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To the memory of my main mathematical friends 

and teachers, with deep gratitude: 

Emil Artin, Errett Bishop, Shiing-shen Chern, Claude Chevalley, 
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Max Rosenlicht, Gideon Schwarz, Edwin Spanier, 
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The moral of this book is: Check your premises. 
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Preface 

This book presents the discovery of non-Euclidean geometry and the 

subsequent reformulation of the foundations of Euclidean geometry as 

a suspense story. The mystery of why Euclid's parallel postulate could 

not be proved remained unsolved for more than two thousand years, 

until the discovery of non-Euclidean geometry and its Euclidean models 

revealed the impossibility of any such proof. This discovery shattered 

the traditional conception of geometry as the true description of phys

ical space. Mainly through the influence of David Hilbert's Gmndlagen 

der Geometrie, a new conception emerged in which the existence of 

many equally consistent geometries was acknowledged, each being a 

purely formal logical discipline that may or may not be useful for mod

eling physical reality. Albert Einstein stated that without this new con

ception of geometry, he would not have been able to develop the theory 

of relativity (see Einstein, 1921, Chapter I). The philosopher Hilary Put

nam stated that "the overthrow of Euclidean geometry is the most im

portant event in the history of science for the epistemologist." Chapter 8 

of this book reveals the philosophical dilemma that persists to this day. 

This text is useful for several kinds of students. Prospective high 

school and college geometry teachers are presented with a rigorous 

treatment of the foundations of Euclidean geometry and an introduc

tion to hyperbolic geometry (with emphasis on its Euclidean models). 

General education and liberal arts students are introduced to the his

tory and philosophical implications of the discovery of non-Euclidean 

geometry (for example, the book was used very successfully as part of 

a course on scientific revolutions at Colgate University). Mathematics 

majors are given, in addition, detailed instruction in transformation 

geometry and hyperbolic trigonometry, challenging exercises, and a his

torical perspective that, sadly, is lacking in most mathematics texts. 

xiii 
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A unique feature of this book is that some new results are devel

oped in the exercises and then built upon in subsequent chapters. My 

experience teaching from earlier versions of this text convinced me that 

this method is very valuable for deepening students' understanding 

(students not only learn by doing, they enjoy developing new results 

on their own). If students do not do a good number of exercises, they 

will have difficulty following subsequent chapters. There are two sets of 

exercises for the first six chapters; the "major" exercises are the more 

challenging ones, which all students should attempt, but which math

ematics majors are more likely to solve. This distinction is dropped in 

the last four chapters; most of the exercises for Chapters 7, 9, and 10 

are "major," whereas the exercises for Chapter 8 are unusual for a 

mathematics text, consisting of historical and philosophical essay top

ics. Hints are given for most of the exercises. A solutions manual is 

available for instructors. All chapters also have projects at the end for 

further research in the library and/or on the Web. 

I have used the development of non-Euclidean geometry to revive 

interest in the study of Euclidean geometry. I believe that this approach 

makes a traditional college course in Euclidean geometry more inter

esting: To identify the flaws in various attempted proofs of the Euclid

ean parallel postulate, we carefully examine the axiomatic foundations 

of Euclidean geometry; to prove the relative consistency of hyperbolic 

geometry, the properties of inversion in Euclidean circles are studied; 

to justify Janos Bolyai's construction of the limiting parallel rays, some 

ideas from projective geometry (cross-ratios, harmonic tetrads, perspec

tivities) are introduced. 

I have used modified versions of Hilbert's axioms for Euclidean 

geometry, instead of the ruler-and-protractor postulates customary in 

current high school texts. In a rigorous, historically motivated presen

tation of the foundations of geometry, it is vital to separate the purely 

geometric ideas of Euclid from the numerical methods that came much 

later, in the seventeenth century, with Descartes and Fermat; even then, 

Descartes defined his numbers and five algebraic operations upon them 

geometrically, in terms of constructions on segments. We explain what 

he did in a section of Chapter 1 new to this edition. 

- Emphasis on Elementary Geometry 

Our emphasis throughout most of this book is on elementary geometry, 

the geometry of lines and circles-Le., the geometry of straightedge-and

compass constructions. For elementary geometry, it is not necessary to 

use the enormous power of the real number system. In fact, a much 
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smaller number system for doing elementary analytic geometry is the 

field K of constructible numbers1-all those numbers obtained from ra

tional numbers by repeatedly applying Descartes' five algebraic opera

tions. It is the constructible number system that enables proofs of the 

impossibility of solving the classical straightedge-and-compass con

struction problems in a Euclidean plane-trisecting arbitrary angles, du

plicating the side of arbitrary cubes, and squaring all circles (described 

in another new section of Chapter 1). 

There are a few places in elementary geometry where a continuity 

argument is needed, such as in the proof of Euclid's very first proposi

tion. It turns out that only "quadratic continuity" is needed-analytically, 

that means the existence of positive solutions to certain quadratic equa

tions, solutions which exist in the field of constructible numbers. Geo

metrically, it means assuming elementary principles such as the line

circle principle (a line that passes through a point inside a circle 

intersects the circle in two points) or the circle-circle principle (a cir

cle that passes through points inside and outside another circle inter

sects that other circle in two points). We discuss those principles and 

their relationship in Chapter 3. 

Another assumption that appears surreptitiously in Euclid's Elements 
and that was generally accepted by later geometers is Archimedes' ax
iom. We will discuss very carefully how that axiom is used and how 

it can either be dispensed with or replaced with the weaker, purely 

geometric axiom of Aristotle. Hilbert called Archimedes' axiom "the ax

iom of measurement" because it is used to measure segments and an

gles by real numbers. We will indicate how that is done in the dis

cussion after Theorem 4.3, Chapter 4, but we emphasize that for 

developing elementary geometry it is not necessary to introduce 

Archimedes' axiom. The only reason we bring it up in Chapter 4 is to 

simplify our language and to skip the technicalities involved in cir

cumventing it. An important advantage in avoiding the use of 

Archimedes' axiom is that geometrical models can be exhibited in which 

infinitesimal elements exist, and they can be used decisively to prove 

that certain geometric statements are unprovable from the given axioms 

(see the note for advanced students in Chapter 4, as well as Appen

dix B). 

For readers interested in the technicalities omitted here, please re

fer to Robin Hartshorne's superb treatise Geometry: Euclid and Beyond 
(Springer, 2000). In fact, we will repeatedly refer to Hartshorne's treatise 

1 Called the surd field in Moise (1990). His text will be referred to often. 
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for technical details and results that are at a more advanced level than 

this text, so all citations of his work that do not specify a date are ref

erences to his treatise. I am very grateful to Robin for all our interac

tions about geometry and mathematics history. Hartshorne has the same 

philosophy as I have of doing elementary geometry without real num

bers. It was also Hilbert's philosophy in his later writings (see the quo

tations from him in Appendix B); in fact, the title of this book might 

well be "Elementary Euclidean and Non-Euclidean Geometries Accord

ing to Hilbert." 

Our main topic is Euclid's fifth postulate (an equivalent postulate 

is often referred to as "the Euclidean parallel postulate")-what can be 

learned from some of the many failed attempts over two thousand years 

to prove it from his other postulates, and the non-Euclidean geometry 

which results from replacing it with Hilbert's hyperbolic parallel postu

late. See the Introduction for a detailed description of our development. 

- Terminology 

Terminology and notation throughout the book are reasonably stan

dard. I have followed W. Prenowitz and M. Jordan in using the term 

"neutral geometry" for the part of Euclidean geometry that is inde

pendent of the parallel postulate (the traditional name "absolute geom

etry" misleadingly implies that all other geometries depend on it). I 

have introduced the names "asymptotic" and "divergent" for the two 

types of parallels in hyperbolic geometry; I consider these a definite 

improvement over the welter of names in the literature. The theorems, 

propositions, and figures are numbered by chapter; for example, The

orem 4.1 is the first theorem in Chapter 4. Such directives as "see Cox

eter (1 968)" refer to the Bibliography at the back of the book (the Bib

liography is arranged topically rather than strictly alphabetically). 

- Suggested Curricula for Different Courses 

Here are some suggested curricula for different courses: 

1 .  A one-term course for prospective geometry teachers and/or math

ematics majors, with students of average ability. Cover Chapters 1-7, 

skipping the notes for advanced students, skimming over the com

plicated axiomatic development in Chapter 6 to emphasize more the 

visualization possible via the Euclidean models in Chapter 7, then 

adding Chapter 8 if there is time. In assigning exercises, omit the 

Major Exercises (except possibly for Chapter 1 ); omit most of the 
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Exercises on Betweenness from Chapter 3; omit Exercises 22-30 and 

33 from Chapter 4; omit Exercises 10-18 from Chapter 5; and assign 

only the Review Exercise, Exercises K-1, K-2, K-3, K-5, K-11, K-12, 

K-17, K-18, and K-20, and selected P-exercises from Chapter 7. 

2. A one-term course for prospective geometry teachers and/or math

ematics majors, with better than average students. Add to the cur

riculum of (1) the remainder of Chapter 7 and many of the exer

cises omitted in (1). These students should at least browse through 

Chapter 10 and study as much of it as time permits, for it is quite 

concrete. 

3. A one-term course for general education and/or liberal arts students. 

The core of this course would be Chapters 1, 2, and 5, the first three 

sections of Chapters 6 and 7, and all of Chapter 8. In addition, the 

instructor should selectively discuss material from Chapters 3-6 

(such as Hilbert's axioms, the Saccheri-Legendre theorem, and some 

of the theorems in hyperbolic geometry), but should not impose too 

many proofs on these students. The essay topics of Chapter 8 are 

particularly appropriate for such a course. 

4. A two-term course for mathematics majors. Cover as much of the 

book as time permits. If only one term is available, assign the rest 

of the book to interested mathematics majors for independent study. 

5. Mathematics majors and other advanced students may feel that they 

know Euclidean geometry, know how to do proofs, and therefore 

want mainly to learn some non-Euclidean geometry. I recommend 

learning the axioms for a Hilbert plane in Chapter 3, carefully study

ing the section Axioms of Continuity, and doing the exercises re

lated to that section; they can skim the rest of the first three chap

ters. Chapter 4 should be completely worked through if they wish 

to approach the subject axiomatically without bringing in real num

bers; otherwise, this chapter can also be skimmed once they have 

mastered the material on Saccheri and Lambert quadrilaterals, as 

can Chapter 5 on the history of attempts to prove Euclid V. These 

students can then get to work on Chapters 6, 7, and 10 about hy

perbolic geometry, noting the side remarks about elliptic geometry. 

If there is time they can go back to Chapter 9 to study the motions 

in a hyperbolic plane and their algebraic description in the Poincare 

upper half-plane model. 

Thus this book is a resource for a wide variety of students, from 

the naive to the sophisticated, from the nonmathematical-but-educated 

to the mathematical wizards. 
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The late Errett Bishop once taught a liberal arts course in logic dur

ing which he realized the questionable nature of classical logic and 

wrote a book about doing mathematical analysis constructively. My 

own book has evolved from a liberal arts course in geometry that I 

taught. I am very pleased by the warm reception accorded earlier edi

tions of this book for its unusual combination of rigor and history. It 

indicates that there is a real need to "humanize" mathematics texts and 

courses. For example, when I taught calculus to a large class, I was as

tonished at how much livelier the students (mainly nonmathematicians) 

became after they researched and then wrote essays about the history 

of calculus (many were fascinated by the strange personality of Isaac 

Newton), about the relevance of calculus to their own fields, and about 

their fear of this awesome subject. Also, such essays provide good prac

tice in improving writing skills, which many students need. Instructors 

can assign essays from the Projects at the end of Chapters 1-6 and the 

topics in Chapter 8. 

- New to This Edition 

The extensive improvements in this fourth edition are as follows: In 

Chapter 1, the introductory sections have been rewritten with more 

ancient history. In the section The Power of Diagrams, where simple 

diagrams indicating proofs of the Pythagorean theorem are shown, the 

distinction between "content" and "area" is briefly explained in terms of 

dissection. Three new sections on (1) constructions (including "neusis" 

constructions), (2) Descartes' analytic geometry, and (3) the number 1T 

have been added. Almost all the chapters now end with summaries en

titled Conclusion. A new major exercise and six new projects have been 

added to Chapter 1. 

In Chapter 2, the sections on logic have been improved. The rules 

of generalization and specification are introduced, as are the rules for 

equality (Logic Rule 12). There is a brief new section on the historical 

development of mathematical logic. For beginners, I show how one 

might find a proof for Proposition 2.2 of incidence geometry; teaching 

students how to construct proofs is a major pedagogical issue! In the 

section on models, I mention how Kepler did not believe that the reg

ular heptagon existed because it has no straightedge-and-compass con

struction; I added a project to report on Viete's neusis construction of 

it. In the section on consistency, I added a note for advanced students 

about that, including mention of Godel's theorems. Another new sec

tion for advanced students discusses the problem of consistency; that 

discussion is continued in the comments for Chapter 2 in the revised 
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Instructors' Manual, along with references on the controversy about 

potential versus completed infinity. The section on affine and projective 

planes has been expanded. It includes some material previously left as 

exercises, such as a proof of the principle of duality (the first meta

mathematical theorem in history). A brief section on the history of proj

ective geometry has been added. There are also many new exercises 

and projects about projective planes, including the finite ones, which 

are admittedly a digression from the main topic but which are extremely 

interesting. 

The content of Chapter 3 remains mostly the same, although I have 

rewritten parts of it. The proof of the important crossbar theorem is 

now in the text instead of being left as an exercise. I have accepted 

Hartshorne's terminology of a Hilbert plane as a model of our thirteen 

axioms of incidence, betweenness, and congruence, and his definition 

of a Euclidean plane as a Hilbert plane also satisfying Hilbert's Euclid

ean axiom of parallelism and the circle-circle continuity principle. 

Dedekind's axiom is not assumed in this edition, so a Euclidean plane 

could be coordinatized by any Euclidean field, not just the real num

bers. This permits the new example of the constructible Euclidean plane 

coordinatized by the field K of constructible numbers. I added notes 

for advanced students on the relative consistency of plane Euclidean 

geometry and on the existence of certain geometric sets. There are new 

major exercises showing the equivalence of the circle-circle continuity 

principle with the converse to the triangle inequality. I also added a 

major exercise about taxicab geometry. The old projects have been 

scrapped and six new ones added, including some about Pythagorean 

ordered fields. 

There have been major revisions to Chapter 4, Neutral Geometry. 

The first four and sixth (now fifth) sections are substantially the same, 

except that the proof of the existence of midpoints has been moved out 

of the exercises into the text, and the discussion of Theorem 4.3 on 

measurement explains why measurement is convenient but not math

ematically necessary. The old fifth section, which used Archimedes' ax

iom to prove the Saccheri-Legendre theorem, has been replaced with 

the completely new sixth section entitled "Saccheri and Lambert Quadri

laterals," in which the theory of those quadrilaterals is developed with

out using Archimedes' axiom. Some of this material previously was in 

the exercises of old Chapter 5 and in the text of old Chapter 6, but I've 

added important results which were not in the previous editions. The 

main one is the uniformity theorem (whose proof is left for the new 

major exercises), which states that there are three distinct types of 
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Hilbert planes: those which satisfy the acute angle hypothesis, the ob

tuse angle hypothesis, or the right angle hypothesis (called semi

Euclidean), respectively. The section Angle Sum of a Triangle is also 

much improved. It includes my new non-obtuse-angle theorem, which 

states that the obtuse angle hypothesis cannot hold in a Hilbert plane 

satisfying Aristotle's axiom-the angle sum of every triangle must be 

<180°. This is a stronger result than the Saccheri-Legendre theorem, 

which is mentioned but whose proof is now left for the exercises. In 

the note for advanced students about non-Archimedean geometries, 

Dehn's examples using infinitesimals are given to show that a semi

Euclidean plane need not be Euclidean and that Hilbert planes satisfy

ing the obtuse angle hypothesis do exist. The exercises have been aug

mented to further the understanding of the new material. The old 

projects have been scrapped, replaced with six new ones intended for 

advanced students. 

In Chapter 5, a new section has been added about Clavius' axiom 

that equidistant curves are lines. This axiom is shown to be equivalent 

to the plane being semi-Euclidean. In the section on Clairaut's axiom 

that rectangles exist, that axiom is also shown to be equivalent to the 

plane being semi-Euclidean; my new theorem named after Proclus is 

proved, asserting that a semi-Euclidean plane satisfies Hilbert's Eu

clidean axiom of parallelism if and only if it satisfies Aristotle's angle 

unboundedness axiom-thus Aristotle's axiom is a missing link. In the 

section on Wallis, his long dispute with the philosopher Hobbes is men

tioned. In both this chapter and the adjacent ones, much more attention 

and credit are given to Saccheri for his remarkable development of el

ementary hyperbolic geometry so far ahead of his time. There are fewer 

exercises in Chapter 5 now because many of the old exercises have 

been covered in the text. Three of the old projects have been scrapped, 

replaced by two new projects, one of which asks for a report on the 

theory of similar triangles developed in Hartshorne's treatise without 

using real numbers; the approach with real numbers is still given in 

our exercises. 

Chapter 6 has been thoroughly revised. The early sections on the 

history of the discovery of hyperbolic geometry have small but signif

icant improvements (e.g., the revelation that Janos Bolyai left 14,000 

pages of mathematical notes!). I call your attention to the new histor

ical references mentioned in the footnotes. The sections that develop 

hyperbolic geometry are very different now because we no longer as

sume Dedekind's axiom and the axiomatic development is more sub

tle. Most important is the new discussion of Hilbert's hyperbolic axiom 
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of parallelism-the existence of two limiting parallel non-opposite rays 

emanating from a point P not on a line l and situated symmetrically 

about the perpendicular from P to l. We do show (as in previous edi

tions) how that existence can be proved from the negation of Hilbert's 

Euclidean axiom of parallelism when Dedekind's axiom is assumed. I 

also mention without proof my "advanced theorem" showing that in

stead of Dedekind's axiom, one need only assume the line-circle con

tinuity principle and Aristotle's axiom in order to prove existence of 

limiting parallel rays (and those conditions are necessary, unlike 

Dedekind's axiom). The lengthy proofs of all the basic theorems in el

ementary hyperbolic geometry from Hilbert's axioms are not provided 

in the body of the chapter-that work is only indicated in the exercises 

and major exercises, with a few references to Hartshorne. For a stu

dent learning hyperbolic geometry for the first time, it is discouraging 

to struggle through the purely axiomatic development (in my experi

ence), so I recommend devoting more time and effort to studying the 

Euclidean models in Chapter 7. At the end of Chapter 6, four of the 

old projects have been scrapped and replaced with three new advanced 

ones. 

In Chapter 7, I have rewritten the first section discussing the rela

tive consistency of hyperbolic geometry and the impossibility of prov

ing the Euclidean parallel postulate in neutral geometry. Then I've 

added a new section about the contributions of Eugenio Beltrami, whose 

work in getting hyperbolic geometry accepted by the mathematical com

munity, and incidentally proving consistency, has been underestimated 

in the past. The next four sections remain basically the same, though 

I have improved the biographical information about Klein and Poin

care. There are significant improvements in the section now entitled 

"Inversion in Circles, Poincare Congruence." I introduce Hartshorne's 

multiplicative length for segments in the Poincare models, which will 

be shown in Appendix B to be the key to important new results in el

ementary hyperbolic geometry. I give a second verification of Axiom 

C-1 for the P-model which does not appeal to continuity. I added a new 

Proposition 7.12 showing that a P-circle is a Euclidean circle, and I 

show how to construct its P-center and its E-center. In the final sec

tion, I added a proof of the Bolyai-Lobachevsky formula for the Klein 

model, simpler than the proof given earlier for the Poincare model. The 

exercises for Chapter 7 provide a mini-course in advanced Euclidean 

geometry. Some of the exercises have been expanded or replaced: For 

example, K-19(c) exhibits a new special point of a triangle in the hy

perbolic plane; K-20 is a new exercise about symmetric parallelograms; 
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H-11 indicates how to prove Pappus' theorem, and the new H-12 shows 

how to prove Pascal's theorem for a circle. Three new projects have 

been added. I call particular attention to Project 3, inviting readers 

skilled in computer graphics to draw accurate diagrams in the models 

for perpendicular bisectors of a hyperbolic triangle that meet (a) in an 

ultra-ideal point, instead of the distorted Figure 6.22, p. 274, and (b) in 

an ideal point. 

Chapter 8 has a new title: Philosophical Implications, Fruitful Ap

plications. It concludes with a new section describing the latter. Since 

previous editions discussed only philosophical disagreements and the 

impasse about them, which may be a bit discouraging, I added a joy

ous new section describing the amazing applications of hyperbolic 

geometry to other branches of mathematics, to cosmology, and even 

to art. Most of those applications are quite advanced, so the presenta

tion is intended only to give readers a taste of them and to suggest fur

ther reading about them. Probably the most impressive application is 

to William Thurston's geometrization conjecture, which implies the fa

mous Poincare conjecture (which has apparently been proved by 

Grisha Perelman using the work of Richard Hamilton). 

Chapter 9 is the least changed of all the chapters. One improve

ment is the recognition that Archimedes' axiom is needed in order that 

automorphisms be familiar geometric transformations. There are some 

interesting new exercises and a new advanced project inviting readers 

to do further study of the implications of Klein's ideas about groups 

and geometry. 

Chapter 10, in which real numbers are finally exploited, has some 

very significant additions: Dini's flowering surface, another example of 

a surface of constant negative curvature, is illustrated; curvature ex

plains the constant that puzzled J. Bolyai; the "reality" of the hyper

bolic and elliptic planes, which cannot be embedded in IR.3, as abstract 

Riemannian manifolds of dimension 2; four specific and useful exam

ples of circumference and circular area calculations; the right and equi

lateral triangle construction theorems; and a new model of the Euclid

ean plane within the hyperbolic plane. A new concluding section is 

about Bolyai's constructions in a hyperbolic plane, exhibiting his great 

theorem (whose proof was completed in 1995 by Will Jagy) determin

ing the pairs of circles and regular 4-gons having the same area which 

can both be constructed (with straightedge and compass); the answer 

is in terms of Gauss' classical determination of those numbers n for 

which the angle 27T /n can be constructed (they are certain products of 
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Fermat numbers). I have replaced old Exercises 30-33 with new ones 

and added ten new projects. 

Appendix A has been greatly expanded. It now presents a survey 

of basic concepts and results in differential and Riemannian geometry, 

with emphasis on dimension 2. I thank Robert Osserman for the help

ful comments he made about my earlier draft. 

Appendix B has also been enlarged and deepened. In addition to a 

more extensive discussion of elementary geometry without real num

bers, including Pejas' classification of all Hilbert planes, new material 

is presented explaining Hilbert's field of ends used to coordinatize a 

hyperbolic plane and applying it to Hartshorne's proof of my conjec

ture that a segment in a hyperbolic plane is constructible if and only if 

its multiplicative length (in the field of ends) is a constructible number. 

The Bibliography has been considerably enlarged, with about 60 

new listings, the updating of several old listings, and some deletions. 

Instead of the "Suggested Further Reading" I wrote in previous edi

tions, I now suggest that interested readers browse in their libraries 

through all the listings that catch their attention, many of which are 

not referenced in the text. 
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Introduction 

Let no one ignorant of geometry enter this door. 

entrance to Plato's academy 

Most people are unaware that in the early nineteenth century a revo

lution took place in the field of geometry that was as scientifically pro

found as the Copernican revolution in astronomy and, in its impact, as 

philosophically important as the Darwinian theory of evolution. "The 

effect of the discovery of hyperbolic geometry on our ideas of truth and 

reality has been so profound," wrote the great Canadian geometer 

H. S. M. Coxeter, "that we can hardly imagine how shocking the pos

sibility of a geometry different from Euclid's must have seemed in 1820." 

Today, however, we have all heard of the space-time geometry in Ein

stein's theory of relativity. "In fact, the geometry of the space-time con

tinuum is so closely related to the non-Euclidean geometries that some 

knowledge of [these geometries] is an essential prerequisite for a proper 

understanding of relativistic cosmology." 

xxv 
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Euclidean geometry is the kind of geometry you learned in high 

school, the geometry most of us use to visualize the physical universe. 

It comes from the text by the Greek mathematician Euclid, the Ele

ments, written around 300 B.c. Our picture of the physical universe 

based on this geometry was painted largely by Isaac Newton in the late 

seventeenth century. 

Geometries that differ from Euclid's own arose out of a deeper study 

of parallelism. Consider this diagram of two rays perpendicular to seg

ment PQ: 

In Euclidean geometry, the perpendicular distance between the rays re

mains equal to the distance from P to Q as we move to the right. How

ever, in the nineteenth century two alternative geometries were pro

posed. In hyperbolic geometry (from the Greek hyperballein, "to 

exceed"), the distance between the rays increases without bound. In 

elliptic geometry (from the Greek elleipein, "to fall short"), the distance 

decreases and the rays eventually meet. These non-Euclidean geome

tries were later incorporated in a much more general geometry devel

oped by G. F. B. Riemann (it is this more general geometry that is used 

in Einstein's general theory of relativity) .1 

We will concentrate on Euclidean and hyperbolic geometries in this 

book. Hyperbolic geometry requires a change in only one of Euclid's 

axioms, and can be as easily grasped as high school geometry. Elliptic 

geometry, on the other hand, involves the new topological notion of 

"non-orientability," since all the points of the elliptic plane not on a 

given line lie on the same side of that line. This geometry cannot eas

ily be approached in the spirit of Euclid. I have therefore made only 

brief comments about elliptic geometry in the body of the text, with 

further indications in Appendix A. (Do not be misled by this, however; 

elliptic geometry is no less important than hyperbolic.) Riemannian 

geometry requires a thorough understanding of differential and integral 

calculus and is therefore beyond the scope of this book (it is discussed 

in Appendix A). 

1 Einstein's special theory of relativity, which is needed to study subatomic particles, is 

based on a simpler geometry of space-time due to H. Minkowski. The names "hyper

bolic geometry" and "elliptic geometry" were coined by F. Klein; some authors mis

leadingly call these geometries "Lobachevskian" and "Riemannian," respectively. 
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Chapter 1 begins with a brief history of geometry in ancient times 

and emphasizes the development of the axiomatic method by the 

Greeks. It presents Euclid's five postulates and includes one of Le

gendre's attempted proofs of the fifth postulate. In order to detect the 

flaw in Legendre's argument (and in other arguments), it will be nec

essary to carefully reexamine the foundations of geometry. However, 

before we can do any geometry at all, we must be clear about some 

fundamental principles of logic. These are reviewed informally in Chap

ter 2. In this chapter, we consider what constitutes a rigorous proof, 

giving special attention to the method of indirect proof, or reductio ad 

absurdum. Chapter 2 introduces the very important notion of a model 

for an axiom system, illustrated by finite models for the axioms of in

cidence as well as projective and affine models. 

Chapter 3 begins with a discussion of some flaws in Euclid's pre

sentation of geometry. These are then repaired in a thorough presen

tation of David Hilbert's axioms (slightly modified) and their elemen

tary consequences. You may become restless over the task of proving 

results that appear self-evident. Nevertheless, this work is essential if 

you are to steer safely through non-Euclidean space. 

Our study of the consequences of Hilbert's axioms, with the ex

ception of the Euclidean parallel postulate, is continued in Chapter 4; 

this study is called neutral geometry. We will prove some familiar Eu

clidean theorems (such as the exterior angle theorem) by methods dif

ferent from those used by Euclid, a change necessitated by gaps in Eu

clid's proofs. We will also prove some theorems that Euclid would not 

recognize (such as the theorems about Saccheri and Lambert quadri

laterals, the uniformity theorem, and the non-obtuse-angle theorem). 

Supported by the solid foundation of the preceding chapters, we 

will be prepared to analyze in Chapter 5 several important attempts to 

prove the parallel postulate (in the exercises you will have the oppor

tunity to find flaws in still other attempts). Following that, your Eu

clidean conditioning should be shaken enough so that in Chapter 6 we 

can explore "a strange new universe," one in which triangles have the 

"wrong" angle sums, rectangles do not exist, and parallel lines may di

verge or converge asymptotically. In doing so, we will see unfolding 

the historical drama of the almost simultaneous discovery of hyperbolic 

geometry by Gauss, J. Bolyai, and Lobachevsky in the early nineteenth 

century. 

This geometry, however unfamiliar, is just as consistent as Euclid's. 

This is demonstrated in Chapter 7 by studying three Euclidean models 

that also aid in visualizing hyperbolic geometry. The Poincare models 
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have the advantage that angles are measured in the Euclidean way; the 

Beltrami-Klein model has the advantage that lines are represented by 

segments of Euclidean lines. In Chapter 7, we will also discuss topics 

in Euclidean geometry not usually covered in high school, such as in

versions in circles, the pole of a chord, cross-ratios, the Poincare cen

ter of a Euclidean circle, perspectivities, and harmonic homologies. 

Chapter 8 takes up in a general way some of the philosophical im

plications of non-Euclidean geometries. The presentation is deliberately 

controversial, and the essay topics are intended to stimulate further 

thought and reading. The last section of Chapter 8 provides many ex

amples of the fruitfulness of hyperbolic geometry, with suggestions for 

further study of them. 

Chapter 9 introduces the new insights gained for geometry by the 

transformation approach (Felix Klein's Erlanger Programme). We clas

sify all the motions of Euclidean and hyperbolic planes, use them to 

solve geometric problems, describe them analytically in the Cartesian 

and Poincare models, characterize groups of transformations that are 

compatible with our congruence axioms, and introduce the fascinating 

topic of symmetry, determining all finite symmetry groups (essentially 

known by Leonardo da Vinci). 

Chapter 10 is mainly devoted to the trigonometry of the hyperbolic 

plane, touching also upon area theory and surfaces of constant nega

tive curvature. Among other results, we prove the hyperbolic analogue 

of the Pythagorean theorem and derive formulas for the circumference 

and area of a circle, for the relationships between right triangles and 

Lambert quadrilaterals, and for the circumscribed cycle of a triangle. 

We define various coordinate systems used to do analytic geometry in 

the hyperbolic plane. The polar coordinate system is used to exhibit a 

model of the Euclidean plane within the hyperbolic plane, a recent dis

covery. Finally, there is a detailed discussion of Janos Bolyai's re

markable results on straightedge-and-compass constructions in the hy

perbolic plane, with recent improvements. 

Appendix A tells more about elliptic geometry, which is mentioned 

throughout the book. We then introduce differential geometry, sketch

ing the magnificent insights of Gauss and Riemann. 

Appendix B is about elementary geometry without real numbers, 

about W. Pejas' classification of the planes Hilbert axiomatized for neu

tral geometry, about Hilbert's construction of a field of ends used to 

coordinatize hyperbolic planes, and about the application of that field 

to characterize constructible segments and angles in hyperbolic planes. 
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It is very important that you do as many exercises as possible, since 
new results are developed in the exercises and then built on in subse
quent chapters. By working all the exercises, you may come to enjoy 
geometry as much as I do.2 

Hyperbolic geometry used to be considered a historical curiosity. 
Some practical-minded students always ask me what it is good for. Fol
lowing Euclid's example, I may give them a coin (not having a servant 
to hand it to them) and tell them that I earn a living from it. Some
times I ask them what great music and art are good for, or I refer them 
to essay topics 5 and 8 in Chapter 8. If they persist, I refer them to 
Luneburg's research on binocular vision, to classical mechanics, and 
to current research in topology, ergodic theory, arithmetic algebraic 
geometry, and automorphic function theory (see the last section of 
Chapter 8). This book and the course using it provide practical-minded 
people an opportunity to stretch their minds. As the great French math
ematician Jacques Hadamard said, "Practical application is found by 
not looking for it, and one can say that the whole progress of civiliza
tion rests on that principle." Only impractical dreamers spent two thou
sand years wondering about proving Euclid's parallel postulate, and if 
they hadn't done so, there would be no spaceships exploring the galaxy 
today. 

2 The mathematical physicist Freeman Dyson wrote: "The difference between a text with
out problems and a text with problems is like the difference between learning to read a 

language and learning to speak it. I intended to speak the language of Einstein, and so 
I worked my way through the problems." (See his Disturbing the Universe, New York: 
Basic Books, 1979, p. 13.) 
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Euclid's 

geometry 

If Euclid failed to ldndle your youthful enthusiasm, then you were 

not born to be a scientific thinker. 

Albert Einstein 

Very Brief Survey of the Beginnings of Geometry 
The word "geometry" comes from the Greek geometrein (geo-, "earth," 

and metrein, "to measure"); geometry was originally the craft of meas

uring land. The Greek historian Herodotus (fifth century s.c.) credits 

Egyptian surveyors ("rope stretchers") with having originated the sub

ject of geometry. The Greek philosopher Aristotle credits the Egyptian 

priestly leisure class with the further development of their mathemat

ics, which they kept secret from the public. They found the correct for

mula for the volume of a truncated square pyramid-a remarkable ac

complishment-and of course the Egyptians built (around 2500 s.c.) 

those magnificent pyramids, their greatest achievement. But basically 

Egyptian geometry was a miscellaneous collection of rules for calcula

tion-some correct, some not-without any justification provided. For 

example, according to the Rhind papyrus, written before 1700 s.c. by 

the Egyptian priest Ahmes, they thought that the area of a circular disk 

was equal to the area of the square on eight-ninths of the diameter. 

Ahmes called his writing Directions for knowing all dark things! 

1 
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Babylonian mathematics was more advanced than Egyptian. The term 

"Babylonian" refers not just to the inhabitants of the lost city of Baby

lon, located just south of Baghdad, but more generally to peoples who 

lived in a region then called Mesopotamia, which is now part of Iraq. 

The surviving clay tablets from which historians learned about their math

ematics date primarily from two eras: first, around 2000 B.c., and sec

ond, from 600 B.c. forward for around 900 years. The Babylonians had 

a highly developed arithmetic that used positional notation resembling 

our decimal system, but they used the base 60 (hexagesimal system), 

not our base 10. Their positional notation included fractions as well as 

whole numbers. They could solve some quadratic and cubic equations. 

Geometry played a lesser role for them. Some of their calculations 

of areas and volumes were correct, some were not. They did know the 

Pythagorean theorem at least a thousand years before Pythagoras was 

born, and they found many Pythagorean triples, integers satisfying 

al + bl = cl, such as (34S6, 3367, 482S). They knew that correspon

ding sides of similar triangles are proportional. The division of a circle 

into 360° originated with Babylonian astronomy. 

The Hindu civilization of ancient India developed geometric infor

mation related to the shapes and sizes of altars and temples. Histori

ans have not been able to accurately date the beginning of Indian ver

bal empirical rules for areas and volumes. Their Sulbasutra, the oldest 

mathematics texts currently known, are compilations of oral teachings 

that may go back to around 2000 B.c. In Sutra SO of Baudhayana's Sul

basutram is found a version of the Pythagorean theorem, which he uses 

to show how to construct a square having the same area as a given 

rectangle. It was the Indians who much later made one of the greatest 

mathematical inventions of all time: the number zero. 

The ancient Chinese were mainly concerned with practical matters; 

their classic Jiuzhang suanshu (Nine Chapters on the Mathematical Art) 

included hundreds of problems on surveying, agriculture, engineering, 

taxation, etc. Its Chapter 9, devoted to right triangle problems, displays 

familiarity with the Pythagorean theorem and exhibits Pythagorean 

triples such as (48, SS, 73). A Chinese diagram indicating why the 

Pythagorean theorem is valid is the oldest such known. 

All these civilizations knew how to calculate the areas of simple 

rectilinear shapes. They guessed that the ratio of circumference to di

ameter in circles is constant, and they obtained rough approximations 

to that constant (William Jones called it 1r in 1706). The Babylonians 

and Chinese knew that the area of a circle is half the circumference 

times half the diameter. 
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Mathematics in these four ancient civilizations evolved in an intu
itive and experimental manner. It was developed mainly to solve prac
tical problems and referred to the physical world. The authors of works 
that have come down to us state problems in numbers and solve them 
by recipes for which they do not provide justification. 

It was the Greeks, beginning with the legendary Thales of Miletus in 
the sixth century B.c., who came to insist that geometric statements be 
established by careful deductive reasoning rather than by trial and error. 
Furthermore, those statements did not refer to physical objects. They 
were about idealizations such as a line segment that had length but no 
breadth. The orderly development of theorems with proofs about abstract 

entities became characteristic of Greek mathematics and was entirely 
new.1 This was the first major revolution in the history of mathematics. 

How this revolution came about is not well understood by histori
ans. Among Greek philosophers, dialectics, the art of arguing well, 
which originated in Parmenides' Eleatic school of philosophy, played 
an important role. And undoubtedly proofs were an outgrowth of the 
need to convince others in a debate. 

The first serious historian of mathematics in ancient Greece was 
Eudemus of Rhodes. His works have been lost, but we know about 
them from Proclus in the fifth century, who quotes from the Eudemian 

summary. Much of what Greek mathematical history we know derives 
from that source. 

The Pythagoreans 
The systematization begun by Thales was continued over the next two 
centuries by Pythagoras and his disciples. Pythagoras was a spiritual 
teacher. He taught the immortality of the soul. He organized a broth
erhood of spiritual seekers that had its own purification and initiation 
rites, had a meditation practice, followed a vegetarian diet, and shared 
all property (including credit for intellectual discoveries) communally. 
The Pythagoreans differed from other religious sects in their belief that 
the pursuit of philosophical, musical, and mathematical studies pro
vided a moral basis for the conduct of life. Pythagorean philosophy was 
directed to the goal of sane, civilized living. 

1 J. L. Heilbron wrote: "Students should not become impatient if they do not immedi
ately understand the point of geometrical proofs. Entire civilizations missed the point 
altogether!" 
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In music, which was absolutely central to their philosophy, the 

Pythagoreans observed that when the lengths of vibrating strings are 

expressible as ratios of small numbers, the tones will be harmonious. 

If a given string sounds the note C when plucked, then a similar string 

twice as long will sound the note C an octave below. Tones between 

these two notes are emitted by strings whose lengths have intermedi

ate ratios: 16:9 for D, 8:5 for E, 3:2 for F, 4:3 for G, 6:5 for A, and 16:15 

for B. Thus the Pythagoreans discovered what is possibly the oldest of 

all quantitative physical laws. 

In mathematics, the Pythagoreans taught the mysterious and won

derful properties of numbers. By "number" the Pythagoreans meant 

what we call a "whole or natural number" or "positive integer." Their 

motto was "All is number.''2 Philolaus said: "All things which can be 
known have number; for it is impossible that without number anything 
can be conceived or known." 

They discovered some basic results in what we now call number 
theory, but they also viewed each number as having a specific 

quality-belief in numerology was common among ancient civiliza

tions. For example, 10 was considered the number of "perfection." They 

believed that there must be a Central Fire hidden from us on the other 

side of the sun in order that there would be 10 major heavenly bod

ies, not just the 6 planets then known plus the earth, sun, and moon. 

A fraction was considered by them to be a relation (ratio or pro

portion) between two whole numbers, not in itself a number. To avoid 

unnecessary circumlocutions, we will say simply that they accepted 

what we call positive rational numbers. We will say that once a unit 

of measurement was arbitrarily chosen, the Pythagoreans originally be

lieved that all geometric magnitudes (length, area, volume) were mea

sured by rational numbers. 

So the Pythagoreans were greatly shocked when they discovered 

(around 430 B.c.) irrational lengths, such as Vz; we will give Aristo

tle's proof of that irrationality in Chapter 2 when we discuss reductio 
ad absurdum reasoning. In their geometric language, they said that the 

diagonal of a square is incommensurable with the side, meaning that 

there was no unit of measure for which the diagonal and the side both 

have lengths that are whole numbers (the same applies to the diagonal 

2 Kurt Godel showed in 1931 that so far as formally axiomatized mathematics is con

cerned, this Pythagorean doctrine is correct. He showed, by his scheme for numbering 

all the formulas and sentences in any given formal theory, how the statements of that 

theory can all be translated into statements about numbers. He used that numbering 

to prove his famous incompleteness theorems (see Chapter 8). 
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and side of a regular pentagon). Proclus wrote: "It is well known that 

the man who first made public the theory of incommensurables per

ished in a shipwreck, in order that the inexpressible and unimaginable 

should ever remain veiled." Historians consider that a myth, but this 

discovery precipitated the first major crisis in the foundations of math

ematics. 3 Since the Pythagoreans certainly did not consider V2 to be 

a number, they transmuted their algebra into geometric form in order 

to represent V2 and other irrational lengths by line segments. Euclid 

followed that path later. 

The Pythagoreans were unable to develop a theory of proportions 

that was also valid for irrational lengths. This was later achieved bril

liantly by Plato's pupil Eudoxus, whose very modern theory was in

corporated into Book V of Euclid's Elements. 

The development of plane geometry by the Pythagorean school was 

brought to a conclusion around 400 B.c. in the work Elements by the 

mathematician Hippocrates of Chios (not to be confused with the fa

mous physician of the same name). Although this treatise has been 

lost, historians believe that it covered most of Books I-IV of Euclid's 

Elements, which appeared about a century later. Hippocrates is also 

known for his proof that the area of a certain lune (a region bounded 

by two circular arcs) is equal to the area of a certain triangle, a result 

that gave hope for "squaring a circle." 

With the Pythagoreans, mathematics became more closely related 

to a love of knowledge for its own sake than to the needs of practical 

life. Yet we owe a great debt to the Pythagoreans for also recognizing 

that Nature can be understood through abstract mathematics. 

