
Chapter 1

Background Linear Algebra

This course requires some knowledge of linear algebra beyond what is normally
taught in a beginning undergraduate course. In this section, we recall some gen-
eral facts from basic linear algebra and introduce some additional facts needed
in the course, including generalized eigenspaces and the Jordan canonical form
of a linear map on a complex vector space. It is important that you familiarize
yourself with these basic facts, which are also important in and of themselves.

1.1 Subspaces and Quotient Spaces

In what follows, all vector spaces will be defined over the field F of either real
or complex numbers. In other words, F will denote either R or C, so when we
talk about a vector space V over F, we mean that V is a vector space either
over R or C.

A vector space can of course be defined over any algebraic field F, and not just
R or C, but we will limit ourselves to these two fields in order to simplify the
exposition. Many of the results presented here carry over to vector spaces over
arbitrary fields (the ones for C mostly carry over to algebraically closed fields),
although the proofs may not necessarily be the same, especially for fields with
prime characteristic.

Unless otherwise stated, all vector spaces will be finite-dimensional.

Let V be a vector space over F, and let A and B be any nonempty subsets of
V and λ ∈ F. We will use the following notation:

A+B = {a+ b | a ∈ A and b ∈ B} (1.1)
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and
λA = {λa | a ∈ A} . (1.2)

For simplicity, if v is a vector in V , we write

v +B := {v}+B.

This set is called the translate of B by the vector v. From (1.1) above, it is easy
to see that

A+B =
[

a∈A

(a+B) =
[

b∈B

(b+A).

Note that a nonempty subset W of V is a vector subspace of V if and only if
W +W ⊂ W and λW ⊂ W , for all λ ∈ F.

Suppose now that W is a subspace of the vector space V . If v is any vector in
V , the translate v+W is called the affine subspace with direction W through v.

For example, suppose that V is the ordinary 3-dimensional Euclidean space R3

and W is the (x, y)-plane:

W =








x
y
0




������
x, y ∈ R





and if v =




2
−1
3


, then v +W is the affine plane with equation z = 3.

As another example, if W is the one-dimensional subspace of R3 spanned by
the vector

w =




−1
2
2




(this is a straight line through the origin), and if

v =




4
0
1


 ,

then v +W is the straight line in R3 through v and parallel to w; that is, it is
the affine straight line specified by the parametric equations

x = 4− t , y = 2t , z = 1 + 2t.
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Now let W be a subspace of a vector space V . Two translates v1 + W and
v2 +W of W coincide if and only of v1 − v2 ∈ W . To see this, first assume that
v1+W = v2+W . Then v1 = v1+0 ∈ v1+W = v2+W , so, v1 = v2+w for some
w ∈ W , whence v1 − v2 = w ∈ W . Conversely, suppose that v1 − v2 = w ∈ W .
Then v1 +W = v2 + w +W = v2 +W .

The set of all translates of W by vectors in V is denoted by V/W , and is called
the quotient space of V by W . (We pronounce V/W as “V mod W .”) Thus,

V/W = {v +W | v ∈ V }.

The set V/W carries a natural vector space structure with vector addition given
by (1.1):

(v1 +W ) + (v2 +W ) = (v1 + v2) + (W +W ) = v1 + v2 +W,

and scalar multiplication on V/W given by

λ(v +W ) = λv +W.

Note that this definition of scalar multiplication is slightly different from the
definition of scalar multiplication of sets in (1.2) above. (The reason being that
0B = {0} for any nonempty subset B of V .) We will leave to the student
the routine verification that the operations above give rise to a vector space
structure on V/W . Note that in V/W the zero vector is 0 +W = W . (Later,
when we study quotient spaces in greater detail, we will abuse notation and
simply denote the zero vector in V/W by 0.)

Proposition 1.1.1. Let W be a subspace of V . Then dim(V/W ) = dimV −
dimW .

Proof. Let B′ = (w1, . . . , wm) be any basis of W , and extend this to a basis
B = (w1, . . . , wm, vm+1, . . . , vn) of V . We claim that (vm+1+W, . . . , vn+W ) is
a basis of V/W . First we show that they span V/W . Let v+W be an arbitrary
element of V/W . Then v = a1w1 + · · · + amwm + am+1vm+1 + · · · + anvn, for
suitable scalars a1, . . . , an. Then

v +W = a1w1 + · · ·+ amwm + am+1vm+1 + · · ·+ anvn +W

= am+1vm+1 + · · ·+ anvn +W

= am+1(vm+1 +W ) + · · ·+ an(vn +W ),

so v +W is a linear combination of (vm+1 +W, . . . , vn +W ).

Next we show that (vm+1+W, . . . , vn+W ) is a linearly independent set in V/W .
Suppose that am+1(vm+1 +W ) + · · · + an(vn +W ) = 0. This is equivalent to
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am+1vm+1 + · · · + anvn + W = W , so that am+1vm+1 + · · · + anvn ∈ W .
Since w1, . . . , wm is a basis of W , we must have am+1vm+1 + · · · + anvn =
b1w1 + · · ·+ bmwm, for suitable scalars b1, . . . , bm, and thus

−b1w1 − · · ·− bmwm + am+1vm+1 + · · ·+ anvn = 0;

Since (w1, . . . , wm, vm+1, . . . , vn) is a basis of V , we see that, in particular,
am+1 = · · · = an = 0.

It is easy to check that the sum of subspaces of V is also a subspace of V .
Explicitly, ifW1, . . . ,Wk are subspaces of V , thenW1+· · ·+Wk is also a subspace
of V . This sum is called a direct sum if, for any vectors w1 ∈ W1, . . . , wk ∈ Wk,
the condition

w1 + · · ·+ wk = 0

implies that w1 = 0, . . . , wk = 0. In this case, we will use the notationW1⊕· · ·⊕
Wk to denote the direct sum. Note that (w1, . . . , wm) is a linearly independent
set if and only if the subspace sum Fw1 + · · ·+ Fwm is direct.

Exercise 1.1.2. Prove that if U and W are subspaces of V , then the sum
U +W is direct if and only if U ∩W = {0}.

Example 1.1.3. Let ⟨ , ⟩ be an inner product on a real vector space V . If W
is a subspace of V , put W⊥ = {v ∈ V | ⟨v, w⟩ = 0 for all w ∈ W}. The subspace
W⊥ is called the orthogonal complement of W in V . We have V = W ⊕W⊥.
(See [Axl97], Theorem 6.29.)

Exercise 1.1.4. Let U and W be subspaces of V . Show that dim(U +W ) =
dimU + dimW − dim(U ∩W ). From this, show that dim(U ⊕W ) = dimU +
dimW .

Given any subspaceW of a vector space V , we can always find a subspace U of V
such that V = W ⊕U . (U is called a complementary subspace to W .) The cases
W = {0} and W = V being trivial, we can assume that {0} ̸= W ⫋ V . Take
any basis (w1, . . . , wm) of W , extend this to a basis (w1, . . . , wm, vm+1, . . . , vn)
of V , and put U = Fvm+1 + · · ·+ Fvn. Then it is clear that V = U ⊕W . Since
there are infinitely many ways to complete a basis of W to a basis of V , it is also
clear that, unless W = {0} or W = V , the choice of a complementary subspace
to W is not unique.

1.2 Linear Maps

Let V and W be vector spaces over F. The set of all linear maps from V to W
will be denoted by L(V,W ). L(V,W ) has a natural vector space structure given
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by addition and scalar multiplication of linear maps: if S and T are in L(V,W )
and λ ∈ F, then the linear maps S + T and λS in L(V,W ) are given by

(S + T )(v) = S(v) + T (v)

(λS)(v) = λS(v) for all v ∈ V.

It is not hard to prove that with these operations, L(V,W ) is a vector space
over F.

Fix a basis (v1, . . . , vn) of V . Then any T ∈ L(V,W ) is completely determined
by its effect on the basis vectors vj . For if v ∈ V , then we can write v =
c1v1 + · · ·+ cnvn for scalars c1, . . . , cn, whence

T (v) = c1T (v1) + · · ·+ cnT (vn). (1.3)

Conversely, given any vectors w1, . . . , wn in W , there is a unique linear map
T ∈ L(V,W ) such that T (v1) = w1, . . . , T (vn) = wn. This is because any vector
v ∈ V can be written uniquely as v = c1v1 + · · · cnvn; if we define the map
T : V → W by (1.3), then it is easy to see that T ∈ L(V,W ).

Abstract linear algebra is inextricably bound to matrix theory since any linear
map may be represented by an appropriate matrix, and since the algebra of
linear maps corresponds to the algebra of matrices.

More precisely, let us fix bases B = (v1, . . . , vn) and B′ = (w1, . . . , wm) of
vector spaces V and W , respectively. Recall that any T ∈ L(V,W ) is uniquely
determined by the basis images T (v1), . . . , T (vn) in W . Each of these vectors
T (vj) is a unique linear combination of w1, . . . , wm:

T (vj) =

mX

i=1

aijwi (j = 1, . . . , n). (1.4)

We define the matrix MB,B′(T ) of T with respect to these bases to be the m×n
matrix whose (i, j)-entry is aij ;

MB′,B(T ) =




a11 · · · a1n
· · · · · · · · ·
am1 · · · amn


 . (1.5)

We will frequently denote this matrix by M(T ) if the bases B and B′ are clear
from the context of the discussion.

Let T ∈ L(V,W ). The kernel, or nullspace, of T is the subspace of V given by

kerT = {v ∈ V |T (v) = 0}.

From linear algebra, we know that the linear map T is injective, or one-to-one,
if and only if kerT = {0}; in this case we say that T is a linear isomorphism of
V into W .
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The range of T is the subspace of W given by

T (V ) = {T (v) | v ∈ V }.

We recall the definition that T is surjective, or onto, if T (V ) = W .

The following is an easy to prove, yet important fact in linear algebra.

Theorem 1.2.1. (The rank-Nullity Theorem) For any T ∈ L(V,W ), we have

dimT (V ) = dimV − dim(kerT ).

In particular, if T is a linear isomorphism from V onto W , then dimV = dimW .

Proof. Let (v1, . . . , vk) be a basis of kerT , and extend this to a basis (v1, . . . , vk,
vk+1, . . . , vn) of V . Then T (vj) = 0 for 1 ≤ j ≤ k, and (T (vk+1), . . . , T (vn))
is linearly independent: in fact, any relation

Pn
j=k+1 aj T (vj) = 0 implies thatPn

j=k+1 aj vj ∈ kerT = span {v1, . . . , vk}. Hence ak+1 = · · · = an = 0. More-
over, since T (V ) = span {T (v1), . . . , T (vn)} = span {T (vk+1), . . . , T (vn)}, we
see that (T (vk+1), . . . , T (vn)) is a basis of T (V ).

Since dim(kerT ) = k and dimT (V ) = n− k, the theorem follows.

Making an abrupt and unforgivable change of notation for the moment, suppose
that W is a subspace of a vector space V . The quotient map π from V onto the
quotient space V/W is given by π(v) = v + W . It is obvious that π is linear
and surjective, with kernel W . Using Theorem 1.2.1, this provides a completely
trivial proof of Proposition 1.1.1.

1.3 The Matrix of a Linear Map

Again let us fix bases B = {v1, . . . , vn} and B′ = {w1, . . . , wm} of V and W ,
respectively. From (1.4) and (1.5) we see that each T ∈ L(V,W ) corresponds to
a unique m×n matrix MB′,B(T ). The map T 7→ MB′,B(T ) is from L(V,W ) to
the vector space Mm,n(F) of m×n matrices with entries in F is easily checked to
be linear (and onto), and hence is a linear isomorphism. Since dimMm,n = mn,
we see that dimL(V,W ) = mn = nm = dimV · dimW .

Another useful property of the map T 7→ MB′,B(T ) is that it is multiplicative.
More precisely, suppose that V, W , and U are vector spaces with fixed bases
B, B′, and B′′, respectively, and suppose that T ∈ L(V,W ) and S ∈ L(W,U).
Then the composite map ST := S ◦ T belongs to L(V, U), and we have

MB′′,B(ST ) = MB′′,B′(S)MB′,B(T ), (1.6)

where the right hand side is a matrix product.
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Exercise 1.3.1. Prove equation (1.6).

For simplicity, we’ll denote the space of linear maps L(V, V ) simply by L(V ).
An element of L(V ) is called a linear operator on V .

Theorem 1.3.2. Fix a basis B = (v1, . . . , vn) of V . Suppose that T ∈ L(V ).
Then the following are equivalent:

1. T is one-to-one.

2. T is onto.

3. The matrix M(T ) := MB,B(T ) with respect to the basis B is nonsingular.

Proof. (1) ⇐⇒ (2): dimT (V ) = dimV − dim(kerT ) so dimT (V ) = dimV if
and only if dim(kerT ) = 0.
(1) and (2) ⇐⇒ (3): If T is one-to-one and onto, it is invertible; that is, there
is a unique linear map S ∈ L(V ) such that ST = TS = 1V , the identity map
on V . If In is the identity n× n matrix, we see from (1.6) that

In = M(ST ) = M(S)M(T )

= M(TS) = M(T )M(S),

which shows that M(T ) is invertible. Conversely, assume M(T ) is an invertible
n×n matrix; let S be the linear operator on V whose matrix is M(T )−1. Then,
again by (1.6),

In = M(T )−1M(T ) = M(S)M(T ) = M(ST )

= M(T )M(T )−1 = M(T )M(S) = M(TS),

which shows that ST = TS = 1V .

If P and Q are n×n matrices with P nonsingular, the conjugate of Q by P is the
n×n matrix PQP−1. Suppose now that B = (v1, . . . , vn) and B′ = (v′1, . . . , v

′
n)

are two bases of the same vector space V . The change of basis matrix from
B to B′ is MB′,B(1V ): it gives us the coefficients in the linear combination
expressing each vj as a linear combination of the v′i’s. From (1.6), this change
of basis matrix is nonsingular, with inverse MB,B′(1V ). For simplicity, let us
denote this change of basis matrix by S. Let T ∈ L(V ). If M(T ) := MB,B(T )
is the matrix of T with respect to the basis B, then its matrix with respect to
B′ is given by conjugating M(T ) by S. Explicitly, by (1.6)

MB′,B′(T ) = MB′,B(1V )MB,B(T )MB,B′(1V )

= SM(T )S−1. (1.7)
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Example 1.3.3. Suppose that T is the linear operator on R3 whose matrix
with respect to the standard basis B0 = (e1, e2, e3) of R3 is

A =




2 −1 0
−1 3 1
0 2 0


 .

