all continuous
functions from X to F, equipped with pointwise addition and multiplica-
tion, is a commutative, associative algebra over F.

Definition 2.1.1. Let g be an algebra over F, with product [x, y]. g is called a
Lie algebra if

[x, x] = 0 for all x ∈ g (2.3)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g. (2.4)

The multiplication on the Lie algebra g is called the Lie bracket. Any algebra
product which satisfies (2.3) is said to be anticommutative. The identity (2.4)
is called the Jacobi identity.

Note: We have adopted the common practice of Lie theorists (those who study
Lie groups and Lie algebras) to use lowercase gothic letters to denote Lie alge-
bras, and to use g to denote a typical Lie algebra. I don’t know exactly how
this practice came about, but I suspect that it may have had something to do
with Hermann Weyl, a German who was a leading practitioner of Lie theory
(and in fact one of the greatest mathematicians of the Twentieth Century) in
the 1950s.

Proposition 2.1.2. The condition (2.3) is equivalent to the condition that

[x, y] = −[y, x]

for all x, y ∈ g.

Proof. Suppose that [x, y] = −[y, x] for all x, y ∈ g. then [x, x] = −[x, x] =⇒
[x, x] = 0 for all x ∈ g.

Conversely, if [x, x] = 0 for all x ∈ g, then for all x, y ∈ g,

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]

=⇒ [x, y] = −[y, x].

Proposition 2.1.3. The Jacobi identity is equivalent to its alter ego:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (2.5)

Proof. Easy, just multiply the Jacobi identity by −1 and use the preceding
proposition.

We now consider some examples of Lie algebras.
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Example 2.1.4. An abelian Lie algebra is one in which the Lie bracket is
commutative. Thus, in an abelian Lie algebra g, [x, y] = [y, x], for all x, y ∈ g.
But then, we also have [x, y] = −[y, x], so [x, y] = 0 for all x, y ∈ g. Thus the
Lie bracket in an abelian Lie algebra is identically 0.

Conversely, if we define the bracket on a vector space V by [x, y] = 0 for all
x, y ∈ V , we see that the conditions (2.3) and (2.4) are immediately satisfied.
Thus, any vector space may be endowed with the (obviously trivial) structure
of an abelian Lie algebra.

Exercise 2.1.5.

Example 2.1.6. Here’s a great source of Lie algebras: take any associative
algebra A, and define a Lie bracket on A by putting

[x, y] := xy − yx.

Of course we need to verify that [x, y] is indeed a Lie bracket on A. But the
anticommutativity is obvious, and the verification of the Jacobi identity is a
routine calculation:

[x, [y, z]] + [y, [x, z]] + [z, [x, y]]

= x(yz − zy)− (yz − zy)x+ y(xz − zx)− (xz − zx)y + z(xy − yx)− (xy − yx)z

= xyz − xzy − yzx+ zyx+ yxz − yzx− xzy + zxy + zxy − zyx− xyz + yxz

= 0.

The Lie bracket [x, y] defined above is called the commutator product of x and
y.

The associative algebra Fn of n×n matrices can therefore be given a Lie algebra
structure. So equipped, we will refer to this Lie algebra as gl(n,F).

Example 2.1.7. Let V be an n-dimensional vector space over F. As we have
already seen, L(V ) is an associative algebra of dimension n2, and if we fix a basis
B of V , L(V ) is isomorphic (as an associative algebra) to Fn under the map
T 7→ MB,B(T ). From the preceding example, L(V ) has a Lie algebra structure,
given by [S, T ] = ST − TS. The notation gl(V ) will denote the associative
algebra L(V ) when it is given this Lie algebra structure

Example 2.1.8.

Definition 2.1.9. Let g be a Lie algebra over F and s a vector subspace of g.
We say that s is a Lie subalgebra of g if s is closed under the Lie bracket in g.
That is, s is a Lie subalgebra of g if [x, y] ∈ s whenever x, y ∈ s.

Example 2.1.10.

Example 2.1.11. Any one-dimensional subspace Fx of a Lie algebra g is an
abelian Lie subalgebra of g, for [cx, dx] = cd[x, x] = 0 for all c, d ∈ F.
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Example 2.1.12.

Definition 2.1.13. Let g be a Lie algebra over F and let s be a vector subspace
of g. We say that s is an ideal of g if [s, x] ∈ s whenever s ∈ s and x ∈ g.

Thus, the ideal s “absorbs” elements of g under the Lie bracket. An ideal s of
a Lie algebra g is obviously a Lie subalgebra of g.

Example 2.1.14. Let sl(n,F) denote the set of all n×nmatricesX with entries
in F such that tr(X) = 0. Since the trace map

gl(n,F) → F
X 7→ tr(X)

is a surjective linear functional on gl(n,F), we see that sl(n,F) = ker(tr) is a
vector subspace of gl(n,F), of dimension n2 − 1. We claim that sl(n,F) is an
ideal of gl(n,F). For this, we just need to verify that tr[X,Y ] = 0 whenever
X ∈ sl(n,F) and Y ∈ gl(n,F).