Plato 

The fourth century B.c. saw the flourishing of Plato's Academy of sci

ence and philosophy in Athens, which attracted the leading scholars of 

that era (such as Aristotle, who later founded his own Lyceum). In the 

Republic, Plato wrote: "The study of mathematics develops and sets 

into operation a mental organism more valuable than a thousand eyes, 

because through it alone can truth be apprehended." Above the gate 

3 Subsequent major crises were caused by the nonrigorous use of infinitesimals in the 

calculus, by the discovery of non-Euclidean geometries, by the Dedekind-Cantor in

troduction of infinite sets into algebra and analysis, by Cantor's theory of their cardi

nal and ordinal numbers, and by paradoxes in the early development of set theory (see 

Chapter 8). 
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to the Academy was the proclamation: "Let no one ignorant of geom
etry enter here." Plato claimed that reasoning about geometric objects 
trains the mind for the more difficult task of ascending to knowledge 
of what he called "The Good." Plato taught that the world of Ideas is 
more important than the material world of the senses. The errors of the 
senses must be corrected by concentrated thought, which is best learned 
by studying mathematics. Certainly we are able to imagine perfect geo
metric figures-perfectly straight lines with no breadth, etc. Plato main
tained that these ideal figures not only exist in our imaginations but 
also exist in a world of perfect Ideas, of universal eternal truths. Hu
man minds are not eternal, but he believed that our minds have the 
ability to perceive aspects of the eternal world of Ideas. Many promi

nent mathematicians over the centuries have subscribed to Plato's view 
that the truths of mathematics reside in an objective reality outside of 
our individual minds; others consider this viewpoint a psychologically 
useful myth, while still others reject it entirely.4 

Plato cited the proof for the irrationality of the length of a diagonal 
of the unit square as a dramatic illustration of the power of the method 
of indirect proof (reductio ad absurdum-see Chapter 2). Aristotle con
sidered this method Zeno's invention-a type of argument that begins 
by assuming some statement accepted by an opponent and then seek
ing to extract an unacceptable consequence from it, forcing the oppo
nent to retract his commitment. Plato emphasized that the irrationality 
of length could never have been discovered empirically by physical 
measurements. A practical civilization such as the Egyptian was per
fectly content to treat V2 as 7 /5 or some other rational approximation. 
Greek civilization had moved to a new level of abstract thinking that 
emphasized exactness, not approximations, and had made new con
ceptual discoveries as a result. 

Plato was a philosopher, not a mathematician, but Plato knew 
Archytas, the last great Pythagorean mathematician; and at Plato's 
Academy were the most important Greek mathematicians of that age 
to whom, before Euclid, the axiomatic-deductive method has been as
cribed: Theodorus, Eudoxus, Theaetetus. In Plato's dialogue about 
Theaetetus, Socrates asks him what an irrational is. Theaetetus replies 
that he is very confused about it and does not know, but he has con
cerns about it. Euclid later incorporated Theaetetus' work on irrationals 
in his Book X. 

4 Eric Temple Bell considered it "fantastic nonsense of no possible value to anyone." 
You see that the philosophy of mathematics-unlike most of mathematics itself-is re
plete with controversies (see Chapter 8). 
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Plato may have been largely responsible for the restriction of geo

metric constructions to those effected with circles and lines only, be

cause he considered them ideal geometric figures. Plutarch wrote of 

Plato's indignation at the use of a new mechanism invented by Eu

doxus and Archytas for solving geometric problems, considering that 

they had shamefully turned their backs upon the nonphysical objects 

of pure intelligence, corrupting the major benefit of geometry

training the mind in abstract thinking. 

Eudoxus was certainly the greatest mathematician of the era before 

Archimedes. He invented the method of exhaustion, an unintentionally 

humorous name for what we now call the limiting process used to de

termine curved lengths, areas, and (curved or rectilinear) volumes, a 

process that is the essential basis of the integral calculus. By that method 

he demonstrated that the areas of two circles are to each other as the 

squares on their diameters. He eventually left Plato's Academy to found 

his own school. He was primarily responsible for turning astronomy 

into a mathematical science, using a complicated model of several 

spheres to account for the motions around the earth of the sun, moon, 

and six planets then known. His model placed the stars on an outer

most sphere of a universe he considered to be finite in extent. 

Euclid of Alexandria 

The beautiful city of Alexandria was founded in 331 B.c., at the point 

where the river Nile meets the Mediterranean Sea, by the conqueror 

Alexander the Great. It developed into a center for science, art, and 

culture and became the capital of Egypt. After Alexander died, the first 

King Ptolemy, who was an enlightened ruler, established in Alexandria 

a school and institute known as The Museum. He recruited the top 

scholars of that time to teach and work there. One of them was Euclid. 

Very little is known personally about Euclid of Alexandria. From 

the material in the books he wrote, it is presumed that he studied ei

ther at Plato's Academy or with students of that Academy. Later he 

started his own school in Alexandria, where his most famous student 

was Apollonius of Perga, who developed the advanced theory of conic 

sections, building upon a treatise (since lost) by Euclid on that subject. 

Euclid authored about a dozen treatises on various subjects, in

cluding optics, astronomy, music, mechanics, and spherical geometry. 

Unfortunately, all but five of them have been lost. His most famous 
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one, the Elements, written around 300 B.c., has survived, though not 

as an original manuscript written by Euclid himself. The version we 

use today has been reconstructed from a tenth-century Greek copy 

found around 1800 in the Vatican Library and from Arabic translations 

of other lost Greek copies and revisions. We are greatly indebted to the 

medieval Arab scholars for preserving much of classical Greek mathe

matics. The first printed version of the Elements appeared in Venice in 

1482 (Campanus' translation from the Arabic), and since then hundreds 

of editions have been published. A new Greek text was compiled in 

the 1880s by Heiberg, and that was translated into English in 1908 by 

Sir Thomas Heath; it is the version to which English speakers mainly 

refer. 

The Elements is a definitive treatment in 13 volumes of Greek plane 

and solid geometry and number theory. We do not know which of its 

material is original with Euclid, but we do know that in compiling this 

masterpiece Euclid built on the achievements of his predecessors: the 

Pythagoreans, Hippocrates, Archytas, Eudoxus, and Theaetetus. 

• Books I-IV and VI are about plane geometry. 

• Books XI-XIII are about solid geometry. 

• Book V gives Eudoxus' theory of proportions. 

• Books VII-IX treat the theory of whole numbers. The last propo

sition of Book IX (Proposition 36) provides a method of construct

ing a perfect number-a number that is equal to the sum of its proper 

divisors, such as 6, 28, or 496. To this day no other method has 

been found. 

• Book X presents Theaetetus' classification of certain types of ir

rationals; curiously, Euclid did not include a proof that the diago

nal of a square is incommensurable with its side, though the Ital

ian translation by Commandino in 1575 does add a proof of that. 

Book II provides a geometric method for solving certain quadratic 

equations (without algebraic notation, which came many centuries 

later). Also, in Euclid's treatment of whole numbers, stemming from 

the Pythagoreans, it is a peculiarity that 1 was not considered a 

number! It was the unit or "the monad." 

In this text we will redo much of the plane geometry in the Ele

ments. We will use notation such as 1.47 to refer to the 47th proposi

tion in Book I of the Elements (it's the Pythagorean theorem). 

Euclid's Elements is not just about geometry and number theory; it 

is about how to think logically, how to build and organize a complicated 
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theory, step by logical step. Euclid's approach to geometry dominated 

the teaching of the subject for over two thousand years. The axiomatic 

method used by Euclid is the prototype for all of what we now call 

pure mathematics. It is pure in the sense of "pure thought": No phys

ical experiments could be performed to verify that the statements about 

ideal objects are correct-only the reasoning in the demonstrations can 

be checked. 

Euclid's Elements is pure also in that the work includes no practical 

applications. Of course, Euclid's geometry has had an enormous num

ber of applications to practical problems in engineering, architecture, as

tronomy, physics, etc., but none are mentioned in the Elements. Ac

cording to legend, a beginning student of geometry asked Euclid, "What 

shall I get by learning these things?" Euclid called his servant, saying, 

"Give him a coin, since he must make gain out of what he learns." 

Later Greek mathematicians did concern themselves with applica

tions and other sciences-notably Archimedes with his mechanics and 

hydrostatics, Eratosthenes with his remarkable estimate of the circum

ference of the earth, Hipparchus and Claudius Ptolemy with their as

tronomy, and Heron with his optics and mechanics. 

Aristotle and the Greek astronomers did not consider that the math

ematical abstraction "Euclidean space" described all of actual physical 

space because they believed the universe was finite in extent (bounded). 

Thus the "truth" of Euclidean geometry for them is puzzling to us. It 

was the work of Isaac Newton many centuries later that led to the iden

tification of those two "spaces" in people's minds, which lasted until 

Einstein and other cosmologists proposed other possible geometric mod

els for vast physical space. 

The Axiomatic Method 

Mathematicians can make use of trial and error, computation of spe

cial cases, informed guessing, flashes of insight, drawing diagrams, or 

any other method to discover their results. The axiomatic method is a 

method of proving that the results are correct and organizing them into 

a logical structure. Some of the most important results in mathematics 

were originally given only incomplete proofs (we shall see that even 

Euclid was guilty of this). No matter-correct, complete proofs would 

be supplied later (sometimes very much later), and mathematicians 

would be satisfied. 
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So proofs give us assurance that results are correct. In many cases, 

they also give us more general results. For example, the Egyptians, 

Babylonians, and Indians inferred by experiment that if a triangle has 

sides of lengths 3, 4, and 5, it is a right triangle. But later mathemati

cians proved that if a triangle has sides of lengths a, b, and c and if 

a2 + b2 
= c 2, then the triangle is a right triangle. It would take an in

finite number of experiments to check this result, and, anyhow, ex

periments measure things only approximately. Finally, proofs give us 

tremendous insight into relationships among different things we are 

studying, forcing us to organize our ideas in a coherent way. You will 

appreciate this by the end of Chapter 6 (if not sooner). Gauss gave 

many proofs of the fundamental theorem of algebra and of the quad

ratic reciprocity theorem in number theory. In so doing, he was not 

trying to convince himself and others of the correctness of those state

ments; he was seeking deeper insights, different relationships to help 

understand why those statements were valid. 

Other important scientific works besides Euclid's proceeded ax

iomatically: Archimedes' Book 1 on theoretical mechanics proved 15 

propositions from 7 postulates. Newton's Principia deduced the laws 

of motion from his well-known laws assumed at the start. In the twen

tieth century, theoretical physicists Mach, Einstein, and Dirac used the 

axiomatic method in some of their works. 

What is the axiomatic method? If I wish to persuade you by pure de

ductive reasoning to believe some statement S1, I could show you how 

this statement follows logically from some other statement S2 that you 

may already accept. However, if you don't believe S2, I would have to 

show you how S2 follows logically from some other statement S3. I might 

have to repeat this procedure several times until I reach some statement 

that you already accept, one that I do not need to justify. That statement 

plays the role of an axiom or postulate. If I cannot reach a statement that 

you will accept as the basis of my argument, I will be caught in an "in

finite regress," giving one demonstration after another without end. 

So there are two requirements that must be met for us to agree that 

a proof is correct: 

REQUIREMENT 1. Acceptance of certain statements called axioms or 

postulates without further justification. 

REQUIREMENT 2. Agreement on how and when one statement "fol

lows logically" from another, i.e., agreement on certain rules of logic. 

Euclid's monumental achievement was to single out a few simple 

postulates, statements that were acceptable to his peers without further 
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justification, and then to deduce from them all the conclusions known 

at that time in elementary geometry-many of the results not at all ob

vious-without there being any vicious circles in his reasoning and with 

most of his proofs being correct. One reason the Elements is such a 

beautiful work is that so much has been deduced from so little! 

However, such a marvelous organization of results did not spring 

fully developed from Euclid's head the way the goddess Athena in Greek 

mythology sprang fully grown from the head of the god Zeus. Geo

metric results had been accumulated over many years by the Greeks, 

and unfortunately all those earlier works have been lost to us. We know 

that they existed from reports by later commentators such as Proclus. 

Euclid singled out (most of) the basic assumptions needed to prove all 

the other results. Such an axiomatization and organization can only be 

done successfully for a mature subject that has already been consider

ably developed in a perhaps disorganized way (e.g., the axioms for the 

real numbers came very late in their history). 

Undefined Terms 
We have been discussing what is required for us to agree that a proof 

is correct. Here is an additional requirement that we took for granted: 

REQUIREMENT 0. Mutual understanding of the meaning of the words 

and symbols used in the discourse. 

There should be no problem in reaching mutual understanding so 

long as we use terms familiar to both of us and use them consistently. 

If I use an unfamiliar term, you have the right to demand a definiti.on 

of this term. Definitions cannot be given arbitrarily; they are subject to 

rules of reasoning also. For example, if I defined a right angle to be a 

90° angle and then defined a 90° angle to be a right angle, I would vi

olate the rule against circular reasoning. Sometimes a proof must first 

be given in order for a definition to be acceptable-e.g., if I define the 

specific number 7r to be the ratio of the circumference of any circle to 

the length of its diameter, I am tacitly assuming that that ratio is 

constant; that definition will not be valid until a proof of constancy is 

supplied (incredibly, very few books supply the proof, even the books 

specifically devoted to the amazing history of this number). 

Also, we cannot define every term that we use. In order to define 

one term we must use other terms, and to define these terms we must 

use still other terms, and so on. If we were not allowed to leave some 
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terms undefined, we would get involved in infinite regress (that's why 
dictionaries are circular). The undefined terms are also called primitive 

terms. 

Euclid did attempt to define all his geometric terms, which was a 
surprising mistake, since Aristotle had already explained the necessity 
for undefined terms. Euclid defined a "straight line" to be "that which 
lies evenly with the points on itself." This definition is not very use
ful; so it is better to take "line" as an undefined term. Similarly, Eu
clid defined a "point" as "that which has no part" -again, not a very 
informative definition. So we will also accept "point" as an undefined 
term. Fortunately, nowhere in the Elements does Euclid use in his proofs 
those of his "definitions" that are vague. They are more like guides to 
visualizing the geometry. 

Here are the five primitive geometric terms that we will use as our 
basis for defining all other geometric terms in plane geometry: 

point 

line 

lie on (as in "two points lie on a unique line") 
between (as in "point C is between points A and B") 

congruent 

For solid geometry, we would have to introduce a further undefined 
geometric term, "plane," and extend the relation "lie on" to allow points 
and lines to lie on planes. In this book we will restrict our formal de

velopment to plane geometry-to one single plane, if you like. We will 
not use this term in our formal development, though we will mention 
it informally. 

There are expressions that are often used synonymously with "lie 
on." Instead of saying "point P lies on line l," we sometimes say "l 

passes through P" or "P is incident with l," denoted by P I l. If point 
P lies on both line l and line m, we say that "land m have point P in 

common" or that "land m intersect (or meet) in the point P." 

Our undefined term, "line," replaces what is usually called "a 
straight line." The adjective "straight" is problematic when it modifies 
the noun "line," so we won't use it.5 Nor will we talk about "curved 
lines." Although the word "line" will not be defined, its use will be 

5 Euclid did use the expression "straight line" and allowed the word "line" to also be 

used for what we call "curves"; e.g., he defined a "circle" as a certain kind of line. It 

is much simpler to avoid using "straight" in our formal discussions, though we will 

have to use that word occasionally informally. See Chapter 2 and Appendix A for more 

on straightness. 
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m 

Figure 1.1 

restricted by the axioms for our geometry. For instance, the first axiom 

states that two given points lie on only one line. Thus, in Figure 1.1, 

l and m could not both represent lines in our geometry since they both 

pass through the distinct points P and Q. 

It is natural to ask how to understand our five undefined terms. The 

traditional method is something like this: You know how to draw a "seg

ment" with a straightedge. You can repeatedly extend the segment in 

both directions with your straightedge. So imagine the drawn segment 

already extended indefinitely longer in both directions with no ends; at 

the same time, imagine such a drawing becoming thinner and thinner 

until it has no breadth yet has not vanished-or if you can't imagine 

that, picture it as having a tiny breadth but then ignore that breadth, 

as we do when we look at a geometric diagram. Similarly, you know 

what a dot drawn on paper looks like-it occupies a tiny area; imagine 

that area shrinking to zero without the dot disappearing to give an ide

alized "point" that is pure position. You know what it means for a dot 

you draw to lie on your drawn segment, though you could quibble about 

the dot lying "partly on" it because your drawing has breadth-just ide

alize the drawing in your imagination. The relation "between" for dots 

will only refer to three dots lying on a drawn segment; in that case, you 

know what it means for one dot to lie between the other two. 

We will discuss visualizing congruence below. In studying these 

imaginary objects, we are dispensing with the features of physical ob

jects that are irrelevant to what we are trying to accomplish. We are 

simplifying the subject matter. All of science depends on idealized, sim

plified ideas like this. 

Alternatively, you could do what a blind person (who does not use 

the sense of touch) or a computer must do: Having no image for our 

undefined terms, just reason carefully about those terms using only the 

properties we will assume about them in our axioms. While psycho

logically more difficult, that would be preferable because in later chap

ters we will provide alternative interpretations of some of the unde

fined terms that may startle you. The visualizations are purely heuristic, 

not part of the formal mathematics, and the flexibility to interpret the 

undefined terms in a manner not originally intended often leads to some 

very important new mathematics. That is the modern point of view. 
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There are other mathematical terms we will use that could be added 
to our list of undefined terms since we won't define them; they have 
been omitted from the list because they are not specifically geometric 
in nature. Nevertheless, since there may be some uncertainty about 
these terms, a few remarks are in order. 

The word "set" is fundamental in all of mathematics today; it is 
now used in elementary schools, so undoubtedly you are familiar with 
its use. Think of it as a "collection of objects." A related notion is "be
longing to" a set or "being an element (or member) of" a set. If every 
element of a set Sis also an element of a set T, we say that Sis "con
tained in" or "part of" or "a subset of" T. We will define "segment," 
"ray," "circle," and other geometric terms to be certain sets of points. 
A "line," however, is not a set of points in our treatment.6 When we 
need to refer to the set of all points lying on a line l, we will denote 
that set by { l}. 

For us, the word "equal" will mean "identical." Euclid used the 
word "equal" in different undefined senses, as in his assertion that 
"base angles of an isosceles triangle are equal." We understand him to 
be asserting that base angles of an isosceles triangle have an equal 
number of degrees, not that they are identical angles. So to avoid con
fusion we will not use the word "equal" in Euclid's sense. Instead, we 
will use the undefined term "congruent" and say that "base angles of 
an isosceles triangle are congruent. Similarly, we don't say that "if AB 
equals AC, then .6.ABC is isosceles." (If AB equals AC, then following 
our use of the word "equals," .6.ABC is not a triangle at all, only a seg
ment.) Instead, we say that "if AB is congruent to AC, then .6.ABC is 
isosceles." This use of the undefined term "congruent" is more general 
than the one to which you may be accustomed; it applies not only to 
triangles but to angles and segments as well, but it only applies to ob
jects of the same kind (e.g., it would be nonsensical to say that some 
angle is congruent to a segment). To understand the use of this word, 
picture congruent objects as "having the same size and shape." Alter
natively, imagine that you could move one object, without changing 
its size and shape, and superimpose it to fit exactly on the other ob
ject. This is a heuristic, informal, visual image of congruence, which 
is not to be used in proofs. 

Of course, we must specify (as Euclid did for "equals" in his "com
mon notions") that "a thing is congruent to itself" and that "things 
congruent to the same thing are congruent to each other." Statements 

6 For reasons of duality in projective planes in Chapter 2. Also, the Greeks denied that 
a line was made up of points. 
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like these will later be included among our axioms of congruence (Chap

ter 3). 

Our list of undefined geometric terms is due to David Hilbert 

(1862-1943). His treatise Grundlagen der Geometrie (Foundations of 

Geometry), first edition 1899 (later editions have important supplements 

by Hilbert and Paul Bernays), clarified Euclid's definitions, filled the 

gaps in some of Euclid's proofs, added more axioms that Euclid tacitly 

assumed, and provided brand new important insights into the founda

tions of geometry. We will elaborate on that in Chapters 3-4. 

Hilbert built on earlier work by Moritz Pasch, who in 1882 pub

lished the first treatise on geometry that met the new standards of rigor 

of his time; Pasch made explicit Euclid's unstated assumptions about 

betweenness (the axioms of betweenness will be studied in Chapter 3). 

Some other mathematicians who have worked to establish rigorous 

foundations for Euclidean geometry are G. Peano, M. Pieri, G. Veronese, 

0. Veblen, G. de B. Robinson, E. V. Huntington, H. G. Forder, and 

G. Birkhoff. These mathematicians used lists of undefined terms dif

ferent from the one used by Hilbert. Pieri used only the two undefined 

terms "point" and "motion"; as a result, however, his axioms were 

more complicated. The selection of undefined terms and axioms is ar

bitrary and a matter of convenience and aesthetics. Hilbert's selection 

is popular because it leads to an elegant development of geometry quite 

similar to Euclid's presentation. 

Euclid's First Four Postulates 

Euclid based his geometry on five fundamental axioms or postulates. 

(Aristotle made a distinction between those two words that is no longer 

accepted.) We will slightly rephrase Euclid's postulates for greater clar

ity and precision. 

Eucuo's POSTULATE I. For every point P and for every point Q not 

equal to P there exists a unique line that passes through P and Q. 

This postulate is sometimes expressed informally by saying that "two 

points determine a unique line." We will denote the unique line that 
� 

passes through P and Q by PQ. Actually, Euclid forgot to assume that 

the line is unique, and since he tacitly used uniqueness in his proofs 

(e.g., his proof of 1.4), his first postulate was amended by subsequent 

commentators. 

To state the second postulate, we must present our first definition. 
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A c B 
Segment AB 

-------------------- Line AB 
A c B 

Figure 1.2 

DEFINITION. Given distinct points A and B. The segment AB is the set 
whose members are the points A and B and all points C that lie on the 

� 
line AB and are between A and B (Figure 1.2). The two given points 

A and B are called the endpoints of the segment AB.7 

Eucuo's POSTULATE II. For every segment AB and for every seg-
� 

ment CD there exists a unique point E on line AB such that B is be-
tween A and E and segment CD is congruent to segment BE (Figure 
1.3). 

This postulate is expressed informally by saying that "any segment 
AB can be extended (or produced) by a segment BE congruent to a 

given segment CD." Notice that in this postulate we have used the un
defined term "congruent" in the new way, and we use the usual no
tation CD � BE to express the fact that CD is congruent to BE. 

Euclid did not think of his lines as being infinitely long in both di
rections as we do, but rather as being segments extendable arbitrarily 

in both directions. The ancient Greeks did not accept the existence of 
infinite entities. Aristotle taught that the universe is finite in extent, so 

the infinite should only be thought of as potential, not actual. Thus, Eu

clid's lines are potentially infinite insofar as we can keep extending 

them as much as we like, by Postulate 2. The Greek expression to 

apeiron means not only infinitely large but also undefinable, hopelessly 

complex, that which cannot be handled. Proclus wrote: "Just as sight 

recognizes darkness by the experience of not seeing, so imagination rec

ognizes the infinite by not understanding it. " 

Aristotle's philosophical view of the infinite became a dogma that 
slowed the advance of mathematics for thousands of years. It was fi

nally overthrown in the late nineteenth century by Richard Dedekind 
and Georg Cantor. It is difficult for some of us today to comprehend 

why Aristotle and his successors (including the great mathematician 
Gauss) were so afraid of abstract infinite things; after all, if we can 

7 Warning on notation: In many high school geometry texts, the notation AB is used for 
"segment AB." 
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c D 

A B E 

Figure 1.3 CD � BE. 

imagine an abstract line without breadth and an abstract point that has 

no part, neither of which exists in the physical world, why are we for

bidden to imagine an abstract infinitely long line or an infinite set? 

In order to state the third postulate, we must introduce another 

definition. 

DEFINITION. Given distinct points 0 and A. The set of all points P 

such that segment OP is congruent to segment OA is called the circle 

with 0 as center and OA as radius. For each point P in that set, we 

say that P lies on the circle and OP is called a radius of the circle. 

It follows from our version of Euclid's previously mentioned com

mon notion that "a thing is congruent to itself" that OA � OA, so point 

A lies on the circle. Also, if P lies on the circle and OP� OQ, then Q 

also lies on the circle because of Euclid's common notion that "things 

congruent to the same thing are congruent to each other." (In Chapter 

3, we will state these common notions as additional axioms.) The term 

"radius" does not appear in Euclid's work; he only spoke of a diame

ter of a circle, defined as a segment whose endpoints lie on the circle 

(i.e., a chord) and which passes through the center of the circle. 

EUCLID'S POSTULATE III. For every point 0 and every point A not 

equal to 0, there exists a circle with center 0 and radius OA (Figure 1.4). 

0 .__------1A 

Figure 1.4 Circle with center 0 and radius OA. 
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A 

Figure 1.5 Ray AB. 

Actually, because we are using the language of sets rather than 
that of Euclid, it is not really necessary to assume this postulate; it is 
a consequence of a set theory axiom that the subset of all points P such 
that OP � OA exists. Of course, set theory did not yet exist in 300 B.c. 

Euclid talked of drawing the circle with center 0 and radius OA. Our 
formal treatment purifies8 Euclid by eliminating references to drawing. 
(Notice that when we illustrate in Figure 1.4 what a circle looks like, 
we are tacitly working in one plane, as we stated. If instead we were 
working in three dimensions, the set of all points P such that OP � OA 
would be the sphere with center 0 and radius OA. ) 

� 
DEFINITION. The ray AB is the following set of points lying on the 

� 
line AB: those points that belong to the segment AB and all points C 

� � 
on AB such that Bis between A and C. The ray AB is said to emanate 

� 
from the vertex A and to be part of line AB (see Figure 1.5). 

� � 
DEFINITION. Rays AB and AC are opposite if they are distinct, if they 
emanate from the same point A, and if they are part of the same line 
� � 
AB = AC (Figure 1.6.). 

DEFINITION. An "angle with vertex A" is a point A together with two 
� � 

distinct non-opposite rays AB and AC (called the sides of the angle) 
emanating from A (see Figure 1. 7). 9 

� � 
Figure 1.6 AB and AC. 

B A c 

8 However, by bringing in set theory, as Hilbert did, we are sullying Euclid. To avoid 

that, many of the terms we define as sets would have to be left undefined and new 

axioms would have to be added to characterize them. The Greeks believed that lines 

and circles were rwt made up of points. 

9 According to this definition, there is no such thing in our treatment as a "straight an

gle," nor is there such a thing as a "zero angle." We eliminated those expressions be

cause most of the assertions we will make about angles do not apply to them. 
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A 

Figure 1. 7 Angle with vertex A. 

� 

We use the notation <r:..A, <r:..BAC, or <r:..CAB for this angle. If r = AB 
� 

ands= AC, then rays r, s are said to be coterminal (meaning they em-

anate from the same vertex), and the angle is also denoted <r:..(r, s). 

� 

DEFINITION. If two angles <r:..DAB and <r:..CAD have a common side AD 
� � 

and the other two sides AB and AC form opposite rays, the angles are 

supplements of each other, or supplementary angles (Figure 1.8). 

DEFINITION. An angle <r:..BAD is a right angle if it has a supplemen

tary angle to which it is congruent (Figure 1. 9). 

We have thus succeeded in defining a right angle without referring 

to "degrees," by using the primitive notion of congruence of angles. 

Degrees will not be introduced formally until Chapter 4, although we 

will occasionally refer to them in informal discussions. We can now 

state Euclid's fourth postulate. 

Eucuo's POSTULATE IV. All right angles are congruent to one another. 

This postulate expresses a homogeneity of the plane; two right an

gles "have the same size and shape" no matter where they are located 

B A c 

Figure 1.8 <tBAD and <tDAC are supplementary angles. 
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D 

B A c 

Figure 1.9 Right angles <tBAD � <tCAD. 

in the plane. The fourth postulate provides an "intrinsic" standard of 

measurement for angles since right angles have been geometrically de

fined and other angles can be compared with them. 10 

The Parallel Postulate 

Euclid's first four postulates have always been readily accepted by math

ematicians. The fifth postulate-the "parallel postulate"-however, be

came highly controversial. As we shall see later, consideration of al

ternatives to Euclid's parallel postulate resulted in the development of 

non-Euclidean geometries. At this time we are not going to state the 

fifth postulate in its original form as it appeared in the Elements. In

stead, we will present a simpler postulate, which we will show (in 

Chapter 4) is logically equivalent to Euclid's original. This version is 

sometimes called Playfair's postulate because it appeared in John Play

fair's formulation of Euclidean geometry published in 1795-though it 

was first presented by Proclus in the fifth century. We will call it the 

Euclidean parallel postulate because it distinguishes Euclidean geome

try from other geometries based on parallel postulates. The most im

portant definition in this book is the following: 

DEFINITION. Two lines l and m are parallel if they do not intersect, 

i.e., if no point lies on both of them. We denote this by l II m. 

Notice first that in making this definition we assume the lines lie 

in the same plane (because of our convention that all points and lines 

lie in one plane unless stated otherwise); in solid geometry, there are 

10 On the contrary, there is no intrinsic standard of measurement for segments in Eu
clidean geometry (this will be proved in Chapter 9). Units of length (1 foot, 1 meter, 
etc.) must be chosen arbitrarily. The remarkable fact about elliptic and hyperbolic 
geometries, on the other hand, is that they do admit an intrinsic standard of length 
(see Chapters 6 and 9). 
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p 

Figure 1.10 m is the unique line through P parallel to l. 

non-coplanar lines that fail to intersect, and they are called skew lines, 

not "parallel" lines. Speaking informally, notice second what the defi
nition does not say: It does not say that the lines are "equidistant," i.e., 
it does not say that the "distance" between the two lines is everywhere 
the same. Don't be misled by drawings of parallel lines in which the 
lines appear to be equidistant, like railroad tracks. To be rigorous we 
must not introduce assumptions that have not been stated explicitly. 
At the same time, don't jump to the conclusion that parallel lines are 
not equidistant. We are not committing ourselves either way and shall 
reserve judgment until we study the matter further. At this point, the 
only thing we know for sure about parallel lines is that they do not 
meet.11 

THE EUCLIDEAN PARALLEL POSTULATE. For every line l and for every 
point P that does not lie on l, there exists a unique line m through P 

that is parallel to l (see Figure 1.10). 

Once again, this is an axiom for plane geometry; in solid geometry, 
there are infinitely many lines through P that do not intersect l. 

Why was this postulate so controversial? It may seem "obvious" to 
you, perhaps because you have been conditioned to think in Euclidean 
terms. However, if we consider the axioms of geometry as abstractions 
from experience, we can see a difference between this postulate and 
the other four. The first two postulates are abstractions from our ex
periences drawing with a straightedge; the third postulate derives from 
our experience drawing with a compass. The fourth postulate is less 
obvious as an abstraction. One could argue that it derives from our 
experience measuring angles with a protractor, where the sum of 
supplementary angles is always 180°, so that if supplementary angles 
are congruent to each other, they must each measure 90°; if we think 
of congruence for angles in terms of having the same number of de
grees when measured by a protractor, then indeed all right angles are 

11 I have found two books about mathematics for educated lay readers, written by well
known, respected authors, which claim that the Euclidean parallel postulate asserts 
that "parallel lines never meet." That is a definition, not a postulate! 
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congruent. (Don't interpret what was just said as any kind of proof of 

the fourth postulate; it is just a heuristic argument to make that as

sumption plausible from our experience.) 

The parallel postulate is different in that we cannot verify empiri

cally whether two drawn lines meet since we can draw only segments, 

not complete lines. We can extend the segments further and further to 

see if the lines containing them meet, but we cannot go on extending 

them forever. Our only recourse is to verify parallelism indirectly by 

using criteria other than the definition. 

What is another criterion to test whether l is parallel to m? Euclid 

suggested drawing a transversal (i.e., a line t that intersects both l and 

m in distinct points) and considering the interior angles a and {3 on 

one side of t. He predicted that if the "sum" of angles a and {3 turns 

out to be less than two right angles, the line segments, if produced suf

ficiently far, would meet on the same side of t as angles a and {3 (see 

Figure 1.11). This, in fact, is the content of Euclid's fifth postulate 

(which we will refer to as Euclid V). It is a criterion for l and m to not 

be parallel, and it tells on which side of the transversal they meet. 

We have stated this criterion unofficially because it involves terms 

that we will only be able to define precisely later (interior angles, same 

side of the transversal, sum of angles). We are appealing to your pre

vious experience with geometry and to the diagram so that you will 

understand the content of Euclid V. 

Reece Thomas Harris pointed out that what Euclid V in fact does 

is grant the power to construct triangles by extending segments until 

the lines meet (and it doesn't mention parallels). Indeed, we will later 

use that power to construct a triangle that is similar to a given one on 

a given segment (see Wallis' postulate, Chapter S). However, the dif

ficulty with this construction is that it does not provide any bound for 

how far we have to extend the line segments to find the third vertex of 

the triangle. We have the same difficulty as before in accepting it. 

t 

m 

Figure 1.11 
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Euclid himself must have recognized the controversial nature of his 

fifth postulate, for he postponed using it for as long as he could

until the proof of 1.29, which is the converse of the alternate interior 

angle theorem 1.2 7 for parallel lines; then he used it for his results on 

parallelograms. That use of Euclid V may be why it has been incor

rectly called "the parallel postulate." 

We know from Aristotle that in his time the theory of parallels had 

not yet been put on a rigorous basis. Undoubtedly the formulation of 

a postulate which does provide a rigorous foundation for that theory 

is Euclid's original contribution. 

Attempts to Prove the Parallel Postulate 
Remember that an axiom was originally supposed to be so simple and 

obvious that no educated person could doubt its validity. From the very 

beginning, however, the parallel postulate was attacked as insufficiently 

plausible to qualify as an unproved assumption. For about two thou

sand years, mathematicians tried to derive it from the other four pos

tulates or to replace it with another postulate, one more self-evident. 

All attempts to derive it from the first four postulates turned out to be 

unsuccessful because the so-called proofs always entailed a hidden as

sumption that was unjustifiable. The substitute postulates, purportedly 

more self-evident, turned out to be logically equivalent to the parallel 

postulate, so that nothing was gained logically by the substitution. We 

will examine these attempts in detail in Chapter 5, for they are very 

instructive. For the moment, let us consider one such effort. 

Adrien-Marie Legendre (1752-1833) was one of the best mathe

maticians of his time, contributing important discoveries to many dif

ferent branches of mathematics. Yet he was so obsessed with proving 

the parallel postulate that over a period of 29 years, he published one 

attempt after another in 20 different editions of his Elements de Geome
trie. Here is one attempt (see Figure 1.12). 

Given P not on line l. Drop perpendicular PQ from P to l at Q. Let 
� 

m be the line through P perpendicular to PQ. Then m is parallel to l 
� 

since l and m have the common perpendicular PQ. Let n be any line 
� 

through P distinct from m and PQ. We must show that n meets l. Let 
� � 

PR be a ray of n between PQ and a ray of m emenating from P. There 
� 

is a point R' on the opposite side of PQ from R such that �QPR' � 

�QPR. Then Q lies in the interior of �RPR'. Since line l passes through 

the point Q interior to �RPR', l must intersect one of the sides of this 
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Adrien-Marie Legendre 

� 

�gle. If l meets side PR, then certainly l meets n. Su..£Pose l meets side 
PR' at a point A. Let B be the unique point on side PR such that PA � 

PB. Then .6:.PQA � .6:.PQB (SAS); hence <tPQB is a right angle, so that 
B lies on l (and n). 

You may feel that this argument is plausible enough. Yet how could 
you tell whether it is correct? You would have to justify each step, first 
defining each term carefully. For instance, you would have to define 

A Q 

Figure 1.12 
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what is meant by two lines being "perpendicular" -otherwise, how 

could you justify the assertion that lines l and m are parallel simply 

because they have a common perpendicular? (You would first have to 

prove that as a separate theorem, if you could.) You would have to 

justify the side-angle-side (SAS) criterion of congruence in the last state

ment. You would have to define the "interior" of an angle and prove 

that a line through the interior of an angle must intersect one of the 

sides. In proving all of these things, you would have to be sure to use 

only the first four postulates and not any statement equivalent to the 

fifth; otherwise the argument would be circular. 

Thus, there is a lot of work that must be done before we can de

tect the flaw. In the next few chapters, we will do this preparatory work 

so that we can confidently decide whether or not Legendre's proposed 

proof is valid. (Legendre's argument contains several statements that 

cannot be proved from the first four postulates.) As a result of this 

work, we will be better able to understand the foundations of Euclid

ean geometry. We will discover that a large part of this geometry is in

dependent of the theory of parallels and is equally valid in hyperbolic 

geometry. 

The Danger in Diagrams 
Diagrams have always been helpful in understanding geometry-they 

are included in Euclid's Elements, and they are included in this book. 

But there is a danger that a diagram may suggest a fallacious argument. 

A diagram may be slightly inaccurate or it may represent only a spe

cial case. If we are to recognize the flaws in arguments such as 

Legendre's, we must not be misled by diagrams that look plausible. 

What follows is a well-known and rather involved argument that 

pretends to prove that all triangles are isosceles. Place yourself in the 

context of what you know from high school geometry. (After this chap

ter you will have to put that knowledge on hold.) Find the flaw in the 

argument. 

Given .6..ABC. Construct the bisector of <r:..A and the perpendicular bi

sector of side BC opposite to <r:..A. Consider the various cases (Figure 1.13). 

- CASE 1. The bisector of <r:..A and the perpendicular bisector of 

segment BC are either parallel or identical. In either case, the bisector 

of <r:..A is perpendicular to BC and hence, by definition, is an altitude. 
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B 

Case2 

Figure 1.13 

A 

C� B D1 
I 

Case 3 
E 

Case4 

Therefore, the triangle is isosceles. (The conclusion follows from the 

Euclidean theorem: If an angle bisector and altitude from the same ver

tex of a triangle coincide, the triangle is isosceles.) 

Suppose now that the bisector of <r:.. A and the perpendicular bisec

tor of the side opposite are not parallel and do not coincide. Then they 

intersect in exactly one point, D, and there are three cases to consider: 

- CASE 2. The point D is inside the triangle. 

- CASE 3. The point Dis on the triangle. 

- CASE 4. The point Dis outside the triangle. 

For each case, construct DE perpendicular to A B  and DF perpendi

cular to A C, and for cases 2 and 4 join D to B and D to C. In each case, 

the following proof now holds (see Figure 1.13). 

DE � DF because all points on an angle bisector are equidistant from 

the sides of the angle; DA � DA, and <r:..DE A and <r:..DF A are right an

gles; hence .6..ADE is congruent to .6..ADF by the hypotenuse-leg theo

rem of Euclidean geometry. (We could also have used the S A A  theo

rem with DA� DA, and the bisected angle and right angles.) Therefore, 

we have A E  �A F. Now, DB� DC because all points on the perpendi-
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cular bisector of a segment are equidistant from the ends of the seg

ment. Also, DE � DF, and <i:DEB and <i:DFC are right angles. Hence, 

.6..DEB is congruent to .6..DFC by the hypotenuse-leg theorem, and hence 

FC � BE. It follows that AB � AC-in cases 2 and 3 by addition and in 

case 4 by subtraction. The triangle is therefore isosceles. 

Henri Poincare said: "Geometry is the art of reasoning well from 

badly drawn diagrams." J. L. Lagrange, the great master of dynamics 

after Newton, prided himself that his Analytic Mechanics (published in 

1788) contained not a single diagram. Jean Dieudonne, in his Linear 

Algebra and Geometry (first published in 1969), also omitted all dia

grams, contending that they are "unnecessary." But Hilbert did include 

diagrams in his Grundlagen der Geometrie. 

The Power of Diagrams 
Geometry, for human beings, is a visual subject, and many people think 

visually more than symbolically. Correct diagrams can be extremely 

helpful in understanding proofs and in discovering new results. For ex

ample, the great physicist Richard Feynman invented a new type of di

agram (now named after him) to understand and do research in quan

tum electrodynamics. 

One of the best illustrations of the power of diagrams is Figure 1.14, 

which reveals immediately the validity of the Pythagorean theorem in 

Euclidean geometry. 

Figure 1.15 is a simpler diagram suggesting a proof by dissection. 

(Euclid's argument was much more complicated-see his proof of 1.47.) 

Algebra did not blossom with more-or-less its current symbolism 

until the eighteenth century. It was developed by the Arabs and Hin

dus, with earlier work by the Babylonians and the Alexandrian Greek 

number theorist Diophantus. It took a while for the novel idea of per

forming arithmetic operations with letters, instead of numbers, to be

come commonplace-Frarn;ois Viete in sixteenth century France origi

nated that. 

So our idea that the Pythagorean theorem asserts that a2 + b2 = c2, 

where a, b are the lengths of the legs and c is the length of the hy

potenuse of a right triangle, is a relatively modern idea. If you read 

1.47, Euclid's statement of that theorem, it does not display such an 

equation. It states: "In a right triangle, the square on the side sub

tending the right angle is equal to the squares on the sides containing 
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Figure 1.14 
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the right angle." We interpret this to mean that the area of the square 

having the hypotenuse of the right triangle as a side is equal to the 

sum of the areas of the squares having the legs of the right triangle as 

their sides. If we think of area as a number, then by the definition of 

the area of a geometric square as the numerical square of the length 

of its side, this statement is equivalent to the equation above, which 

we may call the Pythagorean equation. 

b 

a 

a a 

Figure 1.15 
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However, just as Euclid did not have numbers as lengths of seg

ments, he did not have numbers as areas of plane figures. For exam

ple, the square on a segment of length 1 + V2 would have irrational 

area if he attempted that. Instead, Euclid considered area to be another 

kind of magnitude, a term he did not define (volume is a third kind of 

magnitude for solid geometry). To distinguish that concept from nu

merical area, modern mathematicians define what it means for two 

plane polygonal figures to have equal content-informally, it means that 

you can dissect one figure into polygonal pieces and then reassemble 

those pieces to construct the other figure. That's exactly what we il

lustrated with the second diagrammatic "proof" of the Pythagorean the

orem in Figure 1.15. 

Figure 1.14 illustrates a possibly weaker result. If we adjoin to each 

of the figures another figure consisting of four copies of the original 

right triangle, then the resulting figures will have equal content. 

We will not develop these ideas in this text. For more details on the 

interesting theory of equal content, see Hartshorne (2000), Chapter 5. 

Straightedge-and-Compass Constructions, Briefly 
In our heuristic discussion of Euclid's postulates, we mentioned draw

ings with straightedge and compass as the experiential basis for ac

cepting the first three postulates. We rephrased those postulates to be 

compatible with today's rigorous style of expressing abstract mathe

matics. However, we can follow Euclid's style and informally talk about 

drawing, provided that you understand how to translate such figures 

of speech into our precise language. Here is Euclid's version of the first 

three postulates in Heath's translation: 

1. To draw a straight line from any point to any point. 

2. To extend a finite straight line continuously in a straight line. 

3. To describe a circle with any center and any distance. 

This language shows that Euclid thought about geometric existence con

structively, in the sense of idealized straightedge-and-compass con

structions. Such idealized constructions became very important in the 

history of elementary geometry. They are just a figure of speech for ob

taining the existence of certain points by intersecting lines and/or cir

cles with lines and/or circles, as well as for the existence of lines and 
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circles as guaranteed by Postulates I-III in the form we have stated 

them. Euclid never mentions straightedge or compass, though he does 

use words like "draw," "describe," and "extend" in Heath's translation. 

Here is a list of those propositions in Books I-IV of the Elements 

which are constructions: 

1.1. To construct an equilateral triangle on a given segment. 

1.2. To draw a segment congruent to a given segment at a given 

point. 