Consider the vectors

v1 =




4
8
7


 , v2 =




−2
−3
−2


 , v3 =




3
5
4




The 3× 3 matrix S whose columns are v1, v2, v3 is invertible; its inverse can be
calculated using the Gauss-Jordan method and is found to be




4 −2 3
8 −3 5
7 −2 4




−1

=




−2 2 −1
3 −5 4
5 −6 4


 .

We therefore see that B = (v1, v2, v3) is a linearly independent set which thus
forms a basis of R3, and the change of basis matrix from the standard basis B0

to B is given by S. Hence the matrix of T with respect to the basis B is

SAS−1 =




4 −2 3
8 −3 5
7 −2 4







2 −1 0
−1 3 1
0 2 0







−2 2 −1
3 −5 4
5 −6 4




=




−22 28 −18
−74 91 −59
−57 69 −44


 .

The transpose of an m× n matrix A = aij is the n×m matrix tA whose (i, j)
entry is aji. Thus rows of A transform into the columns of tA, and the columns
of A transform into the rows of tA. It’s not hard to show that if A and B are
m× n matrices and α is a scalar, then t(A + B) = tA+ tB, t(αA) = α tA. A
somewhat longer but completely straightforward calculation shows that if A is
an m× n matrix and B is an n× k matrix, then t(AB) = tB tA.

The dual space of a vector space V is L(V,F) (where F is viewed as a one-
dimensional vector space), and is denoted V ∗. Its elements are called linear func-
tionals on V . Any basis (v1, . . . , vn) of V gives rise to a dual basis (f1, . . . , fn)
of V ∗ where each fi is given by

fi(vj) = δij :=

(
1 if i = j

0 if i ̸= j.

Let V and W be vector spaces over F, and let : V → W be a linear map. The
transpose of T is the map tT : W ∗ → V ∗ given by tT (λ) = λ◦T , for all λ ∈ W ∗.
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It is not hard to show that tT is a linear map from W ∗ to V ∗. Suppose that
B = (v1, . . . , vn) and B′ = (w1, . . . , wm) are bases of V and W , respectively.
Let B∗ = (f1, . . . , fn) and (B′)∗ = (h1, . . . , hn) be the corresponding dual bases
of V ∗ and W ∗, respectively. We have the easily verified relation

MB∗,(B′)∗(
tT ) = t(MB′,B(T ))

where the right hand side denotes the transpose of the matrix MB′,B(T ).

Exercise 1.3.4. (a). Prove that T is injective iff tT is surjective.

(b). Using Part (a), prove that the ranges of T and tT have the same dimension.

(c). Prove that the row space and the column space of an m×n matrix A over
F have the same dimension. (This dimension is called the rank of A. The
dimension of the range of a linear mapping T is called the rank of T .)

1.4 Determinant and Trace

The determinant of an n × n matrix A is defined in various ways. (Most def-
initions of the determinant in standard linear algebra texts are non-intuitive.
Axler’s book [Axl97] develops all of linear algebra without resorting to the de-
terminant until the very end, where it “comes naturally.” For our purposes,
since we’re after different game, it’s sufficient to provide two of the equivalent
expressions of the determinant and state its most salient features.)

If A = (aij), let us recall that its determinant detA is the homogeneous degree
n polynomial in the entries of A given by

detA =
X

σ

ϵ(σ)a1σ(1)a2σ(2) · · · anσ(n),

where the sum runs through all the permutations σ of {1, . . . , n}, and ϵ(σ)
denotes the sign of the permutation σ.

Let’s also recall that the determinant detA can also be expanded using minors
along a given row or column, as follows. For each pair of indices i, j in {1, . . . , n},
let Aij denote the (n− 1)× (n− 1) submatrix obtained from A by deleting the
ith row and jth column. Then the minor expansion of detA along the ith row
is

detA =

nX

k=1

(−1)i+kaik detAik

and that along the jth column is

detA =

nX

k=1

(−1)k+jakj detAkj .
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If A has real entries, detA has a geometrical significance. Let v1, . . . , vn denote
the columns of A. These are vectors in Rn, and | detA| turns out to be the
n-dimensional volume of the parallelepiped whose sides are v1, . . . , vn. This can
be proved by induction on n, and can be seen at least for 3×3 matrices A, since
detA is the triple scalar product (v1×v2) ·v3. (The proof for 2×2 determinants
is even easier and just uses cross products.)

Exercise 1.4.1 (Graduate Exercise). Prove this geometrical fact about the
n-dimensional determinant.

The determinant is multiplicative in that, if A and B are square matrices of the
same size, then detAB = detA · detB. We also recall that a square matrix A
is nonsingular if and only if detA ̸= 0. It then follows by multiplicativity that
detA−1 = (detA)−1.

Let V be a vector space over F and suppose that T ∈ L(V ). We define the
determinant of T to be detM(T ), where M(T ) is the matrix of T with respect
to any basis B of V . The value of the determinant detT is independent of the
choice of basis: if B′ is any other basis of V and S is the change of basis matrix
from B to B′, then by (1.7), the matrix of T with respect to B′ is SM(T )S−1,
and hence

det(SM(T )S−1) = detS detM(T ) detS−1

= detS detM(T ) (detS)−1

= detM(T ).

Theorem 1.4.2. Let T ∈ L(V ). Then T is invertible if and only if detT ̸= 0.

Proof. By Theorem 1.3.2, T is invertible ⇐⇒ M(T ) is nonsingular ⇐⇒
detM(T ) ̸= 0 ⇐⇒ detT ̸= 0.

Another useful quantity associated to a linear operator T ∈ L(V ) is its trace.
If A = (aij) is an square n× n matrix, the trace of A is defined to be the sum
of its diagonal entries: trA =

Pn
i=1 aii. The trace satisfies the following easily

verified property:

Proposition 1.4.3. Let A and B be n× n matrices. Then trAB = trBA.

Proof. Let A = (aij and B = (bij). Then from the definition of matrix product,
AB = (cij), where

cij =

nX

k=1

aikbkj .

Likewise, BA = (dij), with

dij =

nX

k=1

bikakj .
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Hence

trAB =

nX

i=1

cii =

nX

i=1

nX

k=1

aikbki (1.8)

whereas

tr(BA) =

nX

i=1

dii =
nX

i=1

nX

k=1

bikaki.

If we interchange the indices i and k in the above sum, we see that it equals the
sum in (1.8).

The trace of a linear operator T ∈ L(V ) is, by definition, the trace of the
matrix M(T ), where M(T ) is the matrix of T with respect to any basis of
V . Now the matrix of T with respect to any other basis of V is given by
SM(T )S−1 for some matrix S, and it follows from Proposition 1.4.3 above
that tr (SM(T )S−1) = tr (M(T )S−1 S) = trM(T ). Thus the trace of T is a
well-defined scalar, depending only on T and not on the choice of basis of V .

1.5 Eigenvalues and Invariant Subspaces

A scalar λ ∈ F is called an eigenvalue of a linear operator T ∈ L(V ) if there is a
nonzero vector v ∈ V such that T (v) = λv. The vector v is called an eigenvector
of T corresponding to λ. If λ ∈ C, the subspace ker(T −λIV ) = {v ∈ V |T (v) =
λv} is called the eigenspace of T corresponding to λ.

Proposition 1.5.1. Suppose that T ∈ L(V ) and λ ∈ F. Then the following are
equivalent:

1. λ is an eigenvalue of T

2. ker(T − λIV ) ̸= {0}

3. det(T − λIV ) = 0.

Proof. An easy exercise.

The polynomial det(λIV − T ) in the indeterminate λ, with coefficients in F,
is called the characteristic polynomial of T ; its roots in F are precisely the
eigenvalues of T .

Linear operators on real vector spaces do not necessarily have real eigenvalues.
For instance, consider the operator T ∈ L(R2) given by Tx = Ax (x ∈ R2),
where

A =

�
0 1

−1 0

�
.
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Then the characteristic polynomial of T is det(λI2 − T ) = λ2 +1, which has no
real roots. Thus T has no real eigenvalues.

On the other hand, a linear operator on a complex vector space has at least one
eigenvalue.

Theorem 1.5.2. Let V be a nonzero vector space over C and let T ∈ L(V ).
Then T has at least one eigenvalue.

Proof. The characteristic polynomial det(λIV −T ) is a polynomial in λ of degree
dimV > 0, and so by Gauss’s Fundamental Theorem of Algebra, has at least
one complex root, which is, by Proposition 1.5.1, an eigenvalue of T .

An easy consequence of the Fundamental Theorem of algebra is that any poly-
nomial p(z) of degree n has n complex roots, counting multiplicities, and has a

unique linear factorization p(z) = c ·Qk
j=1(z − λj)

mj , where λ1, . . . ,λk are the
distinct roots of p(z) and m1, . . . ,mk are their respective multiplicities, with
m1 + · · ·+mk = n. Applying this to the characteristic polynomial of T , we get
det(λIV − T ) =

Qk
j=1(λ − λj)

mj . Here λ1, . . . ,λk are the distinct eigenvalues
of T and m1, . . . ,mk are called their respective multiplicities.

It is often useful to study an operator T ∈ L(V ) by examining its invariant
subspaces. A subspace W is said to be invariant under T , or T -invariant if
T (w) ∈ W for all w ∈ W . Thus the restriction T |W of the map T to W belongs
to L(W ). If v is an eigenvector of T , then the one-dimensional subspace Fv is
obviously a T -invariant subspace.

Exercise 1.5.3. If two operators S and T in L(V ) commute, then show that
both the kernel kerS and the range S(V ) are T -invariant.

Since T commutes with T − λIV for all λ ∈ F, Exercise 1.5.3 implies, in partic-
ular, that each eigenspace ker(T − λIV ) is T -invariant.

Suppose that W is a T -invariant subspace of V . Then T induces a well-defined
map T ′ on the quotient space V/W given by T ′(v+W ) = T (v) +W . It is easy
to check that T ′ ∈ L(V/W ). We have the commutative diagram

V
T−−−−→ V

π

y
yπ

V/W −−−−→
T ′

V/W

(1.9)

which says that T ′π = πT (as maps from V to V/W ).
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1.6 Upper Triangular Matrices

We would like to find a basis of V with respect to which the matrix of a given
operator T is “nice,” in some sense. Ideally, we want the matrix of T to be
diagonal, if this is possible, or at least to have as many 0’s as possible, arranged
in an orderly fashion.

A square matrix is called upper triangular if all the entries below the main
diagonal are 0. Such a matrix can then be represented as follows:




λ1 ∗
. . .

0 λn


 .

Note that the determinant of any upper triangular matrix is the product of the
diagonal entries. Thus, if A is the matrix above, then detA = λ1 · · ·λn.

Proposition 1.6.1. Suppose that T ∈ L(V ). Then the following are equivalent:

1. There is a basis of V for which the matrix of T is upper triangular

2. There is a nested sequence of subspaces 0 ⫋ V1 ⫋ · · · ⫋ Vn = V each of
which is invariant under T .

The proof is obvious. Note that the condition (2) implies that the subspace Vj

must have dimension j.

It is a very useful fact that if V is a complex vector space, any linear map
T ∈ L(V ) has an upper triangular representation:

Theorem 1.6.2. Let V be a vector space over C and let T ∈ L(V ). Then there
is a basis of V for which the matrix of T is upper triangular.

Proof. By induction on dimV . If dimV = 1, there is nothing to prove. So let’s
assume that dimV = n > 1. Then by Theorem 1.5.2, T has an eigenvalue λ.
Let v1 be an eigenvector corresponding to λ, and let W be the one-dimensional
subspace Cv1. Since W is T -invariant, we can consider the induced linear map
T ′ on the complex vector space V/W given by T ′(v + W ) = T (v) + W . Now
dim(V/W ) = n − 1, so by the induction hypothesis, there is a basis (v2 +
W, . . . , vn+W ) of V/W for which the matrix of T ′ is upper triangular. Note that
for each j, j = 2, . . . , n, T ′(vj+W ) is a linear combination of v2+W, . . . , vj+W ;
hence T (vj) is a linear combination of v1, v2, . . . , vj .

It remains to prove that (v1, v2, . . . , vn) is a linearly independent set (and so is
a basis of V ). Once we prove this, it is clear that the matrix of T with respect
to this basis is upper triangular.
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Suppose that
Pn

i=1 cjvj = 0. Then (
Pn

i=1 civi) + W = W =⇒ Pn
i=2(civi +

W ) = W =⇒ c2 = · · · = cn = 0, by the linear independence of (v2+W, . . . , vn+
W ), so we end up with c1v1 = 0, which clearly implies that c1 = 0.

Note: Suppose that n ≥ 2. Since the choice of the vj ’s in the proof is not
necessarily unique, the upper triangular matrix in the theorem above is not
necessarily unique. What is unique, from the characteristic polynomial of T ,
are the diagonal entries and their multiplicities.

Let p(z) = amzm+am−1z
m−1+ · · ·+a1z+a0 be any polynomial in the variable

z. If T ∈ L(V ), we put p(T ) = amTm + am−1T
m−1 + · · ·+ a1T + a0IV . Then

p(T ) ∈ L(V ), and if M is the matrix of T with respect to some basis of V , then
p(M) = amMm + am−1M

m−1 + · · · + a1M + a0In is the matrix of p(T ) with
respect to this basis.

Theorem 1.6.3. (The Cayley-Hamilton Theorem) Suppose that V is a vector
space over C and that T ∈ L(V ). Let p(λ) = λn + an−1λ

n−1 + · · · + a1λ + a0
be the characteristic polynomial of T . Then the linear map p(T ) is identically
zero on V .

Proof. By induction on dimV . If dimV = 1, then the conclusion is obvious:
T = λ1IV for some λ1 ∈ C, the characteristic polynomial of T is p(λ) = λ− λ1,
and p(T ) = T − λ1IV ≡ 0.

So assume that n > 1 and that the theorem holds for all linear maps on all
vector spaces of dimension < n. Suppose that dimV = n and that T ∈ L(V ).
Choose a basis (v1, . . . , vn) of V for which T has upper triangular matrix




λ1 ∗
λ2

. . .

0 λn


 . (1.10)

Then the characteristic polynomial det(λIV − T ) =
Qn

j=1(λ − λj), and the
diagonal entries λ1, . . . ,λn above are the eigenvalues of T . (Of course, these λj

are not necessarily distinct.) Let V1 = Cv1. Now V1 is a T -invariant subspace,
the quotient space V ′ = V/V1 is easily seen to have basis v2 + V1, . . . , vn + V1,
and the matrix of the induced map T ′ : V/V1 → V/V1, v+V1 7→ T (v)+V1 with
respect to this basis is 


λ2 ∗

. . .