But by Proposition 1.4.3, we know that for any X and any Y in gl(n,F), we
have tr[X,Y ] = tr(XY − Y X) = tr(XY ) − tr(Y X) = 0! Thus sl(n,F) is an
ideal of gl(n,F).
Example 2.1.15. Let V be a nonzero vector space over F, and let sl(V ) =
{T ∈ gl(V ) | tr(T ) = 0}. Then just as in the preceding example, it is easy to
prove that sl(V ) is an ideal of gl(V ).

The next proposition gives rise to a large class of the so-called classical simple
Lie algebras.

Proposition 2.1.16. Let S be a nonsingular n× n matrix over F. Then let

g := {X ∈ gl(n,F) |S tX S−1 = −X} (2.6)

Then g is a Lie subalgebra of gl(n,F). Moreover, g ⊂ sl (n,F).

Proof. It is straightforward to check that g is a subspace of gl(n,F). What’s
important is to prove that g is closed under the Lie bracket in gl(n,F). That is,
we must prove that [X,Y ] ∈ g whenever X and Y are in g.

But then, for X, Y ∈ g,

S( t[X,Y ])S−1 = S( t(XY − Y X))S−1

= S( tY tX − tX tY )S−1

= S( tY tX)S−1 − S( tX tY )S−1

= (S tY S−1)(S tX S−1)− (S tX S−1) (S tY S−1)

= (−Y )(−X)− (−X)(−Y )

= (Y X −XY )

= −[X,Y ],
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which shows that [X,Y ] indeed belongs to g.

For any X ∈ g, we have tr (S tX S−1) = tr (−X), which gives trX = −trX,
and so trX = 0. Thus g is a subalgebra of sl (n,F).

Example 2.1.17. When we let S = In in Proposition 2.1.16, we obtain the
Lie algebra so(n,F) = {X ∈ gl(n,F) | tX = −X}. so(n,F) consists of all skew-
symmetric matrices in F.

By convention, the real Lie algebra so (n,R) is often simply written as so (n).

Example 2.1.18.

Exercise 2.1.19. (Easy exercise.)

Example 2.1.20. Let n = p+ q, where p, q ∈ Z+. If in Proposition 2.1.16, we
let S be the (p+ q)× (p+ q) matrix which in block form is given by

S = Ip,q :=

�
−Ip 0p×q

0q×p Iq

�
, (2.7)

then we obtain the Lie subalgebra

so (p, q,F) = {X ∈ gl (p+ q,F) | Ip,q tX Ip,q = −X} (2.8)

of sl (p + q,F). When F = R, this Lie algebra is denoted simply by so (p, q).
Note that so (p, 0,F) = so (0, p,F) = so (p,F).

We recall that the adjoint, or transposed conjugate, of a complex matrix X is
the matrix X∗ = tX.

Proposition 2.1.21. Let S be a nonsingular complex n× n matrix, and let

g = {X ∈ gl (n,C) |S X∗ S−1 = −X}. (2.9)

Then g is a Lie subalgebra of gl (n,C).

The easy proof, which is quite similar to that of Proposition 2.1.16, will be
omitted.

Example 2.1.22. In Proposition 2.1.21, if we let S = In, we get the Lie algebra

u (n) = {X ∈ gl (n,C) |X∗ = −X} (2.10)

of skew-Hermitian matrices. Intersecting this with sl (n,C), we get the Lie
algebra

su (n) = u (n) ∩ sl (n,C) (2.11)

of skew-Hermitian matrices of trace 0. (Here we are using the easily checked fact
that the intersection of two Lie subalgebras of a Lie algebra g is a Lie subalgebra
of g.)
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Example 2.1.23. If n = p+ q and if, in Proposition 2.1.21, we let S = Ip,q, as
in equation 2.7, then we obtain the Lie subalgebra

u(p, q) = {X ∈ gl (p+ q,C) | Ip,q X∗ Ip,q = −X} (2.12)

of gl (p+ q,C). The intersection u(p, q) ∩ sl (p+ q,C) is denoted by su(p, q).

Exercise 2.1.24. Show that sl(n,F), so(n,F), and sp(n,F) are all invariant
under the transpose map X 7→ tX. Show that u(n), su(n), u(p, q), and su(p, q)
are all invariant under the adjoint map X 7→ X∗.

Example 2.1.25. Suppose that ⟨ , ⟩ is a bilinear form on a vector space V
over F. Let g denote the set of all T ∈ L(V ) which satisfies Leibniz’ rule with
respect to ⟨ , ⟩:

⟨T (v), w⟩+ ⟨v, T (w)⟩ = 0 for all v, w ∈ V.

It is easy to check that g is a vector subspace of L(V ). Let us show that g is a
Lie subalgebra of gl(V ) under the commutator product. Suppose that S and T
are in g. Then for any V, w ∈ V , we have

⟨(ST − TS)(v), w⟩ = ⟨ST (v), w⟩ − ⟨TS(v), w⟩
= −⟨T (v), S(w)⟩+ ⟨S(v), T (w)⟩
= ⟨v, TS(w)⟩ − ⟨v, ST (w)⟩
= −⟨v, (ST − TS)(w)⟩.

This shows that [S, T ] = ST −TS ∈ g. The Lie algebra g is sometimes denoted
so (V ).



60CHAPTER 2. LIE ALGEBRAS: DEFINITION AND BASIC PROPERTIES