1.3. To cut off a smaller segment from a larger segment. 

1.9. To bisect an angle. 

1.10. To bisect a segment. 

1.11. To erect a perpendicular to a line at a given point on the line. 

1.22. To construct a triangle, given three sides, provided any two are 

greater than the third. 

1.23. To reproduce a given angle at a given point and side. 

1.31. To draw a line parallel to a given line through a given point not 

on that line. 

1.42. To construct a parallelogram with a given angle equal in con

tent to a given triangle. 

1.44. To construct a parallelogram with given side and angle equal in 

content to a given triangle. 

1.45. To construct a parallelogram with a given angle equal in con-

tent to a given figure. 

1.46. To construct a square on a given segment. 

11.14. To construct a square equal in content to a given figure. 

III.1. To find the center of a circle. 

III.17. To draw a tangent to a circle from a point outside the circle. 

IV.1. To inscribe a given segment in a circle. 

IV.2. To inscribe a triangle, equiangular to a given triangle, in a circle. 

IV.3. To circumscribe a triangle, equiangular to a given triangle, 

around a circle. 

IV.4. To inscribe a circle in a triangle. 

IV.5. To circumscribe a circle around a triangle. 

IV.10. To construct an isosceles triangle whose base angles are twice 

the vertex angle. 

IV .11. To inscribe a regular pentagon in a circle. 

IV.12. To circumscribe a regular pentagon around a circle. 

IV.15. To inscribe a regular hexagon in a circle. 

IV.16. To inscribe a regular 15-sided polygon in a circle. 
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The remaining propositions in Books I-IV are about relationships and 

non-relationships among geometric figures. Here are several notable ex

amples of such propositions: 

1.5. Base angles of an isosceles triangle are congruent. 

1.15. Vertical angles are congruent. 

1.16. An exterior angle of a triangle is greater than either opposite in

terior angle. 

1.17. Any two angles of a triangle together are less than two right 

angles. 

1.20. Any two sides of a triangle together are greater than the third. 

1.2 7. Congruence of alternate interior angles implies the lines are 

parallel. 

1.29. If two lines are parallel, then alternate interior angles cut by any 

transversal are congruent. 

1.32. The angle sum of a triangle is two right angles, and an exterior 

angle equals the sum of opposite interior angles. 

1.34. Opposite sides and angles of a parallelogram are congruent, 

respectively. 

1.47. Theorem of Pythagoras. 

1.48. Converse of the theorem of Pythagoras. 

III.5. If two circles intersect, they do not have the same center. 

III.10. Two circles can intersect in at most two points. 

III.20. The angle at the center is twice the angle at a point of the cir

cumference subtending a given arc of a circle. 

III.21. Two angles from points of a circle subtending the same arc are 

congruent. 

III.22. Opposite angles of a quadrilateral inscribed in a circle add up 

to two right angles. 

III.31. An angle with vertex on a circle and subtending a semicircle of 

that circle is a right angle. 

Many of these propositions should be recognizable to you from your 

previous course in Euclidean geometry. Proposition III.31 is attributed 

to Thales. 

After constructing the beautifully symmetric equilateral triangle on 

a given segment in his very first proposition, why did Euclid wait un

til his 46th proposition to construct the beautifully symmetric square 

on a given segment? Because that construction depends on using the 

fifth postulate. 
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There were three famous straightedge-and-compass construction 

problems in ancient Greek geometry and a fourth that was less famous 

but equally important: 

1. Trisect any angle. 

2. Square any circle (i.e., construct a square having the same area as 

the given circle). 

3. Duplicate any cube (i.e., construct a segment such that the cube on 

that segment has twice the volume of the given cube). 

4. For any n > 6, construct a regular n-gon (i.e., an n-sided convex 

polygon in which all sides and all angles are congruent to one an

other, respectively). 

The construction of a regular n-gon for n = 3, 4, 5, 6 was carried out 

in Euclid's Elements. The first unsolved case is n = 7. 

The critical difficulty in these problems is the restriction to using 

straightedge and compass alone (or, more precisely, to using only lines 

and circles and no other curves). From the point of view of a design 

engineer, say, that restriction can be circumvented by using other in

struments. However, from the point of view of a pure mathematician, 

that restriction poses an interesting theoretical problem that eventually 

led to some extremely interesting mathematics. 

It turned out that none of these constructions could be carried out 

in general. For certain special cases, the construction could be done

e.g., a right angle can be trisected with straightedge and compass alone 

Gust bisect the angle of an equilateral triangle). A regular octagon can 

easily be constructed by circumscribing a square with a circle, per

pendicularly bisecting the sides of the square and joining the four points 

where those perpendicular bisectors hit the circle to the adjacent ver

tices of the square. Thanks to the work of C. F. Gauss, we know ex

actly for which n Problem 4 is solvable, and the answer very surpris

ingly depends on certain prime numbers that were first investigated by 

Fermat and have been named after him. There are only three Fermat 

primes n > 6 for which the regular n-gon is currently known to be con

structible: 17, 257, and 65,537; that is because it's a currently unsolved 

problem as to whether there are any other Fermat primes. 

The impossibility of these constructions in general could only be 

proved after analytic geometry was invented, and these geometric prob

lems were successfully translated into purely algebraic ones in the early 
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nineteenth century. That was a great triumph for the use of algebra in 

geometry (a vindication of Descartes and Fermat, who pioneered such 

use). 

That impossibility has been thoroughly explained in several other 

texts, so we won't go into it here. See Hartshorne or Moise, for exam

ple. Very briefly and sketchily, using Cartesian coordinates of points, 

the algebraic analogue of any straightedge-and-compass construction 

involves the determination of certain numbers obtained from rational 

numbers by repeatedly using the four arithmetic operations and the op

eration of taking the square root of a positive number. The general

case analogue of Problems 1 and 3 involves solving cubic equations, 

and it can be proved that roots of irreducible cubic equations with ra

tional number coefficients cannot be obtained using only those five op

erations. Problem 2 was shown unsolvable when Lindemann proved 

the much stronger result that 1T is transcendental-it is not a root of 

any polynomial with integer coefficients. 

Descartes (and long before him, Pappus in the third century) con

jectured the impossibility in general of those first three constructions. 

Kepler argued for the impossibility of constructing the regular hepta

gon (seven-sided) and asserted, as a result, that it was simply "un

knowable." He also claimed that the regular p-gon for a prime p > 5 

could not be constructed; he did not know about the exceptions 

p = 17, 257, and 65,537 found by Gauss. 

Certain Greek mathematicians of antiquity invented interesting tools 

and methods other than straightedge and compass to construct those 

desired geometric objects. As the simplest example, Archimedes showed 

how to trisect any angle using a marked straightedge (see Exercise 16). 

Many centuries later, Viete proposed to add a new axiom to geometry 

to permit such so-called neusis constructions, but Euclidean geometry 

was considered too sacrosanct by then for new axioms to be accepted. 

Here is Viete's axiom, in which segment AB plays the role of two marks 

on the straightedge: 

VIETE'S AXIOM. Given a segment AB and point C. Let t, u be distinct 

lines or a line and a circle (Figure 1.16). Then there exists a point P 

on t and a point Q on u such that PQ � AB and P, Q, C are collinear. 

You are invited to explore some of these developments in the ex

ercises. Regarding the impossibility results, mathematician Oscar Mor

genstern said: 
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Figure 1.16 PQ �AB. 

Some of the profoundest insights the human mind has achieved are 

stated in negative form .... Such insights are that there can be no per

petuum mobile, that the speed of light cannot be exceeded, that the cir

cle cannot be squared using ruler and compass only, that similarly an 

angle cannot be trisected, and so on. Each of these statements is the 

culmination of great intellectual effort. All are based on centuries of 

work . . . .  Though stated negatively, these and other discoveries are 

positive achievements and great contributions to human knowledge. 

Descartes' Analxtic Geometry and 
Broader Idea of Constructions 
Although coordinates had been used long before their work (e.g., in 

astronomy and geography), historians give Rene Descartes and Pierre 

Fermat equal credit for the invention of analytic geometry, in which 

numerical coordinates and algebraic equations in those coordinates are 

used to obtain geometric results. Descartes was the first to publish in 

1637, as an appendix (La Geometrie, in three parts) to his very influ

ential Discourse on Method, his philosophical method for finding and 

recognizing correct knowledge. Fermat never did publish his work; in

stead, he communicated his results in private letters to a few colleagues, 

and his work was made public only in 1679, fourteen years after he 

died. Curiously, although both these men were outstanding mathe

maticians, mathematics was not their profession. Fermat was a jurist 

who did mathematics as a hobby. He is best known for his work in 

number theory; his famous "last theorem" was finally proved in 1995, 

as a corollary to Andrew Wiles' proof of the main part of the profound 
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Rene Descartes 

Shimura-Taniyama conjecture. Fermat also discovered the basic idea 

of the differential calculus before Newton and Leibniz. Descartes con

tributed to other sciences besides mathematics, but he was primarily a 

philosopher whose writings had a great impact on the way educated 

people viewed the world. 

Both men initially introduced their algebraic methods in order to 

solve problems from classical Greek geometry, recognizing that the new 

methods had great potential to solve other problems. Their successors 

over many decades realized that potential. Descartes' stated goal was 

to provide general methods, using algebra, to "solve any problem in 

geometry." He did not see geometry as an axiomatic deductive science 

that derives theorems about geometric objects. 

In the time of Descartes, the tradition was that algebra was a com

pletely separate subject from geometry. That tradition was breaking 

down with the work of Viete in the sixteenth century, and both 

Descartes and Fermat built on Viete's ideas. 

Descartes defined the five algebraic operations of addition, subtrac

tion, multiplication, division, and extraction of square roots as 
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geometric constructions on line segments and showed how those oper

ations could be performed in the Euclidean plane by straightedge-and

compass constructions. Thus, those algebraic operations were a legiti

mate part of classical Euclidean plane geometry; they were operations 

on geometric objects, not operations on numbers. 

Particularly innovative was his simple definition of multiplication of 

segments in terms of similar triangles once a unit segment had been ar

bitrarily chosen. Viete thought of the product of two segments as rep

resenting the area of a rectangle having those segments as its sides (in 

solid geometry, the product of three segments was thought to represent 

a volume). An algebraic expression such as a2 + b made no sense to 

Viete, for how could one add an area to a segment? With Descartes' 

definition, it made perfectly good sense as the sum of two segments. 

Moreover, with Descartes' definition, expressions involving products of 

four or more terms now made geometric sense as segments, whereas 

previously they had been rejected as meaningless because space had 

only three dimensions. Thus, Descartes could carry out geometrically 

all algebra involving those five operations. For example, Descartes 

showed how to solve geometrically all quadratic equations in one un

known having positive roots; he did not deal with negative roots be

cause at that time they were considered "false." He stated his general 

method as follows: 

If we wish to solve any geometric problem, we first suppose the solu

tion already effected, and give names to all the segments needed for its 

construction-to those that are unknown as well as to those that are 

known. Then, making no distinction between known and unknown seg

ments, we must unravel the difficulty in any way that shows most nat

urally the relations between these segments, until . . . we obtain an 

equation in a single unknown. 

He then developed geometric techniques for solving polynomial equa

tions in a single unknown, at least for equations of degree at most 6. 

To geometrically solve equations of degree 3 or 4, he had to intersect 

conics-parabolas or ellipses (including circles) or hyperbolas-with 

each other or with lines, for he recognized that their solutions could 

not generally be constructed by straightedge and compass alone (that 

was not proved rigorously until the nineteenth century). To solve equa

tions of degree 5 or 6, he had to introduce cubic curves. The study of 

conics and higher-degree curves belongs to what used to be called 

higher geometry; this text is primarily about elementary geometry, so 
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we won't delve into that important subject. Descartes was certainly not 

the first to use constructions other than straightedge and compass ones 

(see Project 8); his new idea was to study them algebraically. 

When Descartes gave a name or letter to the solution sought and 

then reasoned from there, he was using the method that had classically 

been called "analysis"-reasoning from the conclusion until one arrives 

at propositions previously established or at an axiom. By reversing the 

order of the steps-if possible-one obtains a demonstration of the re

sult. Analysis is a systematic method of discovering necessary condi

tions for the result to hold; synthesis would then hopefully show that 

those conditions are sufficient. It is because of this method that 

Descartes' geometry is called analytic. (Later in the history of mathe

matics, "analysis" came to have a completely different meaning: It was 

the branch of mathematics dealing with limiting processes-the calcu

lus and its more advanced developments. So it would be more appro

priate to call it "coordinate geometry" rather than "analytic geometry," 

and some authors do call it that.) 

Most of the proofs in this book are synthetic, as in Euclid. Only in 

the much later chapters will we use some analytic geometry. 

It took many years before analytic geometry was well understood 

and accepted into mainstream mathematics. Blaise Pascal objected to 

the use of algebra in geometry because it had no axiomatic foundation 

at that time. What also slowed its acceptance was Descartes' style of 

writing, which was deliberately difficult to understand. Descartes 

warned his readers that "I shall not stop to explain this in more detail, 

because I should deprive you of the pleasure of mastering it yourself." 

Isaac Newton was ambivalent about the proper role of analytic 

geometry. In an appendix to his Opticks (published in 1704, composed 

in 1676), he used analytic geometry to exhibit 72 species of curves 

given by third-degree polynomial equations (cubics) in two unknowns 

and plotted them. Newton thereby opened an entirely new field of 

geometry for study: higher-degree plane algebraic curves (later, tran

scendental curves-not given by a polynomial equation but given by 

transcendental functions such as the logarithm or trigonometric func

tions-were studied). Before the invention of analytic geometry, only 

a dozen or so curves were known to the Greeks. 

But in his Arithmetica universalis (published in 1707 but written a 

quarter-century earlier), Newton said: 

Equations are Expressions of Arithmetical Computation, and properly 

have no place in Geometry . . . these two sciences ought not to be 
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confounded. The Ancients did so industriously distinguish them from 
one another that they never introduced Arithmetical Terms into Geom
etry. And the Moderns, by confounding both, have lost the Simplicity 

in which all the Elegancy of Geometry consists. 

It is clear from most of Newton's writings that he fully realized and 

utilized the value and power of coordinate numerical algebraic meth

ods. Undoubtedly what Newton intended by this declaration was that 

coordinate methods should not be used when dealing with elementary 
geometry, i.e., Euclid's geometry of lines and circles, but they are ac

ceptable in higher geometry. 

Nevertheless, Newton wrote his monumental Principia in the syn

thetic style of Euclid because that was the style of mathematics that 

was considered rigorous in his time. Newton later admitted that he orig

inally discovered and elaborated his results by analytic methods. 

Descartes and Fermat brought algebraic techniques into geometry 

in a convincing manner that eventually revolutionized the subject. Their 

analytic geometry was more limited than ours-e.g., they usually did 

not allow negative coordinates. John Wallis, in his Arithmetica Infini
torum in 1655, was the first to do that systematically (we shall en

counter his work again in Chapter 5). Hence all the loci of Descartes 

and Fermat were restricted to the first quadrant. 

Briefly on the Number TT 

All the ancient civilizations guessed that the ratio of circumference C 

to diameter d of a circle was constant. For example, by marking a start

ing point and an ending point for a circular wheel rolling on a flat 

surface, it could be seen that the wheel advanced forward a bit over 

three diameters when it went through one revolution. The same ap

proximate result was obtained no matter what the size of the wheel, 

indicating that the ratio was independent of the size of the wheel. 

In 1706, William Jones denoted that constant as 'TT, and Leonhard 

Euler subsequently popularized this symbol in his voluminous writings. 

The ancient Egyptians had various estimates of 'TT, one such being 

22/7 = 3.142857. 

The ancients also guessed from experience that the ratio of the area 

A of a circular disk to the square r2 of its radius was constant. The 

Babylonians and ancient Chinese recognized that constant to be the 
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same 1T' because they knew, in our notation, the formula A= Cr/2; we 

don't know how they arrived at this result. Archimedes, in the century 

following Euclid, proved that formula, expressing it geometrically by 

saying, "The circle equals in area the right triangle with base equal to 
its circumference and altitude equal to its radius." He proved his result 

using Eudoxus' method of exhaustion-a limiting argument. 

Archimedes also approximated a circle by inscribed and circumscribed 

regular polygons. Using 96-sided polygons, he obtained after a very 

lengthy calculation the estimate 3.1416 for 'TT'; he also obtained a crude 

bound for how much his estimate might be off. We know now that it 

is correct to four decimal places. Some early mathematicians thought 

of a circle as being a "regular polygon with infinitely many sides." 

To treat these ideas rigorously yet on a relatively elementary level, 

if C is defined as the limit of the perimeters of the inscribed and cir

cumscribed regular polygons, then after first proving that those limits 

exist and are the same, the constancy of C/d can be proved by apply

ing theorems about similar triangles to those regular polygons. (See 

Moise, 1990, Section 21.2.) 

However, we will learn, in Chapter 6, that in non-Euclidean geom

etry, similar triangles do not exist (except for congruent triangles, which 

are trivially similar). So that proof breaks down in non-Euclidean geom

etry, and in fact we will show in Chapter 10 that C/d is not constant 
in real non-Euclidean geometry! The reason C/d appears to be constant 

in our local physical world is that real Euclidean geometry provides a 

very good approximate model for that local world, as we all know. In 

the vast global world of the universe as a whole, Euclidean geometry 

may not be the best model, as we will discuss in Chapter 8. 

Now the number 1T' occurs in many formulas in many branches of 

mathematics, branches such as probability and statistics and complex 

analysis that have nothing to do with Euclidean geometry. Yet the 

definition of 1T' we have indicated above depends on a Euclidean re

sult. While it is correct that the number 1T' was discovered historically 

via real Euclidean geometry, it is not logically correct to define 1T' that 

way if we used the integral calculus to prove that C = 1T'd; that would 

be circular reasoning. 

(For those readers who know calculus, determination of the arc length 

of a quarter of a circle of radius R comes down to multiplying R by the 

integral f dt/V 1 - t2• To obtain the answer 1T' /2 for this integral, one 
D 

must have already defined and studied the arcsin function, determined 

its derivative, and know that arcsin(O) = 0 and arcsin(l) = 1T'/2, where 
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1r has been previously defined analytically or is simply defined as 
2 arcsin(l) .) 

The correct method is to define 1r as the limit of a certain sequence12 
of rational numbers, which can be done in many ways. Similarly, al
though the trigonometric functions were discovered historically via real 
Euclidean geometry and defined in terms of ratios of sides of right tri
angles, definitions that made sense because of the Euclidean theorem 
that corresponding sides of similar triangles are proportional, one log
ically correct definition of the trigonometric functions independent of 
Euclidean geometry is in terms of certain absolutely convergent infinite 
series.13 Then those functions can be used in real non-Euclidean geome
tries as well, where the Euclidean theory of similar triangles is inoper
ative. See Chapter 10 and any rigorous treatise on analysis. 

The number 1r has fascinated mathematicians (amateur as well as 
professional) throughout the ages. Several attractive books devoted en
tirely to this number have been published in recent years (see the bib
liography at the back of this book). Incredibly, none of those books 
provide a proof that 1r is well defined, i.e., that C/d is constant in Eu
clidean geometry! 

Conclusion 

We have briefly discussed many historical facts and ideas in this chap
ter to provide the background for what will follow. You have the 
opportunity to explore them further in the exercises and projects for 
this chapter. 

In subsequent chapters, we will hone in on a rigorous presentation 
of plane Euclidean geometry, placing special emphasis on the role 
played by the parallel postulate. We will then be able to analyze other 
attempts to prove that postulate besides the attempt by Legendre dis
cussed in this chapter. After that we will see the dramatic story unfold 
of the discovery and ultimate validation of non-Euclidean geometry. 

12 For example, 

13 For example, 

'TT 1 1 1 
-=!--+---+ ... 

4 3 5 7 . 

. x3 xs x7 
sm x = x - - + - - - + ... 

3! 5! 7! 
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Review Exercise 

Which of the following statements are correct? 

(1) The Euclidean parallel postulate states that for every line l and 

for every point P not lying on l there exists a unique line m 

through P that is parallel to l. 

(2) An "angle" is defined as the space between two rays that em

anate from a common point. 

(3) Most of the results in Euclid's Elements were discovered by 

Euclid himself. 

(4) By definition, a line m is "parallel" to a line l if for any two 

points P, Q on m, the perpendicular distance from P to l is the 

same as the perpendicular distance from Q to l. 

(5) It was unnecessary for Euclid to assume the parallel postulate 

because the French mathematician Legendre proved it. 

(6) A "transversal" to two lines is another line that intersects both 

of them in distinct points. 

(7) By definition, a "right angle" is a 90° angle. 

(8) "Axioms" or "postulates" are statements that are assumed, 

without further justification, whereas "theorems" or "proposi

tions" are proved using the axioms. 

(9) We call V2 an "irrational number" because it cannot be ex

pressed as a quotient of two whole numbers. 

(10) The ancient Greeks were the first to insist on proofs for math

ematical statements to make sure they were correct. 

(11) Archimedes was the first to develop a theory of proportions 

valid for irrational lengths. 

(12) The precise technology of measurement available to us today 

confirms the Pythagoreans' claim that V2 is irrational. 

(13) The ancient Greek astronomers did not believe that three

dimensional Euclidean geometry was an idealized model of the 

entire space in which we live because they believed the uni

verse is finite in extent, whereas Euclidean lines can be ex

tended indefinitely. 

(14) Descartes brought algebra into the study of geometry and 

showed he could solve every geometric problem with his 

method. 

(15) The meaning of the Greek word "geometry" is "the art of rea

soning well from badly drawn diagrams." 
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(16) A great many of Euclid's propositions can be interpreted as 

constructions with straightedge and compass, although he 

never mentions those instruments explicitly. 

(17) Euclid provided constructions for bisecting and trisecting any 

angle. 

(18) Although 1T is a Greek letter, in Euclid's Elements it did not de

note the number we understand it to denote today. 

Exercises 

In Exercises 1-4, you are asked to define some familiar geometric terms. 

The exercises provide a review of these terms as well as practice in 

formulating definitions with precision. In making a definition, you may 

use the five undefined geometric terms and all other geometric terms 

that have been defined in the text so far or in any preceding exercises. 

Making a definition sometimes requires a bit of thought. For ex

ample, how would you define perpendicularity for two lines l and m? 

A first attempt might be to say that "land m intersect and at their point 

of intersection these lines form right angles." It would be legitimate to 

use the terms "intersect" and "right angle" because they have been pre

viously defined. But what is meant by the statement that lines form 

right angles? Surely, we can all draw a picture to show what we mean, 

but the problem is to express the idea verbally using only terms intro

duced previously. According to the definition on page 18, an angle is 

formed by two nonopposite rays emanating from the same vertex. We 

may therefore define land m as perpendicular if they intersect at a point 
� � 

A and if there is a ray AB that is part of l and a ray AC that is part of m 

such that <tBAC is a right angle (Figure 1.17). We denote this by l 1- m. 

c 

A B 

m 

Figure 1.17 Perpendicular lines. 
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Figure 1.18 Concurrent lines. 

1. Define the following terms: 
(a) Midpoint M of a segment AB. 

43 

(b) Perpendicular bisector of a segment AB (you may use the term 

"midpoint" since you have just defined it). 
� 

(c) Ray BD bisects angle <tABC (given that point D is between A 

and C). 
(d) Points A, B, and C are collinear. 

(e) Lines l, m, and n are concurrent (see Figure 1.18). 

2. Define the following terms: 
(a) The triangle .6:.ABC formed by three noncollinear points A, B, 

and C. 
(b) The vertices, sides, and angles of .6:.ABC. (The "sides" are seg-

ments, not lines.) 
(c) The sides opposite to and adjacent to a given vertex A of .6:.ABC. 
(d) Medians of a triangle (see Figure 1.19). 

(e) Altitudes of a triangle (see Figure 1.20). 

(f ) Isosceles triangle, its base, and its base angles. 

(g) Equilateral triangle. 

(h) Right triangle. 

c 

Figure 1.19 Median. 
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c 

Figure 1.20 Altitude. 

3. Given four points, A, B, C, and D, no three of which are collinear 

and such that any pair of the segments AB, BC, CD, and DA either 

have no point in common or have only an endpoint in common. 

We can then define the quadrilateral DABCD to consist of the four 

segments mentioned, which are called its sides, the four points be

ing called its vertices (see Figure 1.21). (Note that the order in which 

the letters are written is essential. For example, DABCD may not 

denote a quadrilateral because, for example, AB might cross CD. If 

DABCD did denote a quadrilateral, it would not denote the same 

one as DACDB. Which permutations of the four letters A, B, C, and 

D do denote the same quadrilateral as DABCD?) Using this defini

tion, define the following notions: 

(a) The angles of DABCD. 

(b) Adjacent sides of DABCD. 

(c) Opposite sides of DABCD. 

(d) The diagonals of DABCD. 

(e) A parallelogram. (Use the word "parallel.") 

4. Define vertical angles (Figure 1.22). How would you attempt to prove 

that vertical angles are congruent to each other? (Just sketch a plan 

for a proof-don't carry it out in detail.) 

5. Use a common notion to prove the following result: If P and Q are 

any points on a circle with center 0 and radius QA, then OP � OQ. 

A 
D 

A 

B 

Figure 1.21 Quadrilaterals. 
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Figure 1.22 Vertical angles. 

6. (a) Given two points A and B and a third point C between them. 
(Recall that "between" is an undefined term.) Can you think 

� 

of any way to prove from the postulates that C lies on line AB? 
� 

(b) Assuming that you succeeded in proving C lies on AB, ca�ou 
prove from the definition of "ray" and the postulates that AB = 
� 

AC? 
7. If S and T are any sets, their uni.on (S U T) and intersecti.on (S n T) 

are defined as follows: 
(i) Something belongs to S U T if and only if it belongs either to 

S or to T (or to both of them). 
(ii) Something belongs to S n T if and only if it belongs both to S 

and to T. 
� � 

Given two points A and B, consider the two rays AB and BA. Draw 
� � � � � 

diagrams to show that AB U BA = AB and AB n BA = AB. What ad-
ditional axioms about the undefined term "between" must we as
sume in order to be able to prove these equalities? 

8. To further illustrate the need for careful definition, consider the fol
lowing possible definitions of rectangle: 

(i) A quadrilateral with four right angles. 
(ii) A quadrilateral with all angles congruent to one another. 
(iii) A parallelogram with at least one right angle. 

In this book we will take (i) as our definition. Your experience 
with Euclidean geometry may lead you to believe that these three 
definitions are equivalent; sketch informally how you might prove 
that and notice carefully which theorems you are tacitly assuming. 
In hyperbolic geometry, these definitions give rise to three different 
sets of quadrilaterals (see Chapter 6). 

9. Can you think of any way to prove from the postulates that for 
every line l 

(a) There exists a point lying on l? 

(b) There exists a point not lying on l? 

10. Can you think of any way to prove from the postulates that the 
plane is nonempty, i.e., that points and lines exist? (Discuss with 
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your instructor what it means to say that mathematical objects, such 

as points and lines, "exist.") 

11. Do you think that the Euclidean parallel postulate is "obvious"? 

Write a brief essay explaining your answer. 

12. What is the flaw in the "proof" that all triangles are isosceles? (All 

the theorems from Euclidean geometry used in the argument are 

correct.) 

13. If the number 1T is defined as the ratio of the circumference of any 

circle to its diameter, what theorem must first be proved to legit

imize this definition? For example, if I "define" a new number 'P to 

be the ratio of the area of any circle to its diameter, that would not 

be legitimate. Explain why not. 

14. In this exercise, we will review several basic Euclidean construc

tions with a straightedge and compass. Such constructions fasci

nated mathematicians from ancient Greece until the nineteenth cen

tury, when all classical construction problems were finally solved. 

(a) Given a segment AB. Construct the perpendicular bisector of 

AB. (Hint: Make AB a diagonal of a rhombus, as in Figure 1.23.) 

(b) Given a line l and a point Plying on l. Construct the line through 

P perpendicular to l. (Hint: Make P the midpoint of a segment 

of l.) 

(c) Given a line l and a point P not lying on l. Construct the line 

through P perpendicular to l. (Hint: Construct isosceles trian

gle .6:.ABP with base AB on l and use (a).) 

(d) Given a line l and a point P not lying on l. Construct a line 

through P parallel to l. (Hint: Use (b) and (c).) 

(e) Construct the bisecting ray of an angle. (Hint: Use the Euclid

ean theorem that the perpendicular bisector of the base on an 

A B 

Figure 1.23 
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isosceles triangle is also the angle bisector of the angle oppo

site the base.) 

(f ) Given .6:.ABC and �ment DE � AB. Construct a point F on a 

given side of line DE such that .6:.DEF � .6:.ABC. 
� 

(g) Given angle <tABC and ray DE. Construct F on a given side of 
� 

line DE such that <tABC � <tFDE. 

15. Euclid assumed the compass to be collapsible. That is, given two 

points P and Q, the compass can draw a circle with center P pass

ing through Q (Postulate III); however, the spike cannot be moved 

to another center 0 to draw a circle of the same radius. Once the 

spike is moved, the compass collapses. Check through your con

structions in Exercise 14 to see whether they are possible with a 

collapsible compass. (For purposes of this exercise, being "given" 

a line means being given two or more points on it.) 

(a) Given three points P, Q, and R. Construct with a straightedge 

and collapsible compass a rectangle DPQST with PQ as a side 

and such that PT � PR (see Figure 1.24). 
� 

(b) Given a segment PQ and a ray AB. Construct the point C on 
� 

AB such that PQ � AC. (Hint: Using part (a), construct rec-

tangle DP AST with PT � PQ and then draw the circle centered 

at A and passing through S.) 

Part (b) shows that you can transfer segments with a collapsible 

compass and a straightedge, so you can carry out all constructions 

as if your compass did not collapse. 

16. The straightedge you used in the previous exercises was supposed 

to be unruled (if it did have marks on it, you weren't supposed to 

use them). Now, however, let us mark two points on the straight

edge so as to mark off a certain distance d. Archimedes showed 

how we can then trisect an arbitrary angle. 

For any angle, draw a circle y of radius d centered at the ver

tex 0 of the angle. This circle cuts the sides of the angle at points 

A and B. Place the marked straightedge so that one mark gives a 

Figure 1.24 

T S 

-------------------q 

p Q 
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C O A 
� 

d 

Figure 1.25 

� 

point C on line OA such that 0 is between C and A, the other mark 
gives a point D on circle y, and the straightedge must simultane
ously rest on the point B, so that B, C, and D are collinear (Figure 
1.25). Prove that <tCOD so constructed is one-third of <tAOB. (Hint: 
Use Euclidean theorems on exterior angles and isosceles triangles.) 

Major Exercises 
1. The number p = (1 + VS)/2 was called the golden rati.o by the 

Greeks, and a rectangle whose sides are in this ratio is called a 
golden rectangle.14 Prove that a golden rectangle can be constructed 
with straightedge and compass as follows: 
(a) Construct a square DABCD. 
(b) Construct midpoint M of AB. 
(c) Construct point E such that B is between A and E and MC � 

ME (Figure 1.26). 
� 

(d) Construct the foot F of the perpendicular from E to DC. 
(e) Then DAEFD is a golden rectangle (use the Pythagorean the

orem for .6:.MBC) . 
(f) Moreover, DBEFC is another golden rectangle (first show that 

l/p = p - 1). 

The next two exercises require a knowledge of trigonometry. 

14 For applications of the golden ratio to Fibonacci numbers and phyllotaxis, see Cox
eter (2001), Chapter 11. Also see Livio (2005). 
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Figure 1.26 

2. The Egyptians thought that if a quadrilateral had sides of lengths 
a, b, c, and d, then its area 5 was given by the formula 
(a+ c)(b + d)/4. Prove that actually 

45 < (a + c)(b + d) 

with equality holding only for rectangles. (Hint: Twice the area of 
a triangle is ab sin 0, where () is the angle between the sides of 
lengths a, b, and sin () < 1, with equality holding only if() is a right 
angle.) 

3. Prove analogously that if a triangle has sides of lengths a, b, c, then 
its area 5 satisfies the inequality 

4SV3 < a2 + b2 + c2 

with equality holding only for equilateral triangles. (Hint: If () is the 
angle between sides b and c, chosen so that it is at most 60°, then 
use the formulas 

25 =be sin() 
2bc cos () = b2 + c2 - a2 (law of cosines) 

cos (60° - O) = (cos () + V3 sin 0)/2 

4. Let .6..ABC be such that AB is not congruent to AC. Let D be the 
point of intersection of the bisector of <r:..A and the perpendicular bi
sector of side BC. Let E, F, and G be the feet of the perpendiculars 

� � � 

dropped from D to AB, AC, BC, respectively. Prove that: 
(a) D lies outside the triangle on the circle through ABC. 

(b) One of E or F lies inside the triangle and the other outside. 
(c) E, F, and G are collinear. 
(Use anything you know, including coordinates if necessary.) 

5. Figure out an algebraic proof that if a natural number n is not the 
square of some other natural number, then \in is irrational. (If you 
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are stymied, see Barry Mazur's essay "How did Theaetetus prove 

his theorem?" at www.math.harvard.edu/�mazur/preprints/Eva. 

Nov.20.pdf. In this essay, Pappus is quoted as saying "Ignorance of 

the fact that incommensurables exist is a brutish and inhuman 

state." Do you agree or disagree? Explain.) 

Projects 
1. (a) Report on at least three other proofs of the Pythagorean theo

rem besides the ones illustrated in this chapter. (Suggestion: 

See Maor, 2007.) If you find further interesting historical in

formation about this great theorem, report on that too (e.g., 

President Garfield's proof ). 

(b) A Pythagorean triple is a triple (a, b, c) of positive integers sat

isfying the Pythagorean equation. The triple is primitive if the 

integers have no common factor. A general Pythagorean triple 

is a positive integer multiple of a primitive one (cancel the gcd). 

Find polynomials p, q, r of degree 2 in two integer variables 

such that every primitive Pythagorean triple is given by a = 

p(m, n), b = q(m, n), and c = r(m, n) and conversely these 

equations provide a primitive Pythagorean triple for every pair 

of unequal relatively prime positive integers (m, n). (Hint: Show 

that this problem is equivalent to finding all points on the unit 

circle with rational coordinates and solve that using the pencil 

of lines through (-1, O) .) Search the web for further results on 

Pythagorean triples and report on the results you find most in

teresting. 

2. From the long list of propositions in Euclid's Elements that were de

scribed in this chapter as straightedge-and-compass constructions, 

choose five that have not been discussed in Exercise 14 and report 

in detail on how Euclid's proofs of those propositions can be inter

preted as such constructions. 

3. Write a paper explaining in detail why it is impossible to trisect an 

arbitrary angle or square a circle using only a compass and un

marked straightedge (see Jones, Morris, and Pearson, 1991; Eves, 

1972; or Moise, 1990). Explain how arbitrary angles can be trisected 

if in addition we are allowed to draw a parabola or a hyperbola or 

a conchoid or a limac;on (see Peressini and Sherbert, 1971). 

4. Here are two other famous results in the theory of constructions: 
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(a) Mathematicians G. Mohr of Denmark and L. Mascheroni of Italy 
discovered independently that all Euclidean constructions of 
points can be made with a compass alone. A line, of course, 
cannot be drawn with a compass, but it can be determined 
with a compass by constructing two points lying on it. In this 
sense, Mohr and Mascheroni showed that the straightedge is 
unnecessary. 

(b) On the other hand, German mathematician J. Steiner and 
Frenchman J. V. Poncelet showed that all Euclidean construc
tions can be carried out with a straightedge alone if we are first 
given a single circle and its center. 

Report on these remarkable discoveries (see Eves, 1972). 
5. Given any ,6,.ABC. Draw the two rays that trisect each of its angles 

and let P, Q, and R be the three points of intersection of adjacent 
trisectors. Prove Morley's theorem15 that ,6,.PQR is an equilateral tri
angle (see Figure 1.27 and Coxeter, 2001, Section 1.9). 

6. Ann-sided polygon is called regular if all its sides (respectively, an
gles) are congruent to one another. Construct a regular pentagon 
and a regular hexagon with straightedge and compass. The regular 
septagon cannot be so constructed; in fact, Gauss proved the re
markable theorem that the regular n-gon is constructible if and only 
if all odd prime factors of n occur to the first power and have the 
form 22m + 1 (e.g., 3, 5, 17, 257, 65,537). Report on this result, 
using Klein (2007). Primes of that form are called Fermat primes. 

The five listed are the only ones known at this time. Gauss did not 
actually construct the regular 257-gon or 65,537-gon; he showed 
only that the minimal polynomial equation satisfied by cos(27r/n) 
for such n could be solved in the surd field (see Moise, 1990). Other 

A 

Figure 1.27 Morley's theorem. 

15 For a converse and generalization of Morley's theorem, see Kleven (1978). 
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devoted (obsessive?) mathematicians carried out the constructions. 

The constructor for n = 65,537 labored for 10 years and was rewarded 

with a Ph.D. degree; what is the reward for checking his work? 

7. Research and report on neusis constructions, mentioned in this chap

ter and illustrated in Exercise 16. (Search on the web or use Bos 

(2001) as a reference.) Give and explain your opinion on whether 

Viete's axiom for neusis constructions should be accepted in ele

mentary geometry. Discuss in your report Viete's construction of 

the regular heptagon using compass and marked ruler as another 

example of how useful this axiom is (see Hartshorne, Problem 30.4). 

Describe the primes p for which the regular p-gon can be constructed 

with compass and marked straightedge using the marks between 

lines only (Hartshorne, Corollary 31.9). Is p = 11 one of them? 

8. Report on solutions in antiquity to the three classical construction 

problems using curves other than lines and circles (e.g., the quadra

trix, the conchoid, the cissoid, etc.). Use Bos (2001) as a great ref

erence to report on the historical issue of what constitutes an "ex

act" construction in geometry and for a thorough analysis of what 

Descartes did. 

9. Write a report on the invention/discovery of analytic geometry. Your 

report should explain the differences and similarities between the 

works of Descartes and Fermat. 

10. In chronological order of birth, Eudoxus, Archimedes, and Apollo

nius were the greatest mathematicians of ancient Greece. Choose 

one of them and report on his work. 

11. Report on episodes that interest you in the history of irrational num

bers (use the web or a good history text such as Katz, 1998). 

12. Report on Descartes' La Geometrie (1954, in its English translation, 

if necessary). Do you agree with his statement that explaining the 

subject in too much detail deprives the reader of the pleasure of 

mastering it himself? 

13. Comment on the following quotes: 

(a) The axiomatic method has many advantages over honest 

work-Bertrand Russell. 

(b) Our difficulty is not in the proofs, but in learning what to 

prove-Emil Artin. 



Logic and 
1ncidence 
geometry 

Reductio ad absurdum . . . is a far finer gambit than any chess 

gambit: a chess player may offer the sacrifice of a pawn or even a 

piece, but a mathematician offers the game. 

G. H. Hardy 

Elementary Logic 
In the previous chapter, we introduced the postulates and basic defi

nitions of Euclid's plane geometry, slightly rephrased for greater preci

sion. We would like to begin proving some theorems or propositions 

that are logical consequences of the postulates. However, certain ex

ercises in the previous chapter may have alerted you to expect some 

difficulties that we must first clear up. For example, there is nothing 

in the postulates that guarantees that a line has any points lying on it 

(or off it)! You may feel this is ridiculous-it wouldn't be a line if it 

didn't have any points lying on it. Your protest is legitimate, for if my 

concept of a line were so different from yours, then we would not un-

53 
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derstand each other, and Requirement 0-that there be mutual under

standing of words and symbols used-would be violated. 

So let's be clear: We must play this game according to the rules, 

the rules mentioned in Requirement 2 but not spelled out. Unfortu

nately, to discuss them thoroughly would require changing the content 

of this text from geometry to mathematical logic. Instead, I will simply 

remind you of some basic rules of reasoning that you, as a rational be

ing, already know and have used in your previous work in mathemat

ics. Some ideas and notation from mathematical logic will be intro

duced. If you have a good deal of experience in mathematics, I 

recommend that you quickly skim this material on logic and move 

ahead to the section on models. 

LOGIC RULE 0. No unstated assumptions may be used in a proof. 

The reason for taking the trouble to list all our axioms is to be ex

plicit about our basic assumptions, including the most obvious. Al

though it may be "obvious" that two points lie on a unique line, Eu

clid stated this as his first postulate. So if in some proof we want to 

say that every line has points lying on it, we should list this as another 

postulate (or prove it, but we can't). In other words, all our cards must 

be out on the table, and we will have to add two other axioms in the 

section on incidence geometry to guarantee that existence. 

Perhaps you have realized by now that there is a vital relation be

tween axioms and undefined terms. As we have seen, we must have 

undefined terms in order to avoid infinite regress. But this does not 

mean we can use these terms in any way we choose. The axioms tell 

Figure 2.1 The shortest path between two points on a sphere is an arc of a 
great circle (a circle whose center is the center of the sphere and whose 
radius is the radius of the sphere, e.g., the equator). 
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us exactly what properties of undefined terms we are allowed to use 

in our arguments. You may have some other properties in your mind 

when you think about these terms, but you're not allowed to use them 

in a proof (Rule O). For example, when you think of the unique line 

segment determined by two points, you probably think of it as being 

"straight," or as "the shortest path between the two points." Euclid's 

postulates alone do not allow us to assume these properties. Besides, 

from one viewpoint, these properties could be considered contradic

tory. If you were traveling over the surface of the earth, idealized as a 

sphere, say from San Francisco to Moscow, the shortest path would be 

an arc of a great circle (a straight path would bore through the earth). 

Indeed, a pilot making that trip nonstop normally takes the great cir

cle route (see Figure 2.1). 

Theorems and Proofs 
All mathematical theorems are conditional statements, statements of 

the form 

If [hypothesis] then [conclusion] 

In some cases, a theorem may state only a conclusion; the axioms 

of the particular mathematical system are then implicitly assumed as a 

hypothesis. If a theorem is not written in the conditional form, it can 

nevertheless be translated into that form. For example, 

Base angles of an isosceles triangle are congruent 

can be translated as 

If a triangle has two congruent sides, then the 

angles opposite those sides are congruent. 

Put another way, a conditional statement says that one condition 

(the hypothesis) implies another (the conclusion). If we denote the hy

pothesis by H, the conclusion by C, and the word "implies" by a dou

ble arrow:::::}, then every theorem has the form H:::::} C. (In the exam

ple above, H is "two sides of a triangle are congruent" and C is "the 

angles opposite those sides are congruent.") 