0 λn


 . (1.11)

The characteristic polynomial of T ′ is thus (λ − λ2) · · · (λ − λn). Since V ′ has
dimension n − 1, the induction hypothesis implies that (T ′ − λ2IV ′) · · · (T ′ −
λnIV ′) ≡ 0 on V ′.
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Thus for any v ∈ V , we have

(T ′ − λ2IV ′) · · · (T ′ − λnIV ′)(v + V1) = (T − λ2IV ) · · · (T − λnIV )(v) + V1

= V1

and so
(T − λ2IV ) · · · (T − λnIV )(v) ∈ V1

Therefore (T − λ2IV ) · · · (T − λnIV )(v) = cv1 for some c ∈ C. Hence

(T − λ1IV )(T − λ2IV ) · · · (T − λnIV )(v) = (T − λ1IV )(cv1)

= 0.

Since v ∈ V is arbitrary, we have shown that (T − λ1IV ) · · · (T − λnIV ) ≡ 0 on
V , proving the conclusion for V and completing the induction step.

Remark 1.6.4. The Cayley-Hamilton Theorem also holds for linear operators
on real vector spaces. In order to see this, we note that it suffices to prove the
Cayley-Hamilton Theorem for real square matrices, due to the correspondence
between linear maps on V and square matrices of size dimV . But then any
real square matrix can be considered to be a complex matrix, which by the
Cayley-Hamilton Theorem, satisfies its characteristic polynomial.

We can summarize the statement of the Cayley-Hamilton Theorem by saying
that a linear operator on a vector space satisfies its characteristic polynomial.

Exercise 1.6.5. Suppose that T ∈ L(V ) is invertible. Show that there exists
a polynomial p(z) such that T−1 = p(T ).

Exercise 1.6.6. Suppose that V is a n-dimensional complex vector space, and
that T ∈ L(V ) has eigenvalues 4, 5. Prove that

(T − 4IV )
n−1(T − 5IV )

n−1 = 0.

1.7 Generalized Eigenspaces

The spectrum of a linear operator T on a vector space V over F is the collection
of all eigenvalues of T in F. We saw, from Theorem 1.5.2, that if V is complex,
then any T ∈ L(V ) has a nonempty spectrum.

In order to derive further nice properties about linear operators, it will be useful
to have at least one eigenvalue, so in this section, we’ll assume that V is a vector
space over C and that T ∈ L(V ).

Choose a basis of V for which T has upper triangular matrix



λ1 ∗
λ2

. . .

0 λn


 . (1.12)
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As we had already observed, the characteristic polynomial det(λIV − T ) equalsQn
j=1(λ−λj), and the diagonal entries λ1, . . . ,λn above are the eigenvalues of T ,

which are not necessarily distinct. Note that the number of times each distinct
eigenvalue λj appears in the diagonal of the matrix above equals its multiplicity
mj as a root of the characteristic polynomial of T .

As mentioned previously, the upper triangular representation (1.12) of T is not
unique, except for the appearance of the eigenvalues (with the correct multi-
plicities) along the diagonal. Our goal is to obtain a particular upper triangular
representation of T which is unique and useful in the sense that much of the
behavior of T is apparent upon cursory examination of the matrix.

With this goal in mind, we define the generalized eigenspaces of T as follows.
For any complex scalar λ, the generalized eigenspace of T corresponding to λ is
the set

{v ∈ V | (T − λIV )
kv = 0 for some k ∈ Z+}. (1.13)

Note that the eigenspace ker(T − λIV ) is a subset of the generalized eigenspace
(1.13) above. The following result shows that the generalized eigenspace is a
subspace of V .

Theorem 1.7.1. Fix λ ∈ C. Then there is an integer m ≥ 0 such that

{0} ⫋ ker(T − λIV ) ⫋ ker(T − λIV )
2 ⫋ · · · ⫋ ker(T − λIV )

m =

= ker(T − λIV )
m+1 = ker(T − λIV )

m+2 = · · ·

Proof. For simplicity, let S = T−λIV . If v ∈ kerSk, then Sk+1(v) = S(Sk(v)) =
0, so v ∈ kerSk+1, so it follows that kerSk ⊂ kerSk+1, and we get a nested
chain of subspaces {0} ⊂ kerS ⊂ kerS2 ⊂ · · ·

Since V is finite-dimensional, the chain stops increasing after some point. Let
m be the smallest nonnegative integer such that kerSm = kerSm+1. Then
kerSm+1 = kerSm+2: if v ∈ kerSm+2, then S(v) ∈ kerSm+1 = kerSm, so
Sm(Sv) = 0, and so v ∈ kerSm+1.

Arguing in the same manner, we see that kerSm+2 = kerSm+3, etc.

Note that the m in Theorem 1.7.1 must be ≤ dimV .

It follows that the generalized eigenspace of T corresponding to λ equals the
kernel ker(T − λIV )

dimV , which is a subspace of V .

Corollary 1.7.2. Let S ∈ L(V ). Then there is an integer m such that

V ⫌ S(V ) ⫌ S2(V ) ⫌ · · · ⫌ Sm(V ) = Sm+1(V ) = Sm+2(V ) = · · · (1.14)

Proof. This follows immediately from the proof of the preceding theorem, once
we observe that V ⊃ S(V ) ⊃ S2(V ) ⊃ · · · , and that dimSk(V ) = dimV −
dimker(Sk).
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Exercise 1.7.3. Show that for any T ∈ L(V ), we have

V = (kerTn)⊕ Tn(V ),

where n = dimV .

As an additional application of the upper triangular representation (1.12) of T ,
we can determine the dimension of each generalized eigenspace.

Proposition 1.7.4. Suppose that T ∈ L(V ) has characteristic polynomial given
by det(λIV − T ) =

Qn
j=1(λ − λj) (λ1, . . . ,λn not necessarily distinct). Then

the generalized eigenspace of T corresponding to λj has dimension equal to the
multiplicity of λj.

Proof. Note that mj is the number of times λj appears in the diagonal in the
upper triangular representation of T .

We prove this by induction on dimV . If dimV = 1, then the conclusion is
trivial. Let n ≥ 2 and assume that the conclusion holds for all linear operators
on all complex vector spaces of dimension < n. Suppose that dimV = n and
that T ∈ L(V ).

Choose a basis (v1, . . . , vn) of V for which the matrix of T is upper triangular,
of the form (1.10). For each j, we let Vj denote the generalized eigenspace of T
corresponding to λj . (We’re not assuming that the λj are distinct. If λj = λk,
then obviously Vj will be the same as Vk.)

Let W = Cv1, and let T ′ be the induced linear map on V ′ = V/W : T ′(v+W ) =
T (v) +W . Then, with respect to the basis (v2 +W, . . . , vn +W ) of V/W , the
matrix of T ′ is upper triangular and is given by (1.11).

Now the induction hypothesis says that the generalized eigenspace V ′
j of T ′

corresponding to λj has dimension mj if λj ̸= λ1 and has dimension m1 − 1 if
λj = λ1.

We therefore consider the two cases λj ̸= λ1 and λj = λ1 separately.

Let π : V → V/W be the quotient map. We first note that, for any j, π(Vj) ⊂
V ′
j . Indeed, for each v ∈ Vj , we have (T − λjIV )

N v = 0, for sufficiently large

N , so 0 = π
�
(T − λjIV )

N v
�
= (T ′ − λjIV ′)N (π(v)), whence π(v) ∈ V ′

j . Thus
π maps Vj into V ′

j .

Now let us first consider the case λj ̸= λ1. We claim that π maps Vj isomor-
phically onto V ′

j .

Suppose that v ∈ Vj belongs to kerπ. Then v = cv1 for some c ∈ C. The
condition (T − λjIV )

Nv = 0 (for some N) then implies that c(λ1 − λj)
Nv1 = 0,

so that c = 0, and so v = 0. Hence π maps Vj injectively into V ′
j .
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Next let us show that π maps Vj onto V ′
j . Let v′ ∈ V ′

j , and write v′ = π(v)

for some v ∈ V . By assumption (T ′ − λjIV ′)N (π(v)) = 0 for some N . This
yields π

�
(T − λjIV )

Nv
�
= 0, so (T − λjIV )

Nv = cv1 for some c ∈ C. Now
let u = v − c(λ1 − λj)

−Nv1. Then (T − λjIV )
Nu = 0, so u ∈ Vj , and clearly,

π(u) = π(v) = v′. Thus π(Vj) = V ′
j , and so we can conclude that dimVj = mj .

Finally we consider the case λj = λ1. We claim that π maps V1 onto V ′
1

with kernel Cv1. Since Cv1 = kerπ = V1 ∩ kerπ, it suffices to prove that
π(V1) = V ′

1 . Let v′ ∈ V ′
1 . We have v′ = π(v) for some v ∈ V . Now the

condition (T ′ −λ1IV ′)Nv′ = 0 for some N implies that (T −λ1IV )
Nv = av1 for

some a ∈ C. Hence (T − λ1IV )
N+1v = 0, and thus v ∈ V1. This shows that

v′ ∈ π(V1), and so π(V1) = V ′
1 .

We conclude in this case that dimV1 = dimV ′
1 + 1 = m1. This completes the

proof of Proposition 1.7.4.

Exercise 1.7.5. Suppose that V is a complex vector space of dimension n and
T ∈ L(V ) such that

kerTn−2 ⫋ kerTn−1.

Prove that T has at most two distinct eigenvalues.

We now reorder the eigenvalues of T , if necessary, so that we now assume that
the distinct eigenvalues of T are λ1, . . . ,λk. Let us again consider the charac-
teristic polynomial

p(λ) = det(λIV − T ) (1.15)

and its factorization
kY

j=1

(λ− λj)
mj (1.16)

Our objective now is to show that V is the direct sum of the generalized
eigenspaces corresponding to each λj .

Lemma 1.7.6. Let p1(z), . . . , pk(z) be nonzero polynomials with coefficients
in C sharing no common factor of degree ≥ 1. Then there are polynomials
q1(z), . . . , qk(z) such that p1(z)q1(z) + · · ·+ pk(z)qk(z) = 1.

Proof. (Optional: requires some ring theory.) Let C[z] be the ring of poly-
nomials in z with complex coefficients. Since C[z] is a Euclidean ring, it is a
principal ideal domain, and so the ideal C[z]p1(z) + · · · + C[z]pk(z) is princi-
pal: C[z]p1(z) + · · · + C[z]pk(z) = C[z]r(z), for some nonzero polynomial r(z).
Clearly, r(z) divides all the pj(z), so r(z) must be a degree 0 polynomial; i.e.,
a nonzero constant. Thus C[z]p1(z) + · · · + C[z]pk(z) = C[z]; in particular
1 ∈ C[z]p1(z) + · · ·+ C[z]pk(z).
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Theorem 1.7.7. V is a direct sum of the generalized eigenspaces of the eigen-
values of T . More precisely,

V =

kM

j=1

ker(T − λjIV )
mj .

For each j, the generalized eigenspace corresponding to λj equals ker((T −
λj IV )

mj . Thus dim(ker(T − λjIV )
mj ) = mj.

Proof. We let p(λ) be the characteristic polynomial (1.15) of T , factored as in
(1.16).

Suppose first that T has just one eigenvalue λ1. Then p(λ) = (λ − λ1)
n, and

by the Cayley-Hamilton Theorem, (T − λ1IV )
n = 0, so V = ker(T − λ1IV )

n,
proving the theorem.

Thus we can assume that T has more than one eigenvalue.

For each j, let

pj(λ) =
p(λ)

(λ− λj)mj
=
Y

l ̸=j

(λ− λl)
ml .

Then by Lemma 1.7.6, there exist complex polynomials q1(λ), . . . , qk(λ) such
that p1(λ)q1(λ)+ · · ·+pk(λ)qk(λ) = 1. Replacing λ by T , we have p1(T )q1(T )+
· · · + pk(T )qk(T ) = IV . (Strictly speaking, we’re applying the well-defined
algebra homomorphism p(λ) 7→ p(T ) from C(λ) to L(V ).)

For each j, let Vj be the image Vj = pj(T )qj(T )(V ). Then Vj is a subspace of
V , and for each v ∈ V , we have

v = IV v = p1(T )q1(T )(v) + · · ·+ pk(T )qk(T )(v) ∈ V1 + · · ·+ Vk.

Thus V = V1 + · · ·+ Vk.

(Note: The subspaces Vj here have not yet been proven to be generalized
eigenspaces: that comes next!)

Now by the Cayley-Hamilton Theorem,

(T − λjIV )
mjVj = (T − λjIV )

mjpj(T )qj(T )(V )

= qj(T )p(T )(V )

= {0}.

This shows that Vj ⊂ ker(T − λj IV )
mj .

Note that each of the subspaces Vj is T -invariant, since

T (Vj) = Tpj(T )qj(T )(V ) = pj(T )qj(T )T (V ) ⊂ pj(T )qj(T )(V ) = Vj .
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Moreover, for i ̸= j, the restriction of T −λiIV to Vj is invertible. For, if w ∈ Vj

such that (T − λiIV )w = 0, then T (w) = λiw, so 0 = (T − λjIV )
mj (w) =

(λi − λj)
mjw, which implies that w = 0.

Next we prove that the sum V = V1 + · · ·Vk is direct. If this were not the
case, there would exist vectors v1 ∈ V1, . . . , vk ∈ Vk, not all zero, such that
v1 + · · ·+ vk = 0. Assume that vj ̸= 0. Then since T − λiIV is invertible on Vj

for i ̸= j, we see that pj(T ) is invertible on Vj and is identically zero on Vi for
all other i. Thus

0 = pj(T )(v1 + · · ·+ vk)

= pj(T )(v1) + · · ·+ pj(T )(vk)

= pj(T )vj .

The last expression above is nonzero because pj(T ) is invertible on Vj and
vj ̸= 0. This contradiction shows that V = V1 ⊕ · · ·⊕ Vk.

Note that dimVj ≤ mj , for all j by Proposition 1.7.4, since Vj is contained in
the generalized eigenspace of T corresponding to λj . Since we have a direct sum
V = V1⊕· · ·⊕Vk and dimV = m1+· · ·+mn, we must in fact have dimVj = mj ,
for all j.

It remains to prove that Vj = ker(T − λjIV )
mj for all j. We already know that

Vj is a subspace of ker(T −λ IV )
mj , which is itself a subspace of the generalized

eigenspace of T corresponding to λj . This generalized eigenspace has dimension
mj , by Proposition 1.7.4. Since dimVj = mj , these subspaces all coincide, and
in particular Vj = ker(T − λ IV )

mj .

The last assertion follows from what we have shown above.

1.8 The Jordan Canonical Form

An operator N ∈ L(V ) is said to be nilpotent if Nm = 0 for some positive
integer m.

Exercise 1.8.1. Let V be a complex vector space. Prove that N is nilpotent
if and only if the only eigenvalue of N is 0.

Suppose that V is a vector space over F, and that N ∈ L(V ) is nilpotent. Then
there is a basis of V with respect to which the matrix of T has the form




0 ∗
. . .

0 0


 , (1.17)

where all the entries on or below the main diagonal are 0. (We call such a matrix
strictly upper triangular.) If F = C, then this follows immediately from Theorem
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1.6.2 and Exercise 1.8.1. For F aribitrary, we just consider a basis of kerN , then
extend this to a basis of kerN2, then extend that to a basis of kerN3, etc. If we
continue this procedure, we end up with a basis of V = kerNm, for sufficiently
large m. It is clear that the matrix of N with respect to this basis is strictly
upper triangular.

Our goal in this section is to represent a linear operator T ∈ L(V ) by a matrix
which has as many 0’s as possible. As a first step, we see that an immediate
application of Theorem 1.7.7 is the following result.

Proposition 1.8.2. Let T be a linear operator on a complex vector space V ,
with distinct eigenvalues λ1, . . . ,λk. Then there is a basis of V with respect to
which the matrix of T has the following block diagonal form




A1 0
. . .

0 Ak


 , (1.18)

where each Aj is an upper triangular matrix of the form




λj ∗
. . .

0 λj


 . (1.19)

Proof. By Theorem 1.7.7, we have V =
Lk

j=1 Vj , where Vj = ker(T − λjIV )
mj .

Thus the restriction (T − λjIV )|Vj
is nilpotent and there is a basis of Vj for

which the matrix of this restriction is strictly upper triangular, of the form
(1.17). Hence the matrix of T |Vj with respect to this basis is of the form (1.19).
If we combine the bases of the Vj so obtained, we get a basis of V with respect
to which the matrix of T has the form (1.18).

We now try to modify the bases of the Vj so as to simplify the block diagonal
matrix (1.18) further. As already noted each Vj is T -invariant, and in addition,
the restriction (T − λjIV )|Vj is nilpotent. Thus we need to find a suitable basis
of Vj with respect to which the matrix of (T − λjIV ) is suitably nice.

Proposition 1.8.3. Let N be a nilpotent operator on a nonzero vector space
V over F. Then there are vectors v1, . . . , vk in V and nonnegative integers
r1, . . . , rk such that

1. the list (v1, Nv1, . . . , N
r1v1, v2, Nv2, . . . , N

r2v2, . . . , vk, Nvk, . . . , N
rkvk) is

a basis of V

2. (Nr1v1, N
r2v2, . . . , N

rkvk) is a basis of kerN .
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Proof. The proof is by induction on dimV . If dimV = 1, then N must be the
zero operator 0, so the proposition is trivially true.

Let dimV > 1, suppose that the proposition holds for all nilpotent linear oper-
ators on all vector spaces of dimension < dimV , and let N be a nilpotent linear
operator on V . Since the range N(V ) is an N -invariant subspace of dimension
< dimV , we apply the induction hypothesis to obtain vectors w1, . . . , wm and
nonnegative integers s1, . . . , sm such that

(a) (w1, Nw1, . . . , N
s1w1, . . . , wm, Nwm, . . . , Nsmvm) is a basis of N(V ); and

(b) (Ns1w1, . . . , N
smwm) is a basis of (kerN) ∩N(V ).

Pick vectors v1, . . . , vm such that Nvj = wj for 1 ≤ j ≤ m. Also, if necessary,
pick additional vectors vm+1, . . . , vk so as to complete the list in (b) above to a
basis of kerN .

Put r1 = s1 + 1, . . . , rm = sm + 1 and let rm+1 = · · · = rk = 0. We first claim
that the list

(v1, Nv1, . . . , N
r1v1, v2, Nv2, . . . , N

r2v2, . . . , vm, Nvm, . . . , Nrmvm, vm+1, . . . , vk)
(1.20)

is linearly independent. Indeed, given the relation

mX

j=1

rjX

l=0

aljN
lvj +

kX

t=m+1

btvt = 0, (1.21)

we apply the operator N to both sides to obtain

0 =

mX

j=1

rjX

l=0

aljN
l+1vj

=

mX

j=1

rjX

l=0

aljN
lwj

=

mX

j=1

sjX

l=0

aljN
lwj .

It follows by condition (a) above that alj = 0 for all 0 ≤ l ≤ sj ; 1 ≤ j ≤ m;
that is, all the coefficients alj in the last sum above vanish. From (1.21), this
leaves us with the relation

0 = ar11N
r1v1 + · · ·+ armmNrmvm + bm+1vm+1 + · · ·+ bkvk

= ar11N
s1w1 + · · ·+ armmNsmwm + bm+1vm+1 + · · ·+ bkvk.

But by condition b and the choice of vm+1, . . . , v + k, we see that all the coef-
ficients above also vanish. It follows that the list (1.20) - which coincides with
the list in conclusion (1) of the proposition - is linearly independent.



1.8. THE JORDAN CANONICAL FORM 23

The list (1.20) is also a basis, since by the induction hypothesis (a), dimN(V ) =
s1 + · · · + sm + m, and dim(kerN) = k, so dimV = (

Pm
i=1 si) + m + k =

(
Pm

i=1 ri)+k, which equals the number of vectors in (1.20). Condition (2) in the
statement of the proposition is satisfied by construction, since kerN has basis
(Ns1w1, . . . , N

smwm, vm+1, . . . , vk) = (Nr1v1, . . . , N
rmvm, vm+1, . . . , vk).

Remark 1.8.4. The numbers k and r1, . . . , rk in Proposition 1.8.3 are unique
in the following sense. Let us, without loss of generality, arrange the basis in
Proposition 1.8.3 such that r1 ≥ r2 ≥ · · · ≥ rk. Now suppose that

(u1, . . . , N
l1u1, u2, . . . , N

l2u2, · · · , us, · · · , N lsus)

is another basis of V satisfying the conclusions of the proposition, with l1 ≥
· · · ≥ ls. Then s = k and l1 = r1, . . . , lk = rk. This can be proved by a simple
induction argument, going from the range N(V ) to V . We leave the details to
the reader.

Suppose T ∈ L(V ). We call a basis of V a Jordan basis for T if the matrix of
T with respect to this basis has block diagonal form




A1 0
A2

. . .

0 Am


 (1.22)

where each diagonal block Aj has the form




λj 1 0
. . .

. . .

. . . 1
0 λj




. (1.23)

The matrix (1.22) is then called the Jordan canonical matrix of T . The blocks
Aj are called Jordan blocks.

Theorem 1.8.5. Let V be a nonzero complex vector space and let T ∈ L(V ).
Then V has a Jordan basis for T .

Proof. Assume that T has characteristic polynomial p(λ) =
Qk

j=1(λ − λj)
mj ,

where λ1, · · · ,λk are the distinct eigenvalues of T . By Theorem 1.7.7, V is the
direct sum

V =

kM

j=1

Vj ,

where Vj is the generalized eigenspace ker(T − λjIV )
mj . Vj is T -invariant and

of course the restriction Nj := (T − λjIV )|Vj
= T |Vj

− λjIVj
is nilpotent. But
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then we can apply Proposition 1.8.3 to Nj to obtain a basis of Vj for which the
matrix of Nj has block form




R1 0
R2

. . .

0 Rl


 (1.24)

where each diagonal block Ri is of the form




0 1 0
. . .

. . .

. . . 1
0 0




. (1.25)

Each block Ri above corresponds to the list (Nri
j vi, . . . , Njvi, vi) corresponding

to the vector vi in the basis given in Part (1) of Proposition 1.8.3. The linear
span of (Nri

j vi, . . . , Njvi, vi) is invariant under T |Vj
= Nj + λjIVj

, and on this
linear span, the matrix of T |Vj

is of the form 1.23.

Putting these bases together, we obtain a Jordan basis for T .

Corollary 1.8.6. Let A be an n × n matrix with complex entries. Then there
is an n× n matrix S such that SAS−1 is of the form (1.22).

Remark 1.8.7. Since the generalized eigenspace corresponding to λj has dimen-
sion mj , the multiplicity of λj , the size of the collection of blocks corresponding
to λj in the Jordan canonical form (1.22) is unique. Then, by Remark 1.8.4, for
each λj , the number of Jordan blocks and their respective sizes is also unique.

1.9 The Jordan-Chevalley Decomposition

Suppose that V is a vector space of dimension n over F and that T ∈ L(V ).

Since dim(L(V )) = n2, the operators IV , T, T
2, . . . Tn2

are linearly dependent
in L(V ). We thus have a relation

Q(T ) := a0IV + a1T + a2T
2 + · · ·+ an2Tn2

= 0 (1.26)

such that not all coefficients ai are 0. One such relation, of course, is p(T ) = 0,
where p(λ) is the characteristic polynomial of T .

A monic polynomial p(z) is a polynomial in z whose highest degree coefficient
is 1. Thus we may write p(z) = zm + am−1z

m−1 + · · ·+ a1z + a0.
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Proposition 1.9.1. Let T ∈ L(V ), and let p(z) be a monic polynomial of
smallest positive degree such that p(T ) = 0. If s(z) is any polynomial such that
s(T ) = 0, then p(z) divides s(z).

Proof. By the Euclidean algorithm (i.e. long division), we have

s(z) = q(z)p(z) + r(z),

where q(z) and r(z) are polynomials with deg r(z) < deg p(z). Replacing z by
T in the above we obtain

s(T ) = q(T )p(T ) + r(T )

=⇒ 0 = r(T ),

which by the minimality of p implies that r(z) = 0.

It follows that there is only one such polynomial p(z). We call this polynomial
the minimal polynomial of T ∈ L(V ), and denote it by Pmin(z). From (1.26),
any minimal polynomial of T has degree ≤ n2, and better yet, by the Cayley-
Hamilton Theorem, it must have degree ≤ n.

Corollary 1.9.2. The minimal polynomial of T divides the characteristic poly-
nomial of T .

Proposition 1.9.3. Let V be a complex vector space and T ∈ L(V ). Then the
roots of the minimal polynomial of T are precisely its eigenvalues.

Proof. Let λ be an eigenvalue of T , and let v eigenvector corresponding to λ.
Then since v ̸= 0,

0 = Pmin(T )(v) = Pmin(λ)v =⇒ Pmin(λ) = 0.

Conversely, suppose that λ is a root of Pmin. Then by Proposition 1.9.2, λ is a
root of the characteristic polynomial of T , whence λ is an eigenvalue of T .

If the eigenvalues of T all have multiplicity 1; that is, if the characteristic poly-
nomial of T is of the form χ(z) =

Qn
i=1(z − λi), with the λi distinct, then, by

Corollary 1.9.2 and Proposition 1.9.3, the characteristic polynomial coincides
with the minimal polynomial. On the other hand, if T is scalar multiplication,
T = λIV , then the minimal polynomial of T is z − λ, whereas its characteristic
polynomial is (z − λ)n.
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Exercise 1.9.4. Let T be the linear operator on a 6-dimensional complex vector
space whose Jordan matrix is




λ1 1 0

λ1 1
. . .

λ1

. . . λ2 1
λ2

0 λ2




. (1.27)

Find the minimal polynomial of T . For any T ∈ L(V ), formulate a theorem
stating what the minimal polynomial is in terms of its Jordan matrix. Then
prove your theorem.

Exercise 1.9.5. Suppose that V is a vector space over C, and that T ∈ L(V )

has characteristic polynomial χ(z) =
Qk

i=1(z − λi)
mi and minimal polynomial

Pmin(z) =
Qk

i=1(z − λi)
ri . Suppose that Vi is the generalized eigenspace corre-

sponding to λi. Prove that

ri = min{r | (T − λiIV )
r|Vi

= 0}.
Exercise 1.9.6. Suppose that T ∈ L(V ) and v ∈ V . Prove that there is a
unique monic polynomial s(z) of lowest degree such that s(T ) v = 0. Then
prove that s(z) divides the minimal polynomial of T .

Exercise 1.9.7. Give an example of a linear operator on C4 whose characteristic
polynomial is z(z− 1)2(z− 2) and whose minimal polynomial is z(z− 1)(z− 2).

Let λ1, . . . ,λk be the distinct eigenvalues of T . The operator T is said to be
semisimple if the minimal polynomial of T is (z − λ1) · · · (z − λk).

Proposition 1.9.8. T is semisimple if and only if it is diagonalizable; that is,
there is a basis of V consisting of eigenvectors of T .

Proof. Let λ1, . . . ,λk be the distinct eigenvalues of T .

Suppose first that T is diagonalizable. Then there is a basis of V consisting of
eigenvectors of T . Let V1(= ker(T−λ1IV )) be the eigenspace of T corresponding
to λ1, V2 the eigenspace corresponding to λ2, etc. Then we must have V =
V1 ⊕ · · ·⊕ Vk. For each j, the restriction (T − λjIV )|Vj

is obviously identically
0. Hence (T − λ1IV ) · · · (T − λkIV ) ≡ 0. so the minimal polynomial of T is
(z − λ1) · · · (z − λk), and T is semisimple.

Next, we assume that T is semisimple, and try to prove that T is diagonaliz-
able. If Vj is the generalized eigenspace corresponding to λj , we have the direct
decomposition

V =

kM

j=1

Vj
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Vj is invariant under T − λiIV , and if i ̸= j, the restriction (T − λiIV )|Vj is
invertible, for if v ∈ Vj satisfies (T −λiIV )(v) = 0, then v ∈ Vj ∩Vi = {0}. Thus
the restriction of

Q
i̸=j(T −λiIV ) to Vj is invertible. Since

Qk
i=1(T −λiIV ) = 0,

we see that T − λjIV ≡ 0 on Vj , so T is just scalar multiplication by λj on
Vj .

Note: Most authors define a semisimple linear operator as one which is diagonal-
izable. But our definition allows us more flexibility, as the following proposition
shows.

Proposition 1.9.9. Suppose that T ∈ L(V ) is semisimple, and that W is a
subspace of V invariant under T . Then the restriction T |W is semisimple.

Proof. Let Pmin(z) denote the minimal polynomial of T . We have Pmin(T |W ) =
Pmin(T )|W = 0, so the minimal polynomial of T |W divides Pmin(z). This mini-
mal poynomial must then be of the form

Q
i∈J (z − λi), where J is a subset of

the set of eigenvalues of T .