Not every conditional statement is a theorem. For example, the 

statement 

If 6.ABC is any triangle, then it is isosceles 
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is not a theorem. Why not? You might say that this statement is "false," 

whereas theorems are "true." Let's avoid the loaded words "true" and 

"false" as much as we can, for they beg the question and lead us into 

much more complicated philosophical issues. 

In a given mathematical system, the only statements we call theo

rems are those statements for which a correct proof has been supplied. 

(We also call them propositions, corollaries, or lemmas. "Theorem" and 

"proposition" are interchangeable words, though usually the word "the

orem" is reserved for a particularly important proposition. A "corol

lary" is an immediate consequence of a theorem, and a "lemma" is a 

"helping or subsidiary theorem." Logically, they all mean the same; the 

title is just an indicator of the author's emphasis.) The statement that 

every triangle is isosceles has not been given a correct proof (I hope 

you found the flaw in the pretended proof in Chapter 1). You will later 

refute that statement in Euclidean geometry by proving there exists a 

triangle that is not isosceles. 

The crux of the matter, then, is the notion of proof. By definition, 

a proof is a list of statements, together with a justification for each 

statement, ending up with the conclusion desired. Usually, each state

ment in a formal proof will be numbered in this book, and the justifi

cation for it will follow in parentheses. 

LOGIC RULE 1. The following are the six types of justifications al

lowed for statements in proofs: 

(1) "By hypothesis ... " 

(2) "By axiom ... " 

(3) "By theorem ... " (previously proved ) 

( 4) "By definition ... " 

(5) "By step ... " (a previous step in the argument ) 

(6) "By rule ... of logic." 

Later in this text our proofs will be less formal, and justifications 

may be omitted when they are clear. (Be forewarned, however, that 

these omissions can lead to incorrect results.) Also, a justification may 

include several of the above types. 

Having described proofs, it would be nice to be able to tell you how 

to find or construct them. Yet that is the artistry, the creativity, of do

ing mathematics. Certain techniques for proving theorems are learned 

by experience, by imitating what others have done. If the problem is 

not too complicated, you can figure out a proof using your natural rea

soning ability. But there is no mechanical method for proving or dis-
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proving every statement in mathematics. (The nonexistence of such a 

mechanical method is, when stated precisely, a deep theorem in math

ematical logic and is the reason why computers as we know them to

day will never put mathematicians out of business-see any advanced 

text on mathematical logic. Of course, there has been progress in au

tomatic theorem proving for small portions of mathematics.) There is 

a mechanical method for verifying that a proof, presented formally, is 

correct-just check the justification for each step. In the discussion of 

Proposition 2.2 ahead, indication is given of how its proof might have 

been discovered. 

Some suggestions may help you construct proofs. First, make sure 

you clearly understand the meaning of each term in the statement of 

the proposed theorem. If necessary, review their definitions. Second, 

keep reminding yourself of what it is you are trying to prove. If it 
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involves parallel lines, for example, look up previously proved propo

sitions that give you information about parallel lines. If you find an

other proposition that seems to apply to the problem at hand, check 

carefully to see whether it really does apply. Draw diagrams to help 

you visualize the problem. 

RAA Proofs 
The most common type of proof in this book is proof by reductio ad 

absurd um, abbreviated RAA. In this type of proof, you want to prove 

a conditional statement, H:::::} C, and you begin by assuming the con

trary of the conclusion you seek. We call this contrary assumption the 

RAA hypothesis to distinguish it from the hypothesis H. The RAA hy

pothesis is a temporary assumption from which we derive, by reason

ing, an absurd statement ("absurd" in the sense that it denies some

thing known to be valid). Such a statement might deny the hypothesis 

of the theorem or the RAA hypothesis; it might deny a previously proved 

theorem or an axiom. Once it is shown that the negation of C leads to 

an absurdity, it follows that C must be valid. This is called the RAA 

conclusion. To summarize: 

LOGIC RULE 2. To prove a statement H :::::} C, assume the negation of 

statement C (RAA hypothesis) and deduce an absurd statement, using 

the hypothesis H if needed in your deduction. 

Let us illustrate this rule by proving the following proposition 

(Proposition 2.1): If land m are distinct lines that are not parallel, then 

l and m have a unique point in common. 

PROOF: 

(1) Because l and m are not parallel, they have a point in common 

(by definition of "parallel"). 

(2) Since we want to prove uniqueness for the point in common, 

we will assume the contrary, that l and m have two distinct 

points A and B in common (RAA hypothesis). 

(3) Then there is more than one line on which A and B both lie 

(step 2 and the hypothesis of the theorem, l i= m). 

(4) A and B lie on a unique line (Euclid's Postulate I). 

(S) Intersection of l and m is unique (step 3 contradicts step 4, RAA 

conclusion). <11111 
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A 

Figure 2.2 

Notice that in steps 2 and 5, instead of writing "Logic Rule 2" as jus

tification, we wrote the more suggestive "RAA hypothesis" and "RAA 

conclusion," respectively. 

As another illustration, consider one of the earliest RAA proofs, 

given by Aristotle and presumably discovered by the Pythagoreans (to 

their great dismay). In giving this proof, we will use some facts that 

you know about Euclidean geometry, algebra, and numbers, and we 

will be informal. 

Suppose .6:.ABC is a right isosceles triangle with right angle at C. 

We can choose our unit of length so that the legs have length 1. The 

theorem then says that the length of the hypotenuse is irrational (Fig

ure 2.2). 

By the Pythagorean equation, the length of the hypotenuse is \/2, 
so we must prove that V2 is an irrational number, i.e., that it is not 

a rational number. 

What is a rational number? It is a number that can be expressed as 

a quotient p/q of two integers p and q. For example, 2/3 and 5 = 5/1 

are rational numbers. We want to prove that V2 is not one of these 

numbers. 

We begin by assuming the contrary, that V2 is a rational number 

(RAA hypothesis). In other words, V2 = p/q for certain unspecified 

whole numbers p and q. We may assume, from our knowledge of num

bers and fractions, that after canceling out any common 2's, p and q 
are not both even numbers. 

Next, we clear denominators 

Vlq=p 

and square both sides: 
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This equation says that p2 is an even number (since p2 is twice an

other whole number, namely, q2). If p2 is even, p must be even, for 

the square of an odd number is odd, as you know. Thus, 

p = 2r 

for some whole number r (by definition of "even"). Substituting 2r for 

p in the previous equation gives 

2q2 = (2r)2 = 4r2. 

We then cancel 2 from both sides to get 

q2 = 2r2. 

This equation says that q2 is an even number; hence, as before, q must 

be even. 

We have shown that numerator p and denominator q are both even. 

Now this is absurd because all common 2 factors were canceled. Thus 

v'2 is irrational (RAA conclusion). <Ill 

Negation 
In an RAA proof, we begin by "assuming the contrary." Sometimes the 

contrary or negation of a statement is not obvious, so you should know 

the rules for negation. 

First, some remarks on notation. If S is any statement, we will de

note the negation or contrary of S by -S. For example, if S is the state

ment "p is even," then -S is the statement "p is not even" or "p is 

odd." 

The rule below applies to those cases where S is already a negative 

statement. The rule states that two negatives make a positive. 

LOGIC RULE 3. The statement "-(-S)" means the same as "S." 

We followed this rule when we negated the statement "Vl is irra

tional" by writing the contrary as "v'2 is rational" instead of "v'2 is 

not irrational." 

Another rule we have already followed in our RAA method is the 

rule for negating an implication. We wish to prove H:::::} C, and we as

sume, on the contrary, H does not imply C, i.e., that H holds and at 

the same time -C holds. We write this symbolically as H & -C, where 

& is the abbreviation for "and." A statement involving the connective 

"and" is called a conjunction. Thus: 
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LOGIC RULE 4. The statement " -[H :::::} C]" means the same thing as 

"H & -C." 

Let us consider, for example, the conditional statement "If 3 is an 

odd number, then 32 is even." According to Rule 4, the negation of this 

is the declarative statement "3 is an odd number and 32 is odd." 

How do we negate a conjunction? A conjunction S1 & S2 means that 

statements S1 and S2 both hold. Negating this would mean asserting 

that one of them does not hold, i.e., asserting the negation of one or 

the other. Th us: 

LOGIC RULE 5. The statement "-[S1 & S2]" means the same as 

"[-S1 V -S2]." 

Here we have introduced the logic symbol "V" to abbreviate or. A 

statement involving "V" is called a disjuncti.on. The mathematical "or" 

is not exclusive like the "or" in everyday usage. When a mathemati

cian writes "S1 V S2,'' what is meant is "either S1 holds or S2 holds or 

they both hold." 

Now let us clarify what is meant by "an absurd statement" in Rule 

2 (RAA): It is a contradicti.on, a statement of the form "S & -S." Usu

ally in an RAA argument, statement S will occur in one line of the proof 

and statement -S will occur in another line. By the meaning of "and" 

we can then infer S & -S, but we will usually not bother with that and 

will just point out that the line with -S contradicts the line with S. 

Quantifiers 
Most mathematical statements involve variables. For instance, the 

Pythagorean theorem states that for any right triangle, if a and b 

are the lengths of the legs and c the length of the hypotenuse, then 

c2 
= a2 + b2

• Here a, b, and c are variable numbers, and the triangle 

whose sides they measure is a variable triangle. 

Variables can be quantified in two different ways. First, in a uni

versal way, as in the expressions: 

"For any x, . . . " 

"For every x, . . . " 

"For all x, . . . " 

"Given any x, . . .  " 

"If x is any . . . " 



62 LOGIC AND INCIDENCE GEOMETRY 

Second, in an existential way, as in the expressions: 

"For some x, . . . " 

"There exists an x . . . " 

"There is an x . . . " 

"There are x . . . " 

Consider Euclid's first postulate, which states informally that two points 

P and Q determine a unique line l. Here P and Q may be any two 

points, so they are quantified universally, whereas l is quantified exis

tentially since it is asserted to exist once P and Q are given. 

It must be emphasized that a statement beginning with "For 

every . . . " does not imply the existence of anything. The statement 

"Every unicorn has a horn on its head" does not imply that unicorns 

exist. 

If a variable x is quantified universally, this is usually denoted as 

\:/x (read as "for all x"). If x is quantified existentially, this is usually 

denoted as 3x (read as "there exists an x . . . "). After a variable x is 

quantified, some statement is made about x, which we can write as 

S(x) (read as "statement S about x"). Thus, a universally quantified 

statement about a variable x has the form \:/xS(x). 

We wish to have rules for negating quantified statements. How do 

we deny that statement S(x) holds for all x? We can do so clearly by 

asserting that for some x, S(x) does not hold. 

LOGIC RULE 6. The statement "�[\:/xS(x)]" means the same as 

"3x � S(x)." 

For example, to deny "All triangles are isosceles" is to assert "There 

is a triangle that is not isosceles." 

Similarly, to deny that there exists an x having property S(x) is to 

assert that all x fail to have property S(x). 

LOGIC RULE 7. The statement "� [3xS (x) ] " means the same as 

"\:/x � S(x)." 

For example, to deny "There is an equilateral right triangle" is to 

assert "Every right triangle is nonequilateral" or, equivalently, to assert 

"No right triangle is equilateral." 

Since in practice quantified statements involve several variables, the 

above rules will have to be applied several times. Usually, common 

sense will quickly give you the negation. If not, follow the above rules. 
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Let's work out the denial of Euclid's first postulate. This postulate 

is a statement about all pairs of points P and Q; negating it would mean, 

according to Rule 6, asserting the existence of points P and Q that do 

not satisfy the postulate. Postulate I involves a conjunction, asserting 

that P and Q lie on some line l and that l is unique. In order to deny 

this conjunction, we follow Rule 5. The assertion becomes either "P 

and Q do not lie on any line" or "they lie on more than one line." Thus, 

the negation of Postulate I asserts: "There are two points P and Q that 

either do not lie on any line or lie on more than one line." 

If we return to the example of the surface of the earth, thinking of 

a "line" as a great circle, we see that there do exist such points P and 

Q-namely, take P to be the north pole and Q the south pole. Infinitely 

many great circles pass through both poles (see Figure 2.3). 

Mathematical statements are sometimes made informally, and you 

may sometimes have to rephrase them before you will be able to negate 

them. For example, consider the following statement: 

If a line intersects one of two parallel lines, 

it also intersects the other. 

This appears to be a conditional statement, of the form "if . 

then . . . "; its negation, according to Rule 4, would appear to be: 

A line intersects one of two parallel lines 

and does not intersect the other. 

If this seems awkward, it is because the original statement con

tained hidden quantifiers that have been ignored. The original state

ment refers to any line that intersects one of two parallel lines, and 

these are any parallel lines. There are universal quantifiers implicit in 

North pole 

Figure 2.3 
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the original statement. So we have to follow Rule 6 as well as Rule 4 

in forming the correct negation, which is: 

There exist two parallel lines and a line that intersects 

one of them and does not intersect the other. 

Here are two other ways we will work with quantifiers in proofs. 

Suppose it has been previously proved or an axiom states that there 

exists some object with a certain property. We are then permitted to 

say "Let ... be an object with that property." This amounts to nam

ing an exemplar of what has been proved to exist. For example, 

Euclid's third postulate asserts the existence of a circle with a given ra

dius. So we can say "Let y be a circle with radius . . . " and refer to 

Euclid III for justification. This naming method is called specification. 

Going in the other direction, suppose we wish to prove that all objects 

of a certain type have a certain property. We begin by naming an ar

bitrary object of that type. Then we prove that it has the property we 

seek. Since the object was arbitrary, we are allowed to conclude that 

all objects of that type have the desired property. That method is called 

generalization. For example, suppose we want to prove that the square 

of every odd number is odd. We start by saying "Let n be an odd num

ber " and justify this as our hypothesis. Then we prove that the square of 

n is odd. That will usually be the end of our proof, it being understood 

that since n was arbitrary, we have proved the assertion for all n. 

Implication 
Another rule, called the rule of detachment, or modus ponens, is the 

following: 

LOGIC RULE 8. If P:::::} Q and P are steps in a proof, then Q is a jus

tifiable step. 

This rule is almost a definition of what we mean by implication. 

For example, we have an axiom stating that if <r..A and <r..B are right 

angles, then <r..A � <r..B (Postulate IV). Now in the course of a proof, 

we may come across two right angles. Rule 8 allows us to assert their 

congruence as a step in the proof. 

You should beware of confusing a conditional statement P :::::} Q with 

its converse Q :::::} P. For example, the converse of Postulate IV states 

that if <r..A � <r..B, then <r..A and <r..B are right angles, which is not valid. 
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However, it may sometimes happen that both a conditional state

ment and its converse are valid. In the case where P :::::} Q and Q :::::} P 

both hold, we write simply P <=> Q (read as "P if and only if Q" or 

"P is logically equivalent to Q"). All definitions are of this form. For ex

ample, three points are collinear if and only if they lie on a line. Some 

theorems are also of this form, such as the theorem "a triangle is isosce

les if and only if two of its angles are congruent to each other." An ab

breviation for "P if and only if Q" is "P iff Q." 

The next rule gives a few more ways that "implication" is often 

used in proofs. 

LOGIC RULE 9. 

(a) [[P :::::} Q] & [Q :::::} R]] :::::} [P :::::} R] 

(b) [P & Q] :::::} P, [P & Q] :::::} Q 

(c) [-Q:::::} -P] <=> [P:::::} Q] 

Part (c) states that every implication P :::::} Q is logically equivalent 

to its contrapositive -Q:::::} -P. For example, the statement "If two sides 

of a triangle are congruent, then the angles opposite those sides are 

congruent" is logically equivalent to the statement "If the angles op

posite two sides of a triangle are not congruent, then the two sides are 

not congruent." You can verify this logical equivalence by using the 

RAA rule and Rule 3. Part (a) expresses the transitivity of implication. 

Part (b) gives the connection between conjunction and implication. 

All parts of Rule 9 are called tautologies because they are valid just 

by their form, not because of what P, Q, and R mean; by contrast, the 

validity of a formula such as P :::::} Q does depend on the meaning of 

its constituents P and Q, as we have seen. There are infinitely many 

tautologies, and the next rule gives the most controversial one (see the 

historical discussion below). 

Law of Excluded Middle and Proof by Cases 

LOGIC RULE 10. For every statement P, "P V -P" is a valid step in 

a proof (law of excluded middle). 

For example, given point A and line l, we may assert that either A 

lies on l or it does not. If this is a step in a proof, we will usually then 

break the rest of the proof into cases-giving an argument under the 

case assumption that A lies on l and giving another argument under the 

case assumption that A does not. Both arguments must be given, or else 
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the proof is incomplete. A proof of this type is given in Chapter 3 for 

the proposition that there exists a line through A perpendicular to l. 

Sometimes there are more than two cases. For example, it is a the

orem that either an angle is acute or it is right or it is obtuse-three 

cases. We will have to give three arguments-one for each case as

sumption. You will give such arguments when you prove the SSS (side

side-side) criterion for congruence of triangles in Execise 32 of Chap

ter 3. This method of proof by cases was used (correctly) in the incorrect 

attempt in Chapter 1 to prove that all triangles are isosceles. 

LOGIC RULE 11. Suppose the disjunction of statements S1 or S2 or 

. . . or Sn is already a valid step in a proof. Suppose that proofs of C 

are carried out from each of the case assumptions S1, S2, ... , Sn. Then 

C can be concluded as a valid step in the proof (proof by cases). 

Finally, we will state Euclid's "common notions" for equality as a 

rule of logic. 

LOGIC RULE 12. 

(1) VX (X = X) 

(2) VX VY (X = Y <=> Y = X) 

(3) VX VY VZ ((X = Y & Y = Z) ::::} X = Z) 

( 4) If X = Y and S(X) is a statement about X, then S(X) <=> S(Y). 

Statement (1) says equality is reflexive; (2) says equality is symmetric; 

and (3) says equality is transitive. The conjunction of (2) and (3) gives 

us Euclid's common notion that "things equal to the same thing are 

equal to each other." Later on we will encounter other binary relations 

having these three properties-congruence, for example. Such relations 

are called equivalence relations. They play an extremely important role 

in modern mathematics. Statement (4) says that "equals can be sub

stituted for equals" in any statement. This informal assertion must be 

qualified when quantifiers are part of the statement, for in that case you 

are only allowed to substitute for "free" occurrences of the variable X. 

See any logic textbook for the details. 

Brief Historical Remarks 
This concludes our list of rules for elementary logic. No claim is made 

that all the basic rules of logic have been listed, just that those listed 
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suffice for our purpose of developing elementary geometry (we have 

skipped many technical details, including the careful development of a 

formal language-all "statements" we discuss must be expressed in that 

language). Euclid took the rules of reasoning for granted, but if we are 

committed to making all our assumptions explicit, we should do so not 

only for our geometric assumptions but also for our assumptions about 

logic. 

Aristotle was the first to formulate basic principles of logic in his 

system of syllogisms. However, mathematicians in ancient Greece did 

not use Aristotle's syllogistic forms. Instead, they basically followed the 

forms of argument delineated in the third century B.c. by the Stoic 

(Megarian) philosophers-most prominently Chrysippus, considered a 

greater logician than Aristotle, but his works mostly have been lost. 

It was Gottfried Wilhelm von Leibniz in his 1666 publication De 

Arte Combinatoria who first proposed the idea of an algebra of logic. 

He wished to develop a symbolic language for reasoning with a sim

ple set of basic rules to do logic algebraically. It was not until the mid

dle of the nineteenth century that George Boole and Augustus de Mor

gan began to carry out his idea. Boolean algebra is now the foundation 

for computer arithmetic and is very important in pure mathematics. 

In 1879 Gottlob Frege brought quantifiers into logic, introducing 

what is now known as the predicate calculus, but with terrible nota

tion. Most of the currently used notation and methods of mathemati

cal logic stem from the society of logicians founded in the 1880s by 

Giuseppe Peano along with Mario Pieri. They emphasized the impor

tance of a formal symbolic language for mathematics to remove the 

ambiguities of natural languages, to make mathematics utterly precise, 

and to permit the mathematical study of entire mathematical theories. 

Many years later, this formalization also enabled the programming of 

computers to do mathematics. 

The discovery and validation of non-Euclidean geometries, together 

with Georg Cantor's invention of set theory and Karl Weierstrass' rig

orous presentation of analysis, caused mathematicians to study ax

iomatics seriously for the first time. It was not until 1889 that axioms 

for the arithmetic of natural numbers were satisfactorily formulated

by Peano, based on Richard Dedekind's set-theoretic development 

using the successor function (and influenced by earlier algebraic work 

of Herman Grassmann). Peano's 1899 "first-order" axioms did not re

fer to sets. They included the basic algebraic laws of addition and mul

tiplication and, most importantly, the principle of mathematical induc

tion, which mathematicians had been using informally since at least 
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the time of Fermat and Pascal. The formal system based on those ax

ioms is called Peano arithmetic, denoted PA. Hilbert's set-theoretic ax

iomatization of elementary geometry also appeared in 1899. 

In the twentieth century, mathematical logic came into its own as 

a very important branch of mathematics. The most influential founda

tional works in logic in the early twentieth century were the Principia 

Mathematica of Bertrand Russell and A. N. Whitehead; the work of 

David Hilbert with his associates Wilhelm Ackermann, Paul Bernays, 

and John von Neumann; and the contributions of Thoralf Skolem. By 

formalizing all rules of reasoning and axioms in a purely symbolic 

language, mathematicians were able to study entire branches of their 

subject, such as Peano arithmetic and elementary geometry and 

Zermelo-Fraenkel set theory. They were then able to prove theorems 

about those branches-theorems that are called metamathematical be

cause they are about mathematical theories, not about numbers or geo

metric figures or sets. The most important metamathematical theorems 

are the completeness and incompleteness theorems of Kurt Godel from 

the early 1930s, which revolutionized our thinking about the nature of 

mathematics. Also vitally important in the 1930s were the equivalent 

determinations of the class of effectively computable number-theoretic 

functions by Alan Turing, Alonzo Church, Emil Post, and Godel. 

The rules of logic we have listed come from what is known as clas

sical two-valued logic. Just as there are non-Euclidean geometries, in 

which certain axioms of Euclidean geometry are changed, there are also 

non-classical logics in which certain rules are changed or dropped. For 

example, constructivist mathematicians such as L. E. J. Brouwer and 

Errett Bishop reject the use of the law of excluded middle when ap

plied to infinite sets; Arend Heyting developed the so-called intuition

ist formal logic for reasoning without that law. Constructivists believe 

that it is meaningless to assert that a statement either holds or does 

not hold when we have no method of deciding which one is the case 

(so for them statements have three values: true, false, and presently 

indeterminate). They also reject Logic Rule 6 when applied to infinite 

sets because they insist that in order to meaningfully assert that a math

ematical object exists, one must supply an "effective" method for con

structing it; they consider it inadequate merely to assume that the 

object does not exist (RAA hypothesis) and then derive a contradiction. 

Such a derivation for them merely proves - -Q, where Q is the exis

tence assertion; for them, - -Q does not automatically imply Q (they 

deny Logic Rule 3). 

The constructivists do not challenge the use of classical logic in 

elementary geometry. 
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Incidence Geometry 
Let us apply the logic we have developed to a very basic part of geom

etry, incidence geometry. This is a geometry of straightedge drawing 

alone, if you like-no circles are given, only lines and points. We will 

see that there are many different examples of such a geometry. We as

sume only the undefined terms point and line and the undefined rela

tion incidence between a point and a line, expressed as "P lies on l" 

or "l passes through P," as before. We will also use the abbreviation 

P I l in formulas. We don't discuss "betweenness" or "congruence" or 

distance in this restricted geometry. We are now beginning the new ax

iomatic development of geometry that fills the gaps in Euclidean geom

etry and applies to other geometries as well; that development will con

tinue in later chapters. 

These undefined terms will be subjected to three axioms, the first 

of which is the same as Euclid's first postulate. 

INCIDENCE AXIOM 1. For every point P and for every point Q not 

equal to P, there exists a unique line l incident with P and Q. 

We say that "l is the line joining P to Q," and we denote it, as be
� 

fore, by PQ. 

INCIDENCE AXIOM 2. For every line l, there exist at least two distinct 

points incident with l. 

INCIDENCE AXIOM 3. There exist three distinct points with the prop

erty that no line is incident with all three of them. 

The last two axioms fill the gap mentioned in the Exercises of Chap

ter 1. We can now assert that every line has points lying on it-at least 

two, possibly more-and that all the points do not lie on one single 

line. Moreover, we know that the geometry must have at least three 

distinct points in it, by the third axiom and Rule 9(b) of logic. Namely, 

Incidence Axiom 3 is a conjunction of two statements: 

1. There exist three distinct points. 

2. For every line, at least one of these points does not lie on that line. 

Rule 9 (b) tells us that a conjunction of two statements implies each 

statement separately, so we can conclude that three distinct points ex-
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ist (applying Rule 8, modus ponens). Applying Incidence Axiom 1 to 

any pair of those three points, we deduce that the geometry must also 

have at least three distinct lines. 

When we refer to these axioms in our justifications, we will denote 

them as I-1, I-2, and I-3. 

Incidence geometry has some defined terms, such as "collinear," 

"concurrent," and "parallel," defined exactly as they were in Chapter 

1. To repeat: 

DEFINITION. Three or more points A, B, C, ... are collinear if there 

exists a line incident with all of them. 

Axiom I-3 can be rewritten as "There exist three distinct non

collinear points." 

DEFINITION. Three or more lines l, m, n, ... are concurrent if there 

exists a point incident with all of them. 

As before, if point P lies on both l and m, we say that "l and m in

tersect or meet at P" or "l and m have point P in common." Notice 

that "concurrent " is the dual notion to "collinear " in the sense that it 

is defined the same way except that the roles of point and line are 

interchanged. 

DEFINITION. Lines l and m are parallel if they are distinct lines and 

no point is incident with both of them. 

We use the notation l II m for "l and m are parallel." Notice that 

according to Axiom I-1, the dual notion for points to the notion of par

allel lines is vacuous-there are no such pairs of points. 

For the fun of it, let us write our three axioms in symbolic logic no

tation, with the understanding that capital letters denote points and 

italic lowercase letters denote lines. We will use the abbreviation 3 ! to 

mean "There exists a unique ... (having a certain property)." We also 

abbreviate -(P = Q) by P-:/= Q. 

AXIOM 1-1. 'v'P'v'Q ((P i= Q) ::::} 3 ! l (P I l & Q I l)) 

AXIOM 1-2. 'v'l 3P3Q (P i= Q & (P I l & Q I l)) 

AXIOM 1-3. 3A3B3C ((A i= B & A i= C & B i= C) & - 3l (A I l & 

B I l & C I l)) 
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What sort of results can we prove using this meager collection of 

axioms? None that are very exciting, but here are five easy ones. We 

proved the first one previously. 

PROPOSITION 2.1. If l and m are distinct lines that are not parallel, 

then l and m have a unique point in common. 

PROPOSITION 2.2. There exist three distinct lines that are not 

concurrent. 

For students new to doing proofs, permit me to think "out loud" 

slowly just to illustrate how one might discover a proof of this. If I were 

not familiar with the notion of concurrence, I would reread the defini

tion to make sure I understood it. I might draw one or more diagrams 

to help me visualize three nonconcurrent lines. Then I might get an

noyed at having to prove something so obvious but would remind my

self that we're learning to be rigorous, which will turn out to be a use

ful skill. I look at the axioms to see which ones tell me that lines exist. 

Not I-3, because the only line mentioned there is said not to exist. Not 

I-2, because although it says that every line has a certain property, I re

member that that doesn't guarantee existence ("Every unicorn . . . "). 

So I have to use I-1, which does assert the existence of a line, but it is 

a conditional existence-first I have to be given two points. Where will 

I find them? Aha! I-3 gives me three distinct points A, B, C, and they're 

not collinear. Then I can apply I-1 and join those points in pairs to ob

tain three lines that are distinct because the points are not collinear. Are 

those lines concurrent? Certainly not, but to prove it I could first prove 

a lemma that if three lines are concurrent, the point at which they meet 

is unique. This follows from Proposition 2.1 already proved. So I can 

finish the argument using RAA: If those joins were concurrent, then A= 

B = C, contradicting the way we obtained those points. Done! 

I leave it as an exercise to rewrite that argument as a formal proof 

and to find proofs for the following three propositions. Remember that 

you can use results previously proved. 

PROPOSITION 2.3. For every line, there is at least one point not ly

ing on it. 

PROPOSITION 2.4. For every point, there is at least one line not pass

ing through it. 

PROPOSITION 2.5. For every point P, there exist at least two distinct 

lines through P. 
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Models 

In reading over the axioms of incidence in the previous section, you 
may have imagined drawing dots for points and, with a straightedge, 
long dashes to illustrate lines. With this representation in mind, the ax

ioms appear to be correct statements (ignoring as usual the breadth of 

the drawn dots and dashes). We will take the point of view that these 

idealized dots and dashes are a model for incidence geometry. 

More generally, if we have any formal system, suppose we inter
pret the undefined terms in some way-i.e., give the undefined terms 

a particular meaning-and then interpret statements about those un
defined terms by substituting the interpreted meanings. We call this an 

interpretation of the system. We can then ask whether the axioms, so 
interpreted, are correct statements. If they are, we call the interpreta
tion a rrwdel of the axioms. When we take this point of view, inter

pretations of the undefined terms "point," "line," and "incident" other 
than the usual dot-and-dash drawings become possible. That is some

thing Euclid never imagined. Moritz Pasch said in 1882: 

If geometry is to be deductive, the deduction must everywhere be in

dependent of the meaning of geometrical concepts, just as it must be 

independent of the diagrams; only the relations specified in the postu
lates and definitions employed may legitimately be taken into account. 

- EXAMPLE 1. Consider a set {A, B, C} of three distinct letters. 

We interpret "point" to be any one of those letters. "Lines" will be 
those subsets that contain exactly two letters-{A, B}, {A, C}, and 
{B, C}. A "point" will be interpreted as "incident" with a "line" if it is 

a member of that subset. Thus, under this interpretation, A lies on 

{A, B} and {A, C} but does not lie on {B, C}. In order to determine 
whether this interpretation is a model, we must check whether the in
terpretations of the axioms are correct statements. For Incidence Ax

iom 1, if P and Q are any two of the letters A, B, and C, then {P, Q} 
is the unique "line" on which they both lie. For Axiom I-2, if {P, Q} 

is any "line," P and Q are two distinct "points" lying on it. For Axiom 

I-3, we see that A, B, and C are three distinct "points" that are not 

collinear. 
What is the use of models? The main property of any model of an 

axiom system is that all theorems of the system are correct statements 

in the model. This is because logical consequences of correct state-
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ments are themselves correct. (By the definition of "model," axioms 
are correct statements when interpreted in models; theorems are logi

cal consequences of axioms. We are assuming that the rules of logic 

we have listed apply to our models.) Thus, we immediately know that 

the five propositions in the previous section hold when interpreted 
in the three-point model of Example 1. Check them if you are not 

convinced. 

Suppose we have a statement in the formal system but don't yet 

know whether it can be proved. We can look at our models and see 
whether the statement is correct in the models. If we can find one 

model where the interpreted statement fails to hold, we can be sure 
that no proof is possible. You are undoubtedly familiar with testing for 
the correctness of geometric statements by drawing diagrams. Of course, 

the converse does not work; just because a drawing makes a statement 
look right does not guarantee that you can prove it. This was illustrated 
in Chapter 1. 

The advantage of having several models is that a statement may 
hold in one model but not in another. Models are "laboratories" for ex

perimenting with the formal system. 
Let us experiment with the Euclidean parallel postulate. This is a 

statement in incidence geometry: "For every line l and every point P 

not lying on l, there exists a unique line through P that is parallel to 

l." This statement appears to be correct if we imagine our drawings are 

on an infinite flat sheet of paper (can you see that on a finite sheet 

there would be many parallels through P?). But what about our three
point model? It is immediately apparent that no parallel lines exist in 
this model: {A, B} meets { B, C} in the point B and meets {A, C} in 

the point A; {B, C} meets {A, C} in the point C. (We say that this 

model has the elliptic parallel property, as shown in Figure 2.4.) 

Thus, we can conclude that no proof of the Euclidean parallel pos

tulate from the axioms of incidence alone is possible; in fact, from the 

B 

Figure 2.4 Elliptic parallel property (no parallel lines). A three-point 

incidence geometry. 
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axioms of incidence geometry alone, it is impossible to prove that par

allel lines exist. Similarly, the statement "any two lines have a point in 

common" (the elliptic parallel property) cannot be proved from the 

axioms of incidence geometry, for if you could prove it, it would hold 

in the idealized drawn model and in the models that will be described 

in Examples 3 and 4. 

The technical description for this situation is that the statement "Par

allel lines exist" is "independent" of the axioms of incidence. We call 

a statement independent of or undecidable from given axioms if it is 

impossible to either prove or disprove the statement from those ax

ioms. Independence may be demonstrated by constructing two models 

for the axioms: one in which the statement holds and one in which it 

does not hold. This method will be used very decisively in Chapter 7 

to settle once and for all the question of whether the Euclidean paral

lel postulate can be proved using all the other axioms we will later in

troduce. For now, we know that the incidence axioms alone are too 

weak to prove it. 

- EXAMPLE 2. Suppose we interpret "points" as points on a sphere, 

"lines" as great circles on the sphere, and "incidence" in the usual 

sense, as a point lying on a great circle. In this interpretation there are 

again no parallel lines because any pair of great circles on a sphere in

tersect in two points that are antipodal (meaning the straight line in 

three-space joining them passes through the center of the sphere-like 

the north and south poles). However, this interpretation is not a model 

for incidence geometry, for the uniqueness part of the interpretation of 

Axiom I-1 fails to hold-e.g., there are infinitely many great circles pass

ing through the north and south poles on the sphere, all the "circles 

of longitude" (see Figure 2.3, p. 63). 

- EXAMPLE 3. Let the "points" be the four letters A, B, C, and D. 

Let the "lines" be all six sets containing exactly two of these letters: 

{A, B}, {A,C}, {A, D}, {B, C}, {B, D}, and {C, D}. Let "incidence" 

be set membership, as in Example 1. As an exercise, you can verify 

that this is a model for incidence geometry and that in this model the 

Euclidean parallel postulate does hold (see Figure 2.5). By Examples 1 

and 3, the Euclidean parallel postulate is independent of the axioms of 

incidence geometry. 

- EXAMPLE 4. Let the "points" be the five letters A, B, C, D, and 

E. Let the "lines" be all 10 sets containing exactly two of these letters. 
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B 

Figure 2.5 Euclidean parallel property. A four-point incidence geometry. 

Let "incidence" be set membership, as in Examples 1 and 3. You can 

verify that in this model the following statement about parallel lines, 

called the hyperbolic parallel property, holds: "For every line l and every 

point P not on l, there exist at least two lines through P parallel to l" 

(see Figure 2.6). 

(The figures illustrating Examples 1, 3, and 4 are only meant to be 

suggestive. They have features not included in the definition of those 

models in terms of letters. For example, in Figure 2.5, the dash illus

trating the "line" {A, D} appears to intersect the dash illustrating the 

"line" {B, C} when those "lines" are actually parallel, so it's better to 

view Figures 2.5 and 2.6 as three-dimensional drawings.) 

Let us summarize the significance of models. Models can be used 

to demonstrate the impossibility of proving or disproving a statement 

from the axioms. We just showed the undecidability of the Euclidean, 

elliptic, and hyperbolic statements about parallel lines in incidence 

geometry. Moreover, if an axiom system has many models that are es

sentially different from one another, as are the models in Examples 1, 

3, and 4, then that system has a wide range of applicability. Proposi

tions proved from the axioms of such a system are automatically 

B 

E 

Figure 2.6 Hyperbolic parallel property. A five-point incidence geometry. 
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correct statements within any of the models. Mathematicians often dis

cover that an axiom system they constructed with one particular model 

in mind has applications to completely different models they never 

dreamed of, as we will see. 

As we mentioned in Chapter 1, Johannes Kepler believed that the 

regular heptagon (seven-sided) was "unknowable" because he argued 

that there is no way to construct it using straightedge and compass 

alone. For Kepler, knowledge in geometry meant constructibility by 

straightedge and compass. After Kepler died and by the time real ana

lytic geometry became generally accepted, no mathematician of any im

portance denied knowledge of the regular heptagon or, more generally, 

the regular n-gon, because they accepted the possibly nonconstructible 

existence of the angle whose radian measure is 27r/n. By successively 

laying off this angle with vertex at the origin n times, the points where 

those rays intersect a fixed circle centered at the origin will form the 

vertices of a regular n-gon. We will see from our study of models of 

our axioms of geometry that existence may depend on which model 

you're looking at. 

In Chapter 3, we will exhibit a model (coordinatized by the field of 

constructible numbers) of the elementary Euclidean axioms in which 

regular heptagons do not exist. So from our current point of view, Ke

pler was merely restricting his attention to such a model. You can see 

that "existence" is a tricky notion! (See Project 7, Chapter 1 for a ref

erence to Viete's neusis construction of the regular heptagon.) 

Consistency 
An axiomatized theory is called consistent if no contradiction can be 

proved from the axioms. Notice that in an inconsistent theory, every 

statement is provable because of the RAA rule: Given any statement S, 

assume �s (RAA hypothesis). Since the theory is inconsistent, it has 

proved some contradiction (we don't care which). Hence, by RAA con

clusion, S is proved in that theory. This is a three-step proof of S in 

the inconsistent theory. Review the RAA rule if you don't follow this. 

Obviously, an inconsistent theory is worthless. 

Models provide evidence for the consistency of the axiom system. 

For example, if incidence geometry were inconsistent, there would ex

ist a proof of the statement V'PV'Q (P = Q) (since, as we just showed, 
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any statement in the language of an inconsistent theory could be 

proved). Translating that alleged proof into the language of the three

point model of Example 1, we would have a proof that A= B, for in

stance. But we chose our model so as to have three distinct letters A, 

B, and C. Hence, we know that incidence geometry is consistent. 

We will discuss the question of consistency of Euclidean and non

Euclidean geometries in Chapter 7. For now, note that the consistency 

of Euclidean geometry was never doubted because it was believed to 

describe, in an idealized fashion, the space in which we all live. In that 

sense, it was believed that its axioms are "true." We will see that the 

discovery of non-Euclidean geometry shattered the belief in the "truth" 

of Euclidean geometry. However, all classical mathematicians believe 

that Euclidean geometry is consistent, especially since no contradiction 

has popped up in over 2400 years. No one has any idea how to prove 

that in an absolute manner similar to the proof that incidence geome

try is consistent. We will later discuss Hilbert's relative proof of the 

consistency of real Euclidean geometry-relative to the consistency of 

the theory of the real number system. 

NOTE FOR ADVANCED STUDENTS. Mathematicians first became se

riously concerned about consistency after it was discovered that Georg 

Cantor's set theory contained contradictory statements about the set of 

all sets or the set of all ordinal numbers. Bertrand Russell's famous par

adox (see Exercise 19) showed that Gottlob Frege's system of logic and 

classes was inconsistent. 

It is generally very difficult if not impossible to convincingly prove 

that complicated mathematical theories are consistent. The simplest 

such proof of any importance is the one that propositional logic-logic 

without quantifiers-is consistent. The key to that proof is to introduce 

suitable "truth tables" for statements in propositional logic. A tautol

ogy is a statement whose truth table has only "true" in all its entries, 

no matter what the "truth values" of its constituents are (e.g., P :::::} P 

is "true" no matter what Pis). After stating suitable axioms, the key is 

to prove that all theorems in propositional logic are tautologies (and 

conversely). Since P & � P is not a tautology (it is "false" no matter 

what Pis), it cannot be proved. Hence propositional logic is consistent. 

For details, see any good mathematical logic text. Notice, however, that 

although we have used loaded words like "true" and "false" here, be

cause of the historical and psychological origin of these ideas, we could 

just as easily have used any two distinct signs, such as 1 and 0. 
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You will find in many reputable books and articles the claim that 

"If a formal axiomatic theory <!I has a model .M, then <!I is consistent" -

some books even describe this claim as a "theorem" in metamathe

matics. The idea behind such a claim is that the model "exists in re

ality," so it is meaningful to assert that statements in the model are 

either "true" or "false." Now by definition of a model, the axioms of 

<!I are true when interpreted in .M, and since our logic is designed to 

be truth-preserving, all the statements in <!I proved from those axioms 

must also be true when interpreted in .M. Hence if a contradiction were 

provable in <!I, the interpretation in .M of that contradiction, which is 

also a contradiction, would be true in .M. But contradictions are false, 

not true. Therefore, <!I must be consistent if it has a model .M. 

We used that strategy to prove that incidence geometry is consis

tent, arguing that if it was inconsistent, then we could prove A = B in 

the model of Example 1, a statement we know is false. The point is 

that for such a trivial three-point model, the notions of "truth" and "fal

sity" for statements in the set-theoretic language of that model are 

straightforward and can be rigorously defined (e.g., using a method of 

Alfred Tarski). 

However, when we are dealing with infinite nwdels, the notions of 

"truth" and "falsity" are not so clear, and there is even disagreement 

among reputable mathematicians and philosophers as to whether such 

models "really exist." Therefore, that claim would not be a theorem in 

metamathematics until further hypotheses are added. 

For example, PA (Peano arithmetic) has as its "standard" model the 

infinite system N of natural numbers. Reputable mathematicians like 

Gauss did not accept that N exists because it is an infinite set (Gauss, 

as we mentioned, accepted Aristotle's doctrine that infinity is only 

potential-one cannot collect all the natural numbers in a set). In for

mal set theory, an axiom is required to obtain the existence of N-it 

is simply assumed to exist. And even for those mathematicians who do 

accept its existence, the concept of truth in N is not generally clear to 

all-constructivists don't accept it and philosophers are still arguing 

about it. 

If the model N guaranteed, as claimed, that PA is consistent, then 

why did Hilbert and his associates work so hard trying to prove con

sistency by "finitary" methods? Although they obtained finitary con

sistency proofs for some simpler arithmetical theories, they couldn't 

prove by finitary methods that the full PA was consistent and com

plete. Then Godel, in 1931, proved that it is impossible to prove the 
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consistency of PA by methods considered to be "finitary" -that was his 

famous second incompleteness theorem (his first incompleteness theo

rem proved that PA is incomplete by constructing a formal statement 

that was undecidable from the axioms of PA). 