Consider now the Jordan matrix of the linear operator T on C6 in Exercise
1.9.4. Let S be the semisimple linear operator on C6 whose matrix with respect
to this Jordan basis of T is




λ1 0

λ1
. . .

λ1

. . . λ2

λ2

0 λ2




and let N be the nilpotent operator with matrix



0 1 0

0 1
. . .

0
. . . 0 1

0
0 0




.

Then T = S +N , and it is easy to check that S and N commute.

Using its Jordan matrix, it is easy to see that, in fact, any linear operator T on
a complex vector space V has a Jordan-Chevalley decomposition T = S + N ,
where S is semisimple and N is nilpotent, and S and N commute. We will now
obtain this decomposition abstractly, without the benefit of the Jordan matrix.
This approach will show that S and N satisfy a few additional properties, given
in Theorem 1.9.14 below.
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Lemma 1.9.10. (The Chinese Remainder Theorem) Suppose that p1(z), . . . , pm(z)
are nonconstant polynomials which are pairwise relatively prime. If r1(z), . . . , rm(z)
are any polynomials, then then is a polynomial P (z) such that P (z) ≡ rj(z)
mod pj(z), for all j.

Proof. For each j, let Qj(z) =
Q

i̸=j pi(z). Then there exist polynomials Aj(z)
and Bj(z) such that Aj(z)pj(z) +Bj(z)Qj(z) = 1. Now put

P (z) =

mX

i=1

ri(z)Bi(z)Qi(z).

For i ̸= j, pj(z) divides Qi(z), so

P (z) ≡
mX

i=1

ri(z)Bi(z)Qi(z) mod pj(z)

≡ rj(z)Bj(z)Qj(z) mod pj(z)

≡ rj(z) (1−Aj(z)pj(z)) mod pj(z)

≡ rj(z) mod pj(z).

The Chinese Remainder Theorem, properly formulated, holds for all principal
ideal domains, and in fact for all commutative rings with identity. The original
form of the theorem, as it pertains to the integers, appeared in a third-century
AD book by the mathematician Sun Tzu (“Master Sun,” also Sunzi) ( 孙子)
[Dau85] (not the Sun Tzu who wrote The Art of War).

Proposition 1.9.11. Suppose that S1 and S2 are two diagonalizable linear
operators on V . Then S1S2 = S2S1 if and only if S1 and S2 are simultaneously
diagonalizable; that is, if and only if there is a basis of V for which the matrices
of S1 and S2 are both diagonal.

Proof. Since diagonal matrices of the same size commute, it is clear that if S1

and S2 are simultaneously diagonalizable, then they commute.

Conversely, let us assume that S1 and S2 are diagonalizable linear operators
such that S1S2 = S2S1. Let λ1, . . . ,λk be the distinct eigenvalues of S1, with
respective eigenspaces V1, . . . , Vk. Then V =

Lk
i=1 Vi. Since S1 and S2 com-

mute, each eigenspace Vi is invariant under S2. Then by Lemma 1.9.9, the
restriction S2|Vi

is diagonalizable. Choose a basis of Vi for which the matrix of
S2|Vi is diagonal. Then, combining the bases of the Vi, we obtain a basis of V
for which the matrices of S1 and S2 are both diagonal.

In particular, this proposition says that S1 + S2 must be semisimple!
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Exercise 1.9.12. Show that if {S1, . . . , Sm} are pairwise commuting semisim-
ple elements of L(V ), then there exists a basis of V for which the matrices of
{S1, . . . , Sm} are all diagonal.

Lemma 1.9.13. Let N1 and N2 be commuting nilpotent linear operators on a
vector space V . Then N1 +N2 is nilpotent.

Proof. Assume that Nm1
1 = 0 and Nm2

2 = 0. Since N1 and N2 commute, we
can apply the binomial theorem to obtain, for any m ∈ N,

(N1 +N2)
m =

mX

k=0

�
m

k

�
Nk

1N
m−k
2 .

It follows immediately that (N1 +N2)
m1+m2 = 0.

Theorem 1.9.14. (The Jordan-Chevalley Decomposition) Let V be a complex
vector space, and let T ∈ L(V ). Then there exists a polynomial p(z) such that
if q(z) = z − p(z), the following properties hold:

1. S := p(T ) is semisimple and N := q(T ) is nilpotent;

2. Any linear operator which commutes with T must commute with both S
and N ;

3. If S′ and N ′ are commuting semisimple and nilpotent operators, respec-
tively, such that T = S′ +N ′, the S′ = S and N ′ = N ; and

4. If A ⊂ B ⊂ V are subspaces, and if T : B → A, then so do S and N .

Proof. Let λ1, . . . ,λk be the distinct eigenvalues of T , and assume that the
minimal polynomial of T is Pmin(z) =

Qk
i=1(z − λi)

ri . Now according to the
Chinese Remainder Theorem, there exists a polynomial p(z) such that, for each
i,

p(z) ≡ λi mod (z − λi)
ri (1.28)

p(z) ≡ 0 mod z. (1.29)

(In case one of the λi’s equals 0, then (1.28) implies (1.29), so the second
condition above is superfluous. Condition (1.29) is really only needed to prove
the technical conclusion (4) above.)

Let Vi be the generalized eigenspace of T corresponding to λi. Then we have
the direct decomposition

V =

kM

i=1

Vi.

Each Vi is invariant under T , hence is invariant under p(T ). Now by Exercise
1.9.5, (T − λiIV )

ri vanishes on Vi, so by the relation (1.28) above, we see that
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the operator p(T )−λiIV is identically 0 on Vi. Thus p(T )v = λiv for all v ∈ Vi,
and it follows that p(T ) is semisimple on V .

For any v ∈ Vi, we also have q(T )v = (T − p(T ))(v) = (T − λiIV )v, so (since
(T −λiIV )

ri = 0 on Vi), we see that q(T ) is nilpotent on Vi, with q(T )ri ≡ 0 on
Vi. Putting R = max1≤i≤k ri, we have q(T )R = 0 on V , so q(T ) is a nilpotent
operator.

Since S = p(T ) and N = q(T ) are polynomials in T , they commute, and in
addition, any linear operator which commutes with T must commute with S
and N . By 1.29, p(z) and q(z) have constant term equal to 0, so clearly S and
N satisfy statement (4) above.

The only thing left to prove is the uniqueness statement (3). So let S′ and N ′ be
commuting semisimple and nilpotent linear operators, respectively, on V , such
that T = S′ + N ′. Then S′ and N ′ commute with T , and so must commute
with both S and N . We then have

S − S′ = N ′ −N.

Since S and S′ are commuting semisimple operators, the left hand side above
is a semisimple operator by Lemma 1.9.11. On the other hand, since N and N ′

commute, the right hand side above is a nilpotent operator, by Lemma 1.9.13.
The only eigenvalue of S − S′ is therefore 0, whence S − S′ = 0. Therefore,
N ′ −N = 0.

1.10 Symmetric Bilinear Forms

Let V be a vector space over F. A bilinear form on V is a map

⟨ , ⟩ : V × V → F (1.30)

(v, w) 7→ ⟨v, w⟩.
which is linear in each of its two arguments:

⟨αv + βv′, w⟩ = α⟨v, w⟩+ β⟨v′, w⟩
⟨v,αw + βw′⟩ = α⟨v, w⟩+ β⟨v, w′⟩,

for all v, v′, w, w′ ∈ V and all α,β ∈ F.

Example 1.10.1. The dot product on Rn is a bilinear form. More generally,
an inner product on a real vector space V is a bilinear form.

Example 1.10.2. Let A be any n× n matrix over F. Using the matrix A, we
can define a bilinear form on Fn by putting

⟨x, y⟩ = txAx for all x, y ∈ Fn

As a special case, when A = In and F = R, we obtain the dot product on Rn.
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Let ⟨ , ⟩ be a bilinear form on V . Fix a basis B = (v1, . . . , vn) of V . The
matrix of ⟨ , ⟩ with respect to B is the n × n matrix A whose (i, j) entry is
aij = ⟨vi, vj⟩. This matrix A completely determines the bilinear form, since
each vector in V is a unique linear combination of the basis vectors in B:

v =

nX

i=1

xivi and w =

nX

j=1

yjvj =⇒ ⟨v, w⟩ =
nX

i=1

nX

j=1

xiaijyj (1.31)

Given the basis B of V , we have a coordinate map [ · ]B from V onto Fn with
respect to B: namely, if v ∈ V , then

[v]B =




x1

...
xn


 ⇐⇒ v =

nX

i=1

xivi.

The coordinate map v 7→ [v]B is a linear isomorphism from V onto Fn.

Exercise 1.10.3. If T ∈ L(V ) with matrix MB,B(T ) with respect to B, show
that [Tv]B = MB,B(T )[v]B , for all v ∈ V .

Now again let ⟨ , ⟩ be a bilinear form on V , and let A be its matrix with
respect to the basis B of V . Let v =

Pn
i=1 xivi and w =

Pn
j=1 yjvj be vectors

in V . Then by (1.30), we have

⟨v, w⟩ =
nX

i=1

nX

j=1

xiaijyj

=
�
x1 · · · xn

�



a11 a1n
· · ·

an1 ann







y1
...
yn




= t[v]B A [w]B (1.32)

Thus Example 1.10.2 essentially gives us all bilinear forms on V , once we’ve
fixed a basis B of V .

A bilinear form ⟨ , ⟩ is called nondegenerate if, whenever v is a nonzero vector
in V , there is a w ∈ V such that ⟨v, w⟩ ̸= 0. The choice of the vector w, which
is necessarily nonzero, depends on the vector v.

Exercise 1.10.4. Show that ⟨ , ⟩ is nondegenerate if and only if, whenever w
is a nonzero vector in V , there is a vector v ∈ V such that ⟨v, w⟩ ̸= 0.

Theorem 1.10.5. Let ⟨ , ⟩ be a bilinear form on V , and let A be its matrix
with respect to a given basis B of V . Then ⟨ , ⟩ is nondegenerate if and only
if A is nonsingular.
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Proof. Suppose that A is nonsingular. Let v be a nonzero vector in V . Then
[v]B is a nonzero vector in Fn. Since A is nonsingular, its rows are linearly
independent, so t[v]BA is a nonzero row matrix. Hence there exists an element
y ∈ Fn such that t[v]BAy ̸= 0. If we let w ∈ V be the vector such that [w]B = y,
then according to (1.32), we have ⟨v, w⟩ ̸= 0. Thus ⟨ , ⟩ is nondegenerate.

Suppose next that A is singular. Then its rows are linearly dependent, so there
is an x ̸= 0 in Fn such that txA = 0. Let v be the vector in V such that
[v]B = x. Then according to (1.32), we get ⟨v, w⟩ = 0 for all w ∈ V . This shows
that ⟨ , ⟩ is not nondegenerate; i.e., is degenerate.
Example 1.10.6. Let

A =

�
1 1

−1 1

�

Then the bilinear form on R2 given by (x, y) = txAy is nondegenerate.

Example 1.10.7. Let Jn be the 2n × 2n matrix which is given in block form
as

Jn =

�
0 In

−In 0

�
, (1.33)

where the “0” in the matrix above refers to the zero n × n matrix. Note that
Jn is nonsingular, with inverse J−1

n = −Jn. Jn gives rise to a nondegenerate
symmetric bilinear form on F2n given by

⟨x, y⟩ = txJn y for all x, y ∈ F2n

When F = R, we call this form the standard symplectic form on R2n.

Let A be a square matrix with entries in F. A is said to be symmetric if tA = A.
If A = (aij), this is equivalent to the condition that aij = aji for all i and
j. A is called skew-symmetric if tA = −A. This is equivalent to the condition
aij = −aji for all i, j. Note that the diagonal entries of a skew-symmetric matrix
are all 0.

A symmetric bilinear form on a vector space V is a bilinear form ⟨ , ⟩ on V such
that ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V . The dot product on Rn, or more generally,
any inner product on a real vector space, is an example of a (nondegenerate)
symmetric bilinear form.

Again fix a basis B = (v1, . . . , vn) of V , and let A be the matrix of ⟨ , ⟩
with respect to B. If ⟨ , ⟩ is symmetric, then A is a symmetric n× n matrix:
aij = ⟨vi, vj⟩ = ⟨vj , vi⟩ = aji.

Conversely, it is an easy calculation using (1.31) to show that if A is a symmetric
matrix, then ⟨ , ⟩ is a symmetric bilinear form on V .

Suppose that ⟨ , ⟩ is a symmetric bilinear form on a vector space V over F.
For any subspace W of V , the orthogonal complement of W is the set

W⊥ = {v ∈ V | ⟨v, w⟩ = 0 for all w ∈ W}.
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It is easy to see that W⊥ is a subspace of V . Note that V ⊥ = {v ∈ V | ⟨v, v′⟩ =
0 for all v′ ∈ V }, so ⟨ , ⟩ is nondegenerate if and only if V ⊥ = {0}.

For any v ∈ V , we let fv be the linear functional on V given by fv(v
′) = ⟨v, v′⟩,

for all v′ ∈ V .

Proposition 1.10.8. Suppose that ⟨ , ⟩ is nondegenerate. If W is a subspace
of V , then the map v 7→ fv|W is a linear map of V onto the dual space W ∗,
with kernel W⊥.

Proof. The map f : V → V ∗ given by v 7→ fv is easily seen to be linear. Its
kernel is V ⊥ = {0}, since ⟨ , ⟩ is nondegenerate. Since dimV = dimV ∗, f is
onto, and we conclude that any element of V ∗ is of the form fv, for a unique
v ∈ V .

Next we prove that any linear functional on W can be extended to a linear
functional on V . To be precise, suppose that g ∈ W ∗. Choose any subspace U
of V complementary to W , so that V = W ⊕U . Then define the function G on
V by G(w + u) = g(w) for all w ∈ W and all u ∈ U . G is a well-defined linear
functional on V such that G|W = g.

The restriction map f 7→ f |W is a linear map from V ∗ to W ∗, and the above
shows that it is surjective. Since the map v 7→ fv is a linear bijection from V
onto V ∗, we see that the composition v 7→ fv|W is a surjective linear map from
V onto W ∗. The kernel of this map is clearly W⊥.

This proposition implies that

dimW⊥ = dimV − dimW ∗ = dimV − dimW. (1.34)

1.11 Inner Products and Adjoints

Let V be a vector space over F, where as usual F is either R or C. Recall that
an inner product on V is a map ⟨ , ⟩ : V × V → F such that

(i) ⟨au+ bv, w⟩ = a ⟨u,w⟩+ b ⟨v, w⟩ (Linearity in the First Argument)

(ii) ⟨w, v⟩ = ⟨v, w⟩ (Conjugate Symmetry)

(iii) ⟨v, v⟩ ≥ 0 (Positivity)

(iv) ⟨v, v⟩ = 0 only if v = 0 (Definiteness)

for all u, v, w ∈ V and all a, b ∈ F. An inner product space is any vector space
over F equipped with a given inner product.
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The norm of a vector v ∈ V is

∥v∥ =
p
⟨v, v⟩.