Virtually all mathematicians believe that PA is consistent, but after 

Godel's result, we have no hope of proving consistency by methods 

considered to be finitary. The attitude of most mathematicians is that 

the belief in the consistency of PA and Zermelo-Fraenkel (ZF) set the

ory is based on experience: No contradiction has been found in all the 

many years we have been working with those systems. We have con

fidence that if a contradiction is ever found, mathematicians will ad

just their axioms a bit to get rid of it, as was done when Cantor's in

formal infinite set theory was formalized by Ernest Zermelo and 

Abraham Fraenkel in the early twentieth century. Nicholas Bourbaki 

wrote: "Historically speaking, it is of course untrue that mathematics 

is free from contradiction; non-contradiction appears as a goal to be 

achieved, not as a God-given quality that has been granted us once for 

all." 

Model theory is a very important branch of mathematical logic. It 

was via infinite model theory that Abraham Robinson, in 1960, dis

covered an extension of the real number system-now called the hy

perreal numbers-in which infinitesimals and infinitely large numbers 

exist. His nonstandard analysis showed how to use them to justify the 

use of infinitesimal and infinite methods in the differential and integral 

calculus-methods that were freely used without justification by New

ton, Leibniz, Euler, et al. 

The three-, four-, and five-point models we have exhibited are triv

ial examples of finite incidence geometries. Finite geometries have 

turned out to be surprisingly important (see Project 7). 

Isomorphism of Models 
We now make precise the important notion of two models being "es

sentially the same," or isomorphic. For incidence geometries, this will 

mean that there exists a one-to-one correspondence P � P' between 

the points of the models and a one-to-one correspondence l � l' be

tween the lines of the models such that P I l if and only if P' I l'; such 

a correspondence is called an isomorphism from one model onto the 

other. 
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- EXAMPLE 5. Consider a set {a, b, c} of three letters, which we 

will call "lines" now. "Points" will be those subsets that contain ex
actly two letters-{a, b}, {a, c}, and {b, c}. Let incidence be set mem
bership; for example, "point" {a, b} is "incident" with "lines" a and b 

but not with c. This model is the dual of the three-point model in Ex
ample 1-all we've done is interchange the interpretations of "point" 
and "line." It certainly seems to be structurally the same. (However, 
the duals of Examples 3 and 4 are not structurally the same as the 
originals-in fact, they're not even models. Can you see why not?) An 
explicit isomorphism of Example 5 with Example 1 is given by the fol

lowing correspondences: 

A�{a,b} 
B � {b, c} 
C �{a, c} 

{A, B} � b 
{B, C} � c 
{A, C} �a. 

Note that A lies on {A, B} and {A, C} only; its corresponding "point" 
{a, b} lies on the corresponding "lines" b and a only. Similar check
ing with B and C shows that incidence is preserved by our correspon
dence. On the other hand, if we had used a correspondence such as 

{A, B} �a 

{B, C} � b 
{A, C} � c 

for the "lines," keeping the same correspondence for the "points," we 
would not have an isomorphism because, for example, A lies on {A, C} 
but the corresponding "point" {a, b} does not lie on the corresponding 

"line" c. 
To further illustrate the idea that isomorphic models are "essen

tially the same," consider two models with different parallelism prop
erties, such as one with the elliptic property and one with the Eu
clidean. We claim that these models are not isomorphic: Suppose, on 
the contrary, that an isomorphism could be set up. Given line l and 

point P not on it, then every line through P meets l, by the elliptic 
property. Hence every line through the corresponding point P' meets 
the corresponding line l', but that contradicts the Euclidean property 
of the second model. 

Later on, we will need to use the concept of "isomorphism" for 
models of a geometry more complicated than incidence geometry

neutral geometry. In neutral geometry, we will have betweenness and 
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congruence relations, in addition to the incidence relation, and we will 

require an "isomorphism" to preserve those relations as well. 

The general idea is that an isomorphism of two models of an axiom 

system is a one-to-one correspondence between the basic objects of the 

system that preserves all the basic relations of the system. 

Another example (to be discussed in Chapter 9) is the axiom sys

tem for a "group." Roughly speaking, a group is a set with a multipli

cation for its elements satisfying a few familiar axioms of algebra. An 

"isomorphism" of groups will then be a one-to-one mapping x � x' of 

one set onto the other, which preserves the multiplication, i.e., for 

which (xy)' = x'y'. 

Projective and Affine Planes 
We now briefly discuss two types of models of incidence geometry that 

are particularly significant. During the Renaissance, in the fifteenth cen

tury, artists developed a theory of perspective in order to realistically 

paint two-dimensional representations of three-dimensional scenes. 

Their theory described the projection of points in the scene onto the 

artist's canvas by lines from those points to a fixed viewing point in 

one of the artist's eyes; the intersection of those lines with the plane 

of the canvas was used to construct the painting. The mathematical 

formulation of this theory was called projective geometry. In this tech

nique of projection, parallel lines that lie in a plane cutting the plane 

of the canvas are painted as meeting (visually, they appear to meet at 

a point on the faraway horizon, as shown in Figure 2.7). 

This suggested an extension of Euclidean geometry in which paral

lel lines "meet at infinity," so that the Euclidean parallel property is re

placed by the elliptic parallel property in the extended plane. We will 

carry out this extension rigorously. First, some definitions. 

Figure 2. 7 Parallel railroad tracks appear to converge as they recede into 

the distance. 
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DEFINITION. A projective plane is a model of incidence geometry hav

ing the elliptic parallel property (any two lines meet) and such that 

every line has at least three distinct points lying on it (strengthened In

cidence Axiom 2). 

Our proposed extension of the Euclidean plane uses only its inci

dence properties (not its betweenness and congruence properties); the 

purely incidence part of Euclidean geometry is called affine geometry, 

which leads to the next definition. 

DEFINITION. An affine plane is a model of incidence geometry hav

ing the following Euclidean parallel property: 

Vl VP (�(P I l)  ::::} 3! m (P I m & l II m)). 

So the idea in extending an affine plane to a projective plane is to 

add enough new "points at infinity" so that all lines parallel to any 

given line will now meet at one such point. Moreover, in order to sat

isfy Axiom 1-1, we need to join those "points at infinity" by inventing 

a new "line at infinity" that intuitively corresponds to the horizon in 

the example above. Here we see mathematical imagination at its best! 

The technicality in our construction is that we will be working within 

set theory, and we have to define those new objects as certain sets. It 

may be awkward psychologically at first for you to think of those sets 

as "points" and a "line," but remember that we are free to interpret 

those undefined terms any way we choose so long as we can prove that 

the axioms are satisfied in that interpretation. That's what we'll do. 

Example 3 in this chapter illustrated the smallest affine plane (four 

points, six lines). 

Let d be any affine plane. We introduce a relation l � m on the 

lines of d to mean "l = m or l II m." This relation is obviously reflex

ive (l � l) and symmetric (l � m ::::} m � l). Let us prove that it is tran

sitive (l � m and m � n ::::} l � n): If any pair of these lines are equal, 

the conclusion is immediate, so assume that we have three distinct 

lines such that l II m and m II n. Suppose, on the contrary, that l meets 

n at point P. P does not lie on m because l II m. Hence we have two 

distinct parallels n and l to m through P, which contradicts the Eu

clidean parallel property of d. 

A relation that is reflexive, symmetric, and transitive is called an 

equivalence relation. Such relations occur frequently in mathematics 

and are very important. Whenever they occur, we consider the equiv

alence classes determined by the relation: For example, the equivalence 
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class [l] of l is defined to be the set consisting of all lines equivalent 

to l-i.e., of l and all the lines in d parallel to l. In the familiar Carte

sian model of the Euclidean plane, the set of all horizontal lines is one 

equivalence class, the set of verticals is another, the set of lines with 

slope 1 is a third, etc. Equivalence classes take us from equivalence to 

equality: l � m <=> [l] = [m]. 

For historical and visual reasons, we call these equivalence classes 

points at infinity; we have made this vague idea precise within mod

ern set theory. We now enlarge the model d to a new model d * by 

adding these points, calling the points of d "ordinary" points for em

phasis. We further enlarge the incidence relation by specifying that each 

of these equivalence classes lies on every one of the lines in that class: 

[l] lies on l and on every line m such that Z 11 m. Thus, in the enlarged 

plane d *, l and m are no longer parallel, but they meet at [l]. 

We want d* to be a model of incidence geometry also, which re

quires one more step. To satisfy Euclid's Postulate I, we need to add one 

new line on which all (and only) the points at infinity lie: Define the 

line at infinity loo to be the set of all points at infinity. Let us now check 

that d * is a projective plane, called the projective completion of d. 

- VERIFICATION OF I-1. If P and Qare ordinary points, they lie 

on a unique line of d (since 1-1 holds in d) and they do not lie on loo. 

If P is ordinary and Q is a point at infinity [m], then either P lies on 
� 

m and PQ = m, or, by the Euclidean parallel property, P lies on a unique 

parallel n to m and Q also lies on n (by the definition of incidence for 
� 

points at infinity), so PQ = n. If both P and Q are points at infinity, 
� 

then PQ = loo. 

-VERIFICATION OF STRENGTHENED I-2. Each line m of d has 

at least two points on it (by 1-2 in d), and now we've added a third 

point [m] at infinity. That loo has at least three points on it follows from 

the existence in d of three lines that intersect in pairs (such as the 

lines joining the three noncollinear points furnished by Axiom 1-3); the 

equivalence classes of those three lines do the job. 

- VERIFICATION OF I-3. It holds already in d. 

-VERIFICATION OF THE ELLIPTIC PARALLEL PROPERTY. If 

two ordinary lines do not meet in d, then they belong to the same 

equivalence class and meet at that point at infinity. An ordinary line 

m meets loo at [m] . .,.. 
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G 

Figure 2.8 The smallest projective plane (seven points). 

- EXAMPLE 6. Figure 2.8 illustrates the smallest projective plane, 

projective completion of the smallest affine plane; it has seven points 

and seven lines. The dashed line could represent the line at infinity, 

for removing it and the three points C, B, and E that lie on it leaves 

us with a four-point, six-line affine plane isomorphic to the one in Ex

ample 3, Figure 2.5. 

Informally, the usual Euclidean plane, regarded just as a model of 

incidence geometry (ignoring its betweenness and congruence struc

tures), is referred to as the real affine plane, and its projective com

pletion is called the real projective plane (see Example 8 for a formal 

definition). 

Notice what happens to a line in the real affine plane after it has 

been extended with a point at infinity: It becomes a closed curve in 

the real projective plane. Namely, imagine two horizontal parallel lines 

in the real affine plane. They have to meet at a point at infinity on the 

right and also at a point at infinity on the left. But those points at in

finity must be the same because of Proposition 2.1: The point of in

tersection of two lines is unique. So when you travel along one line 

out to infinity to the right, after you "reach infinity," if you keep go

ing in the same direction you will be returning from the left to where 

you started. (This is loose talk, of course; there is no notion of distance 

in incidence geometry and "infinity" is just a figure of speech suggested 

by perspective drawing.) 

- EXAMPLE 7. To visualize the projective completion d* of the 

real affine plane d, picture d as the plane T tangent to a sphere S in 

Euclidean three-space at its north pole N (Figure 2.9). If 0 is the cen-
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Figure 2.9 

ter of sphere S, we can join each point P of T to 0 by a Euclidean line 

that will intersect the northern hemisphere of S in a unique point P'; 

this gives a one-to-one correspondence between the points P of T and 

the points P' of the northern hemisphere of S (N corresponds to itself). 

Similarly, given any line m of T, we join m to 0 by a plane II through 

0 that cuts out a great circle on the sphere and a great semicircle m
' 

on the northern hemisphere; this gives a one-to-one correspondence 

between the lines m of T and the great semicircles m
' of the northern 

hemisphere, a correspondence that clearly preserves incidence. 

Now if l II m in T, the planes through 0 determined by these par

allel lines will meet in a line lying in the plane of the equator, a line 

that (since it goes through O) cuts out a pair of antipodal points on the 

equator. Thus, the line at infinity of .'il* can be visualized under our 

isomorphism as the equator of S with antipodal points identified (they 

must be identified, or else Axiom 1-1 will fail). In other words, .'il * can 

be described as the northern hemisphere with antipodal points on the 

equator pasted to each other; however, we can't visualize this pasting 

very well because it can be proved that the pasting cannot be done in 

Euclidean three-space without tearing the hemisphere. 

Projective planes are the most important models of pure incidence 

geometry. We will see in Chapter 9 that Euclidean, hyperbolic, and, of 

course, elliptic geometry can all be considered "subgeometries" of 

projective geometry. This discovery by Cayley led him to exclaim that 
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"projective geometry is all of geometry," which turned out to be an 
oversimplification. 

- EXAMPLE 8. ALGEBRAIC MODELS OF AFFINE AND PROJEC

TIVE PLANES. If you've taken a course in abstract algebra, you know 
what an abstract field F is. If not, think of the following specific fields 
that are familiar: 

Q = the field of all rational numbers 
IR = the field of all real numbers 
C = the field of all complex numbers. 

Let F be any field. Let F2 be the set of all ordered pairs (x, y) of ele
ments of F. We give F2 the structure of an affine plane by taking its 
elements as our "points. " A "line" will be the set of all solutions to a 
linear equation 

ax+ by+ c = 0, 

where at least one of the coefficients a, b is nonzero. Point (x, y) will 
be interpreted as "incident" with that line if it satisfies "the" equation 
(notice that multiplying the coefficients a, b, c by a nonzero constant 
yields the same "line"). With these interpretations, we claim that F2 
becomes an affine plane called the affine plane over F. By the defini
tion of "affine plane," we must verify the interpretations of the three 
incidence axioms and we must verify the Euclidean parallel property. 
If you've taken a course in analytic geometry, you know how to ver
ify those. We sketch a few of the ideas: 

1. To verify 1-3, show that the points (O, O), (O, 1), and (1, O) are not 
collinear by showing that any linear equation they all satisfy must 
have all three coefficients equal to 0. 

2. To verify 1-2, say coefficient a -=f=. 0. Then ( - c/a, O) is one point on 
the line. Find another depending on whether b is 0 or not. 

3. To verify 1-1, let (u, v) and (s, t) be distinct points. Use your knowl
edge of analytic geometry to write a linear equation satisfied by 
those points. To show uniqueness, use Cramer's rule to find the 
unique solution to a pair of linearly independent linear equations. 

4. To verify the Euclidean parallel property, first establish the result 
that two lines are parallel iff they have the same slope (handle the 
case of vertical lines separately). Then use the point-slope formula 
to determine the unique line parallel to a given line through a given 
point not on that line. 
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Next we briefly describe the projecti.ve plane over F, denoted P2(F). Here 

both "points" and "lines" are equivalence classes of triples (x, y, z) of el

ements of F that are not all zero, where two such triples are consid

ered equivalent if one is a nonzero constant multiple of the other. You 

can easily verify that this is an equivalence relation. Each such triple 

is referred to as lwmogeneous coordinates, and its equivalence class will 

be denoted [x, y, z]. We interpret incidence by the linear homogeneous 

equation 

ax+ by+ CZ= 0 

when [x, y, z] is a "point" and [a, b, c] is a "line." 

We show that P2(F) is isomorphic to the projective completion of 

F2 as follows: Map each "point" (x, y) of F2 to the "point" [x, y, 1] of 

P2(F). Map each "line" 

{(x, y) I ax+ by+ c = O} 

of F2 to the "line" [a, b, c] of P2(F). Verify easily that these mappings 

are one-to-one and preserve "incidence" for the affine plane. Next map 

the line at infinity in the projective completion to the "line" [O, 0, 1], 

i.e., to the "line" whose equation is z = O; it is the only "line" in P2(F) 

that is not the image under our mapping of an affine line. A "point" 

on this line has homogeneous coordinates of the form [a, b, O], where 

at least one of a, b is nonzero. We let this point correspond to the point 

at infinity common to all the lines parallel to the affine line ax + by = 

0. It is straightforward to verify that these mappings provide the de

sired isomorphism. 

It follows from this isomorphism that P2(F) is a projective plane 

since an interpretation isomorphic to a projective plane is easily seen 

to satisfy all the requirements to be a projective plane. Let us check, 

for example, that every line has at least three points on it. If it is the 

image of an affine line, we know by 1-2 that the affine line has at least 

two points on it, and the projective line also has the point at infinity 

of that affine line. If it is the image of the line at infinity, it has the 

three distinct points [l, 0, O], [O, 1, O], and [l, 1, O] lying on it. 

Hopefully, with this model you see that there is nothing mysterious 

about the "line at infinity," for under our isomorphism it is just given 

by the equation z = 0. Nor is there any mystery about the "point at 

infinity" common to all the parallel affine lines ax + by = t, where a 

and b are fixed (not both zero) and t varies through all the elements 

of F; under our isomorphism, it is the "point" [b, -a, O]. 

A projective plane isomorphic to P2(F) for some field F is said to 

be coordinatized by F. 
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-EXAMPLE 9. DUALITY IN PROJECTIVE GEOMETRY. Let CJ/' be 

a projective plane. Define the dual interpretation CJ/'* of CJ/' to have as 

its points the lines of CJ/', as its lines the points of CJ/', and as its inci

dence the same incidence relation. Let us verify that CJ/'* is also a pro

jective plane: 

1. To verify the interpretation of 1-1 in CJ/'*, we must show that any 

two lines of CJ/' meet in a unique point. That they meet is the ellip

tic parallel property, which holds in CJ/' by the definition of a pro

jective plane. That the point of intersection is unique was proved 

in Proposition 2 .1. 

2. To verify the interpretation of 1-2 in CJ/'*, refer to Proposition 2.5 for 

CJ/', which you will prove as an exercise. 

3. To verify the interpretation of 1-3 in CJ/'*, refer to Proposition 2.2 

proved for CJ/'. 

4. To verify the elliptic parallel property for CJ/'*, observe that it is just 

the interpretation of 1-1 for CJ/'. 

5. Finally, we must show that every line of CJ/'* has at least three points 

on it, which means showing every point A of CJ/' has at least three 

lines through it. By Proposition 2.4, there exists a line l that does 

not pass through A. By the definition of projective plane, l has at 

least three points lying on it. Joining three points of l to A then pro

vides three lines that we seek. 

The fact that CJ/'* is also a projective plane explains the principle of 

duality in plane projective geometry: If a statement has been proved to 

hold in all projective planes, then the dual statement obtained by in

terchanging "point" and "line" automatically holds as well-no further 

proof is required. Caveat: If the statement involves defined notions 

(such as "collinear"), you must replace those notions by their duals 

("concurrent" in this case). This was probably the first metamathe

matical theorem in history. 

You can see duality very clearly in the algebraic model P2 (F). A 

"point" in that model is an equivalence class [x, y, z] of triples of not

all-zero elements of F under the equivalence relation that the triple 

(x, y, z) is equivalent to (x', y', z') iff there is a nonzero k in F such 

that x' = kx, y' = ky, and z' = kz. But a "line" in that model is exactly 

the same thing, except that we have been using letters from the be

ginning of the alphabet for "lines." And incidence is given by the same 

linear homogeneous equation. 
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Brief History of Real Projective Geometry 

An important 1822 text on synthetic real projective geometry was com

posed by Frenchman J.-V. Poncelet while he was incarcerated in a Russ

ian prison after being captured from Napoleon's invading army. He in

troduced the points at infinity officially into geometry, though the idea 

had already appeared in a piece by Johannes Kepler in 1604 and in the 

neglected treatise by Girard Desargues in 1639. Desargues and Kepler 

thought that the points at infinity formed a "circle of infinite radius" 

(which they seem to do when viewed affinely), but Poncelet correctly 

recognized that they formed a line (no different from any other line 

when considered projectively). Blaise Pascal was another earlier con

tributor to projective geometry with his mystic hexagram theorem of 

1639, discovered when he was only 16 (see Project 4). 

The principle of duality was first expounded in 1825-1827 by J.-D. 

Gergonne. Poncelet knew about duality but thought it resulted from 

Apollonius' idea of the poles and polars determined by a conic; in the 

case of a circle, that polarity (see Project 2) will play an important role 

in our work in Chapter 7. The most famous dual theorems are those 

of Pascal and C.-L. Brianchon about a hexagon inscribed in (respec

tively, circumscribed about) a conic. 

The algebraic approach to projective geometry via homogeneous co

ordinates and homogeneous equations was introduced by A. F. Mo bi us 

in 1827 and then vastly developed into higher dimensions by J. Pliicker 

in the 1830s. There was an acrimonious dispute during the nineteenth 

century between the projective geometers who worked algebraically 

and those who worked synthetically-over which was the proper ap

proach. Poncelet was a strident synthesist, declaring publicly that al

gebraic methods were inferior, yet it was discovered from his private 

notes long after he died that he (like Newton) secretly used algebraic 

methods to discover some of his results. Another leading synthesist was 

K. C. G. von Staudt, who, in the 1850s, eliminated any references to 

number and distance from projective geometry. Pliicker's work was not 

appreciated until decades later, so he became a physicist and made im

portant contributions to that science. 

Projective geometry is the best setting for the study of algebraic 

geometry. For a simple example, the theorem of Bezout states that a 

plane algebraic curve of degree m intersects another plane algebraic 

curve of degree n in mn points if the intersections are counted with 

multiplicities. This theorem is generally valid only in the projective 
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plane, not in the affine plane, because the intersections at infinity must 

be counted, and only when the plane is coordinatized by numbers from 

an algebraically closed field such as C (otherwise, the two curves might 

not intersect at all-consider a line and a circle in the real Euclidean 

plane; in case the line is tangent to the circle, the point of tangency 

must be counted with multiplicity 2 for Bezout's theorem to work). 

Algebraic curves of degree 2 are conics. The nondegenerate affine 

ones are the ellipse, parabola, and hyperbola. Desargues recognized 

that they can be distinguished in the real affine plane by the number 

of points each has at infinity, namely, 0, 1, 2, respectively. In the pro

jective plane, they cannot be distinguished-they all look like ellipses 

(more precisely, they are all projectively equivalent). 

We will not develop projective geometry very deeply in this text, 

using it mainly in Chapters 7 and 10 to facilitate our understanding of 

non-Euclidean geometries. See the projects in this chapter for further 

interesting theorems. 

Conclusion 

This chapter has two main themes: The first is logic, and the second 

is incidence geometry. Experienced students of mathematics probably 

were able to quickly review the classical principles of logic presented 

in the first few sections, but even they need to study the sections on 

models and should take note of the RAA proof that \/2 is irrational. 

Mathematical logic, insofar as it is the study of correct reasoning (it 

also studies other important topics such as computability), tradition

ally has two aspects: syntax and semantics. Generally speaking, syntax 

studies the form of reasoning and is a purely formal study of the con

nectives:::::}, &, v, �;the quantifiers V, 3; predicates such as = and E; 

variables, etc. Semantics, on the other hand, interprets the formal sym

bols and gives them various meanings, and we are only concerned with 

mathematical interpretations. 

A formal mathematical theory starts with undefined terms and ax

ioms about those terms, which can be written in a symbolic language 

(as we did "for the fun of it" with Axioms 1-1, 1-2, and 1-3) or which 

can be written in a natural language such as English for easier com

prehension. Using the rules of logic, propositions were then proved 

from the axioms, and we described precisely what proofs are. When 

axioms have been given, what we are interested in is interpretations 

that satisfy those axioms. Those are called models. 
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Our main application of these ideas so far is to incidence geometry. 

We gave its three basic axioms and stated five propositions that can 

easily be proved from those axioms. That was purely formal, although 

we used undefined terms point, line, incidence, which are suggestive 

of familiar geometric notions. However, since the terms are undefined, 

we took the liberty of interpreting them in unfamiliar ways, such as in 

our three-, four-, and five-point models, which have three different par

allel properties. The notion of parallel lines is the main topic studied 

in this text. What we accomplished with those models was to show 

that incidence geometry is a consistent theory and to show the impos

sibility of proving various different statements about parallel lines if 

we only assume the axioms of incidence geometry. The demonstrations 

of those impossibilities belong to a subject that may be new to you: 

metamathematics. 

Then we returned to mathematics itself and gave the two most im

portant examples of incidence geometries (i.e., models of the axioms 

of incidence geometry): affine planes, which are models in which the 

Euclidean parallel property holds, and projective planes, which are mod

els in which parallel lines do not exist (and in which every line has at 

least three points lying on it). We proved the main result that every 

affine plane can be naturally completed to a projective plane by ad

joining points "at infinity" and a "line at infinity" on which all those 

points lie. We then presented the main example of affine and projec

tive planes coordinatized by a field (such as the field of real numbers 

or the field of complex numbers). 

Finally, we proved another metamathematical theorem, the princi

ple of duality for projective planes. 

Affine geometry is Euclidean geometry without betweenness and 

congruence. In the next chapter, we will add betweenness and con

gruence to our structure. 

Exercises 

1. (a) What is the negation of P V Q? 

(b) What is the negation of P & �Q? 

(c) Using Logic Rules 3, 4, and 5, show that P :::} Q means the 

same as [�P V Q]. 

2. State the negation of Euclid's fourth postulate. 

3. State the negation of the Euclidean parallel postulate. (This will be 

very important later.) 
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4. State the converse of each of the following statements: 

(a) If lines l and m are parallel, then a transversal t to lines l and 
m cuts out congruent alternate interior angles. 

(b) If the sum of the degree measures of the interior angles on one 

side of transversal tis less than 180°, then lines land m meet 
on that side of transversal t. 

5. Rewrite the informal argument given in the text to prove Proposi
tion 2.2 as a formal proof, i.e., as a list of steps with each step num
bered and with a justification for each step given. The justification 
must be one of the six types allowed by Logic Rule 1. Use your own 

argument if you have a better one. 
6. Give formal proofs of Propositions 2.3, 2.4, and 2.5. 

7. For each pair of axioms of incidence geometry, invent an interpre
tation in which those two axioms are satisfied but the third axiom 
is not. (This will show that the three axioms are independent in the 
sense that it is impossible to prove any one of them from the other 

two. It is more economical and elegant to have axioms that are in
dependent, but it is not essential for developing an interesting 
theory.) 

8. Show that the interpretations in Examples 3 and 4 of this chapter 
are models of incidence geometry and that the Euclidean and hy
perbolic parallel properties, respectively, hold for them. 

9. In each of the following interpretations of the undefined terms, 
which of the axioms of incidence geometry are satisfied and which 
are not? Tell whether each interpretation has the elliptic, Euclidean, 
or hyperbolic parallel property. 

(a) "Points" are lines in Euclidean three-dimensional space, "lines" 
are planes in Euclidean three-space, "incidence" is the usual 

relation of a line lying in a plane. 

(b) Same as in part (a), except that we restrict ourselves to lines 
and planes that pass through a fixed point 0. 

(c) Fix a circle in the Euclidean plane. Interpret "point" to mean 
a Euclidean point inside the circle, interpret "line" to mean a 
chord of the circle, and let "incidence" mean that the point lies 

on the chord. (A chord of a circle is a segment whose end
points lie on the circle.) 

(d) Fix a sphere in Euclidean three-space. Two points on the sphere 
are called antipodal if they lie on a diameter of the sphere; e.g., 
the north and south poles are antipodal. Interpret a "point" to 
be a set {P, P'} consisting of two points on the sphere that are 

antipodal. Interpret a "line" to be a great circle on the sphere. 
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Interpret a "point" {P, P'} to "lie on" a "line" C if both P and 

P' lie on C (actually, if one lies on C, then so does the other, 

by the definition of "great circle"). 

10. (a) Show that when each of two models of incidence geometry has 

exactly three "points" in it, the models are isomorphic. 

(b) Must two models having exactly four "points" be isomorphic? If 

you think so, show this; if you think not, give a counterexample. 

(c) Show that the models in Exercises 9(b) and 9(d) are isomor

phic. (Hint: Take the point 0 of Exercise 9(b) to be the center 

of the sphere in Exercise 9(d) and cut the sphere with lines 

and planes through point 0 to get the isomorphism.) 

11. Invent a model of incidence geometry that has neither the elliptic, 

hyperbolic, nor Euclidean parallel properties. These properties refer 

to any line l and any point P not on l. Invent a model that has dif

ferent parallelism properties for different choices of land P. (Hint: 

Five points suffice for a finite example, or you could find a suitable 

piece of the Euclidean plane for an infinite example, or you could 

refer to a previous exercise. Or invent a fourth example.) 

12. (a) Show that in any affine plane, Vl Vm Vn ( l  II m & m II n & 

l i= n ::::} Z 11 n). This property is called transitivity of parallelism. 

(b) Why must we assume l i= n in defining this property? 

(c) Show that, conversely, a model with this property must be an 

affine plane. 

(d) Exhibit a model of incidence geometry in which parallel lines 

exist but parallelism is not transitive. 

13. Suppose that in a given model for incidence geometry, every "line" 

has at least three distinct "points" lying on it. What is the least num

ber of "points" and the least number of "lines" such a model can 

have? Suppose further that the model has the Euclidean parallel prop

erty, i.e., is an affine plane. Show that 9 is now the least number of 

"points" and 12 the least number of "lines" such a model can have. 

14. (a) Let S be the following statement in the language of incidence 

geometry: If land m are any two distinct lines, then there ex

ists a point P that does not lie on either l or m. Show that S is 

not a theorem in incidence geometry, i.e., cannot be proved 

from the axioms of incidence geometry. 

(b) Show, however, that statement S holds in every projective 

plane. Hence �s cannot be proved from the axioms of inci

dence geometry either, so S is independent of those axioms. 

(c) Use statement S to prove that in a finite projective plane, all 

the lines have the same number of points lying on them. (Hint: 
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Map the points on l onto points on m by projecting from the 
point P. This mapping is called a perspectivity with center P.) 

(d) Prove that in a finite affine plane, all the lines have the same 
number of points lying on them. (Hint: Apply part (c) to the 
projective completion or find a direct affine proof.) 

15. (a) Four distinct points, no three of which are collinear, are said 
to form a quadrangle. Let CJ/' be a model of incidence geome
try for which every line has at least three distinct points lying 
on it. Show that a quadrangle exists in CJ/'. 

(b) Now suppose CJ/' is a projective plane. Four distinct lines, no 
three of which are concurrent, are said to form a quadrilateral. 

Use the principle of duality to prove that a quadrilateral exists 
in CJ/'. 

(c) Give an example of a statement that holds in all affine planes 
but whose dual never holds. Thus the principle of duality is 
not valid for affine planes. 

16. (a) Fill in the missing details in Example 8. 

(b) Generalize the definition of P2(F) to construct P3(F), projective 

three-space coordinatized by the field F. Interpret "points," 
"lines," and "planes" in P3(F). If you have some experience 
with analytic geometry in three dimensions, show that any two 
planes in P3(F) have a line in common. Show that three non
collinear points lie in a unique plane; what is the three
dimensional dual to this statement? 

(c) Propose undefined terms and axioms for three-dimensional pro
jective geometry. 

17. The following whimsical syllogisms are by Lewis Carroll. They are 
intended to illustrate that logical syntax depends only on the form 
of the argument, not on the meaning or truth of the statements. 
Which of them are correct arguments? 
(a) No frogs are poetical; some ducks are unpoetical. Hence, some 

ducks are not frogs. 
(b) Gold is heavy; nothing but gold will silence him. Hence, noth

ing light will silence him. 
(c) All lions are fierce; some lions do not drink coffee. Hence, some 

creatures that drink coffee are not fierce. 
(d) Some pillows are soft; no pokers are soft. Hence, some pokers 

are not pillows. 
18. Here is a whimsical question: We think of the lines in the real affine 

plane as "straight." When we completed that plane to the real pro
jective plane, we added just one point at infinity to each affine line. 
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As we indicated, this extended line is now a closed curve. How did 

the line lose its "straightness" just by adding one point at infinity? 

Or, could a closed curve be "straight"? Can you picture the real pro

jective plane as some smooth surface in Euclidean three-space? Dis

cuss this question informally. 

19. (a) Let S be the following self-referential statement: "Statement S 

is false." Show that S is true iff S is false. This is the liar par

adox. Does it imply that some statements are neither true nor 

false? (Kurt Godel used the variant "This statement is unprov

able" as the starting point for his famous incompleteness the

orem in mathematical logic. ) 

(b) A set is intuitively any collection of things, and those things 

are the elements of that set. Suppose we collect all the sets S 

with the property that S El: S and only those sets. Call that set 

C. By the law of excluded middle, either C E C or C El: C. Show 

that in either case, a contradiction can be deduced. This is 

Bertrand Russell's paradox. Does it imply that set theory is in

consistent? Discuss this question with your instructor. 

Major Exercises 
1. Consider the following interpretation of incidence geometry. Begin 

with a punctured sphere in Euclidean three-space, i.e. , a sphere with 

one point N removed. Interpret "points" as points on the punctured 

sphere. For each circle on the sphere passing through N, interpret 

the punctured circle obtained by removing N as a "line." Interpret 

"incidence" in the usual sense of a point lying on a punctured cir

cle. Is this interpretation a model? If so, what parallel property does 

it have? Is it isomorphic to any other model you know? (Hint: If N 

is the north pole, project the punctured sphere stereographically 

from N onto the plane II tangent to the sphere at the south pole, 

as shown in Figure 2.10. Use the fact that planes through N other 

than the tangent plane cut out circles on the sphere and lines in II. 

For an amusing discussion of this interpretation, refer to Chapter 3 

of Sved, 1991.) 

2. Show that every projective plane C!P is isomorphic to the projective 

completion of some affine plane .'il. (Hint: Pick any line m in C!P, 

pretend that m is "the line at infinity," remove m and all the points 

lying on it, and then show that what remains is an affine plane .'i1 

and that C!P is isomorphic to the completion .'il* of .'il.) 
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Figure 2.1 O Stereographic projection. 

3. Let C!f' be a finite projective plane so that, according to Exercise 14(c), 
all lines in C!f' have the same number of points lying on them; call 
this number n + 1, with n > 2. Show the following: 

(a) Each point in C!f' has n + 1 lines passing through it. 

(b) The total number of points in C!f' is n2 + n + 1. 

(c) The total number of lines in C!f' is n2 + n + 1. 
The number n is called the order of the finite projective plane. 

4. Let .rfi be a finite affine plane so that, according to Exercise 14(d), 
all lines in .rfi have the same number of points lying on them; let n 

be this number, with n > 2. Show the following: 

(a) Each point in .rfi has n + 1 lines passing through it. 

(b) The total number of points in .rfi is n2• 

(c) The total number of lines in .rfi is n(n + 1). 
The number n is called the order of the finite affine plane. 

5. Let F be the field with two elements {O, 1} whose multiplication 
and addition have the usual tables except that 1 + 1 = 0. Show that 
F2 is isomorphic to the smallest affine plane, described in Example 
3 of the text. Show that P2(F) is isomorphic to the projective plane 
described in Example 6 of the text. This is the smallest projective 
plane; it has order 2 and is called the Pano plane in honor of Gino 
Fano, who worked with finite geometries in 1892 (K. G. C. von 
Staudt was the first to consider them). 
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6. Recall from Exercise 15 that four points, no three of which are 

collinear, form a quadrangle. The four points are called the vertices, 
and the six lines obtained by joining pairs of vertices are called the 

sides of the quadrangle. (Note that sides are lines, not segments, 

because segments are defined by betweenness and we have no be

tweenness in pure incidence geometry.) Suppose we are working in 

a projective plane, so that every pair of sides will intersect. Pairs of 

sides that do not intersect at a vertex are called opposite sides, and 

there are three of those pairs; the points at which those pairs in

tersect are called the diagonal points of the quadrangle. Fano's ax

iom for projective planes asserts that the diagonal points of any 
quadrangle are not collinear. Show that Fano's axiom fails for the 

Fano plane. 

In P2(F), where F is any field, show that the four points at 

[1, 0, O], [O, 1, O], [O, 0, 1], and [1, 1, 1] are vertices of a quad

rangle. Determine the equations for the six sides, tell which pairs 

are opposite sides, find the coordinates of the diagonal points, and 

tell whether or not those points are collinear. 

7. Some authors characterize projective planes by three axioms: Ax

iom 1-1, the elliptic parallel property, and the existence of a quad

rangle. Show that a model of those axioms is a projective plane un

der our definition, and conversely. 

8. Figure 2.11 is a symmetric depiction of the projective plane of 

order 3. The outer circle represents the line at infinity, and the black 

dots on it represent the points at infinity except that pairs of an

tipodal points on that circle are considered to be the same. 

Let F be the field with three elements { 0, 1, -1}, whose multi

plication and addition have the usual tables except that 1 + 1 = -1 

and 1 = ( -1) + ( -1) (addition mod 3). Label the 13 points in the 

Figure 2.11 
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diagram with their homogeneous coordinates from F to illustrate the 
fact that this plane is isomorphic to P2(F). 

Advanced Projects on Projective Planes 
1. The following statement is by Desargues: "If the vertices of two tri

angles correspond in such a way that the lines joining correspon
ding vertices are concurrent, then the intersections of corresponding 
sides are collinear." This statement is independent of the axioms 
for projective planes. It holds only in those projective planes that 
can be embedded in a projective three-space. For example, if you 
regard Figure 2.12 as a three-dimensional picture in which the 
shaded triangles are in different planes, the line that Desargues as
serts to exist is just the intersection of those two planes (the two 
triangles are in perspective from the point of concurrence P outside 
those planes). Report on this independence result and give an ex
ample of a non-Desarguesian projective plane (the best known ex
ample is due to Frederick Moulton in 1902; it is described in the 
English translation of Hilbert's Grundlagen). State the dual to De
sargues' statement and compare that to its converse: What do you 
observe about them? (Note: A triangle in incidence geometry is de
fined to be a set of three distinct noncollinear points. The sides of 
the triangle are the three lines joining pairs of vertices. We cannot 
consider the sides as being segments because we do not have a no
tion of betweenness in pure incidence geometry.) 

p 

Figure 2.12 Desargues' theorem. 
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2. An isomorphism of a projective plane CZJ> onto its dual plane C!J>* is 
called a polarity of CZJ>. It assigns to each point A of CZJ> a line p(A) 
of CZJ> called the polar of A, and to each line m of CZJ> a point P(m) of 
CZJ> called the pole of m, in such a way that A lies on m if and only 
if P(m) lies on p(A), and the correspondences are one-to-one onto. 
The set of all points A such that A lies on its polar is called the 
conic determined by this polarity, and for A on the conic, the polar 
p(A) is called the tangent to the conic at A. 

This very abstract definition of "conic" (which does not refer to 
distances) can be reconciled with more familiar descriptions, such 
as the solution set to a homogeneous quadratic equation in three 
variables, when the plane can be coordinatized by a field. The the
ory of conics is one of the most important topics in plane projec
tive geometry. Report on this theory. (The German poet Goethe said: 
"Mathematicians are like Frenchmen: Whatever you say to them, 
they translate it into their own language and forthwith it is some
thing entirely different.") 

3. Pappus of Alexandria (fourth century) was the last great Greek math
ematician. His Collection, in eight volumes, is an invaluable com
pilation of the mathematical achievements of the ancient Greek 
world. He also contributed much original mathematics of his own. 
The theorem of Pappus in geometry states: "If A, B, and C are three 
distinct points on one line and if A', B', and C' are three other dis
tinct points on a second line, then the intersections of lines AC' and 
CA', AB' and BA', and BC' and CB' are collinear." (See Figure 2.13.) 

Pappus' theorem can be proved for a projective plane P2(F) coor
dinatized by a field-in particular, for the real projective plane. 
G. Hessenberg proved, conversely, that if Pappus' statement holds 
in a projective plane, then it can be coordinatized by a field; his 
proof is based on ideas originating with von Staudt and later work 
by Hilbert. 

Figure 2.13 Pappus' theorem. 
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Figure 2.14 Pascal's mystic hexagram theorem. 

Since P2(F) can be embedded in P3(F), it follows that Pappus' 
statement implies Desargues' (this was also proved directly in the 
plane by G. Hessenberg). The converse does not hold (see Project 
5). Report on these results. 

4. A pair of lines is a degenerate form of a conic. Pascal, at the age 
of 16, generalized Pappus' theorem to all conics in the real projec
tive plane (as a result, some authors such as Hilbert refer to Pap
pus' theorem as Pascal's theorem). See Figure 2.14 and state the 
theorem. Brianchon's theorem was discovered 167 years afterward. 
Geometers subsequently noticed that it follows immediately from 
duality. See Figure 2.15 and state the theorem (Note: A tangent to 
a conic is the dual to a point on a conic.) 

5. A division ring or a skew field has the same algebraic structure as 
a field except that multiplication is not necessarily commutative
i.e., ab= ba may not hold for all a, b. An example is the skew field 
of quaternions, denoted H in honor of William Rowan Hamilton, 
who discovered them in 1853. (His close friend John Graves dis
covered the octonions, but Arthur Cayley published information 
about them first, so they are sometimes called the Cayley numbers; 

they do not form a division ring because the associative law a(bc) = 

(ab)c does not hold for all octonions.) 
If F is any division ring, we can construct the projective plane 

P2(F) coordinatized by F the same way as before, just being care
ful about the commutative law. A beautiful theorem relating alge
bra to geometry states that a projective plane can be coordinatized 
by some division ring if and only if Desargues' theorem holds in 
that plane. Furthermore, that division ring is a field-i.e., multipli
cation is commutative-if and only if Pappus' theorem holds in that 
plane. 
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Figure 2.15 Brianchon's theorem. 

A non-Desarguesian projective plane can be coordinatized only 

by an algebraic structure called a ternary ring. The octonions pro

vide an example. Report on all these results. 

6. The principle of duality is that once a statement S has been proved 

for all projective planes, its dual statement S * is automatically also 

a theorem because S* is just S applied to the dual plane. But as was 

pointed out, the statements of Desargues, Pappus, and Fano do not 

hold in all projective planes. Nevertheless, it is the case that if one 

of these three statements holds for a particular projective plane, 

then so does its dual, and that requires proof in each case-you 

cannot just invoke the principle of duality. Find or report on proofs 

that each of these statements implies its dual. 

However, suppose some statement S has been proved for all pro

jective planes coordinatized by a field, or at least for all fields F of 

a certain type. In that case, S* does hold automatically for those 

planes because the dual plane is also coordinatized by that same 

field, as we have seen. For example, Fano's statement holds for all 

planes coordinatized by a field or division ring of characteristic dif

ferent from 2, i.e., one in which 1 + 1 if=. 0. Report on this and the 

converse, that if the plane is coordinatized by a division ring and 

Fano's statement holds, then the division ring has characteristic i=-2. 

Fano's and Pappus' statements are taken as axioms in those treat

ments of projective plane geometry which focus on generalizing 

classical results that hold in the real projective plane (Coxeter, 2003). 