Then ∥v∥ ≥ 0 and (i) and (iv) imply that ∥v∥ = 0 if and only if v = 0.

If F = R, then ⟨ , ⟩ is a nondegenerate symmetric bilinear form on V . If F = C,
then any map from V ×V to C satisfying (i) and (ii) is called a Hermitian form.

We identify Fn with the vector space Fn×1 of all n × 1 column matrices with
entries in F. Then Cn is equipped with the standard inner products, which for
Cn is given by

⟨z, w⟩ = tz w =

nX

j=1

zj wj , (1.35)

if

z =



z1
...
zn


 and w =



w1

...
wn




The standard inner product on Rn just the restriction of the above to Rn ×Rn:

(x, y) =

nX

j=1

xj yj .

This is of course just the usual dot product on Rn.

There are numerous examples of inner product spaces. Here are but two of
them:

Example 1.11.1. Let T = {z ∈ C | |z| = 1} be the unit circle in the complex
plane, and let C(T ) denote the complex vector space of all complex-valued
continuous functions on T . Then C(T ) can be equipped with the inner product

⟨f, g⟩ = 1

2π

Z π

−π

f(eit) g(eit) dt (f, g ∈ C(T )).

Example 1.11.2. Let Fm×n denote the vector space (over F) of all m × n
matrices with entries in F. Then the Hilbert-Schmidt inner product on Fm×n is
given by

⟨S, T ⟩ = tr (S tT )

If S = (sjk) and T = (tjk), then we have ⟨S, T ⟩ =
Pm

j=1

Pn
k=1 sjk tjk, the

standard inner product on Fmn. Notice that this inner product generalizes the
standard inner product (1.35) on Fn. The Hilbert-Schmidt norm of S ∈ Fm×n

is 



mX

j=1

nX

k=1

|sjk|2




1/2

.
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Theorem 1.11.3. (The Cauchy-Schwartz Inequality.) Let ⟨ , ⟩ be an inner
product on the vector space V over F. Then

|⟨u, v⟩| ≤ ∥u∥ ∥v∥ (1.36)

for all u, v ∈ V . Equality holds if and only if one of the two vectors is a multiple
of the other.

Proof. There is a number c ∈ F with |c| = 1 such that c ⟨u, v⟩ = |⟨u, v⟩|. (In
particular c = ±1 in case F = R.) For any t ∈ R, we have

0 ≤ ∥t(cu) + v∥2
= ⟨t(cu) + v, t(cu) + v⟩
= t2 ∥cu∥2 + t ⟨cu, v⟩+ t ⟨v, cu⟩+ ∥v∥2

= t2 ∥u∥2 + 2t (Re (c ⟨u, v⟩)) + ∥v∥2

= t2 ∥u∥2 + 2t |⟨u, v⟩|+ ∥v∥2

The quadratic expression above in t has nonpositive discriminant, and hence
4|⟨u, v⟩|2 − 4∥u∥2 ∥v∥2 ≤ 0, giving (1.36).

Next let us examine when (1.36) becomes an equality. Certainly it happens
when u = 0 or v = 0, so let us assume that u ̸= 0 and v ̸= 0. If equality still
occurs, then the discriminant 4|⟨u, v⟩|2−4∥u∥2 ∥v∥2 is zero, so there is a unique
value of t such that the quadratic expression above equals 0. For this t, we have
t(cu) + v = 0, so v is a multiple of u. Conversely, if v is a multiple of u, (1.36)
is easily seen to be an equality.

Theorem 1.11.4. (The Triangle Inequality) For any vectors u and v in an
inner product space V , we have

∥u+ v∥ ≤ ∥u∥+ ∥v∥, (1.37)

with equality if and only if one of the vectors is a nonnegative multiple of the
other.

Proof. By (1.36), we have

∥u+ v∥2 = ⟨u+ v, u+ v⟩
= ∥u∥2 + 2Re (⟨u, v⟩) + ∥v∥2

≤ ∥u∥2 + 2 ∥u∥ ∥v∥+ ∥v∥2

= (∥u∥+ ∥v∥)2 ,

proving (1.37). Equality in (1.37) will occur if and only if Re (⟨u, v⟩) = ∥u∥ ∥v∥;
that is, if and only if ⟨u, v⟩ = ∥u∥ ∥v∥. Hence one of the vectors is a multiple of
the other, say v = cu. This then gives c ∥u∥2 = |c| ∥u∥2. Assuming that u ̸= 0
(the case u = 0 giving v = 0, so is trivial), we obtain c = |c|, so c ≥ 0.
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From basic linear algebra we recall that a collection U of vectors in V is or-
thonormal provided that for any u, v ∈ U we have

⟨u, v⟩ =
(
0 if u ̸= v

1 if u = v.

An orthonormal set is always linearly independent: if u1, . . . , um ∈ U and c1u1+
· · ·+ cmum = 0, then for each j, we have cj = ⟨c1u1 + · · ·+ cmum, uj⟩ = 0.

The standard basis e1, . . . , en of Fn is an orthonormal basis with respect to its
standard inner product. In the infinite-dimensional inner product space C(T ),
the Fourier exponentials

fk(e
iθ) =

1√
2π

eikθ, (eiθ ∈ T )

for all k ∈ Z, form an orthonormal set.

In R2, all orthonormal bases are of the form
�
cos θ
sin θ

�
, ±

�
− sin θ
cos θ

�
,

and in C2 they are of the form
�
a
b

�
, c

�
−b
a

�
,

where |a|2 + |b|2 = 1 and |c| = 1.

Suppose that v1, v2, . . . is a linearly independent set in an inner product space
V . The Gram-Schmidt process extracts an orthonormal set u1, u2, . . . out of this
with the property that

span (v1, . . . , vk) = span (u1, . . . , uk) (1.38)

for all k = 1, 2, . . .. The vectors u1, u2, . . . are defined inductively as follows: put
u1 = v1/∥v1∥. Suppose that k > 1 and that orthonormal vectors u1, . . . , uk−1

have been obtained so that

span (v1, . . . , vk−1) = span (u1, . . . , uk−1).

Let

wk = vk −
k−1X

j=1

⟨vk, uj⟩uj

Now vk /∈ span (v1, . . . , vk−1) = span (u1, . . . , uk−1), so wk ̸= 0. The definition
of wk above shows that ⟨wk, uj⟩ = 0 for 1 ≤ j ≤ k − 1. If we let uk =
wk/∥wk∥, then {u1, . . . , uk} is orthonormal (hence linearly independent) and
satisfies (1.38).
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If V is finite-dimensional and has basis (v1, . . . , vn), the Gram-Schmidt process
yields an orthonormal basis (u1, . . . , un) of V .

For any nonempty subset A of an inner product space V , the set

A⊥ = {v ∈ V | ⟨v, w⟩ = 0 for all w ∈ A}

is a subspace of V , called the orthogonal complement of A.

If V is finite-dimensional and W is a subspace of V , then W⊥ is a subspace of V
and dimW⊥ = dimV − dimW . To see this, start with a basis (v1, . . . , vn) of V
such that (v1, . . . , vk) is a basis of W , and apply the Gram-Schmidt process. If
(u1, . . . , un) is the resulting orthonormal basis of V , then (u1, . . . , uk) is a basis
of W and it is easy to see that (uk+1, . . . , un) is a basis of W⊥. This also shows
that V is an orthogonal direct sum

V = W ⊕W⊥.

Finally, it is not hard to see from the construction above that (W⊥)⊥ = W .
This can also be proved by noting that W ⊂ (W⊥)⊥ and that dimW = dimV −
dimW⊥ = dim(W⊥)⊥.

Proposition 1.11.5. Let V be a finite-dimensional vector space and let f ∈ V ∗.
Then there is a unique vector w ∈ V such that f(v) = ⟨v, w⟩ for all v ∈ V .

Proof. The uniqueness of w is straightforward: if ⟨v, w⟩ = ⟨v, w′⟩ for all v ∈ V ,
then ⟨v, w − w′⟩ = 0 for all v ∈ V so ⟨w − w′, w − w′⟩ = 0, and hence w = w′.

For the existence of w, we can assume that f ̸= 0. Then f(V ) = F, so by the
Rank-Nullity Theorem (Theorem1.2.1), dim(ker f) = dimV − 1. This implies
that (ker f)⊥ is one-dimensional. Let w0 be any unit vector in (ker f)⊥, and then
let w = f(w0)w0. Now v − ⟨v, w0⟩w0 is orthogonal to w0, so v − ⟨v, w0⟩w0 ∈
ker f . Hence f(v − ⟨v, w0⟩w0) = 0, and this untangles to f(v) = ⟨v, w⟩, as
desired.

Note that if F = R, then the proof is easier: for any v ∈ V , define fv ∈ V ∗ by
fv(w) = ⟨w, v⟩ for all w ∈ V . Then the map v 7→ fv is a linear map from V
into V ∗ with kernel {0} (because the inner product is positive definite, hence
nondegenerate), so it must be a linear bijection.

Exercise 1.11.6. Suppose that W is a subspace of a finite-dimensional inner
product space V . Since V = W ⊕ W⊥, there are unique maps P : V → W
and Q : V → W⊥ such that v = P (v) + Q(v) for any v ∈ V . P is called the
orthogonal projection of V onto W . The we have the Pythagorean Theorem

∥v∥2 = ∥Pv∥2 + ∥Qv∥2 (v ∈ V ).
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Prove that for any v ∈ V ,

∥Qv∥ = ∥Pv − v∥ ≤ ∥w − v∥ (w ∈ W )

with equality if and only if w = P (v). Thus P (v) is the point in W closest to v.

Theorem 1.11.7. Let V and W be finite-dimensional inner product spaces over
F and let T ∈ L(V,W ). Then there exists a unique linear map T ∗ ∈ L(W,V )
such that

⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ (1.39)

for all v ∈ V, w ∈ W .

(In (1.39) there is a slight abuse of notation, in which ⟨ , ⟩ denotes the inner
product both in V and in W .)

Proof. For fixed any w ∈ W , the function fw(v) = ⟨Tv,w⟩ is a linear functional
on V . By Proposition 1.11.5 there exists a unique vector v′ ∈ V such that
fw(v) = ⟨v, v′⟩ for all v ∈ V . The vector v′ of course depends on w, so we write
v′ = T ∗(w). Thus ⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ for all v ∈ V and w ∈ W .

The uniqueness of T ∗(w) for each w implies that T ∗ preserves scalar multipli-
cation: if w ∈ W and λ ∈ F, we have

⟨v, T ∗(λw)⟩ = ⟨T (v),λw⟩ = λ ⟨Tv,w⟩ = λ ⟨v, T ∗w⟩ = ⟨v,λT ∗(w)⟩,

and hence T ∗(λw) = λT ∗(w).

A similar calculation using the uniqueness of each T ∗(w) shows that T ∗ is ad-
ditive: T ∗(w1 + w2) = T ∗(w1) + T ∗(w2) for all w1, w2 ∈ W . This shows that
T ∗ ∈ L(W ∗, V ∗).

The linear map T ∗ : W → V is called the adjoint of T . The relation (1.39)
shows that (T1+T2)

∗ = T ∗
1 +T ∗

2 if T1 and T2 are in L(V,W ). The same relation
shows that (λT )∗ = λT ∗, for λ ∈ F, T ∈ L(V,W ).

Finally, suppose T ∈ L(V,W ), S ∈ L(W,U), where V, W , and U are finite-
dimensional inner product spaces. Applying the relation (1.39) twice shows
that (ST )∗ = T ∗ S∗.

Let (v1, . . . , vn) and (w1, . . . , wm) be orthonormal bases of V and W , respec-
tively, let T ∈ L(V,W ), and suppose that the m × n matrix A = (Tjk) is the
matrix of T with respect to these bases. Then tA is the matrix of T ∗ ∈ L(W,V )
with respect to these bases. In fact,

T ∗
kj = ⟨T ∗(wj), vk⟩ = ⟨wj , T (vk)⟩ = T jk.

Theorem 1.11.8. Let V and W be finite-dimensional inner product spaces over
F, and let T ∈ L(V,W ). Then
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(a). (T ∗)∗ = T .

(b). T (V )⊥ = ker(T ∗).

Proof. The first assertion is an immediate consequence of (1.39), since for any
v ∈ V, w ∈ W , we have ⟨Tv,w⟩ = ⟨v, T ∗(w)⟩ = ⟨(T ∗)∗(v), w⟩.

For the second assertion, we note that for any w ∈ W ,

w ∈ T (V )⊥ ⇐⇒ ⟨w, T (v)⟩ = 0 for all v ∈ V

⇐⇒ ⟨T ∗(w), v⟩ = 0 for all v ∈ V

⇐⇒ T ∗(w) = 0

⇐⇒ w ∈ ker(T ∗).

The conclusions in Theorem 1.11.8 easily imply the following facts:

(i). (ker(T ∗))⊥ = T (V ).

(ii). (kerT )⊥ = T ∗(W ).

(iii). kerT = (T ∗(W ))⊥.

Exercise 1.11.9. Let T ∈ L(V ). Prove that T is one-to-one if and only if T ∗

is onto. Then prove that T is invertible if and only if T ∗ is invertible, and that
(T−1)∗ = (T ∗)−1.

Exercise 1.11.10. Let W be a subspace of a finite-dimensional inner product
space V , and let P : V → W be the orthogonal projection of V onto W (in
accordance with the orthogonal direct sum V = W ⊕ W⊥). Prove that P 2 =
Pand that P ∗ = P . Conversely, show that any P ∈ L(V ) satisfying P 2 = P
and P ∗ = P is an orthogonal projection of V onto an appropriate subspace.

1.12 Diagonalizability of Normal Operators

Let V be a finite-dimensional inner product space over F, and let T ∈ L(V ). It
is important to determine sufficient conditions under which T is diagonalizable;
that is to say, semisimple. This amounts to determining when there exists a
basis of V consisting of eigenvectors of T . On the matrix side, we want to
determine sufficient conditions under which an n × n matrix A is conjugate to
a diagonal matrix. We already know one such sufficient condition: if A has n
distinct eigenvalues in F, then A is diagonalizable.

Throughout this section we will assume that V is a finite-dimensional inner
product space, with inner product ⟨ , ⟩. If T ∈ L(V ), then T ∗ ∈ L(V ).
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Definition 1.12.1. An operator T ∈ L(V ) is said to be

1. normal if T ∗T = TT ∗;

2. self-adjoint if T = T ∗;

3. unitary if ∥Tv∥ = ∥v∥ for all v ∈ V . We also say that T is isometric.

A self-adjoint operator is clearly normal. A unitary linear operator T preserves
the inner product: for any v, w ∈ V , the relations ∥T (v + w)∥2 = ∥v + w∥2
and ∥T (v + i w)∥2 = ∥v + i w∥2 imply that ⟨Tv, Tw⟩ = ⟨v, w⟩. Conversely, it is
obvious that any T ∈ L(V ) preserving the inner product is unitary. Finally, it
clear that ⟨Tv, Tw⟩ = ⟨v, w⟩ for all v and w if and only if T ∗T = IV . Thus a
unitary operator is normal.

An unitary linear operator on a real vector space is called an orthogonal operator.
(The word unitary is in fact often reserved for operators on complex spaces.)
A self-adjoint linear operator on a complex inner product space is often called
a Hermitian operator, and a self-adjoint linear operator on a real inner product
space is also often called a symmetric operator).

The definitions above have matrix counterparts. Let A ∈ gl(n,F). We say that
A is

1. normal if tAA = A tA;

2. symmetric if tA = A;

3. Hermitian if tA = A;

4. unitary if tAA = In;

5. orthogonal if tAA = In.

Normal linear operators correspond to normal matrices and vice versa. Specifi-
cally, if T ∈ L(V ) is normal and B = (u1, . . . , un) is an orthonormal basis of V ,
then the matrix A of T with respect to B is normal. This follows immediately
from the fact that composition of linear operators corresponds to matrix multi-
plication ((1.6)) and the fact that the matrix of T ∗ with respect to the basis B
is tA.

Conversely, if A is a normal matrix then the linear operator z 7→ Az is a normal
linear operator on Cn. This is because the adjoint of this operator (with respect
to the standard inner product on Cn) is the linear operator w 7→ tAw.

In a similar fashion, it can be seen that self-adjoint operators are represented
by Hermitian matrices, and unitary linear operators by unitary matrices. In
the case of linear operators on real inner product spaces, the correspondence
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is between self-adjoint operators and real symmetric matrices, and between
unitary operators and orthogonal matrices.

Exercise 1.12.2. Prove that any unitary linear operator T on a complex finite-
dimensional inner product space V is invertible. Then prove that the set of all
unitary linear operators on V forms a group, with multiplication defined as
composition of operators.

The group of all unitary linear operators on a finite-dimensional complex inner
product space V is called the unitary group of V , and is denoted by U(V ).
If V = Cn, then the unitary group on V can be identified with the group of
unitary n × n matrices, which we denote by U(n). The group of all unitary
(= orthogonal) linear operators on a finite-dimensional real inner product space
V is denoted O(V ); the group of orthogonal real n × n matrices is called the
orthogonal group, and is denoted by O(n).

Exercise 1.12.3. Prove that a complex n× n matrix A is unitary if and only
if its columns form an orthonormal basis of Cn. Similarly, prove that an n× n
real matrix is orthogonal if and only if its columns form an orthonormal basis
of Rn. What can you say about the rows of these matrices?

Exercise 1.12.4. Let V be a complex inner product space. If T is a unitary
linear operator on V , prove that | detT | = 1.

Ths subgroup of U(V ) consisting of all T ∈ U(V ) such that detT = 1 is called
the special unitary group on V , and is denoted by su(V ). The special unitary
group on Cn is denoted by SU(n). It consists of all n × n complex matrices A
such that tAA = In and detA = 1.

Exercise 1.12.5. (a). Prove that if T ∈ L(V ) is self-adjoint, then any eigen-
value of T is real.

(b). Prove that if λ is an eigenvalue of a unitary operator S ∈ L(V ), then
|λ| = 1.

(c). Suppose that u and v are eigenvectors of a self-adjoint operator T ∈ L(V )
corresponding to different eigenvalues. Prove that u and v are orthogonal.

Our goal is to prove that normal linear operators on complex inner product
spaces are diagonalizable. This involves proving a series of lemmas, the first of
which is the following.

Lemma 1.12.6. Let T ∈ L(V ) be self-adjoint. Then T = 0 if and only if
⟨Tv, v⟩ = 0 for all v ∈ V .

Proof. The “only if” part being trivial, let us suppose that T ∈ L(V ) is self-
adjoint and satisfies

⟨Tv, v⟩ = 0 for all v ∈ V.
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Replacing v by v + w in the relation above yields ⟨T (v), w⟩ + ⟨T (w), v⟩ = 0;
since T is self-adjoint, this gives

Re ⟨Tv,w⟩ = 0 for all v, w ∈ V.

Replacing w above by iw, we then obtain

Im ⟨Tv,w⟩ = 0 for all v, w ∈ V,

from which we conclude that ⟨Tv,w⟩ = 0 for all v, w ∈ V . It follows that
T = 0.

Lemma 1.12.7. Let T ∈ L(V ). Then T is normal if and only if ∥T ∗(v)∥ =
∥T (v)∥ for all v ∈ V .

Proof. Note that T ∗T − TT ∗ is self-adjoint. Hence by Lemma 1.12.6,

∥T ∗(v)∥ = ∥T (v)∥ for all v ∈ V ⇐⇒ ⟨T ∗(v), T ∗(v)⟩ = ⟨T (v), T (v)⟩ for all v ∈ V

⇐⇒ ⟨TT ∗(v), v⟩ = ⟨T ∗T (v), v⟩ for all v ∈ V

⇐⇒ ⟨TT ∗(v)− T ∗T (v), v⟩ for all v ∈ V

⇐⇒ TT ∗ − T ∗T = 0

⇐⇒ T is normal.

Corollary 1.12.8. Let T ∈ L(V ) be normal. Then kerT = kerT ∗.

In fact v ∈ kerT ⇐⇒ ∥T (v)∥ = 0 ⇐⇒ ∥T ∗(v)∥ = 0 ⇐⇒ v ∈ kerT ∗.

Exercise 1.12.9. Suppose that T ∈ L(V ) is normal. Prove that kerT 2 = kerT .
(Hint: T ∗T is self-adjoint.) Then prove that kerTm = kerT for all positive
integers m.

Lemma 1.12.10. Let T ∈ L(V ) be a normal operator. Then any eigenvector
of T is also an eigenvector of T ∗.

Proof. Suppose that T (v) = λ v. Then v ∈ ker(T − λIV ). Now (T − λIV )
∗ =

T ∗−λIV , and it is clear from the normality of T that T−λIV is also normal. By
Corollary 1.12.8 it follows that v ∈ ker(T ∗ − λIV ), and hence T ∗(v) = λ v.

Lemma 1.12.11. Let T ∈ L(V ) be a normal operator. If a subspace U of V is
invariant under T , then U⊥ is invariant under T ∗.

Proof. Obvious, since for any u ∈ U and v ∈ U⊥, we have ⟨u, T ∗v⟩ = ⟨T (u), v⟩ =
0.
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Theorem 1.12.12. (The Spectral Theorem for Normal Operators.) Let V be
a complex inner product space, and let T ∈ L(V ) be a normal operator. Then
there exists an orthonormal basis of V consisting of eigenvectors of T .

Proof. The proof is by induction on dimV , the case dimV = 1 being obvious.

For the induction step, let n > 1 and assume that the conclusion of the theorem
holds for all normal operators on all complex inner product spaces of dimension
< n.

Suppose that dimV = n and T is a normal linear operator on V . Since V
is a complex vector space, T has an eigenvalue λ. Let v be an eigenvector
corresponding to λ. Then according to Lemma 1.12.10, the one-dimensional
subspace U = C v is invariant under both T and T ∗. Lemma 1.12.11 then
shows that U⊥ is also invariant under T ∗ and T ∗. Let S be the restriction
of T to U⊥. Then the adjoint S∗ of S is the restriction of T ∗ to U⊥. It
follows that S is a normal operator on U⊥. Since U⊥ is (n − 1)-dimensional,
the induction hypothesis guarantees an orthonormal basis (v1, . . . , vn−1) of U

⊥

consisting of eigenvectors of S. Since these are also eigenvectors of T , we see
that the orthonormal basis (v1, . . . , vn−1, v) of V consists of eigenvectors of T ,
completing the induction step.

The theorem above asserts that normal operators in complex inner product
spaces are semisimple. We can of course restate the result in matrix form.

Corollary 1.12.13. Let A be an n × n complex normal matrix. Then there
exists a unitary matrix U such that U−1AU is a diagonal matrix. Up to a
permutation of the diagonal entries, this diagonal matrix is unique.

Proof. The uniqueness assertion is clear, since A and U−1AU have the same
characteristic polynomial.

As for the first assertion, if we endow Cn with the standard inner product (1.35),
then the linear operator T on Cn given by T (z) = Az (i.e., matrix multiplication)
is normal. By the preceding theorem, there is an orthonormal basis (u1, . . . , un)
of Cn consisting of eigenvectors of T . Then we haveAuj = λj uj for j = 1, . . . , n.
Let U be the n× n matrix whose columns (in order) are u1, . . . , un, and let D
be the n × n diagonal matrix whose diagonal entries (in order) are λ1, . . . ,λn.
Since the columns of U are orthonormal, U is a unitary matrix (see Exercise
1.12.3), and we also have

AU = UD.

Hence D = U−1 AU .

Exercise 1.12.14. (An Alternative proof of Theorem 1.12.12.) Let T be a nor-
mal operator on a finite-dimensional complex inner product space V . Prove the
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following assertions to show that V is an orthogonal direct sum of eigenspaces
of T .

(a). For any complex number λ, prove that the operator T − λ IV is normal.

(b). By Part (a) above and Exercise 1.12.9, ker(T − λ IV )
m = ker(T − λ IV ).

Use this and Theorem 1.7.7 to prove that V is a direct sum of eigenspaces
of T .

(c). Use Lemma 1.12.10 to prove that the eigenspaces you obtained in Part (b)
are mutually orthogonal.

(d). Use Part (c) to prove that V has an orthonormal basis consisting of eigen-
vectors of T .

The proof of Theorem 1.12.12 relied on the existence of at least one eigenvalue,
which is of course guaranteed for a linear operator on a finite-dimensional com-
plex vector space. For normal operators on real inner product spaces, diagonal-
izability is not guaranteed. For instance, the matrix

A =

�
0 −1
1 0

�

is orthogonal, so the corresponding linear operator x 7→ Ax on R2 is orthog-
onal, hence is a normal operator. This linear operator corresponds to a 90◦

counterclockwise rotation on R2, so it has no eigenvectors in R2. Hence it is not
semisimple, and the matrix A is not diagonalizable (or more precisely, is not
conjugate to a diagonal matrix).

On the other hand, there are normal operators on real inner product spaces that
are diagonalizable; namely, the self-adjoint ones. To prove this, we will need the
following lemma.

Lemma 1.12.15. Let V be a finite-dimensional real inner product space, and
let T ∈ L(V ) be self-adjoint. Suppose that b and c are any real numbers such
that b2 − 4c < 0. Then the linear operator T 2 + b T + c IV is invertible.

Proof. It is enough to prove that T 2 + b T + c IV is injective. Let u be any unit
vector in V . Then by the Cauchy-Schwartz Inequality (1.36),

⟨(T 2 + b T + c IV )(u), u⟩ = ⟨T (u), T (u)⟩+ b ⟨T (u), u⟩+ c ⟨u, u⟩
≥ ∥T (u)∥2 − |b| ∥T (u)∥+ c

> 0.

The last inequality holds because b2 − 4c < 0. Now if T 2 + b T + c IV were
not injective, then there would be a unit vector u in its kernel, which would
contradict the inequality above. This of course proves the lemma.
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Theorem 1.12.16. (The Spectral Theorem for Self-Adjoint Operators.) Let
V be a real inner product space, and let T ∈ L(V ) be self-adjoint. Then T is
semisimple; in fact, there is an orthonormal basis of V consisting of eigenvectors
of T .

Proof. The proof is by induction on dimV . The case dimV = 1 is of course
trivial.

For the induction step, let n > 1, assume that the conclusion holds for all
self-adjoint linear operators on real inner product spaces of dimension < n, let
dimV = n, and assume T ∈ L(V ) is self-adjoint.

To show that T satisfies the assertion, the key is to prove that T has at least one
real eigenvalue λ. Assuming that this real eigenvalue λ exists, we can complete
the proof as follows. Let U = ker(T − λ IV ) be the eigenspace corresponding to
λ, and let W = U⊥ be its orthogonal complement. Then U is T -invariant, as is
W , because for any u ∈ U and w ∈ W , we have

⟨u, T (w)⟩ = ⟨T (u), w⟩ = 0,

which shows that T (w) ∈ W . Let S denote the restriction of T to W . Then
S ∈ L(W ) is self-adjoint, because T is. Since dimW < dimV , we can apply
the induction hypothesis to produce an orthonormal basis of W consisting of
eigenvectors of S, hence of T . To this basis we tack on an orthonormal basis
of U . Since V is the orthogonal direct sum U ⊕W the vectors from these two
bases combine to form an orthonormal basis of V consisting of eigenvectors of
T .

So all depends on our being able to produce a real eigenvalue of T . For this, fix
any vector v ̸= 0 in V . Since n = dimV , the vectors v, T (v), T 2(v), . . . , Tn(v)
are linearly dependent, so there exist real scalars a0, a1 . . . , an, not all 0, such
that a0 v + a1 T (v) + · · ·+ an T

n(v) = 0. We write this as

p(T ) (v) = 0, (1.40)

where p(x) = a0 + a1 x + · · · + an x
n. The polynomial p(x) clearly has degree

≥ 1. Since it has real coefficients, it has a factorization into either linear or
irreducible quadratic factors, or both. Now if there are no linear factors in the
factorization of p(x), we would have

p(x) = a ·
lY

k=1

(x2 + bk x+ ck),

where a ̸= 0 and b2j − 4cj < 0 for all j. The relation (1.40) then becomes

a ·
 

mY

k=1

(T 2 + bk T + ck IV )

!
(v) = 0.
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But by Lemma 1.12.15, the operators T 2 + bk T + ck IV are all invertible, so
the left hand side above cannot vanish. This contradiction shows that p(x) has
linear factors, and we have

p(x) = a ·
lY

j=1

(x+ rj) · p1(x) (a ̸= 0)

where p1(x) is a product of irreducible quadratic factors, or just the number 1,
in case there are no such factors. Hence

a ·




lY

j=1

(T + rj IV )


 p1(T )(v) = 0

Since p1(T ) is invertible, we can apply p1(T )
−1 to both sides above to obtain

lY

j=1

(T + rj IV ) (v) = 0.