7. If F is a finite field, it is an elementary result in abstract algebra 

that the number of elements in F is a prime power p k. Conversely, 

for every prime power pk, there exists a finite field (unique up to 

isomorphism) with pk elements. Since the order of the projective 

plane P2(F) is equal to the number of elements of F, it follows that 
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there exist projective planes of every prime power order. So there 

exist projective planes of orders 2, 3, 4, 5, 7, 8, 9, 11, . . . .  It is 

known, however, that not every finite projective plane is coordina

tized by a field (e.g., there are four different projective planes of or

der 9, up to isomorphism). The first example of a finite non

Desarguesian plane was published by 0. Veblen and J. H. M. 

Wedderburn in 1907. A finite Desarguesian projective plane auto

matically satisfies Pappus' theorem; no geometric proof of this is 

known, but it follows from another famous theorem of Wedderburn 

that a finite division ring must be commutative (compare Project 5). 

It is conjectured that the order of a finite projective plane must 

be a prime power. Orders 6, 14, 21, 22, and infinitely many others 

were shown to be impossible by the Bruck-Ryser theorem: Suppose 

that n is not a prime power and n = 1 or 2 (mod 4). If n is not the 

sum of two squares, then no projective plane of order n exists. 

Now 10 = 2 (mod 4), but 10 is the sum of two squares, so the 

Bruck-Ryser theorem does not apply. It was shown in 1989 by C. 

Lam and associates, after several years of computer searching, that 

there is no projective plane of order 10. They used results from 1970 

by F. J. Macwilliams, N. J. A. Sloane, and J. G. Thompson to nar

row the search to a few big computations. The next three unknown 

cases are n = 12, 15, and 18. Report on all these results. 

As often happens in pure mathematics, the abstract subject of 

finite geometries turns out to have important connections to other 

subjects, e.g., to finite groups, cryptography, combinatorics, design 

theory, and quantum information theory. If he were alive today, 

Signor Fano would be very happy to see that his idea of finite geome

tries was so usefuU 



Hilbert's 

Axioms 

The value of Euclid's work as a masterpiece of logic fzas been very 

grossly exaggerated. 

Bertrand Russell 

Flaws in Euclid 

Having specified our rules of reasoning in Chapter 2, let us return to 

Euclid. In the exercises of Chapter 1, we saw that Euclid neglected to 

state his assumptions that points and lines exist, that not all points are 

collinear, and that every line has at least two points lying on it. We 

made these assumptions explicit in Chapter 2 by adding two more ax

ioms of incidence, I-2 and I-3, to Euclid's first postulate, I-1. We proved 

a few consequences of those three axioms, we showed that those ax

ioms alone do not lead to any contradictions, and we briefly studied 

two main types of models of those axioms: affine planes, in which the 

Euclidean parallel postulate holds but which can be somewhat differ

ent from our usual Euclidean plane (e.g., they can be finite, and they 

have only an incidence structure), and projective planes, which are 

very different in that parallel lines do not exist in them. We showed 

the intimate connection between these two models: Each affine plane 

can be completed to a projective plane by adding a point at infinity 

to each line and the line at infinity upon which all those points lie; 
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David Hilbert 

inversely, by removing one line and all the points on it from a projec

tive plane, an affine plane is obtained. 

In other exercises of Chapter 1, we saw that some assumptions about 

betweenness are needed. Euclid never mentioned this notion explicitly 

but tacitly assumed certain facts about it that seem obvious in dia

grams. Gauss pointed out this omission in an 1831 letter to Farkas 

Bolyai, but he did not carry out the task of stating the required new 

axioms and deducing theorems from them. That was eventually done 

in 1882 by Moritz Pasch, and David Hilbert later incorporated Pasch's 

work as part of his Grnndlagen der Geometrie (1899). Pasch has been 

called "the father of rigor in geometry" by the mathematician and his

torian Hans Freudenthal. 

Several of Euclid's proofs are based on reasoning from diagrams. 

To make these proofs rigorous, a much larger system of explicit axioms 

is needed. We will present a modified version of David Hilbert's sys

tem of axioms, which are perhaps the most intuitive and are certainly 
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the closest in spirit to Euclid's.1 Hilbert's axioms are divided into five 
groups: incidence, betweenness, congruence, continuity, and parallelism. 
In the following sections, we will introduce the remaining four groups. 

During the first quarter of the twentieth century, David Hilbert was 
considered the leading mathematician of the world (only Henri Poin
care could be considered his rival in that era). He made outstanding, 
original contributions to a wide range of mathematical fields as well as 
to theoretical physics (the infinite-dimensional spaces used in quantum 
mechanics are named after him). In addition to his work in geometry, 
he is perhaps best known for his research in invariant theory, algebraic 
number theory, integral equations, functional analysis, the calculus of 
variations, and mathematical logic. At the International Congress of 
Mathematics in 1900, he challenged mathematicians with 23 problems 
that turned out to be some of the most important of the twentieth cen
tury (most of them have been solved, the best known unsolved one 
being to settle the Riemann hypothesis). He unwittingly started a new 
tradition: In 2000, a committee of top mathematicians chose what they 
considered to be the 7 most challenging problems for the new century. 
The Clay Mathematics Institute is offering a million-dollar prize to any

one who can solve one of them, and it appears that one of those prob
lems, the Poincare conjecture in three dimensions, may have been 
proved (the proof is being thoroughly checked). The Riemann hypoth
esis is one of the other 6 problems. 

Hilbert made a famous proclamation in 1930 that exemplifies his 
courageous, optimistic attitude toward mathematical problems: Wir 

miissen wissen, wir werden wissen. (We must know, we shall know.)2 

Axioms of Betweenness 
So far we have considered the two undefined terms point and line and 
the undefined incidence relation of a point to a line. Our fourth unde
fined or primitive term is the relation of betweenness among three 

1 Let us not forget that no serious work toward constructing new axioms for Euclidean 
geometry had been done until the discovery of non-Euclidean geometry shocked math

ematicians into reexamining the foundations of the former. We have the paradox of 

non-Euclidean geometry helping us to better understand Euclidean geometry! 

2 See the biography of Hilbert by Constance Reid (1970). It is nontechnical and conveys 
the excitement of the time when Gottingen was the capital of the mathematical world. 

And see Gray, J. J. 2000, The Hilbert Challenge, New York: Oxford University Press. 
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points. By introducing another relation to our system, we are adding 

more structure to our geometry, which will eliminate certain models of 

the previous structure (incidence geometry, in this case) that cannot 

support the new structure. For example, it will be shown as a conse

quence of the four betweenness axioms to be introduced shortly that 

every line must have infinitely many points lying on it; thus, all the 

nice finite geometries mentioned in the examples and exercises of Chap

ter 2 will no longer concern us. We will refer to the betweenness ax

ioms briefly as B-1 through B-4. 

The flaw in the argument from diagrams in Chapter 1 that all tri

angles are isosceles has to do with betweenness. As you were asked 

to show in Major Exercise 4 of that chapter, the intersection D of the 

perpendicular bisector of the base with the bisector of the opposite an

gle must lie outside the triangle if these lines are distinct, and only one 

of the two feet of the perpendiculars dropped from D to the other two 

sides lies inside the triangle. These notions of "inside" and "outside" 

will be defined in terms of betweenness. 

The statement of Euclid's Postulate 5 refers to two lines meeting on 

one "side" of a transversal, but Euclid neither defines the notion of 

"side" nor gives axioms for an undefined notion of "side." We will de

fine that notion using betweenness and study its properties. Also, when 

we come to the proof of the exterior angle theorem in Chapter 4, you 

will see that betweenness properties play a crucial role. 

Here is another example to illustrate the need for betweenness. It 

is an attempt to prove that the base angles of an isosceles triangle are 

congruent. This attempt is not Euclid's somewhat complicated proof 

known as pons asinomm, which is flawed in other ways, but is rather 

a simple argument found in some high school geometry texts. 

PROOF: 

Given �ABC with AC� BC. To prove <r..A � <r..B (see Figure 3.1): 

(1) Let the bisector of <r..C meet AB at D (every angle has a 

bisector). 

(2) In triangles �ACD and �BCD, AC� BC (hypothesis). 

(3) <r..ACD � <r..BCD (definition of bisector of an angle). 

( 4) CD � CD (things that are equal are congruent). 

(5) �ACD � �BCD (SAS). 

(6) Therefore, <r..A � <r..B (corresponding angles of congruent 

triangles) . .,.. 
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c 

A-------- B 
D 

Figure 3.1 

Consider the first step, whose justification is that every angle has a 

bisector. This is a correct statement and can be proved separately. But 
� 

how do we know that the bisector of <t:C meets AB, or if it does, how 

do we know that the point of intersection D lies between A and B? This 

may seem obvious, but if we are to be rigorous, it requires proof. For 

all we know, the picture might look like Figure 3.2. If this were the 

case, steps 2-5 would still be correct, but we could conclude only that 

<t:B is congruent to <t:CAD, not to <t:CAB, since <t:CAD is the angle in 

�ACD that corresponds to <t:B. 

Once we state our four axioms of betweenness, it will be possible 

to prove (after a considerable amount of work) that the bisector of <t:C 
� 

does meet AB in a point D between A and B, so the above argument 

will be repaired (see the crossbar theorem later in this section). There 

is, however, an easier proof of the theorem (given in the next section). 

We will use the shorthand notation 

to abbreviate the statement "point B is between point A and point C." 

c 

D A B 

Figure 3.2 
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A B c D E 

Figure 3.3 

BETWEENNESS AxIOM 1. If A * B * C, then A, B, and c are three dis

tinct points all lying on the same line, and C * B * A. 

The first part of this axiom fills the gap mentioned in Exercise 6 of 

Chapter 1. The second part (C * B * A) makes the obvious remark that 

"between A and C" means the same as "between C and A"-it doesn't 

matter whether A or C is mentioned first. 

BETWEENNESS AXIOM 2. Given any two distinct points B and D, there 
� 

exist points A, C, and E lying on BD such that A* B * D, B * C * D, and 

B * D * E (Figure 3.3). 

This axiom ensures that there are points between B and D and that 
� 

the line BD does not end at either B or D. This axiom also shows that 

the points on a line do not form a discrete set like the natural num

bers, where there are no natural numbers between n and n + 1 for 

any n. 

BETWEENNESS AXIOM 3. If A, B, and c are three distinct points ly

ing on the same line, then one and only one of the points is between 

the other two. 

This axiom ensures that a line is not circular; if the points were on 

a simple closed curve like a circle, you would then have to say that 

each is between the other two or that none is between the other two

it would depend on which of the two arcs you look at (see Figure 3.4). 

Speaking intuitively, we have seen that when we complete the real 

affine plane to the real projective plane, a line becomes a closed curve. 

Figure 3.4 
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Thus, it is not possible to have a betweenness structure on the real 

projective plane corresponding to our intuitive notion of betweenness 

satisfying this axiom. In its place, a relation called separation among 

four distinct points on a projective line can be introduced and studied
see Appendix A. 

Recall that the segment AB is defined as the set of all points be-
� 

tween A and B together with the endpoints A and B. The ray AB is de-

fined as the set of all points on the segment AB together with all points 

C such that A * B * C. Axiom B-2 ensures that such points C exist, 

B-3 ensures that C is not between A and B, and B-1 ensures that C is 
� 

not equal to either A or B; so the ray AB is larger than the segment AB. 
� � 

Axiom B-1 also ensures that all points on ray AB lie on the line AB. 

� � 

PROPOSITION 3.1. For any two points A and B: (i) AB n BA = AB, 
� � � 

and (ii) ABU BA= {AB}. 

PROOF OF (i): 
� � 

(1) By the definition of segment and ray, AB c AB and AB c BA, 
� � 

so by the definition of intersection, AB C AB n BA. 
� 

(2) Conversely, let the point C belong to the intersection of AB and 
� 

BA; we wish to show that C belongs to AB. 
(3) If C = A or C = B, C is an endpoint of AB. Otherwise, A, B, 

and C are three collinear points (by the definition of ray and 

Axiom B-1), so exactly one of the relations A * C * B, A * B * 

C, or C * A * B holds (Axiom B-3). 
� 

(4) If A* B * C holds, then C is not on BA; if C *A* B holds, then 
� 

C is not on AB. In either case, C does not belong to both rays. 

(S) Hence, the relation A* C * B must hold, so C belongs to AB 

(definition of AB, proof by cases) . .,.. 

The proof of (ii) is similar and is left as an exercise. (Recall that 
� � 

{AB} is the set of points lying on the line AB.) 
� � 

Recall next that if C *A* B, then AC is said to be opposite to AB 

(see Figure 3.5). By Axiom B-1, points A, B, and C are collinear; by 
� � � 

Axiom 3, C does not belong to AB, so rays AB and AC are distinct. 

This definition is therefore in agreement with the definition given in 

Chapter 1 (see Proposition 3.6). Axiom B-2 guarantees that every ray 
� � 

AB has an opposite ray AC. 

c A B 

Figure 3.5 
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It seems clear from Figure 3.5 that every point P lying on the line 
� 

l through A, B, C must belong either to ray AB or to an opposite ray 
� 

AC. This statement seems similar to the second assertion of Proposi-

tion 3 .1, but it is actually more complicated; we are now discussing 

four points, A, B, C, and P, whereas previously we had to deal with 

only three points at a time. In fact, we encounter here another "picto

rially obvious" assertion that cannot be proved without introducing an

other axiom (see Exercise 17). 

Suppose we call the assertion "C * A * B and P collinear with A, B, 
� � 

C:::::} PE AC U AB" the line separation property. Some mathematicians 

take this property as another axiom. However, it is considered inele

gant in mathematics to assume more axioms than are necessary (al

though we pay for elegance by having to work harder to prove results). 

So we will not assume the line separation property as an axiom; in

stead, we will prove it as a consequence of our previous axioms and 

our last betweenness axiom, called the plane separation axiom. 

DEFINITION. Let l be any line, and A and B any points that do not lie 

on l. If A = B or if segment AB contains no point lying on l, we say A 

and B are on the same side of l, whereas if A i= B and segment AB does 

intersect l, we say that A and B are on opposite sides of l (see Figure 

3.6). The law of the excluded middle (Logic Rule 10) tells us that A 

and B are either on the same side or on opposite sides of l. 

BETWEENNESS AXIOM 4 (PLANE SEPARATION). For every line l and 

for any three points A, B, and C not lying on l: 

----B 

Figure 3.6 A and Bare on the same side of l; C and Dare on opposite 

sides of l. 
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B 
Axiom4(i) 

A 
c 

Figure 3.7 

(i) If A and B are on the same side of l and if B and Care on the 

same side of l, then A and Care on the same side of l (see Fig

ure 3.7). 

(ii) If A and B are on opposite sides of l and if B and C are on op

posite sides of l, then A and C are on the same side of l (see 

Figure 3.8). 

COROLLARY. (iii) If A and B are on opposite sides of l and if B and 

C are on the same side of l, then A and C are on opposite sides of l. 

Axiom 4(i) guarantees that our geometry is two-dimensional, since 

it does not hold in three-space. (Line l could be outside the plane of 

this page and cut through segment AC; this interpretation shows that 

if we assumed the line separation property as an axiom, we could not 

prove the plane separation property.) Betweenness Axiom 4 is also 

needed to make sense of Euclid's fifth postulate, which talks about two 

lines meeting on one "side" of a transversal. We can now define a side 

of a line l as the set of all pants that are on the same side of l as some 

particular point A not lying on l. If we denote this side by HA, notice 

that if C is on the same side of l as A, then by Axiom 4(i), He = HA. 

(The definition of a side may seem circular because we use the word 

"side" twice, but it is not ; we have already defined the compound ex

pression "on the same side.") Another expression commonly used for 

a "side of l" is a half-plane bounded by l. 

Axiom4(ii) 

A 
c 

B 

Figure 3.8 
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PROPOSITION 3.2. Every line bounds exactly two half-planes, and 

these half-planes have no point in common. 

PROOF: 

(1) There is a point A not lying on l (Proposition 2.3). 

(2) There is a point 0 lying on l (Incidence Axiom 2). 

(3) There is a point B such that B * 0 *A (Betweenness Axiom 2). 

( 4) Then A and B are on opposite sides of l (by definition), so l 

has at least two sides. 

(S) Let C be any point distinct from A and B and not lying on l. 

If C and B are not on the same side of l, then C and A are on 

the same side of l (by the law of excluded middle and Be

tweenness Axiom 4(ii)). So the set of points not on l is the 

union of the side HA of A and the side H8 of B. 

(6) If C were on both sides (RAA hypothesis), then A and B would 

be on the same side (Axiom 4(i)), contradicting step 4; hence 

the two sides are disjoint (RAA conclusion). <11111 

We next apply the plane separation property to study betweenness 

relations among four points. 

PROPOSITION 3.3. Given A* B * c and A* c * D. Then B * c * D and 

A* B * D (see Figure 3.9). 

PROOF: 

(1) A, B, C, and D are four distinct collinear points (see Exercise 1). 

(2) There exists a point E not on the line through A, B, C, D (Propo-

sition 2.3). 
� 

(3) Consider line EC. Since (by hypothesis) AD meets this line in 
� 

point C, points A and D are on opposite sides of EC. 
� 

(4) We claim A and B are on the same side of EC. Assume on the 
� 

contrary that A and B are on opposite sides of EC (RAA hy-

pothesis). 

A D 

Figure 3.9 
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� � 

(S) Then EC meets AB in a point beween A and B (definition of 

"opposite sides"). 

(6) That point must be C (Proposition 2.1). 

(7) Thus, A * B * C and A * C * B, which contradicts Betweenness 

Axiom 3. 
� 

(8) Hence, A and B are on the same side of EC (RAA conclusion). 
� 

(9) B and D are on opposite sides of EC (steps 3 and 8 and the 

corollary to Betweenness Axiom 4). 
� � 

(10) Hence, the point C of intersection of lines EC and BD lies be-

tween B and D (definition of "opposite sides"; Proposition 2.1, 

i.e., that the point of intersection is unique). 
� 

A similar argument involving EB proves that A * B * D (Exercise 2(b)). <11111 

COROLLARY. Given A * B * C and B * C * D. Then A * B * D and 

A * C * D. 

Finally we prove the line separation property. 

PROPOSITION 3.4. If c * A * B and l is the line through A, B, and c 

(Betweenness Axiom 1), then for every point P lying on l, P lies either 
� � 

on ray AB or on the opposite ray AC. 

PROOF: 
� 

(1) Either P lies on AB or it does not (law of excluded middle). 
� 

(2) If P does lie on AB, we are done, so assume it doesn't; then 

P * A * B (Betweenness Axiom 3). 
� 

(3) If P = C, then P lies on AC (by definition), so assume P i= C; 

then exactly one of the relations C * A * P, C * P *A, or 

P * C * A holds (Betweenness Axiom 3 again). 

(4) Suppose the relation C * A * P holds (RAA hypothesis). 

(S) We know (by Betweenness Axiom 3) that exactly one of the 

relations P * C * B, C * P * B, or C * B * P holds. 

(6) If P * B * C, then combining this with P * A * B (step 2) gives 

A * B * C (Proposition 3.3), contradicting the hypothesis. 

(7) If C * P * B, then combining this with C * A * P (step 4) gives 

A * P * B (Proposition 3.3), contradicting step 2. 

(8) If B * C * P, then combining this with B * A * C (hypothesis and 

Betweenness Axiom 1) gives A * C * P (Proposition 3.3), con

tradicting step 4. 

(9) Since we obtain a contradiction in all three cases, C * A * P 

does not hold (RAA conclusion). 
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Figure 3.10 

(10) Therefore, C * P *A or P * C *A (step 3), which means that P 
� 

lies on the opposite ray AC. <Ill 

The next theorem states a visually obvious property that Pasch dis

covered Euclid to be using without proof. 

PAscu's THEOREM. If A, B, C are distinct noncollinear points and l 

is any line intersecting AB in a point between A and B, then l also in

tersects either AC or BC (see Figure 3.10). If C does not lie on l, then 

l does not intersect both AC and BC. 

Intuitively, this theorem says that if a line "goes into" a triangle 

through one side, it must "come out" through another side. 

PROOF: 

(1) Either C lies on l or it does not; if it does, the theorem holds 

(law of excluded middle). 

(2) A and B do not lie on l, and the segment AB does intersect l 

(hypothesis and Axiom B-1). 

(3) Hence, A and B lie on opposite sides of l (by definition). 

(4) From step 1 we may assume that C does not lie on l, in which 

case C is either on the same side of l as A or on the same side 

of l as B (separation axiom). 

(S) If C is on the same side of l as A, then C is on the opposite 

side from B, which means that l intersects BC and does not in

tersect AC; similarly, if C is on the same side of l as B, then l 

intersects AC and does not intersect BC (separation axiom). 

(6) The conclusion of Pasch's theorem holds (Logic Rule 11-proof 

by cases). <111 

Here are some more results on betweenness and separation that you 

will be asked to prove in the exercises. 

PROPOSITION 3.5. Given A* B * C. Then AC= ABU BC and B is the 

only point common to segments AB and BC. 
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.k-- - A 

Figure 3.11 

PROPOSITION 3.6. Given A * B * C. Then B is the only point common 
� � � � 

to rays BA and BC, and AB= AC. 

DEFINITION. Given an angle <tCAB, define a point D to be in the in
� 

terior of <tCAB if D is on the same side of AC as B and if D is also on 
� 

the same side of AB as C. (Thus, the interior of an angle is the inter-

section of two half-planes.) See Figure 3 .11. 

PROPOSITION 3.7. Given an angle <tCAB and point D lying on line 
� 

BC. Then D is in the interior of <tCAB if and only if B * D * C (see Fig-

ure 3.12). 

WARNING Do not assume that every point in the interior of an angle lies 

on a segment joining a point on one side of the angle to a point on the other 

side. In fact, this assumption is false in hyperbolic geometry (see Exercise 19). 

PROPOSITION 3.8. If D is in the interior of <tCAB, then (a) so is every 
� 

other point on ray AD except A; (b) no point on the opposite ray to 
� 

AD is in the interior of <tCAB; and (c) if C *A* E, then B is in the in-

terior of <tDAE (see Figure 3 .13). 

� � � � � 

DEFINITION. Ray AD is between rays AC and AB if AB and AC are not 

opposite rays and D is interior to <tCAB. (By Proposition 3.B(a), this 
� 

definition does not depend on the choice of point D on AD.) 

A 

Figure 3.12 
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Figure 3.13 

� � � � 

CROSSBAR THEOREM. If AD is between AC and AB, then AD inter-

sects segment BC (see Figure 3.14). 

PROOF: 

(1) D is in the interior of <tCAB (by hypothesis and definition of 

"betweenness" for rays). 

(2) Let E be a point such that E *A* C (B-2; see Figure 3.13). 
� 

(3) Since line AD intersects segment EC in point A between E and 
� 

C, E and C are on opposite sides of line AD (definition of "op-

posite sides"). 

(4) B is in the interior of <tDAE (step 1 and Proposition 3.8(c)). 
� 

(S) Hence B and E are on the same side of line AD (definition of 

"interior" of an angle). 
� 

(6) Therefore, B and C are on opposite sides of line AD (step 3 

and corollary to B-4). 
� 

(7) Let G be the point between B and C that lies on line AD (step 

6, definition of "opposite sides"). 

(8) G is in the interior of <tCAB (step 7 and Proposition 3.7). 
� 

(9) G lies either on ray AD or on its opposite ray (Proposition 3.4). 

(10) Suppose G lies on the opposite ray (RAA hypothesis). 

(11) Then G is not in the interior of <tCAB (Proposition 3.8(b)). 
� 

(12) Therefore, G lies on ray AD (step 11 contradicts step 8, RAA 

conclusion). <11111 

c 

-------� 

Figure 3.14 
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We call this result a theorem instead of a proposition to emphasize its 
importance (as was illustrated in the incomplete argument that base 
angles of an isosceles triangle are congruent). 

DEFINITIONS. The interior of a triangle is the intersection of the inte
riors of its three angles. A point is exterior to the triangle if it is not in 
the interior and does not lie on any side of the triangle. 

PROPOSITION 3.9. (a) If a ray r emanating from an exterior point of 
.6..ABC intersects side AB in a point between A and B, then r also in
tersects side AC or side BC. (b) If a ray emanates from an interior point 
of .6..ABC, then it intersects one of the sides, and if it does not pass 
through a vertex, it intersects only one side. 

You are asked to prove this also as an exercise. 

- EXAMPLE 1. AFFINE PLANES OVER ORDERED FIELDS. We 
saw in Chapter 2 that if F is a field, then the set F2 of ordered pairs 
(x, y) of elements of F can be given a natural structure of incidence 
plane, where lines are determined by linear equations and a point lies 
on a given line if and only if its coordinates satisfy the equation for 
that line. Moreover, the Euclidean parallel postulate holds in this plane, 
so it is (by definition) an affine plane. 

Suppose now that F has the structure of an ordered field. This means 
that besides the algebraic operations of addition, subtraction, multipli
cation, and division for elements of F, there is a relation a < b for el
ements of F that is compatible with the algebraic operations. (See p. 
600 for the precise definition.) If you have not taken a course in ab
stract algebra, think of the familiar ordered fields of rational numbers 
Q or of real numbers � (later we will consider another important or
dered field K called the constructible field-the closure of Q under the 
operation of taking square roots of positive numbers). Not every field 
can be given an order structure: One of the conditions for an ordered 
field is 

For every a, b, c, if a< b then a+ c < b + c. 

Another condition is that 0 < 1. 

Hence, 0 < 0 + 1 < 1 + 1 = 0 + 1 + 1 < 1 + 1 + 1 < · · · . Thus, by re
peatedly adding 1 's, we see that an ordered field must have infinitely 

many elements (in fact, it must contain an ordered subfield isomorphic 
to 0). This eliminates all the finite fields we mentioned in the exer
cises for Chapter 2. Other conditions in an ordered field are that for 
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every a i=- 0, we have 0 < a2 and that -1 < O; hence -1 cannot have 
a square root in an ordered field. This eliminates the field C of com
plex numbers. 

Given three distinct elements a, b, c in the ordered field F, we de
fine b to be between a and c if either a < b < c or c < b < a. For ex
ample, f is between 1 and 0. Using this definition, we interpret be
tweenness for three distinct collinear points A, B, C in F2 as follows: 

- CASE 1. The line they lie on has an equation of the form y = 

mx + b. Then A * B * C iff the first coordinate of B is between the first 
coordinates of A and C. 

- CASE 2. The line they lie on is vertical, i.e., has an equation of 
the form x = k, where k is constant. Then A * B * C iff the second co
ordinate of B is between the second coordinates of A and C. 

We leave it as a major exercise for those readers familiar with or
dered fields to verify that with this interpretation of betweenness, the 
interpretations of axioms B-1 through B-4 hold, so F2 becomes a model 
of both our incidence axioms and our betweenness axioms. Let us illus
trate Proposition 3.2: In Case 1, the two half-planes determined by that 
line are determined, respectively, by the inequalities y < mx + b and 
y > mx + b; in Case 2, they are determined, respectively, by the in
equalities x < k and x > k. We call a model of both our incidence and 
betweenness axioms an ordered incidence plane. 

NOTE. Since 02 with the incidence and betweenness structures we 
have defined is an ordered incidence plane, we have shown that if the 
theory of the ordered field of rational numbers is consistent, then so is 
the theory of ordered incidence planes (because any proof of a con
tradiction in the latter theory could be translated via the above model 
into a contradiction in the former theory). This is a relative consistency 

demonstration, but it is important because we have more experience 
and confidence that the theory of the ordered field Q is consistent than 
we might have for this new theory of ordered incidence planes. 

- EXAMPLE 2. AN ORDERED INCIDENCE PLANE (THE DISK) 

WITH THE HYPERBOLIC PARALLEL PROPERTY. Let the open unit 
disk U in F2, consisting of all points (x, y) in F2 such that x2 + y2 < 1, 

be our new set of points. Interpret lines to be chords of the unit circle 
x2 + y2 = 1 and interpret incidence the same as before. You have al
ready shown (at least informally) in Exercise 9(c) of Chapter 2 that this 
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interpretation is an incidence plane satisfying the hyperbolic parallel 
property. If we restrict the relation of betweenness in F2 to U, it is easy 
to see that the betweenness axioms so interpreted still hold. So U is 
another ordered incidence plane. 

Axioms of Congruence 
If we were more pedantic, congruent, the last of our undefined terms, 
would be replaced by two terms since it refers to either a relation be
tween segments or a relation between angles. By "abuse of language" 
(as French mathematicians say-it is really a simplification of our lan
guage), we will not be so pedantic because the intuitive idea is the 
same for both types of congruence. We use the familiar symbol� to 
denote congruence. The following definition provides further abuse be
cause we will use the word "congruent" also as a defined term for a 
relation between triangles. 

DEFINITION. Triangles .6..ABC and .6..DEF are congruent if there exists 
a one-to-one correspondence between their vertices such that corre
sponding sides are congruent and corresponding angles are congruent. 
We will use the notation .6..ABC � .6..DEF to indicate not only that these 
triangles are congruent but that a correspondence demonstrating that 
congruence is such that A corresponds to D, B to E, and C to F (i.e., 
the order in which we write the vertices matters). 

We will introduce six axioms for congruence, which will be referred 
to as C-1 through C-6. 

CONGRUENCE AXIOM 1. If A and B are distinct points and if A' is 
any point, then for each ray r emanating from A' there is a unique 

point B' on r such that B' i= A' and AB� A'B' (see Figure 3.15). 

r 

A------<---

A' 

Figure 3.15 
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c 

B 

A 

B' C' 

Figure 3.16 

Intuitively speaking, this axiom says you can "move" the segment 

AB so that it lies on the ray r with A superimposed on A' and B su

perimposed on B'. (In Exercise lS(b), Chapter 1, you showed how to 

do this with a straightedge and a collapsible compass.) 

CONGRUENCE AXIOM 2. If AB � CD and AB � EF, then CD � EF. 

Moreover, every segment is congruent to itself. 

This axiom replaces Euclid's first common notion since it says that 

segments congruent to the same segment are congruent to each other. 

It also replaces the fourth common notion since it says that segments 

that coincide are congruent. 

CONGRUENCE AXIOM 3. If A * B * C, A' * B' * C', AB � A'B', and 

BC� B'C', then AC� A'C' (see Figure 3.16). 

This axiom replaces the second common notion since it says that if 

congruent segments are "added" to congruent segments, the sums are 

congruent. Here, "adding" means juxtaposing segments along the same 

line. For example, using Congruence Axioms 1 and 3, you can lay off 

a copy of a given segment AB two, three, ... , n times, to get a new 

segment n · AB (see Figure 3.17). 

CONGRUENCE AXIOM 4. Given anv <tBAC (where, by the definition 
� ----'I � 

of "angle," AB is not opposite to AC) and given any ray A'B' emanat
� 

ing from a point A', then there is a unique ray A'C' on a given side of 
� 

line A'B' such that <tB'A'C' � <tBAC (see Figure 3.18). 

This axiom can be paraphrased to state that a given angle can be 

"laid off" on a given side of a given ray in a unique way (see Exercise 

14(g), Chapter 1). 

A B B' B" 

Figure 3.17 AB"= 3 · AB. 
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B 

A 

... ---

Figure 3.18 4: B' A'C = 4'.BAC. 
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C' 

---

CONGRUENCE AXIOM 5. If <r..A � <r..B and <r..A � <r..C, then <r..B � <r..C. 

Moreover, every angle is congruent to itself. 

This is the analogue for angles of Congruence Axiom 2 for segments; 

the first part asserts the transitivity and the second part the reflexivity 

of the congruence relation. Combining them, we can prove the sym

metry of this relation: <r..A � <r..B :::::} <r..B � <r..A. 

PROOF: 

<r..A � <r..B (hypothesis) and <r..A � <r..A (reflexivity) imply (substi

tuting A for C in Congruence Axiom S) <r..B � <r..A (transitivity). <Ill 

(By the same argument, congruence of segments is a symmetric 

relation.) 

It would seem natural to assume next an "addition axiom" for con

gruence of angles analogous to Congruence Axiom 3 (the addition ax

iom for congruence of segments). We won't do this, however, because 

such a result can be proved using the next congruence axiom (see 

Proposition 3 .19). 

CONGRUENCE AXIOM 6 (SAS). If two sides and the included angle 

of one triangle are congruent, respectively, to two sides and the in

cluded angle of another triangle, then the two triangles are congruent 

(see Figure 3.19). 

This side-angle-side criterion for congruence of triangles is a pro

found axiom. It provides the "glue" that binds the relation of congru

ence of segments to the relation of congruence of angles. It enables us 

to deduce all the basic results about triangle congruence with which 

you are presumably familiar. For example, here is one immediate con

sequence which states that we can "lay off" a given triangle on a given 

base and a given half-plane. 
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B B' 

Figure 3.19 SAS. 

COROLLARY TO SAS. Given .6..ABC and segment DE � AB, there is a 
� 

unique point F on a given side of line DE such that .6..ABC � .6..DEF. 

PROOF: 
� 

There is a unique ray DF on the given side such that �CAB � �FDE, 

and F on that ray can be chosen to be the unique point such that 

AC� DF (by Congruence Axioms 4 and 1). Then .6..ABC � .6..DEF 

(SAS) . .... 

As we said, Euclid did not take SAS as an axiom but tried to prove 

it as a theorem (Euclid 1.4). His argument was essentially as follows. 
� � 

Move .6..A'B'C' so as to place point A' on point A and A'B' on AB. 

Since AB � A'B', by hypothesis, point B' must fall on point B. Since 
� � 

�A� �A', A'C' must fall on AC, and since AC� A'C', point C' must 

coincide with point C. Hence, B 'C' will coincide with BC and the re

maining angles will coincide with the remaining angles, so the trian

gles will be congruent. 

This argument is called superposition. It derives from the experi

ence of drawing two triangles on paper, cutting out one, and placing 

it on top of the other. Although this argument is a good way to con

vince a novice in geometry to accept SAS, it is not a proof, and Euclid 

reluctantly used it in only one other proposition (I.8). It is not a proof 

because Euclid never stated an axiom that allows figures to be moved 

around without changing their size and shape. 

Some modern writers introduce "motion" as an undefined term and 

lay down axioms for this term. (In fact, in Pieri's foundations of geom

etry, "point" and "motion" are the only undefined terms.) Or else, the 

geometry is first built up on a different basis, "distances" introduced, 

and a "motion" defined as a one-to-one transformation of the plane 

onto itself that preserves distance. Euclid can be vindicated by either 

approach. In fact, Felix Klein, in his 1872 Erlanger Programme, defined 
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a geometry as the study of those properties of figures that remain 

invariant under a particular group of transformations. This idea will be 

developed in Chapter 9. 

You will show in Exercise 35 that it is impossible to prove SAS or 

any of the other criteria for congruence of triangles (SSS, ASA, SAA) 

from the preceding axioms. As usual, the method for proving the im

possibility of proving some statement S is to invent a model for the 

preceding axioms in which S is false. 

As an application of SAS, the simple proof of Pappus for the theo

rem on base angles of an isosceles triangle follows. 

PROPOSITION 3.10. If in .6:.ABC we have AB� AC, then �B � �c 

(see Figure 3.20). 

PROOF: 

(1) Consider the correspondence of vertices A� A, B � C, 

C � B. Under this correspondence, two sides and the included 

angle of .6:.ABC are congruent, respectively, to the correspon

ding sides and included angle of .6:.ACB (by hypothesis and 

Congruence Axiom 5 that an angle is congruent to iself). 

(2) Hence, .6:.ABC � .6:.ACB (SAS), so the corresponding angles, �B 

and �C, are congruent (by the definition of congruence of 

triangles) . .,.. 

This proposition is Euclid 1.5. Pappus' short proof was considered 

unacceptable by some because, if one thinks about triangle congruence 

as superposition, his proof seems to involve flipping the isosceles tri

angle through the third dimension; Pappus had the modern point of 

B 

Figure 3.20 
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F 
A 

Figure 3.21 

view of triangle congruence in terms of any one-to-one correspondence 

of vertices. 3 

Here are some more familiar results on congruence. We will prove 

some of them; if the proof is omitted, see the exercises. 

PROPOSITION 3.11 (SEGMENT SUBTRACTION). If A* B * C, D * E * F, 

AB� DE, and AC� DF, then BC� EF (see Figure 3.21). 

PROPOSITION 3.12. Given AC� DF, then for any point B between A 

and C, there is a unique point E between D and F such that AB � DE. 

PROOF: 
� 

(1) There is a unique point E on DF such that AB � DE (Congru-

ence Axiom 1). 

(2) Suppose E were not between D and F (RAA hypothesis; see 

Figure 3.22). 
� 

(3) Then either E = F or D * F * E (definition of DF). 
� 

(4) If E = F, then B and C are two distinct points on AC such that 

AC� DF �AB (hypothesis, step 1), contradicting the unique

ness part of Congruence Axiom 1. 
� 

(S) If D * F * E, then there is a point G on the ray opposite to CA 

such that FE� CG (Congruence Axiom 1). 

(6) Then AG� DE (Congruence Axiom 3). 
� 

(7) Thus, there are two distinct points B and G on AC such that 

AG� DE� AB (steps 1, 5, and 6), contradicting the unique

ness part of Congruence Axiom 1. 

(8) D * E * F (RAA conclusion) . .,.. 

DEFINITION. AB< CD (or CD> AB) means that there exists a point 

E between C and D such that AB� CE. 

3 In Appendix II of later editions of his Grundlagen, Hilbert (1988) did an advanced study 

of the role of the base angles of an isosceles triangle statement, constructing "non

Pythagorean" planes in which that statement and other familiar results fail. It also fails 

in the taxicab plane of Major Exercise 6. 
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Figure 3.22 

PROPOSITION 3.13 (SEGMENT ORDERING). (a) Exactly one of the 

following three conditions holds (trichotomy): AB < CD, AB � CD, or 

AB> CD. (b) If AB< CD and CD� EF, then AB< EF. (c) If AB> CD 

and CD� EF, then AB> EF. (d) If AB< CD and CD< EF, then AB< EF 

(transitivity). 

PROPOSITION 3.14. Supplements of congruent angles are congruent. 

PROPOSITION 3.15. (a) Vertical angles are congruent to each other. 

(b) An angle congruent to a right angle is a right angle. 

PROPOSITION 3.16. For every line l and every point P there exists a 

line through P perpendicular to l. 

PROOF: 

(1) Assume first that P does not lie on l and let A and B be any 

two points on l (Incidence Axiom 2). (See Figure 3.23.) 
� 

(2) On the opposite side of l from P there exists a ray AX such that 

<i:XAB � <i:PAB (Congruence Axiom 4). 
� 

(3) There is a point P' on AX such that AP' � AP (Congruence Ax-

iom 1). 

p 

Figure 3.23 
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(4) PP' intersects l in a point Q (definition of opposite sides of l). 
� 

(S) If Q = A, then PP' 1- l (definition of 1- and B-1). 

(6) If Q-=/= A, then .6:.PAQ � .6:.P'AQ (SAS). 

(7) 
� 

Hence, <tPQA � <tP'QA (corresponding angles), so PP' 1- l 

(definition of 1- and B-1). 

(8) Assume now that P lies on l. Since there are points not lying 

on l (Proposition 2.3), we can drop a perpendicular from one 

of them to l (steps 5 and 7), thereby obtaining a right angle. 

(9) We can lay off an angle congruent to this right angle with ver

tex at P and one side on l (Congruence Axiom 4); the other 

side of this angle is part of a line through P perpendicular to l 

(Proposition 3.lS(b)) . .,.. 

It is natural to ask whether the perpendicular to l through P con

structed in Proposition 3.16 is unique. If P lies on l, Proposition 3.23 

(later in this chapter) and the uniqueness part of Congruence Axiom 4 

guarantee that the perpendicular is unique. If P does not lie on l, we 

will not be able to prove uniqueness for the perpendicular until the 

next chapter. 

NOTE ON ELLIPTIC GEOMETRY. Informally, elliptic geometry may be 

thought of as the geometry on a Euclidean sphere with antipodal points 

identified (the model of incidence geometry first described in Exercise 

9(d), Chapter 2). Its "lines" are the great circles on the sphere. Given 

such a "line" l, there is a point P called the "pole" of l such that every 

line through P is perpendicular to l! To visualize this, think of l as the 

equator on a sphere and P as the north pole; every great circle through 

the north pole is perpendicular to the equator (Figure 3.24). 

Figure 3.24 
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PROPOSITION 3.17 (ASA CRITERION FOR CONGRUENCE). Given 
.6:.ABC and .6:.DEF with <r:..A � <r:..D, <r:..C � <r:..F, and AC� DF. Then 
.6:.ABC � .6:.DEF. 

PROPOSITION 3.18 (CONVERSE OF PROPOSITION 3.10). If in .6:.ABC 
we have <r:..B � <r:..C, then AB� AC and .6:.ABC is isosceles. 

� � 
PROPOSITION 3.19 (ANGLE ADDITION). Given BG between BA and 
�� � � 
BC, EH between ED and EF, <r:..CBG � <r:..FEH, and <r:..GBA � <r:..HED. Then 
<r:..ABC � <r:..DEF (see Figure 3.25) . 

PROOF: 

(1) By the crossbar theorem,4 we may assume G is chosen so that 
A* G * C. 

(2) By Congruence Axiom 1, we may assume D, F, and H chosen 
so that AB� ED, GB� EH, and CB� EF. 

(3) Then .6:.ABG � .6:.DEH and .6:.GBC � .6:.HEF (SAS) . 

(4) <r:..DHE � <r:..AGB, <r:..FHE � <r:..CGB (step 3) , and <r:..AGB is sup
plementary to <r:..CGB (step 1 and B-1) . 

(5) D, H, F are collinear, and <r:..DHE is supplementary to <r:..FHE 
(step 4, Proposition 3.14, and Congruence Axiom 4). 

� 
(6) D * H * F (Proposition 3.7, using the hypothesis on EH) . 
(7) AC� DF (steps 3 and 6, Congruence Axiom 3) . 

(8) <r:..BAC � <r:..EDF (steps 3 and 6). 

(9) .6:.ABC � .6:.DEF (SAS; steps 2, 7, and 8). 

(10) <r:..ABC � <r:..DEF (corresponding angles) . .,.. 

� � 
PROPOSITION 3.20 (ANGLE SUBTRACTION). Given BG between BA 

�� � � 
and BC, EH between ED and EF, <r:..CBG � <r:..FEH, and <r:..ABC � <r:..DEF. 
Then <r:..GBA � <r:..HED. 

4 This renaming technique will be used frequently. G is just a label for any point i= Bon 
the ray that intersects AC, so we may as well choose G to be the point of intersection 
rather than clutter the argument with a new label. 
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� � 
DEFINITION. <tABC < <tDEF means there is a ray EG between ED and 
� 
EF such that <tABC � <tGEF (see Figure 3.26). 

PROPOSITION 3.21 (ORDERING OF ANGLES). (a) Exactly one of the 

following three conditions holds (trichotomy): <tP < <tQ, <tP � <tQ, or 

<tQ < <tP. (b) If <tP < <tQ and <tQ � <tR, then <tP < <tR. (c) If <tP > 

<tQ and <tQ � <tR, then <tP > <tR. (d) If <tP < <tQ and <tQ < <tR, then 

<tP < <tR. 

PROPOSITION 3.22 (SSS CRITERION FOR CONGRUENCE). If AB � 

DE, BC� EF, and AC� DF, then �ABC� �DEF. 

The AAS criterion for congruence will be given in the next chapter 

because its proof is more difficult. The next proposition was assumed 

as an axiom by Euclid but can be proved from Hilbert's axioms. 

PROPOSITION 3.23 (EUCLID'S FOURTH POSTULATE). All right an

gles are congruent to each other (see Figure 3.27). 

PROOF: 

(1) Given <tBAD � <tCAD and <tFEH � <tGEH (two pairs of right 

angles, by definition). Assume the contrary, that <tBAD is not 

congruent to <tFEH (RAA hypothesis). 

B 

Figure 3.27 
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(2) Then one of these angles is smaller than the other-e.g., 

<tFEH < <tBAD (Proposition 3.21 (a))-so that by definition 
� � � 

there is a ray AJ between AB and AD such that <tBAJ � <tFEH. 

(3) <tCAJ � <tGEH (Proposition 3.14). 

(4) <tCAJ � <tFEH (steps 1 and 3, Com�ruence Axiom 5). 
� � "'"4-

(5) There is a ray AK between AD and AC such that <tBAJ � <tCAK 

(step 1 and Proposition 3.21 (b)). 

(6) <tBAJ � <tCAJ (steps 2 and 4, and Congruence Axiom 5). 

(7) <tCAJ � <tCAK (steps 5 and 6, and Congruence Axiom 5). 

(8) Thus, we have <tCAD greater than <tCAK (by definition) and 

less than its congruent angle <tCAJ (step 7 and Proposition 

3.8(c)), which contradicts Proposition 3.21. 

(9) <tBAD � <tFEH (RAA conclusion) ..... 

DEFINITIONS. An angle is acute if it is less than a right angle, obtuse 

if it is greater than a right angle. 

According to Proposition 3.23 and Proposition 3.21(b) and (c), it 

doesn't matter which right angle is used for comparison in these 

definitions. 

DEFINITION. A model of our incidence, betweenness, and congruence 

axioms is called a Hilbert plane. 

Axioms of Continuity 
There is a gap in the argument Euclid gives to justify his very first 

proposition. Here is his argument: 

Eucuo's PROPOSITION 1. Given any segment, there is an equilateral 

triangle having the given segment as one of its sides. 

EUCL.ID 's PROOF: 

(1) Let AB be the given segment. With center A and radius AB, let 

the circle BCD be described (Postulate III). (See Figure 3.28.) 

(2) Again with center B and radius BA, let the circle ACE be de

scribed (Postulate III). 

(3) From a point C in which the circles cut one another, draw the 

segments CA and CB (Postulate I). 

(4) Since A is the center of the circle CDB, AC is congruent to AB 

(definition of circle). 
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Figure 3.28 

(S) Again, since B is the center of circle CAE, BC is congruent to 

BA (definition of circle). 

(6) Since CA and CB are each congruent to AB (steps 4 and 5), 

they are congruent to each other (first common notion). 

(7) Hence, �ABC is an equilateral triangle (by definition) having 

AB as one of its sides. <Ill 

Since every step has apparently been justified, you may not see the 

gap in the proof. It occurs in the first three steps, especially in the third 

step, which explicitly states that C is a point in which the circles cut 

each other. (The second step states this implicitly by using the same 

letter "C" to denote part of the circle, as in the first step.) The point 

is: How do we know that such a point C exists? 

If you believe it is obvious from the diagram that such a point C 

exists, you are right-but you are not allowed to use the diagram to 

justify this! We aren't saying that the circles constructed do not cut 

each other; we're saying only that another axiom is needed to prove 

that they do. 

The gap can be filled using the following circular or circle-circle con

tinuity principle: 

CIRCLE-CIRCLE CONTINUITY PRINCIPLE. If a circle ')' has one point 

inside and one point outside another circle y', then the two circles in

tersect in two points. 

Here a point P is defined as inside a circle with center 0 and ra

dius OR if OP < OR (outside if OP > OR). In Figure 3 .28, point B is in

side circle y', and the point B' (not shown) such that A is the mid

point of BB' is outside y'. This principle is also needed to prove Euclid 

1.22, the converse to the triangle inequality (see Major Exercise 4). 

Another gap occurs in Euclid's method of dropping a perpendicu

lar to a line (Euclid 1.12, our Proposition 3.16). His construction tacitly 

assumes the line-circle continuity principle. 
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LINE-CIRCLE CONTINUITY PRINCIPLE. If a line passes through a point 

inside a circle, then the line intersects the circle in two points. 

This follows from the circular continuity principle (see Major Exer

cise 1, Chapter 4); but our proof will use Proposition 3.16, so Euclid's 

argument must be discarded to avoid circular reasoning. Another use

ful consequence (see Major Exercise 2, Chapter 4) is the elementary or 

segment-circle continuity principle. 

SEGMENT-CIRCLE CONTINUITY PRINCIPLE. If one endpoint of a seg

ment is inside a circle and the other endpoint is outside, then the seg

ment intersects the circle at a point in between. 

Can you see why these are "continuity principles"? For example, in 

Figure 3.29, if you were drawing the segment with a pencil moving 

continuously from A to B, it would have to cross the circle (if it didn't, 

there would be a "hole" in the segment and the circle). 

You may wonder why we have called these three statements "prin

ciples" instead of "theorems" or "axioms." The latter two would be 

theorems if we assumed the first one (as we will later show), but we 

do not wish to call the first one an axiom because we wish to illumi

nate exactly where it is needed, and then we will add it as a hypoth

esis. That will make the logical structure-which we emphasize in our 

treatment-clearer. 

It is impossible to prove the circle-circle continuity principle from 

our incidence, betweenness, and congruence axioms alone. To demon

strate this independence result, one must exhibit a model of those ax

ioms in which the circle-circle continuity principle is false. The con

struction of such a model is algebraic, requiring knowledge of 

Pythagorean ordered fields that are not Euclidean fields (see Hartshorne, 

Exercise 16 .10) . Also, Euclid 1.1, the existence of equilateral triangles 

on any base, cannot be proved in arbitrary Hilbert planes without fur

ther assumption (see Hartshorne, Exercise 39.31). 

0 
• 

B 

Figure 3.29 
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The next statement is not about continuity but rather about mea

surement. Archimedes was astute enough to recognize that a new ax

iom was needed. It is listed here because we will show that it is a con

sequence of Dedekind's continuity axiom, given later in this section. It 

is needed so that we can assign a positive real number as the length 

AB of an arbitrary segment AB, as will be explained in Chapter 4. 

ARCHIMEDES' AXIOM. If CD is any segment, A any point, and r any 

ray with vertex A, then for every point B i= A on r there is a number 

n such that when CD is laid off n times on r starting at A, a point E 

is reached such that n · CD � AE and either B = E or B is between A 

and E. 

Here we use Congruence Axiom 1 to begin laying off CD on r start

ing at A, obtaining a unique point Ai on r such that AAi � CD, and 

we define 1 · CD to be AAi. Let ri be the ray emanating from Ai that 

is contained in r. By the same method, we obtain a unique point A2 

on ri such that AiA2 �CD, and we define 2 · CD to be AA2. Iterating 

this process, we can define, by induction on n, the segment n · CD to 

be AAn. 

For example, if AB were 1T units long and CD of 1 unit length, you 

would have to lay off CD at least four times to get to a point E beyond 

the point B (see Figure 3.30). 

The intuitive content of Archimedes' axiom is that if you arbitrar

ily choose one segment CD as a unit of length, then every other seg

ment has finite length with respect to this unit (in the notation of the 

axiom, the length of AB with respect to CD as unit is at most n units). 

Another way to look at it is to choose AB as unit of length. The axiom 

says that no other segment can be infinitesimally small with respect to 

this unit (the length of CD with respect to AB as unit is at least l/n 

units). 

The next statement is a consequence of Archimedes' axiom and the 

previous axioms (as you will show in Exercise 2, Chapter S), but if one 

wants to do geometry with segments of infinitesimal length allowed, 

this statement can replace Archimedes' axiom (see my note "Aristotle's 

Figure 3.30 
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Axiom in the Foundations of Hyperbolic Geometry," Journal of Geom

etry, vol. 33, 1988). Besides, Archimedes' axiom is not a purely geo

metric axiom since it asserts the existence of a number. 

ARISTOTLE'S ANGLE UNBOUNDEDNESS AXIOM. Given any side of an 

acute angle and any segment AB, there exists a point Y on the given 

side of the angle such that if X is the foot of the perpendicular from Y 

to the other side of the angle, XY >AB. 

In other words, the perpendicular segments from one side of an acute 

angle to the other are unbounded-no segment AB can be a bound. In 

Chapter 5, where various attempts to prove Euclid V are analyzed, we 

will discuss how Proclus used this hypothesis in his attempt. Conversely, 

we will show in Chapter 4 that Euclid V implies Aristotle's axiom. Sac

cheri (whose work is discussed in Chapters 4-6) also recognized the im

portance of Aristotle's axiom and proved it using Archimedes' axiom. 

� 
IMPORTANT COROLLARY TO ARISTOTLE'S AXIOM. Let AB be any 

ray, P any point not collinear with A and B, and <r:..XVY any acute an
� 

gle. Then there exists a point Ron ray AB such that <r:..PRA < <r:..XVY. 

� 

Informally, if we start with any point R on AB, then as R "recedes 

endlessly" from the vertex A of the ray, <r:..PRA decreases to zero (be

cause it will eventually be smaller than any previously given angle 

<r:..XVY). This result will be used in Chapter 6. Its proof uses Theorem 

4.2 of Chapter 4 (the exterior angle theorem), and so it should be given 

after that theorem is proved, but we sketch the proof now for con

venience of reference. You may skip it now and return when needed. 

PROOF: 
� 

Let Q be the foot of the perpendicular from P to AB. Since point B 
� 

is just a label, we choose it so that Q if=. B and Q lies on ray B A. X 

and Y are arbitrary points on the rays rands that are the sides of 

<r:..XVY (see Figure 3.31). Let X' be the foot of the perpendicular 

from Y to the line containing r. By the hypothesis that the angle is 

acute and by the exterior angle theorem, we can show (by an RA A 

argument) that X' actually lies on r; so we can choose X to be X'. 

Aristotle's axiom guarantees that Y can be chosen such that 
� 

XY > P Q. By Congruence Axiom 1, there is one point Ron QB such 

that QR� XV. We claim that <r:..PRQ < <r:..XVY. Assume the contrary. 
� � 

By trichotomy, there is a ray RS such that <r:..QRS � <r:..XVY and RS 
� � � 

either equals RP or is between RP and RQ. 
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By the crossbar theorem, point S (which thus far is also merely 

a label) can be chosen to lie on segment PQ; then SQ is not greater 

than PQ. By the ASA congruence criterion, SQ� XY. Hence XY is 

not greater than PQ, contradicting our choice of Y. Thus �PRQ < 
� 

�XVY, as claimed. If R lies on ray AB, then �PRQ = �PRA and we 

are done. If not, R and Q lie on the opposite ray. By the exterior 

angle theorem, if R' is any point such that Q * R * R', then �PR'Q < 

�PRQ < �XVY. We get �PBA = �PBQ < �XVY by taking R' = B . 

.... 

All four principles thus far stated are in the spirit of ancient Greek 

geometry. They are all consequences of the next axiom, which is ut

terly modern. 

DEDEKIND'S AXIOM. 5 Suppose that the set { l} of all points on a line 

l is the disjoint union �1 U �2 of two nonempty subsets such that no 

point of either subset is between two points of the other. Then there 

exists a unique point 0 on l such that one of the subsets is equal to a 

ray of l with vertex 0 and the other subset is equal to the complement. 

Dedekind's axiom is a sort of converse to the line separation prop

erty stated in Proposition 3.4. That property says that any point 0 on 

5 This axiom was proposed by J. W. R. Dedekind in 1871; an analogue of it is used in 

analysis texts to express the completeness of the real number system. It implies that 

every Cauchy sequence converges, that continuous functions satisfy the intermediate 

value theorem, that the definite integral of a continuous function exists, and other im

portant conclusions. Dedekind actually defined a "real number" as a Dedekind cut on 

the set of rational numbers, an idea Eudoxus had 2000 years earlier (see Moise, 1990, 
Chapter 20). 
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0 

Figure 3.32 

l separates all the other points on l into those to the left of 0 and those 

to the right (see Figure 3.32; more precisely, {l} is the union of the 

two rays of l emanating from O). Dedekind's axiom says that, con
versely, any separation of points on l into left and right is produced by 

a unique point 0. A pair of subsets �1 and �2 with the properties in 

Dedekind's axiom is called a Dedekind cut of the line. 

Loosely speaking, the purpose of Dedekind's axiom is to ensure that 

a line l has no "holes" in it, in the sense that for any point 0 on land 

any positive real number x there exist unique points P-x and Px on l 
such that P-x * 0 * Px and segments P-xO and OPx both have length x 

(with respect to some unit segment of measurement). See Figure 3.33. 

Without Dedekind's axiom there would be no guarantee, for ex

ample, of the existence of a segment of length 'TT. With it, we can in

troduce a real number coordinate system into the plane and do geom

etry analytically. This coordinate system enables us to prove that our 
axioms for real Euclidean geometry are categorical in the sense that the 
system has a unique model (up to isomorphism-see the section Iso

morphism of Models in Chapter 2), namely, the usual Cartesian coor
dinate plane of all ordered pairs of real numbers. (See Example 3 in 

the next section.) 

The categorical nature of all the axioms is proved in Borsuk and 

Szmielew (1960, p. 276 ff.). 

WARNING If you have never seen Dedekind's axiom before, arguments 

using it may be difficult to follow. Don't be discouraged. With the excep

tion of Theorem 6.2 in hyperbolic geometry, it is not needed for studying 

the main theme of this book. I advise the beginning student to skip to the 

next section, Hilbert's Euclidean Axiom of Parallelism. 

Let us sketch a proof that Archimedes' axiom is a consequence of 

Dedekind's (and the axioms preceding this section). 

0 

Figure 3.33 
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PROOF: 

Given a segment CD and a point A on line l, with a ray r of l em

anating from A. In the terminology of Archimedes' axiom, let I1 

consist of A and all points B on r reached by laying off copies of 

segment CD on r starting from A. Let I2 be the complement of I1 

in r. We wish to prove that I2 is empty, so assume the contrary. 

In that case, let us show that we have defined a Dedekind cut 

of r (see Exercise 7(a)). Start with two points P, Q in I2 and say 

A* P * Q. We must show that PQ c I2. Let B be between P and Q. 

Suppose B could be reached, so that n and E are as in the state

ment of Archimedes' axiom; then, by Proposition 3.3, P is reached 

by the same n and E, contradicting P E I2. Thus PQ c I2. Simi

larly, you can show that when P and Q are two points in I1, PQ c 

I1 (Exercise 7(b)). So we have a Dedekind cut. Let 0 be the point 

of r furnished by Dedekind's axiom. 

- CASE 1. 0 E I1. Then for some number n, 0 can be reached by 

laying off n copies of segment CD on r starting from A. By laying off 

one more copy of CD, we can reach a point in I2, but by the defini

tion of I2, that is impossible. 

- CASE 2. 0 E I2. Lay off a copy of CD on the ray opposite to I2 

starting at 0, obtaining a point PE I1. Then for some number n, P can 

be reached by laying off n copies of segment CD on r starting from A. 

By laying off one more copy of CD, we can reach 0. That contradicts 

OEI2. 

So in either case, we obtain a contradiction, and we can reject the 

RAA hypothesis that I2 is nonempty. <Ill 

To further get an idea of how Dedekind's axiom gives us continu

ity results, we sketch a proof now of the segment-circle continuity prin

ciple from Dedekind's axiom (logically, this proof should be given later 

because it uses results from Chapter 4). Refer to Figure 3.29, p. 131. 

PROOF: 

By the definitions of "inside" and "outside" of a circle y with cen

ter 0 and radius OR, we have OA < OR < OB. Let I2 be the set of 
� 

all points P on the ray AB that either lie on y or are outside y, and 
� 

let I1 be its complement in AB. By trichotomy (Proposition 3.13(a)), 

I1 consists of all points of the segment AB that lie inside y. Ap

plying Exercise 27 of Chapter 4, you can convince yourself that 
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� 
(Ii, I2) is a Dedekind cut. Let M be the point on AB furnished by 

Dedekind's axiom. Assume M does not lie on y (RAA hypothesis). 

- CASE 1. OM< OR. Then ME Ii. Let m and r be the lengths 

(defined in Chapter 4) of OM and OR, respectively. Since I2 with M is 

a ray, there is a point N E I2 such that the length of MN is Hr - m) 

(by laying off a segment whose length is Hr - m)). But by the tri

angle inequality (applied to �OMN), the length of ON is less than 

m + Hr - m) < m + (r - m) = r, which contradicts N E I2. 

- CASE 2. OM > OR. The same argument applies, interchanging 

the roles of I2 and Ii. 

So in either case, we obtain a contradiction, and M must lie on y. <Ill 

You will find a lovely proof of the circle-circle continuity principle 

from Dedekind's axiom on pp. 238-240 of Heath's translation and com

mentary on Euclid's Elements (1956). It assumes that Dedekind's ax

iom holds for semicircles, which you can easily prove, and also uses 

the triangle inequality and the fact that the hypotenuse is greater than 

the leg (proved in Chapter 4). 

Euclid's tacit use of continuity principles can often be avoided. We 

did not use them in our proof of the existence of perpendiculars (Propo

sition 3.16). We did use the circular continuity principle to prove the 

existence of equilateral triangles on a given base, and Euclid used that 

to prove the existence of midpoints, as in your straightedge-and

compass solution to Major Exercise 1 (a) of Chapter 1. But there is an 

Dedekind I 
I 

� � 
Archimedes 

Circle-circle 

continuity principle 

I I 

� � � � 
Theorem4.3 Euclid Prop. 1 Line-circle 

Aristotle on on equilateral continuity 

measurement triangles principle 

Figure 3.34 
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ingenious way to prove the existence of midpoints using only the very 

mild continuity given by Pasch's theorem (see Exercise 5, Chapter 4). 

Figure 3.34 shows the implications discussed (assuming all the in

cidence, betweenness, and congruence axioms-especially SAS). 

Hilbert's Euclidean Axiom of Parallelism 
If we were to stop with the axioms we now have, we could do quite 

a bit of geometry, but not all of Euclidean geometry. We would be able 

to do what J. Bolyai called "absolute geometry." This name is mislead

ing because it does not include elliptic geometry and other geometries 

(see Appendix B). Preferable is the name suggested by W. Prenowitz 

and M. Jordan, neutral geometry, so called because in doing this geom

etry we remain neutral about the one axiom from Hilbert's list left to 

be considered-historically the most controversial axiom of all. 

HILBERT'S EUCLIDEAN AXIOM OF p ARALLELISM. For every line l 

and every point P not lying on l there is at most one line m through P 

such that mis parallel to l (Figure 3.35). 

Note that this axiom is weaker than the Euclidean parallel postu

late introduced in Chapter 1. This axiom asserts only that at most one 

line through P is parallel to l, whereas the Euclidean parallel postulate 

asserts in addition that at least one line through P is parallel to l. The 

reason "at least" is omitted from Hilbert's axiom is that it can be proved 

from the other axioms (see Corollary 2 to Theorem 4. 1 in Chapter 4); 

it is therefore unnecessary to assume this as part of an axiom. This ob

servation is important because it implies that the elliptic parallel prop

erty (no parallel lines exist) is inconsistent with the axioms of neutral 

geometry. Thus, a different set of axioms is needed for the foundation 

of elliptic geometry (see Appendix A). 

The axiom of parallelism completes our list of 15 axioms for real 

Euclidean geometry. A real Euclidean plane is a model of these axioms. 

In referring to these axioms, we will use the following shorthand: The 

p 

Figure 3.35 
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incidence axioms will be denoted by I-1, I-2, and I-3; the betweenness 

axioms by B-1, B-2, B-3, and B-4; the congruence axioms by C-1, C-2, 

C-3, C-4, C-5, and C-6 (or SAS) . Dedekind's axiom and Hilbert's 

Euclidean parallelism axiom will be referred to by name. 

The continuity axiom for a real Euclidean plane is Dedekind's ax

iom. This axiom is not needed to do elementary Euclidean geometry. 

Instead, the circle-circle continuity principle suffices to prove almost all 

the propositions in the first four volumes of Euclid's Elements. 

DEFINITION. A Euclidean plane is a Hilbert plane in which Hilbert's 

Euclidean axiom of parallelism and the circle-circle continuity princi

ple hold. 

- EXAMPLE 3. THE REAL EUCLIDEAN OR THE CARTESIAN 

PLANE. This is the model that most people have in mind when they 

talk about "the" Euclidean plane. In the treatise by Borsuk and Szmielew 

(1960) or in Hartshorne, it is proved that a real Euclidean plane is iso

morphic to the model we are about to describe. 

As we indicated, Dedekind's axiom provides a one-to-one corre

spondence between the points on a line and the ordered field � of real 

numbers. We have seen that �2 becomes a model of our incidence and 

betweenness axioms, as well as of Hilbert's Euclidean axiom of paral

lelism, with the interpretations discussed in Example 1 of this chapter. 

We now need to interpret the undefined term "congruence" to make 

�2 into a Euclidean plane. We do this via the familiar definition of dis

tance or segment length in analytic geometry, based on the Pythagorean 

formula. 

If A= (a1, a2) and B = (b1, b2) are two points in �2• define d(A B) 

by 

d(AB) = V (a1 - bi)2 + (a2 - b2)2. 

Interpret AB � CD to mean d(A B) = d(C D) ; i.e.,  two segments are in

terpreted as congruent if they have the same length. To interpret con

gruence of angles, one could define a measure of angles by real num

bers and interpret two angles to be congruent if they have the same 

angle measure; since that is not easy to do rigorously, we can use the 

following trick once we have verified the interpretation of C-1: Label 

the angle <i:ABC with vertex B by letting A, C on the sides of the an

gle be the unique points such that d(A B) = d(C B) = 1. Label <i:DEF 

similarly. Then interpret <i:ABC � <i:DEF to mean d(A C) = d(D F) . (This 

is the SSS criterion in disguise.) 
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We leave it as Projects 1-4 to either verify that �2 with these in

terpretations of congruence satisfies our six congruence axioms and 

Dedekind's axiom, or to look up and report on the verification of those 

seven claims in other textbooks recommended. Hence �2 becomes a 

Euclidean plane with those interpretations-the real Euclidean plane (also 

referred to as the Cartesian plane in honor of Descartes' invention of 

analytic geometry, though Descartes had no precise notion of the real 

numbers and his coordinates were geometric segments). 

- EXAMPLE 4. THE CONSTRUCTIBLE EUCLIDEAN PLANE. In 

Example 3, we could try to use the same interpretations of congruence 

for the ordered rational affine plane 02 instead of �2. Would that too 

become a model of our congruence axioms? The answer is NO! For in

stance, the interpretation of axiom C-1 fails. Consider the segment AB 

with A= (0, O) and B = (1, 1). If one tries to lay off this segment on 

the ray r emanating from the origin A that passes through the point 

(1, O) (i.e., the positive ray of the x-axis), we find that we cannot do 

that in 02 because the point B' on r which corresponds to B in �2 is 

B' = (Vz, O) since d(AB) = Vz. Geometrically, the way we would con

struct the point B' is to draw the circle y centered at A of radius AB 

and then take B' to be the point where that circle intersects the posi

tive ray of the x-axis. When we restrict to points with rational coordi

nates, there is no such intersection point. We also see from this example 

that the segment-circle continuity principle fails in 02: If C = (2, 0), 

segment AC has one endpoint A inside y and the other endpoint C out

side y, yet there is no point in between in 02 where y intersects AC. 

Joel Zeitlin informed me of another quirk in this interpretation. Con

sider point D = (1, 0). In �2, D is inside y because d(AD) = 1 and y 

has radius of length V2 > 1. However, in 02, D is not inside y! The 

reason is that the point D' in �2 between A and B for which d(AD' ) = 

1 does not have rational coordinates (review the definition of "inside" 

and of< for segments). Similarly, D is neither outside nor on the cir

cle y. Trichotomy fails in this interpretation. 

If you carry out or look up the verification of the interpretation of 

the congruence axioms and the circle-circle continuity principle in �2, 

you will see that the full power of the real number system is hardly 

used at all, only the fact that if a is a positive number, then Va is in 

R The reason is that congruence is interpreted in terms of distance, 

and distance was defined as the square root of a positive number. As 

for the verification of the circle-circle continuity principle, it too comes 
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down to the existence of square roots of positive numbers because cir
cles are represented in �2 by certain quadratic equations, and if the 
hypothesis of the circle-circle principle is satisfied, then one can show 
that the two quadratic equations for the two circles have two common 
solutions obtained through use of the quadratic formula. This leads us 
to the following definitions and theorem. 

DEFINITION. A Euclidean field is an ordered field F with the property 
that every positive element of F has a square root in F. 

THEOREM. If F is a Euclidean field, then F2, with congruence inter
preted in the same way as in Example 3 above, is a Euclidean plane. 

See the Projects for hints toward proving this. 
Here is the most important example of a Euclidean field other 

than R 

DEFINITION. The constructible field K is the intersection of all Euclid
ean subfields of R (K is also called the surd field in Moise's 1990 text.) 
An element of K is a real number that can be expressed in terms of ra
tional numbers by finitely many applications of the five operations of 
taking the square root of positive numbers, addition, subtraction, mul
tiplication, and division. The constructible Euclidean plane is F2, where 
F= K. 

For example, (3 - Vz)112 is an element of K, but V'2 is not (that 
requires proof). The latter result is the key to showing that duplication 
of a cube is impossible using only straightedge and compass. In fact, 
the Euclidean plane coordinatized by K is the key to proving the im
possibility in general of the four classical straightedge-and-compass con
structions discussed in Chapter 1. (See Hartshorne, Chapter 6, for all 
the details.) 

Note also that while the theory of real Euclidean planes is categorical
all its models are isomorphic-the theory of Euclidean planes is not: 
The plane coordinatized by � is not isomorphic to the plane coordi
natized by K. For example, in �2 every angle has a trisector, but over 
K the 60° angle does not have a trisector and the regular heptagon does 
not exist (as Kepler observed). 

NOTE FOR ADVANCED STUDENTS ON THE RELATIVE CONSIS

TENCY OF PLANE EUCLIDEAN GEOMETRY. Hilbert used the result 
that �2 is a model of his planar axioms to prove that if the theory of 
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the real numbers is consistent, then so is plane Euclidean geometry. 
Frankly, this result is of dubious value philosophically. Elementary 
plane Euclidean geometry is thousands of years older than the theory 
of the real numbers, and once the gaps in Euclid's presentation are 
filled by our-essentially Hilbert's-IS axioms for a Euclidean plane, 
we will have much more evidence to instill confidence that Euclidean 
geometry is consistent than we have for the consistency of the 
theory of IR.. Or, if one seeks an algebraic proof of relative consistency, 
it is better to use the plane coordinatized by the field of constructible 
numbers K since K is a much more elementary field than IR. (e.g., K is 
a countably infinite field, an algebraic extension of Q, whereas IR. is an 
uncountable transcendental extension of Q, and its exact cardinality is 
a complete mystery to mathematicians because of the independence of 
the continuum hypothesis from the accepted axioms of set theory ZFC). 
K can be defined without referring to IR. by showing how to succes
sively adjoin square roots of positive elements to fields built up that 
way starting from Q (see any good abstract algebra text). 

Conclusion 

The main purpose of this chapter is to fill in the gaps in Euclid's pre
sentation of plane geometry. It is not claimed that we have filled in all 
of them-we have not, but almost all6 the elementary synthetic Eu
clidean results you learned in high school can be proved from the 15 

axioms for Euclidean planes. 
The section on betweenness is probably new to you since Euclid 

did not consider that notion. The results on betweenness may seem ob
vious, yet they have profound significance. For one thing, they do not 
hold in elliptic geometry-the geometry of projective planes with the 
added structure of a four-point separation relation and a congruence 
relation (see Appendix A); in an elliptic plane, a line does not bound 
two half-planes (all the points not on the line are on the same side of 
the line). For another, they guarantee that we are working in two di
mensions and that the plane is orientable-see Chapter 9, Exercise 23. 

Also review the warning in the betweenness section about one state-

6 Euclid's theory of content-his version of area-requires Archimedes' axiom at certain 

points (see Hartshorne, Chapter 5). 
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ment you may consider "obvious" but which cannot be proved from 

our betweenness axioms (see Exercise 19). 

The section on congruence contains results that should all be fa

miliar. The main surprise, perhaps, is that the SAS triangle congruence 

criterion must be taken as an axiom-Euclid's superposition argument 

is good heuristics, but it is certainly not a proof in his system. 

Euclid's fourth postulate (that all right angles are congruent to 

one another) is no longer an axiom in our system: It was proved as 

Proposition 3. 23. Proclus, in his fifth-century commentary on Book I of 

the Elements, said Euclid IV should not be a postulate because it can 

be proved, and the idea for the proof we gave of Proposition 3 . 23 can 

be found in Proclus (1992, pp. 147-148). On the surface of a cone, right 

angles at the cone vertex are not congruent to right angles at other 

points of the cone (Henderson and Taimina, 2005, p. 58), so one can 

also argue that Euclid IV is not "obvious. " 

In the section on continuity, we showed how the circle-circle con

tinuity principle fills the gap in Euclid's very first proposition, the con

struction of an equilateral triangle on any given base. We mentioned 

two other continuity principles that later will be shown to be conse

quences of circle-circle continuity and that fill other gaps in Euclid. We 

also introduced Aristotle's axiom, a very important elementary geo

metric axiom used by Proclus; Archimedes' axiom, which is not a purely 

geometric axiom but which is needed for measurement; and Dedekind's 

set-theoretic axiom, which turns out to be equivalent to coordinatizing 

our plane with real numbers. 

Finally, we stated Hilbert's Euclidean axiom of parallelism, the last 

of our axioms for a Euclidean plane. In Chapter 4, we will show that 

it is equivalent to Euclid V. We have not derived any consequences of 

that axiom yet and will not do so for a while because we wish to re

main neutral about it and see what can be proved without it. None of 

the results in this chapter, including the results in the exercises, depend 

on Hilbert's Euclidean axiom of parallelism. We provided (without 

proofs) two very important examples of Euclidean planes: the real Carte

sian plane and the constructible Euclidean plane. 

NOTE FOR ADVANCED STUDENTS ON THE EXISTENCE OF CER

TAIN GEOMETRIC SETS. The astute reader may have noticed that 

while we have been very careful to add explicit axioms asserting the 

existence of certain points and lines, such as Axioms I-1, I-2, I-3, B-1, 

B-2, C-1, C-4, and the circle-circle continuity principle, and to carefully 
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prove from those axioms other existence assertions (such as the exis
tence of perpendiculars and parallels, the crossbar theorem, etc.), we 
have been rather casual about the existence of circles, segments, rays, 
half-planes, and so on. We either referred to "elementary set theory" 
as justification or just took their existence for granted. Let us be a lit
tle more precise here. Given distinct points 0 and A, the circle y with 
center 0 and a radius OA is defined as 

y = {PIOP � OA}. 

In words: Circle y is the set of all points P satisfying the geometric con
dition that OP is congruent to the given segment OA. As another ex
ample, if A and B are distinct points, 

AB= {PIP= AV P = B VA * P * B}. 

In words: Segment AB is the set of all points P satisfying the geomet
ric condition that either P is A, or P is B, or P is between A and B. 

The general principle of set theory we are invoking is as follows: 
For any geometric condition, the set of all points and lines satisfying 

that condition exists. However, that set may be the empty set: As one 
example, the set of all triples of points A, B, C such that A * B * C but 
A, B, C not collinear is empty, according to Axiom B-1. As another ex
ample, in a projective plane, the set of all lines parallel to a given line 
is empty. 

What's missing here is a precise definition of "geometric condition." 
That would require a more systematic discussion of the mathematical 
logic underlying our theory. We would have to precisely define the lan
guage of our theory and what is a well-formed formula in that lan
guage. Then a geometric condition is just a well-formed formula in the 
language of elementary geometry with one or more free (i.e., unquan
tified) variables. We are not stating the above principle as another ax
iom in our system. Consider it rather as a background principle akin 
to Euclid's common notions.7 

7 To be totally faithful to the spirit of Euclid, one should not bring in set theory at all 

since it is a theory first presented rigorously in the twentieth century. In that case, one 

would have to replace everything we have done using sets with further undefined terms 

and further axioms about those terms (e.g., "circle" would become an undefined term). 

That is a complicated project. The interested reader is invited to learn about Tarski's 

different first-order primitive terms and axioms for elementary Euclidean geometry at 

http://en.wikipedia.org/wiki/Tarski's_axioms. Tarski's theory is decidable and complete
i.e., there is an algorithm for deciding whether any geometric statement in his language 

is provable or its negation is. One can question how "elementary" Tarski's axioms are 

since there are infinitely many continuity axioms (brought into one axiom schema). 
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Review Exercise 

Which of the following statements are correct? 

(1) Hilbert's axiom of parallelism is the same as the Euclidean par

allel postulate given in Chapter 1. 

(2) A * B * C is logically equivalent to C * B * A. 

(3) In Axiom B-2, it is unnecessary to assume the existence of a 

point E such that B * D * E because this can be proved from 

the rest of the axiom and Axiom B-1, by interchanging the roles 

of B and D and taking E to be A. 

( 4) If A, B, and C are distinct collinear points, it is possible that 

both A * B * C and A * C * B. 

(5) The "line separation property" asserts that a line has two sides. 

(6) If points A and B are on opposite sides of a line l, then a point 

C not on l must be either on the same side of l as A or on the 

same side of l as B. 

(7) If line m is parallel to line l, then all the points on m lie on 

the same side of l. 

(8) If we were to take Pasch's theorem as an axiom instead of the 

separation axiom B-4, then B-4 could be proved as a theorem. 

(9) The notion of "congruence" for two triangles is not defined in 

this chapter. 

(10) It is an immediate consequence of Axiom C-2 that if AB � CD, 

then CD� AB. 

(11) One of the congruence axioms asserts that if congruent seg

ments are "subtracted" from congruent segments, the differ

ences are congruent. 

(12) In the statement of Axiom C-4, the variables A, B, C, A', and 

B' are quantified universally, and the variable C' is quantified 

existentially. 

(13) One of the congruence axioms is the side-side-side (SSS) crite

rion for congruence of triangles. 

(14) Euclid attempted unsuccessfully to prove the side-angle-side 

(SAS) criterion for congruence by a method called "superposi

tion." 

(15) We can use Pappus' method to prove the converse of the the

orem on base angles of an isosceles triangle if we first prove 

the angle-side-angle (ASA) criterion for congruence. 

(16) Archimedes' axiom is independent of the other 15 axioms for 

real Euclidean geometry given in this book. 
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(17) AB< CD means that there is a point E between C and D such 

that AB� CE. 

(18) All Euclidean planes are isomorphic to one another. 

(19) V'2 is not a constructible number. 

(20) A Hilbert plane is any model of the incidence, betweenness, 

and congruence axioms. 

Exercises on Betweenness 

1. Given A * B * C and A * C * D. 

(a) Prove that A, B, C, and D are four distinct points (the proof 

requires an axiom). 

(b) Prove that A, B, C, and D are collinear. 

(c) Prove the corollary to Axiom B-4. 
� � 

2. (a) Finish the proof of Proposition 3.1 by showing that ABU BA= 
� 

AB. 

(b) Finish the proof of Proposition 3.3 by showing that A* B * D. 

(c) Prove the converse of Proposition 3.3 by applying Axiom B-1. 

(d) Prove the corollary to Proposition 3.3. 

3. Given A* B * C. 

(a) Use Proposition 3.3 to prove that AB c AC. Interchanging A 

and C, deduce CD c CA; which axiom justifies this interchange? 

(b) Use Axiom B-4 to prove that AC c AB U BC. (Hint: If P is a 

fourth point on AC, use another line through P to show P E 

AB or PE BC.) 

(c) Finish the proof of Proposition 3.5. (Hint: If P i= B and PE 

AB n BC, use another line through P to get a contradiction.) 

4. Given A * B * C. 

(a) If P is a fourth point collinear with A, B, and C, use Proposi

tion 3.3 and an axiom to prove that �A* B * P :::::} �A* C * P. 
� � � � 

(b) Deduce that BA c CA and, symmetrically, BC c AC. 

(c) Use this result, Proposition 3.l(a), Proposition 3.3, and Propo-
� � 

sition 3.5 to prove that B is the only point that BA and BC have 

in common. 
� � 

5. Given A* B * C. Prove that AB = AC, completing the proof of Propo-

sition 3.6. Deduce that every ray has a unique opposite ray. 

6. In Axiom B-2, we were given distinct points B and D, and we as

serted the existence of points A, C, and E such that A* B * D, 

B * C * D, and B * D * E. We can now show that it was not neces

sary to assume the existence of a point C between B and D because 
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G 

H 

Figure 3.36 

we can prove from our other axioms (including the rest of Axiom 
B-2) and from Pasch's theorem (which was proved without using 
Axiom B-2) that C exists.8 Your job is to justify each step in the 
proof (some of the steps require a separate RAA argument) . 

PROOF (SEE FIGURE 3.36): 
� 

(1) There exists a line BD through B and D. 
� 

(2) There exists a point F not lying on BD. 
� 

(3) There exists a line BF through B and F. 
(4) There exists a point G such that B * F * G. 
(S) Points B, F, and G are collinear. 
(6) G and D are distinct points and D, B, and G are not collinear. 
(7) There exists a point H such that G * D * H. 

� 

(8) There exists a line GH. 
(9) H and F are distincuoints. 
(10) There exists a line FH. 

� 

(11) D does not lie on FH. 
� 

(12) B does not lie on FH. 
� 

(13) G does not lie on FH. 
� 

(14) Points D, B, and G determine .6:.DBG, and FH intersects side 
BG in a point between B and G. 

� � 

(15) H is the only point lying on both FH and GH. 
� 

(16) No point between G and D lies on FH. 
� 

(17) Hence, FH intersects side BD in a point C between D and B. 
(18) Thus, there exists a point C between D and B. <11111 

7. (a) Define a Dedekind cut on a ray r the same way a Dedekind cut 
is defined for a line. Prove that the conclusion of Dedekind's 

8 Regarding superfluous hypotheses, there is a story that Napoleon, after examining a 
copy of Laplace's Celestial Mechanics, asked Laplace why there was no mention of God 
in the work. The author replied, "I have no need of this hypothesis." 



148 HILBERT'S AXIOMS 

axiom also holds for r. (Hint: One of the subsets, say, I1, con

tains the vertex A of r; enlarge this set so as to include the ray 

opposite to r and show that a Dedekind cut of the line l con

taining r is obtained.) Similarly, state and prove a version of 

Dedekind's axiom for a cut on a segment. 

(b) Supply the indicated arguments left out of the proof of 

Archimedes' axiom from Dedekind's axiom. 

8. From the three-point model (Example 1 in Chapter 2) we saw that 

if we used only the axioms of incidence, we could not prove that 

a line has more than two points lying on it. Using the betweenness 

axioms as well, prove that every line has at least five points lying 

on it. Give an informal argument to show that every segment (a for

tiori, every line) has an infinite number of points lying on it (a for

mal proof requires the technique of mathematical induction). 

9. Given a line l, a point A on l, and a point B not on l. Then every 
� 

point of the ray AB (except A) is on the same side of l as B. (Hint: 

Use an RAA argument.) 

10. Prove Proposition 3.7. 

11. Prove Proposition 3.8. (Hint: For Proposition 3.8(c) , prove in two 
� 

steps that E and B lie on the same side of AD, first showing that 
� 

EB does not meet AD and then showing that EB does not meet the 
� 

opposite ray AF. Use Exercise 9.) 

12. Prove Proposition 3.9. (Hint: For Proposition 3.9(a) , use Pasch's the

orem and Proposition 3.7; see Figure 3.37. For Proposition 3.9(b) , 

let the ray emenate from point D in the interior of .6.ABC. Use the 
� 

crossbar theorem and Proposition 3. 7 to show that AD meets BC in 

a point E such that A* D * E. Apply Pasch's theorem to .6.ABE and 

.6.AEC; see Figure 3.38.) 

13. Prove that a line cannot be contained in the interior of a triangle. 

14. If a, b, and c are rays, let us say that they are coterminal if they 

emanate from the same point, and let us use the notation a * b * c 

Figure 3.37 
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A 

� --

Figure 3.38 

to mean that b is between a and c (as defined on p. 115). The ana

logue of Axiom B-1 states that if a * b * c, then a, b, c are distinct 

and coterminal and c * b * a; this analogue is obviously correct. State 

the analogues of Axioms B-2 and B-3 and Proposition 3 .3 and tell 

which parts of these analogues are correct. (Beware of opposite 

rays!) 

15. Find an interpretation in which the incidence axioms and the first 

two betweenness axioms hold but Axiom B-3 fails in the following 

way: There exist three collinear points, no one of which is between 

the other two. (Hint: In the usual Euclidean model, introduce a new 

betweenness relation A* B * C to mean that B is the midpoint of AC.) 

16. Find an interpretation in which the incidence axioms and the first 

three betweenness axioms hold but the line separation property 

(Proposition 3 .4) fails. (Hint: In the usual Euclidean model, pick a 

point P that is beween A and B in the usual Euclidean sense and 

specify that A will now be considered to be between P and B. Leave 

all other betweenness relations among points alone. Show that P 
� � 

lies neither on ray AB nor on its opposite ray AC.) 

17. A rational number of the form a/2n (with a, n integers) is called 

dyadic. In the interpretation of Example 1 (p. 117) for this chapter, 

restrict to those points which have dyadic coordinates and to those 

lines which pass through several dyadic points. The incidence ax

ioms, the first three betweenness axioms, and the line separation 

property all hold in this dyadic rational plane; show that Pasch's 

theorem fails. (Hint: The lines 3x + y = 1 and y = 0 do not meet in 

this plane.) 