The operator
Ql

j=1(T + rj IV ) is therefore not invertible, so one of its factors is
not invertible. Rearranging the factors if necessary, we can assume that T+r1 IV
is not invertible. Then λ = −r1 is an eigenvalue of T , completing the proof of
the theorem.

Remark 1.12.17. In the proof above, instead of fixing a vector v ∈ V , we could
have just as well used the Cayley-Hamilton Theorem for T to obtain p(T ) = 0,
where p(x) is the characteristic polynomial of T . (Note that according to Re-
mark 1.6.4, a linear operator on a real vector spaces also satisfies its character-
istic polynomial.) By the same argument employed above, it will be impossible
for p(x) to lack any linear factors.

Corollary 1.12.18. Let A be an n × n symmetric matrix with real entries.
Then there is a real orthogonal n×n matrix U such that U−1 AU is a diagonal
matrix. Up to a permutation of the diagonal entries, this diagonal matrix is
unique.

The proof is the same as that of Corollary 1.12.13.

Exercise 1.12.19. Let V be a finite-dimensional inner product space, and
suppose that Q is a Hermitian form on V ; that is to say, Q :V × V → C, with

(i). Q(av1 + bv2, w) = aQ(v1, w) + bQ(v2, w), and

(ii). Q(w, v) = Q(v, w)

for all v, v1, v2, w ∈ V and all a, b ∈ F. (When F = R, this means that Q is
a symmetric bilinear form on V .) Prove that there is a self-adjoint operator
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T ∈ L(V ) such that Q(v, w) = ⟨Tv,w⟩ for all v, w ∈ V . Then prove that there
is an orthonormal basis (u1, . . . , un) of V and real numbers λ1, . . . ,λn such that

Q(v, v) =

nX

j=1

λj |cj |2,

for v =
P

cj uj ∈ V . In particular, if Q is an inner product, then there are n
vectors that are simultaneously orthogonal for ⟨ , ⟩ and Q.

The spectral theorems allow us to express normal or self-adjoint operators in
terms of orthogonal projections. If U is a subspace of an inner product space V ,
then V is the orthogonal direct sum V = U ⊕ U⊥. Every v ∈ V can be written
in a unique way as v = u+w, where u ∈ U and w ∈ U⊥, and we put PU (v) = u.
(See Exercise 1.11.6.) As in that exercise, the map PU : V → U is called the
orthogonal projection of V onto U . Note that PU + PU⊥ = IV . The following
properties of PU are also easy to verify:

(a) P 2
U = PU .

(b) PU is self-adjoint.

(c) PU PU ′ = 0 iff U ⊥ U ′.

(d) U is invariant under an operator T ∈ L(V ) iff PU T = T PU .

A collection P1, . . . , Pm of orthogonal projections of V onto nonzero subspaces
is called a resolution of the identity in V if the following conditions are met:

(i) Pi Pj = 0 if i ̸= j

(ii) P1 + · · ·+ Pm = IV .

If P1, . . . , Pm is a resolution of the identity, then V is the orthogonal direct sum
V = P1(V )⊕ · · ·⊕Pm(V ). Conversely, any decomposition of V as an orthogonal
direct sum gives rise to a resolution of the identity.

The spectral theorems then say that if an inner product space V is complex and
T ∈ L(V ) is normal, or if V is real and T is self-adjoint, then there are distinct
scalars λ1, . . . ,λm and a resolution of the identity P1, . . . , Pm in V such that

T = λ1 P1 + · · ·+ λm Pm. (1.41)

The converse also holds, and is easy to prove. The linear combination on the
right hand side is called the spectral resolution of T . Since the eigenvalues (and
corresponding eigenspaces) of T are uniquely determined by T , it is clear that
the spectral resolution of T is unique.
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Note that if T has spectral resolution (1.41), then for any polynomial p(λ), we
have

p(T ) = p(λ1)P1 + · · ·+ p(λm)Pm.

In fact, if f :F → F is any function, it makes sense to define the linear operator
f(T ) on V by putting

f(T ) = f(λ1)P1 + · · ·+ f(λm)Pm.

For instance,

sinT = sinλ1 P1 + · · ·+ sinλm Pm.

The map f 7→ f(T ) is then a ring homomorphism from the ring of F-valued
functions on F into the ring L(V ). We will not develop this any further, except
to point out that, in the right setting, this can be extended to the infinite-
dimensional case. See, for example, Rudin’s book [Rud91].

Exercise 1.12.20. Suppose that T ∈ L(V ) has the spectral resolution (1.41).
Prove that S ∈ L(V ) commutes with T if and only if S commutes with all the
projections Pj .

1.13 Positive Operators and Polar and Singular
Value Decompositions

Let V be an inner product space over F. An operator S ∈ L(V ) is said to be
positive (or positive definite) provided that P is self-adjoint and ⟨Sv, v⟩ > 0 for
all nonzero vectors v ∈ V . The condition that S is positive is often denoted
by S > 0. (If ⟨Sv, v⟩ ≥ 0 for all v, we say that S is nonnegative or positive
semidefinite, and denote this by S ≥ 0.)

Actually, when V is a complex inner product space, any linear operator S such
that ⟨Sv, v⟩ ≥ 0 for all v ∈ V is self-adjoint. To see this, note that for any v
and w in V , the conditions ⟨S(v + w), v + w⟩ ≥ 0 and ⟨S(v + i w), v + i w⟩ ≥ 0
imply that

⟨Sv,w⟩+ ⟨v, Sw⟩

and

i
�
−⟨Sv,w⟩+ ⟨v, Sw⟩

�

are both real. This in turn implies that the real and imaginary parts of ⟨Sv,w⟩
and ⟨v, Sw⟩ coincide, whence ⟨Sv,w⟩ = ⟨v, Sw⟩.

Exercise 1.13.1. Give an example of a linear operator T on R2 such that
⟨Tv, v⟩ ≥ 0 for all v ∈ R2, but which is not self-adjoint.



1.13. POSITIVE OPERATORS 49

If T ∈ L(V ), then T ∗T is nonnegative: it is clearly self-adjoint and ⟨T ∗Tv, v⟩ =
⟨Tv, Tv⟩ ≥ 0 for all v ∈ V . It is positive if and only if T is invertible.

It is clear that a positive operator S has positive eigenvalues. The Spectral
Theorem also shows that a nonnegative operator is positive if and only if it is
invertible.

Roughly speaking, nonnegative operators generalize the nonnegative real num-
bers, positive operators generalize the positive real numbers, self-adjoint opera-
tors generalize the real numbers, the adjoint map T 7→ T ∗ generalizes complex
conjugation, and the relation T ∗T ≥ 0 generalizes the condition z z ≥ 0.

The fact that any nonnegative real number has a unique nonegative square root
also generalizes in the present setting.

Let V be a vector space over F and let T ∈ L(V ). We say that an operator
S ∈ L(V ) is a square root of T provided that S2 = T . It is not hard to see that
a linear operator (even the identity) can have many square roots.

Theorem 1.13.2. Every nonnegative linear operator S on an inner product
space has a unique nonnegative square root. We denote this square root by

√
S.

Proof. The proof is very easy. If S is a nonnegative operator, then it has a
spectral resolution

S = λ1 P1 + · · ·+ λm Pm,

where λj ≥ 0 for all j. The operator R =
√
λ1 P1 + · · · +

√
λm Pm is then a

nonnegative square root of S.

For the uniqueness, suppose that R0 is a nonnegative square root of S. Then
R0 has a spectral resolution

R0 = µ1 Q1 + · · ·+ µl Ql,

where µk ≥ 0 for all k. We then have

R2
0 = µ2

1 Q1 + · · ·+ µ2
l Qm.

Since the µj are distinct and nonnegative, so are the µ2
j , and so the right hand

side above must be the spectral resolution of S. In particular, m = l, the
resolutions of the identity Q1, . . . , Qm and P1, . . . , Pm are the same, and with
an appropriate reordering of the indices, we must have µj =

p
λj for all j.

If S is a positive operator on V , the construction in the proof above allows us
to define St for any real number t:

St = λt
1 P1 + · · ·+ λt

m Pm.
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The operators St (for t ∈ R) form a group called the one-parameter group
containing S, and the map t 7→ St is a homomorphism from the additive group
of R onto this one-parameter group.

Exercise 1.13.3. Suppose that P is a positive operator on V and T ∈ L(V )
commutes with P : TP = PT . Prove that T commutes with P t for all real
numbers t.

Exercise 1.13.4. A real n×n matrix A is called positive definite provided that
the bilinear form

Q(x, y) = ⟨Ax, y⟩
is an inner product on Rn. (Here ⟨x, y⟩ = tx y is the standard inner product on
Rn, where we identify Rn with the vector space Rn×1 of n×1 column matrices.)
Let A = (aij)1≤i,j≤n. If A is positive definite, prove that A is symmetric and
that ∆k(A) > 0 for 1 ≤ k ≤ n, where ∆k(A) is the determinant of the “top
left” k × k submatrix (aij)1≤i,j≤k of A.

Conversely, prove that if A is symmetric and ∆k(A) > 0 for 1 ≤ k ≤ n, then A
is positive definite.

Exercise 1.13.5. (The norm of a linear operator.) Let V be an inner product
space over F and T ∈ L(V ). We define the norm of T to be the nonnegative
number

∥T∥: = sup
v ̸=0

∥Tv∥
∥v∥ .

It is clear that ∥T∥ = sup{∥Tv∥ | ∥v∥ = 1}. Prove that ∥T∥ =
√
Λ, where Λ is

the largest eigenvalue of the nonnegative operator T ∗T .

Let V and W be inner product spaces of dimensions m and n, respectively, and
let T ∈ L(V,W ). For simplicity, we’ll assume that T is of full rank. This means
that either T is injective or T is surjective. (Of course, the two conditions are
equivalent in case m = n.)

A linear map is of full rank if and only if its matrix, with respect to any choice
of bases of V and W , has maximum rank. Since the subset of Fm×n consisting
of all matrices of maximum rank is dense and open, we see that “most” elements
of L(V,W ) are of full rank.

We now consider a factorization of T which is useful in signal processing and
other applications. A linear map T ∈ L(V,W ) is said to be a linear isometry
from V into W if T preserves inner products: ⟨Tu, Tv⟩ = ⟨u, v⟩ for all u, v ∈ V .
A linear isometry is easily seen to be injective. Note that a linear isometry from
V into itself is a unitary linear operator.

Theorem 1.13.6. (The Singular Value Decomposition for Injective Linear
Maps.) Suppose that T ∈ L(V,W ) is injective. Then T has a unique fac-
torization

T = F P, (1.42)
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where P ∈ L(V ) is a positive operator and F ∈ L(V,W ) is a linear isometry.

Remark 1.13.7. The factorization (1.42) is called the singular value decomposi-
tion of T . By the Spectral Theorem, Theorem 1.13.6 implies that there is an
orthonormal basis (v1, . . . , vn) of V - namely, an orthonormal eigenbasis of P -
which is mapped by T into an orthogonal set in W .

In the case when W = V , the factorization above is called the polar decomposi-
tion.

Proof. First we observe that T ∗T is a positive operator on V : it is certainly
self-adjoint, and for any nonzero vector v ∈ V , we have

⟨T ∗Tv, v⟩ = ⟨Tv, Tv⟩ = ∥Tv∥2 > 0.

Let P =
√
T ∗T , and let F = TP−1. Then P is a positive operator on V and

F ∈ L(V,W ) is a linear isometry of V into W . The latter fact follows from

F ∗F = (TP−1)∗ (TP−1) = P−1T ∗TP−1 = P−1 · P 2 · P−1 = IV .

We have thus shown that T has the factorization (1.42). This factorization is
unique because if T = F1 P1, where F1 is a linear isometry from V into W and
P1 ∈ L(V ) is a positive operator, then T ∗T = P1 F

∗
1 F1 P1 = P 2

1 . But we also
have T ∗T = P 2. By the uniqueness of positive square roots, it follows that
P1 = P , and hence F1 = TP−1

1 = TP−1 = F .

Exercise 1.13.8. Prove that if T maps an orthonormal basis (v1, . . . , vn) of V
into an orthogonal set in W , then each vj must be an eigenvector of T ∗T . Then
prove that the basis (v1, . . . , vn) is unique up to the choice of an orthonormal
basis of each eigenspace of T ∗T .

Exercise 1.13.9. (Singular Value Decomposition for Matrices) Assume that
n ≥ k. An n × k matrix Y is called a Stiefel matrix if tY Y = Ik. (Thus the
columns of a Stiefel matrix form an orthonormal set in Fn.) Let A be any n×k
matrix of rank k

(a) Prove that A has a unique factorization

A = Y B,

where Y is an n × k Stiefel matrix and B is a positive definite Hermitian
k × k matrix.

(b) Prove that A has a factorization

A = F DU

where F is an n × k Stiefel matrix, D is a diagonal matrix with positive
diagonal entries, and U is a k × k Stiefel matrix (that is, a unitary or
orthogonal matrix). Prove that D is unique up to a permutation of the
diagonal entries.
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Let us now consider the case when T ∈ L(V,W ) is surjective. Then according
to Theorem 1.11.8, T ∗ ∈ L(W,V ) is injective. An argument similar to that in
the proof of Theorem 1.13.6 yields the following result.

Theorem 1.13.10. (The Singular Value Decomposition for Surjective Linear
Maps.) Suppose that T ∈ L(V,W ) is surjective. Then T has a unique factor-
ization

T = P F (1.43)

where P is a positive linear operator on W and F ∈ L(V,W ) satisfies F F ∗ =
IW .

In particular, F ∗ is an isometric linear map from W into V . Since P 2 = T T ∗,
T ∗ maps an orthonormal eigenbasis of W for P into an orthogonal basis of
T ∗(W ) ⊂ V . The linear operator F ∗F is the orthogonal projection of V onto
T ∗(W ). If we denote this orthogonal projection by E, then we have

T = P F = P (F F ∗)F = P F (F ∗ F ) = P F E

Thus there is an orthonormal basis of (kerT )⊥(= T ∗(W )) which T maps into
an orthogonal basis of W .

Exercise 1.13.11. Prove all of the assertions above.

Exercise 1.13.12. Let n ≥ k and suppose that F is an n × k Stiefel matrix.
Prove that the linear operator on Fn given by x 7→ F F ∗ x is the orthogonal
projection of Fn onto the linear span of the columns of F .