18. A set of points S is called convex if whenever two points A and B 

are in S, the entire segment AB is contained in S. Prove that a half

plane, the interior of an angle, and the interior of a triangle are all 

convex sets, whereas the exterior of a triangle is not convex. Is a 

triangle a convex set? 
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19. Fill in the details of Example 2 of this chapter to show informally 
that the open unit disk U in F2 is an ordered incidence plane hav
ing the hyperbolic parallel property (existence of more than one par
allel to a given line through a given point not on that line). Take F 
to be � if you are unfamiliar with ordered fields. Draw a diagram 
in this model to show that for any angle in this model, there exist 
points interior to that angle which do not lie on any line that in
tersects both sides of the angle. (Congruence in this model will be 
explained in Chapter 7.) 

Exercises on Congruence 
20.Justify each step in the following proof of Proposition 3.11: 

PROOF: 

(1) Assume on the contrary that BC is not congruent to EF. 
� 

(2) Then there is a point G on EF such that BC � EG. 
(3) G =#= F. 
(4) Since AB� DE, adding gives AC� DG. 
(5) However, AC� DF. 
(6) Hence, DF � DG. 
(7) Therefore, F = G. 
(8) Our assumption has led to a contradiction; hence, BC� EF. <11111 

21. Prove Proposition 3.13(a). (Hint: In the case where AB and CD are 
� 

not congruent, there is a unique point F =#= D on CD such that AB � 
CF (reason?). In the case where C * F * D, show that AB< CD. In 
the case where C * D * F, use Proposition 3.12 and some axioms to 
show that CD< AB.) Provide the details of the claim in Example 4 
of this chapter that trichotomy sometimes fails in 02. 

22. Use Proposition 3.12 to prove Propositions 3.13(b) and (c). 
23. Use the previous exercise and Proposition 3.3 to prove Proposition 

3.13(d). 
24. Justify each step in the following proof of Proposition 3.14 (see Fig

ure 3.39). 

PROOF: 

Given <i:ABC � <i:DEF. To prove <i:CBG � <i:FEH: 

(1) The points A, C, and G being given arbitrarily on the sides of 
<i:ABC and the supplement <i:CBG of <i:ABC, we can choose the 
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c F 

Figure 3.39 

points D, F, and H on the sides of the other angle and its sup

plements so that AB� DE, CB� FE, and BG� EH. 

(2) Then, .6:.ABC � .6:.DEF. 

(3) Hence, AC � DF and <r:..A � <r:..D. 

( 4) Also, AG � DH. 

(5) Hence, .6:.ACG � .6:.DFH. 

(6) Therefore, CG � FH and <r:..G � <r:..H. 

(7) Hence, .6:.CBG � .6:.FEH. 

(8) It follows that <r:..CBG � <r:..FEH, as desired . .,.. 

25. Deduce Proposition 3.15 from Proposition 3.14. 

26. Justify each step in the following proof of Proposition 3.17 (see Fig

ure 3.40): 

PROOF: 

Given .6:.ABC and .6:.DEF with <r:..A � <r:..D, <r:..C � <r:..F, and AC� DF. 

To prove .6:.ABC � .6:.DEF: 

� 

(1) There is a unique point B' on ray DE such that DB'� AB. 

(2) .6:.ABC � .6:.DB'F. 

(3) Hence, <r:..DFB' � <r:..C. 

B 

Figure 3.40 
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� � 

(4) This implies FE = FB'. 

(5) In that case, B' = E. 

(6) Hence, .6:.ABC � .6:.DEF . .... 

HILBERT'S AXIOMS 

27. Prove Proposition 3.18. 

28. Prove that an equiangular triangle (all angles congruent to one an

other) is equilateral. 

29. Prove Proposition 3.20. (Hint: Use Axiom C-4 and Proposition 3.19.) 
� � � 

30. Given <tABC � <tDEF and BG between BA and BC. Prove that there 
� � � 

is a unique ray EH between ED and EF such that <tABG � <tDEH. 

(Hint: Show that D and F can be chosen so that AB � DE and BC � 

EF, and that G can be chosen so that A* G * C. Use Propositions 

3.7 and 3.12 and SAS to get H; see Figure 3.25.) 

31. Prove Proposition 3.21 (imitate Exercises 21-23). 

32. Prove Proposition 3.22. (Hint: Use the corollary to SAS to reduce 

to the case where A= D, C = F, and the points B and E are on 
� 

opposite sides of AC.) 

33. If AB< CD, prove that 2AB < 2CD. 

34. (a) Prove Euclid's second postulate. 

(b) Prove that the center of a circle is unique and its radius is 

unique up to congruence; that is, if points 0, O' and radii OA, 

O' A', respectively, determine the same circle, then 0 = O' and 

OA � O'A'. 

35. In the real Euclidean plane of Example 3 in this chapter, we have 

defined the length of any segment by the Pythagorean formula. We 

will now distort that interpretation as follows: For segments on the 

x-axis only, redefine their length as twice what it was previously 

(e.g., the length of the segment from (1, O) to (4, O) is now 6 in

stead of 3). Reinterpret congruence of segments to mean that two 

segments in the plane have the same "length" in this perverse way 

of measuring (e.g., the segment from (O, O) to (O, 6) on the y-axis 

is now congruent to the segment from (1, O) to (4, O) on the x-axis). 

Points, lines, incidence, and betweenness will have the same mean

ing as before and satisfy the same axioms as before. Congruence of 

angles will mean that the angles have the same number of degrees, 

i.e., the same meaning as in high school geometry (something we 

have not defined, but treat this example informally). Show infor

mally that the first five congruence axioms and angle addition 

(Proposition 3 .19) still hold in this interpretation but that SAS fails 

for certain pairs of triangles (see Figure 3.41). This shows that Ax

iom C-6 (SAS) is independent of the other 12 axioms for a Hilbert 
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Figure 3.41 

plane (it can neither be proved nor disproved from them). Draw 

diagrams to show that SSS and ASA also fail for certain pairs of tri

angles. Draw a diagram of a circle with center on the x-axis in this 

interpretation and use that diagram to show that the circle-circle 

continuity principle and the segment-circle continuity principle fail 

in this interpretation. 

Major Exercises 
1. In the real Euclidean plane, let y be a circle with center A and ra

dius of length r. Let y' be another circle with center A' and radius 

of length r', and let d be the distance from A to A' (see Figure 3.42). 

There is a hypothesis about the numbers r, r', and d that ensures 

that the circles y and y' intersect in two distinct points. Figure out 

what this hypothesis is. (Hint: Its statement that certain numbers 

obtained from r, r', and dare less than certain others.) 

What hypothesis on r, r', and d ensures that y and y' intersect 

in only one point, i.e., that the circles are tangent to each other? 

(See Figure 3.43.) 

2. Define the reflection in a line m to be the transformation Rm of the 

plane that leaves each point of m fixed and transforms a point A 

not on m as follows. Let M be the foot of the perpendicular from 

A tom. Then, by definition, Rm(A) is the unique point A' such that 

"( 

y' 

Figure 3.42 



154 HILBERT'S AXIOMS 

Figure 3.43 

A' * M *A and A'M �MA (see Figure 3.44). This definition uses 
the result from Chapter 4 that the perpendicular from A to m is 
unique, so that the foot M is uniquely determined as the intersec
tion with m. Prove that Rm is a motion, i.e., that AB � A'B' for any 
segment AB. Prove also that AB� CD :::::} A'B' � C'D' and that 
<r:..A � <r:..B :::::} <r:..A' � <r:..B'. (Chapter 9 will be devoted to a thorough 
study of motions; the reflections generate the group of all such trans
formations.) (Hint: The proof breaks into the cases (i) A or B lies 
on m, (ii) A and B lie on opposite sides of m, and (iii) A and B lie 
on the same side of m. In (ii), let M, N be the midpoints of AA', 

BB' and let C be the point at which AB meets m; prove that 
A' * C * B' by showing that <r:..A'CM � B'CN and apply Axiom C-3. 
In (iii), let C be the point at which AB' meets m, and use B = (B')' 

and the first two cases to show that .6..ABC � .6..A'B'C. Take care 
not to use results that are valid only in Euclidean geometry.) 

If F is an ordered field for which F2 is a Hilbert plane, find the 
explicit formula for the reflection across a line, treating separately 
the cases where the line is vertical (given by an equation x = con
stant) and where it is not (hence given by an equation y = mx + b). 

(Hint: In the latter case, a perpendicular to the line has slope -1/m. 

Use that to find the coordinates of the foot M of the perpendicular 
from A and then find the coordinates of A' in terms of those of A.) 

A 

M _____ ........__ ___ .._ m 

Figure 3.44 
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NOTE ON ELLIPTIC GEOMETRY. Consider the sphere with antipo
dal points identified, "lines" being great circles. The perpendicular from 
A to mis unique except for one point P called the pole of m (see Fig
ure 3.24, p. 126, where mis the equator and P is the north pole); all 
perpendiculars tom pass through P. The definition of reflection is mod
ified in this model so that Rm(P) = P, because the natural candidate for 
Rm(P) is the point antipodal to P, but we have identified antipodal 
points. Show informally in this model that Rm is the same as the 180° 

rotation about the pole of m. When we study rotations in Hilbert planes 
in Chapter 9, we will prove that no rotation can be the same as a re
flection, so this is another major difference between neutral geometry 
and elliptic geometry. 

In the following exercises, we will assume that a segment AB has a 
length which has the familiar properties (they are spelled out in The
orem 4.3, Chapter 4). Here we denote that length by IABI. You can 
think of it as a real number, as you did in high school, or you can read 
the more sophisticated treatment in Hartshorne's book, in which IABI 
is the congruence class of segment AB and these classes can be added 
and ordered. 

3. Let y be a circle with center 0. For any point P ony, we have called 
segment OP a radius of y. Let us call IOPI the radius of y and de
note it by r. Let y' be another circle with center O' i= 0 and radius 
r' and let d = IOO'I. In the next chapter, we will prove the triangle 

inequality (Euclid 1.20) for any Hilbert plane: If A, B, C are not 
collinear, then IABI + IBCI > IACI. Assume that result for now. Sup
pose that the hypothesis of the circle-circle continuity principle is 
satisfied-Le., that there is a point of y' inside y and also another 
point of y' outside y. Show that the following three inequalities 
hold: r + r' > d, r + d > r', and r' + d > r. (Hint: Use the triangles 
formed with 0 and O' by the point inside and by the point outside 

y and apply the fact that if a< b, then for any c, a + c < b + c.) 

4. The converse to the triangle inequality is the statement that if a, b, 

c are such that the sum of any two is greater than the third, then 
there exists a triangle whose sides have those lengths. Again, as
suming the triangle inequality, which will be proved in Chapter 4, 

show that its converse implies the circle-circle continuity principle. 
(Hint: Apply the previous exercise to get one point of intersection 
and reflect across the line joining 0 and O' to get the other. Use 
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the uniqueness part of Axiom C-4 to prove that those two are the 
only points of intersection of the circles.) 

5. Euclid 1.22 is the converse to the triangle inequality. Here is Eu
clid's proof, which has a gap when he assumes without justifica
tion the existence of point K. Show that the gap can be filled by as
suming the circle-circle continuity principle. Combining this with 
the previous two exercises, we obtain the following result: For all 
Hilbert planes, 

Circle-circle continuity principle ¢:::> converse to the triangle inequality. 

Keep in mind that neither one of these has been proved by itself, 
only that they are logically equivalent given the 13 axioms for Hilbert 
planes (and the triangle inequality, which will be proved for all 
Hilbert planes in Chapter 4). 

PROOF: 

Choose notation for the three given lengths so that a > b > c. Take 
� 

any point D and any ray DE emanating from D. Starting from D, 
lay off successively on that ray points F, G, H so that a= IDFI, b = 

IFGI, c = IGHI. Then the circle with center F and radius a meets the 
circle with center G and radius c at a point K, and L'.}.FGK is a tri
angle that has sides of "length" a, b, and c (see Figure 3 .45) . .,.. 

6. The taxicab plane is another example like Exercise 35 where dis
tance is modified in IR.2 so that SAS and other familiar statements 
fail. Instead of using the Pythagorean formula to define the distance 
between two points A = (ai. a2) and B = (bi. b2), use the taxicab 

formula: 

Figure 3.45 
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Diagramatically, if A and B are not on the same vertical or hori

zontal line, draw a horizontal line through A and drop a vertical 

perpendicular from B to that line with foot C. Then segment AB is 

the hypotenuse of a right triangle with right angle at C, and the or

dinary distance d(A, B) is the usual length of that hypotenuse. The 

taxicab distance dT(A, B) is the sum of the usual lengths of the legs 

of that triangle and is longer than the ordinary distance. If you were 

in a city with a rectangular grid of streets, it is the distance a taxi

cab would have to travel to get you around a corner at C from point 

A to point B. If, however, points A and B both lie on either a hor

izontal line, y = constant, or on a vertical line, x = constant, then 

dT(A, B) = d(A, B). 

(a) With points, lines, incidence, betweenness, and congruence of 

angles interpreted as in Exercise 35 (the usual interpretation) 

but with congruence of segments interpreted via taxicab dis

tance, exhibit a pair of triangles and a correspondence between 

their vertices for which SAS fails. Do the same for SSS and 

ASA. Show informally that the first five congruence axioms and 

angle addition (Proposition 3 .19) still hold in this interpreta

tion. (Hint: Verify C-1 using the formulas x = r cos () and y = 

r sin () relating rectangular to polar coordinates.) 

(b) Exhibit an equilateral triangle in which one angle is a right an

gle and the other angles are acute. Since an equilateral trian

gle is an isosceles triangle, this is also an example in which 

the base angles of an isosceles triangle are not congruent. 

(c) Exhibit a triangle in which two angles are congruent but the 

sides opposite those angles are not congruent. 

(d) Show that a "circle" in taxicab geometry is a square in the real 

Euclidean plane but that not every Euclidean square is a taxi

cab circle. Give an example of two taxicab circles that satisfy 

the hypothesis of the circle-circle continuity principle but that 

intersect in infinitely many points. 

(e) In the real Euclidean plane, the locus of points equidistant from 

two given points A, B is the perpendicular bisector of segment 

AB. What does that locus look like with respect to taxicab dis

tance? (Hint: Work out some specific examples. The locus can 

have several shapes.) 

(If you are stymied by this exercise, see the delightful little book 

Taxicab Geometry: An Adventure in Non-Euclidean Geometry (Dover, 

1987), by Eugene F. Krause.) 
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Projects 

1. Verify the claim in Example 3 that with the interpretation of con
gruence via the Pythagorean formula given there, the interpretations 
of the first five congruence axioms hold in the real Euclidean plane. 
(The nontrivial statements to verify are C-4, the laying off of an an
gle, and C-1, the laying off of a segment. If you are stymied, see 
Hartshorne.) 

2. A Pythagorean ordered field is an ordered field F in which for every 
c E F, � E F. We see that Q is not Pythagorean by taking 
c = 1. Hilbert denoted the smallest Pythagorean subfield of IR by the 
Greek letter il. An element of il is obtained from rational numbers 
by finitely many applications of the operations of addition, sub
traction, multiplication, division, and taking the positive square root 
of a number of the form 1 + c2. Since 0 < 1 + c2, every Euclidean 
ordered field is Pythagorean, but the converse is false. If you have 
studied field theory, report on Exercise 16.10, p. 147, of Hartshorne 
where it is shown that n is strictly smaller than the constructible 
field K (e.g., (1 + Vz) 112 fl. il). If F is any ordered field, the inter
pretations of Axioms C-2 through C-5 hold in F2, but the interpre
tation of C-1 will hold iff F is Pythagorean. Show this, referring to 
Hartshorne if you are stymied. 

3. The standard method for verifying SAS (Axiom C-6) in F2, when F 
is a Pythagorean ordered field, is to first establish the existence of 
enough motions in F2 so that Euclid's idea of superposition can be 
made rigorous. Report on that method from Hartshorne, Chapter 3, 

Section 17. The difficulty of that verification shows that SAS is the 
deepest of the axioms. We will study motions of the plane in Chap
ter 9 (reflections have already been defined in Major Exercise 2 
above). 

4. Finally, to show that F2 is a Euclidean plane when F is a Euclidean 
ordered field (in particular, when F = IR), one must verify the 
circle-circle continuity principle. In F2, we interpreted segment con
gruence via the Pythagorean distance function d(AB): AB � CD iff 
d(AB) = d(CD). Having verified the interpretation of C-1 in Project 
2, we see also that AB < CD iff d(AB) < d(CD). If A * B * C, you 
can easily verify that d(AC) = d(AB) + d(BC). You can directly ver
ify the triangle inequality in F2. Hence, Major Exercises 3-5 become 
applicable, and it suffices to verify the converse to the triangle in
equality in order to verify the circle-circle continuity principle. If 
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you cannot verify that yourself, report on the verification found in 

Moise's Elementary Geometry from an Advanced Standpoint, 1990, 

3rd ed., p. 239 ff. (where it is called The Triangle Theorem). In your 

report, highlight the step which uses the hypothesis that F is a Eu

clidean field (the step which uses Va E F for any a > O). 
5. If F is a Pythagorean ordered field that is not a Euclidean field (Pro

ject 2), then the interpretation of the circle-circle continuity princi
ple fails in F2-in fact, the line-circle continuity principle, which 

will be shown in Major Exercise 1 of Chapter 4 to be a consequence, 

fails. Here is an argument (due to Descartes!) to show that the va

lidity in F2 of the line-circle continuity principle implies that F is Eu

clidean: Given a> 0 in F. Let r = ±Ca + I) and let 5 be the circle of 

center (r, O) and radius r. Let A = (a, O). Show that A lies inside 5. 

Hence the vertical line x = a through A meets 5 in two points, by 
the line-circle continuity principle. If B is the intersection point in 

the upper half-plane, show that B = (a, Va). Hence, Va E F. 

6. Combining the results of Projects 4 and 5, we see that for Hilbert 

planes of the form F2, the line-circle continuity principle implies the 

circle-circle continuity principle. I do not know whether that impli

cation holds for all Hilbert planes. If you can prove that it does, or 

provide a counterexample showing it doesn't, that would be a re

sult worth publishing (provided that a search of the geometry lit

erature verifies that someone else has not already published it). 
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Neutral 
Geometry 

If only it could be proved . . . that "there is a Triangle whose angles 

are together not less than two right angles"! But alas, that is an ignis 

fatuus that has never yet been caught! 

C. L. Dodgson (Lewis Carroll) 

Geometry Without a Parallel Axiom 
In the preceding chapters, we strengthened the foundations of Euclid's 

geometry by presenting 13 axioms plus continuity principles to replace 

his first 4 postulates. The 13 axioms (3 incidence, 4 betweenness, and 

6 congruence axioms) are essentially those of David Hilbert, and in his 

honor a model of those axioms was called a Hilbert plane. 

Euclid's fifth postulate will be discussed in this chapter, but it will 

not be assumed except when we explicitly announce it as a hypothe

sis. Instead, we will be studying some statements that we will show to 

be logically equivalent to it for Hilbert planes. One such statement is 

Hilbert's Euclidean axiom of parallelism introduced in Chapter 3. Our 

purpose is to develop as much elementary geometry as possible with

out assuming a parallel postulate, and that is what is meant by doing 

"neutral geometry" -adopting a neutral stance about a parallel pos

tulate. All the elementary geometric results proved since we started 

assuming some of the Hilbert plane axioms are results in neutral 

161 
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geometry.1 Euclid himself postponed invoking his fifth postulate for a 
proof until 1.29, his 29th proposition of Book I. When we eventually 
bifurcate into studying Euclidean and hyperbolic geometries separately, 
all the results in neutral geometry will be valid in both geometries. 

In all the propositions, theorems, corollaries, and lemmas of this 
chapter, the 13 axioms for a Hilbert plane will be assumed. Our proofs 

will be less formal henceforth. 
What is the purpose of studying neutral geometry? We are not in

terested in studying it for its own sake. Rather, we are trying to clar

ify the role of the parallel postulate by seeing which theorems in the 
geometry do not depend on it, i.e., which theorems follow from the 
other axioms alone without ever using the parallel postulate in proofs. 
This will enable us to avoid many pitfalls and to see much more clearly 
the logical structure of our system. Certain questions that can be an
swered in Euclidean geometry (e.g., whether there is a unique parallel 
through a given point) may not be answerable in neutral geometry be
cause its axioms do not give us enough information. 

Alternate Interior Angle Theorem 
The next theorem requires a definition: Let t be a transversal to lines 
l and l', with t meeting l at B and l' at B'. Choose points A and C on 
l such that A * B * C; choose points A' and C' on l' such that A and A' 
are on the same side of t and such that A' * B' * C'. Then the follow
ing four angles are called interior: <tA'B'B, <tABB', <tC'B'B, <tCBB'. 
The two pairs ( <tABB', <tC'B'B) and ( <tA'B'B, <tCBB') are called pairs 
of alternate interior angles (see Figure 4.1). 

ALTERNATE INTERIOR ANGLE (AIA) THEOREM 4.1. In any Hilbert 
plane, if two lines cut by a transversal have a pair of congruent alter
nate interior angles with respect to that transversal, then the two lines 
are parallel. 

This is Euclid 1.27. Our RAA proof will be less formal. The intuitive 
idea of the proof is that congruence of alternate interior angles implies 

that the lines are situated symmetrically about the transversal, so if by 

1 I am deliberately not defining "neutral geometry" precisely. In general, it will be the 
study of Hilbert planes, but occasionally a continuity axiom will also be explicitly as
sumed. The fundamental idea of neutral geometry is not to assume any parallel pos
tulate or any statement equivalent to a parallel postulate. 
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Figure 4.1 
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RAA hypothesis the lines met on one side of the transversal, we could 

reflect the triangle so formed over to the other side of the transversal 

to obtain a second meeting point, which violates Axiom 1-1. Notice how 

crucial to this proof is Axiom B-4, which guarantees that a line has two 

disjoint sides. 

PROOF: 

Given <tA'B'B � <tCBB'. Assume on the contrary that l and l' meet 

at a point D. Say D is on the same side of t as C and C'. There is 
� 

a point E on B'A' such that B'E � BD (Axiom C-1). Segment BB' is 

congruent to itself, so that .6..B'BD � .6..BB'E (SAS). In particular, 

<tDB'B � <tEBB'. Since <tDB'B is the supplement of <tEB'B, <tEBB' 

must be the supplement of <tDBB' (Proposition 3.14 and Axiom 

C-4). This means that E lies on l, and hence l and l' have the two 

points E and D in common, which contradicts Proposition 2.1 of in

cidence geometry. Therefore, Z 11 Z'. <11111 

This theorem has two very important corollaries. 

COROLLARY 1. Two lines perpendicular to the same line are parallel. 

Hence the perpendicular dropped from a point P not on line l to l is 

unique (and the point at which the perpendicular intersects l is called 

its foot). 

PROOF: 

If l and l' are both perpendicular to t, the alternate interior angles 

are right angles and hence are congruent (Proposition 3.23). <11111 

COROLLARY 2 (EUCLID 1.31). If l is any line and P is any point not 

on l, there exists at least one line m through P parallel to l (see Fig

ure 4.2). 
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Figure 4.2 

PROOF: 

There is a line t through P perpendicular to l, and again there is a 

unique line m through P perpendicular tot (Proposition 3.16). Since 

l and m are both perpendicular to t, Corollary 1 tells us that 

Z 11 m. <Ill 

The construction of the parallel m to l through P given in the above 

proof will be used repeatedly. We will refer to it as the standard con
struction. Let Q be the foot of the perpendicular from P to l. For brevity, 

we will also call this the standard configuration, denoted PQlm. 

WARNING You are accustomed in Euclidean geometry to use the con

verse of Theorem 4.1, which states, "If two lines are parallel, then alternate 

interior angles cut by a transversal are congruent.'' We haven't proved this 

converse, so don't use it! 

Exterior Angle Theorem 
An angle supplementary to an angle of a triangle is called an exterior 
angle of that triangle. The other two angles of the triangle are called 

remote interior angles relative to that exterior angle. 

EXTERIOR ANGLE (EA) THEOREM 4.2. In any Hilbert plane, an ex

terior angle of a triangle is greater than either remote interior angle (see 

Figure 4.3). 

To prove <i:ACD is greater than <i:B and <i:A: 

PROOF: 

Consider the remote interior angle <i:BAC. If <i:BAC � <i:ACD, then 
� � 

AB is parallel to CD (Theorem 4.1), which contradicts the hypoth-
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esis that these lines meet at B. Supose <i:BAC is greater than <i:ACD � � � 
(RAA hypothesis). Then there is a ray AE between AB and AC such � 
that <i:ACD � <i:CAE (by definition). This ray AE intersects BC in a 

point G (crossbar theorem, Chapter 3). But according to Theorem � � 
4.1, lines AE and CD are parallel. Thus <i:BAC cannot be greater 

than <i:ACD (RAA conclusion). Since <i:BAC is also not congruent 

to <i:ACD, <i:BAC must be less than <i:ACD (Proposition 3.21 (a)). 

For remote angle <i:ABC, use the same argument applied to ex

terior angle <i:BCF, which is congruent to <i:ACD by the vertical an

gle theorem (Proposition 3.lS(a)) . .,.. 

COROLLARY 1. If a triangle has a right or obtuse angle, the other two 

angles are acute. 

The exterior angle theorem will play a very important role in what 

follows. It was the 16th proposition in Euclid's Elements. Euclid's proof � 
had a gap due to reasoning from a diagram. He considered the line BM 

joining B to the midpoint of AC, and he constructed point B' such that 

B * M * B' and BM� MB' (Axiom C-1). He then assumed from the di

agram that B' lay in the interior of <i:ACD (see Figure 4.4). Since 

<i:B'CA � <i:A (SAS), Euclid concluded correctly that <i:ACD > <i:A. 

The gap in Euclid's argument can easily be filled with the tools we 

have developed. Since segment BB' intersects AC at M, B and B' are � � 
on opposite sides of AC (by definition). Since BD meets AC at C, B and � 
D are also on opposite sides of AC. Hence B' and D are on the same � � 
side of AC (Axiom B-4). Next, B' and M are on the same side of CD � 
since segment MB' does not contain the point B at which MB' meets � 
CD (by construction of B' and Axioms B-1 and B-3). Also, A and M � 
are on the same side of CD because segment AM does not contain the 
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A B' 

B c D 

Figure 4.4 

� � 
point C at which AM meets CD (by the definition of midpoint and Ax-

iom B-3). So again, �aration Axiom B-4 ensures that A and B' are 

on the same side of CD. By the definition of "interior" (in Chapter 3, 

p. 115), we have shown that B' lies in the interior of �ACD. <11111 

Many reputable writers mistakenly state that to fill this gap in 

Euclid one must add an axiom that "lines are infinite in extent"

whatever that may mean. All that is needed are the betweenness ax

ioms and their consequences. 

NOTE ON ELLIPTIC GEOMETRY. Figure 3.24, p. 126, shows a trian

gle on the sphere with both an exterior angle and a remote interior an

gle that are right angles, so the exterior angle theorem doesn't hold. 

Our proof of it was based on the alternate interior angle theorem, which 

can't hold in elliptic geometry because there are no parallels. The proof 

we gave of Theorem 4.1 breaks down in elliptic geometry because Ax

iom B-4, which asserts that a line separates the plane into two sides, 

doesn't hold; we knew points E and D in that proof were distinct be

cause they lay on opposite sides of line t. Or, thinking in terms of spher

ical geometry, where a great circle does separate the sphere into two 

hemispheres, if points E and D are distinct, there is no contradiction 

because great circles do meet in two antipodal points. 

Euclid's proof of Theorem 4.2 breaks down on the sphere because 

"lines" are great circles and if segment BM is long enough, the reflected 

point B' might lie on it (e.g., if BM is a semicircle, B' = B). 

As a consequence of the exterior angle theorem (and our previous 

results), you can now prove as exercises the following familiar 

propositions. 

PROPOSITION 4.1 (SAA CONGRUENCE CRITERION). Given AC � DF, 

�A � �D, and �B � �E. Then .6:.ABC � .6:.DEF (Figure 4.5). 
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c F 

A B D E 

Figure 4.5 SAA. 

PROPOSITION 4.2 (HYPOTENUSE-LEG CRITERION). Two right trian

gles are congruent if the hypotenuse and a leg of one are congruent, 

respectively, to the hypotenuse and a leg of the other (Figure 4.6). 

B B' 

A c 

Figure 4.6 

PROPOSITION 4.3 (MIDPOINTS). Every segment has a unique 

midpoint. 

Here is a proof that AB has a midpoint, whose steps you are asked 

to justify in Exercise 5 (see Figure 4.7) . You are asked to prove unique

ness of the midpoint in Exercise 6. 

PROOF: 
� � 

(1) Let C be any point not on AB. (2) There is a unique ray BX on 
� 

the opposite side of AB from C such that <i:CAB � <i:ABX. (3) There 
� 

is a unique point D on BX such that AC� BD. (4) D is on the op-
� 

posite side of AB from C. (5) Let E be the point at which segment 
� 

CD intersects AB. ( 6) Assume E is not between A and B. (7) Then 
� 

either E = A, or E = B, or E * A * B, or A * B * E. (8) AC is parallel 
� 

to BD�) Hence, E i= A and E i= B. (10) Assume E * A * B. (11) 

Since CA intersects side EB of .6..EBD at a point between E and B, 

it must also intersect either ED or BD. (12) Yet this is impossible. (13) 

Hence A is not between E and B. (14) Similarly, B is not between 



168 NEUTRAL GEOMETRY 

c 

x 

Figure 4.7 

A and E. (15) Thus A* E * B. (16) Then �AEC � �BED. (17) 

.6:.EAC = .6:.EBD. (18) Therefore, E is a midpoint of AB. .,.. 

PROPOSITION 4.4 (BISECTORS). (a) Every angle has a unique bisec

tor. (b) Every segment has a unique perpendicular bisector. 

Euclid constructed midpoints (I.10) and angle bisectors (I.9) using 

his previous construction (I.1) of an equilateral triangle on a given seg

ment; we have seen that his proof of 1.1 has a gap requiring the 

circle-circle continuity principle to fill. The construction of the midpoint 

given above does not depend on equilateral triangles; the construction 

of the angle bisector follows easily from that. Also, Euclid's proofs of 

1.9 and 1.10 tacitly use betweenness properties-his proof of 1.10 re

quires the crossbar theorem, and his proof of 1.9 is based on a diagram 

where a point he constructs is on the opposite side, from the vertex of 

the angle, of a certain line he constructs. See the commentary on those 

proofs in Heath's translation of Euclid. 

The next proposition combines Euclid 1.18 and 1.19. 

PROPOSITION 4.S. In a triangle .6:.ABC, the greater angle lies opposite 

the greater side and the greater side lies opposite the greater angle; i.e., 

AB> BC if and only if �C >�A. 

The next proposition combines Euclid 1.24 and 1.25. 

PROPOSITION 4.6. Given .6:.ABC and .6:.A'B'C'' if we have AB � A'B' 

and BC� B'C', then �B < �B' if and only if AC< A'C'. 
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Measure of Angles and Segments 
Thus far in this treatment of geometry, I have refrained from using 
numbers that measure the sizes of angles and segments-this was in 
keeping with the spirit of Euclid. After all, for thousands of years, his 
readers understood what Euclid meant geometrically without using 
numbers. In accord with modern standards of rigor, Hartshorne in his 
book has made Euclid's work precise, using congruence classes of seg
ments and angles instead of number measures. That is the correct ap
proach, valid in all Hilbert planes. However, since the treatment of an
gle measure in Hartshorne's Section 36 requires abstract group theory 
(his "unwound circle group"), knowledge of which is not presumed for 
my readers, I must "cop out" and use number measurement as a lan
guage for situations where it simplifies the statements. 

I also presume that my readers have not necessarily studied the rig
orous foundations of real numbers but that they are accustomed to in
formal talk about them. So although the next theorem refers to real 
numbers and we only sketch how it is proved, I alert you to the fact 
that it is not mathematically necessary to bring them in here; mathe
matically, all that is needed is the ability to do elementary algebra with 
congruence classes. I only bring in numbers to shorten a long story.2 

Archimedes' axiom is needed to measure with real numbers-that 
is why Hilbert called it "the axiom of measurement." Theorem 4.3 be
low asserts the possibility of measurement and lists its basic proper
ties. In many popular treatments of geometry, a version of this theo
rem is taken as an axiom (ruler-and-protractor postulates-see, e.g., 
Moise). The familiar symbol ( <tA) 0 denotes the number of degrees in 
<tA, and AB denotes the length of segment AB with respect to some 
unit of measurement. 

MEASUREMENT THEOREM 4.3. Hypothesis for all but parts ( 4) and 
(11): Archimedes' axiom. Hypothesis for parts (4) and (11) as well: 
Dedekind's axiom. 

2 Major Exercise 5, Chapter 5, does use the full power of real numbers for the theory of 

similar triangles in a real Euclidean plane; again, Hartshorne presents the Hilbert

Enriques approach (using the abstract theory of fields and a crucial proposition about 

cyclic quadrilaterals), which avoids using real numbers even for that theory. See 

Hartshorne's Proposition 5.8 and Section 20. The power of Theorem 4.3 is also used 

for Proposition 9.2, Chapter 9, in Archimedean Hilbert planes. Real numbers are of 

course used in Chapter 10 on real hyperbolic geometry. For a complete proof of The

orem 4.3, see Borsuk and Szmielew (1960), Chapter 3, Sections 9-10. 



170 NEUTRAL GEOMETRY 

A. There is a unique way of assigning a degree measure to each angle 
such that the following properties hold: 

(O) ( <tA) 0 is a real number such that 0 < ( <tA) 0 < 180°. 

(1) ( -tA) 0 = 90° if and only if <tA is a right angle. 
(2) ( -tA) 0 = ( -tB) 0 if and only if <tA � <tB. 

� 
(3) If AC is interior to <tDAB, then ( <tDAB) 0 = ( <tDAC) 0 + 

( -tCAB) 0 (refer to Figure 4.8). 

(4) For every real number x between 0 and 180, there exists an an
gle <tA such that ( -tA) 0 = x

0
• 

(S) If <tB is supplementary to -tA, then ( <tA) 0 + ( -tB) 0 = 180°. 

(6) ( -tA) 0 > ( -tB) 0 if and only if <tA > <tB. 

B. Given a segment 01, called a unit segment. Then there is a unique 
way of assigning a length AB to each segment AB such that the fol
lowing properties hold: 

(7) AB is a positive real number and 01 = 1. 
- -

(8) AB= CD if and only if AB� CD. 
- -

(9) A * B * C if and only if AC = AB + BC. 
- -

(10) AB< CD if and only if AB < CD. 
(11) For every positive real number x, there exists a segment AB 

such that AB = x. 

NOTE. So as not to mystify you, here is the method for assigning 
lengths (the method for assigning degrees to angles is similar). We start 
with a segment 01 whose length will be 1. Then any segment obtained 
by laying off n copies of 01 will have length n. By Archimedes' axiom, 
every other segment AB will have its endpoint B betwee�wo points 
Bn-1 and Bn such that ABn-1 = n - 1 and ABn = n; then AB will have 
to equal ABn-1 + Bn-1B by condition (9) of Theorem 4.3, so we may 
assume n = 1 and Bn-l = A. If B is the midpoint B1;2 of AB1, we set 
AB1;2 = 112; otherwise B lies either in AB1;2 or in B1;2B1, say, in AB112. 
If then B is the midpoint B1;4 of AB112, we set AB1;4 = 1/4; otherwise B 

Figure 4.8 
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lies in AB114, say, and we continue the process. Eventually B will either 
be obtained as the midpoin�f some segment whose length has been 

determined, in which case AB will be determined to be some dyadic 
rational number a;2n; or the process will continue indefinitely, in which 
case AB will be the limit of an infinite sequence of dyadic rational num

bers; i.e., AB will be determined as an infinite decimal with respect to 
the base 2. 

Note conversely that if a Hilbert plane satisfies part B, (7) through 

(10), then the plane is Archimedean, and if in addition (11) is satis
fied, then Dedekind's axiom holds. 

DEFINITION. If ( -tB) 0 + ( -tC) 0 = 90°, then -tB and -tC are called com

plements of each other and are said to be complementary angles. It is 

an easy exercise to show that every acute angle has a complementary 
angle (Exercise 7) . 

COROLLARY 2 TO THE EA THEOREM. The sum of the degree mea
sures of any two angles of a triangle is less than 180°. 

PROOF: 

Referring to Figure 4.9, ( <tCBD) 0 > ( <tA) 0 by the EA theorem. 

Adding ( <tCBA) 0 to both sides of this inequality gives the result. .,.. 

TRIANGLE INEQUALITY. If AB, BC, AC are lengths of the sides of a 
- - -

triangle .6:.ABC, then AC < AB + BC. 

PROOF: 

(1) There is a unique point D such that A* B * D and BD �BC 
� 

(Axiom C-1 applied to the ray opposite to BA). (See Figure 4. 9 .) 

(2) Then <tBCD � <tBDC (Proposition 3.10: base angles of an 
isosceles triangle). 

c 

A B D 

Figure 4.9 
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(3) AD= AB+ BD (Theorem 4.3(9) ) and BD = BC (step 1 and The-
- - -

orem 4.3(8) ) ;  substituting gives AD= AB+ BC. 

�
. 

� � 
. .  

(4) CB is between CA and CD (Propos1t10n 3.7) ; hence <}:'.ACD > 

<}:BCD (by definition) . 

(5) <}:'.ACD ><}:ADC (steps 2 and 4; Proposition 3.21(c) ) .  

(6) AD > AC (Proposition 4.5) . 

(7) Hence AB+ BC> AC (Theorem 4.3(10) ; steps 3 and 6) . .,.. 

Note that in these last two results, the only properties of numbers 

used were the ability to add and the relationship of addition to order. 

Numbers provide a more convenient language than the awkward one 

used by Euclid. Archimedes' axiom and the full power of Theorem 4.3 

are certainly not used! For example, Euclid 1.20 states the triangle in

equality as follows: In any triangle, two sides taken together in any 

manner are greater than the remaining one. 

His proof is the same as the one just given, except that he presumes 

that the reader understands what he means by "two sides taken to

gether." We recognize that as meaning geometric addition of two seg

ment congruence classes. We initially approximate that addition by ex

tending the first segment with a congruent copy of the second one-that 

is exactly what Euclid's second postulate allows us to do, and you can 

easily prove Euclid II using Axioms C-1 and B-2. Then Axiom C-3 guar

antees that this addition is well-defined for segment congruence classes. 

It is then routine to verify that this addition has all the familiar alge

braic properties and is compatible with the ordering of segment con

gruence classes (see Major Exercise 9) . So numbers are not really 

needed; they are just convenient and more familiar to beginners than 

are congruence classes. 

The diligent reader is invited to figure out, whenever we use mea

surement of segments henceforth, how it could be avoided with the al

gebra of segment congruence classes. In the case of congruence classes 

of angles, there is a technical difficulty. We could use Proposition 3.19 

on "angle addition" to try to define addition of angle congruence classes 

by juxtaposing the two angles, but that only works in the special case 

of angles whose degree measures add up to less than 180°. See 

Hartshorne, Section 36, for the definition and properties of that addi

tion in the general case. 
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We call the converse to the triangle inequality the statement that if 

a, b, c are lengths such that the sum of any two is greater than the 

third, then there exists a triangle whose sides have those lengths. This 

is Euclid 1.22, but he of course did not talk about lengths; he talked 

about segments. His proof has a gap which requires another applica

tion of the circle-circle continuity principle. It turns out that the con

verse to the triangle inequality can be used to prove that principle. The 

result is the following. 

COROLLARY. For any Hilbert plane, the converse to the triangle in

equality is equivalent to the circle-circle continuity principle. Hence the 

converse to the triangle inequality holds in Euclidean planes. 

A proof of this equivalence was indicated in Major Exercises 3-5 of 

Chapter 3, assuming the triangle inequality there, and now we've 

proved the triangle inequality. The second assertion of this corollary 

follows from our definition of "Euclidean plane," which includes the 

circle-circle continuity principle as one of its axioms (see p. 139). 

Equivalence of Euclidean Parallel Postulates 
We shall now prove the equivalence of Euclid's fifth postulate and 

Hilbert's Euclidean parallel postulate. Note, however, that we are not 

proving either or both of the postulates; we are only proving that we 

can prove one if we first assume the other. We shall first state Euclid 

V (all the terms in the statement have now been defined carefully). 

Eucuo's POSTULATE V. If two lines are intersected by a transversal 

in such a way that the sum of the degree measures of the two interior 

angles on one side of the transversal is less than 180 °, then the two 

lines meet on that side of the transversal. 

THEOREM 4.4. Euclid's fifth postulate <=> Hilbert's Euclidean parallel 

postulate. 

PROOF: 

First, assume Hilbert's postulate. The situation of Euclid Vis shown 

in Figure 4.10. (<}:'.1)0 + (<}:'.2)0 < 180° (hypothesis) and (<}:'.1)0 + 

(<}:'.3)0 = 180° (supplementary angles, Theorem 4.3(5)). Hence 
� 

(<}:'.2)0<180° - (<}:'.1)0 = (<}:'.3)0• There is a unique ray B'C' such 
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m 

Figure 4.10 

that <t3 and <tC'B'B are congruent alternate interior angles (Axiom 
� � 

C-4) . By Theorem 4.1, B'C' is parallel to l. Since mi= B'C', m meets 

l (Hilbert's postulate) . To conclude, we must prove that m meets l 

on the same side oft as C'. Assume, on the contrary, that they meet 

at a point A on the opposite side. Then <t2 is an exterior angle of 

.6..ABB'. Yet it is smaller than the remote interior <t3. This contra

diction of Theorem 4.2 proves Euclid V (RAA) . 

Conversely, assume Euclid V and refer to Figure 4.11, the sit

uation of Hilbert's postulate. Lett be the perpendicular to l through 

P, and m the perpendicular to t through P. We know that m II l 

(Corollary 1 to Theorem 4.1). Let n be any other line through P. 

We must show that n meets l. Let <tl be the acute angle n makes 

with t (which angle exists because n i= m). Then we have 

( -tl) 0 + ( -tPQR) 0 < 90° + 90° = 180°. Thus the hypothesis of 

Euclid V is satisfied. Hence n meets l, proving Hilbert's postulate. <11111 

Since Hilbert's Euclidean parallel postulate and Euclid V are logi

cally equivalent in the context of neutral geometry, Theorem 4.4 allows 

us to use them interchangeably. You will prove as exercises that the 

Q R 

t 

Figure 4.11 
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following statements are also logically equivalent to the parallel pos
tulate.3 

PROPOSITION 4. 7. Hilbert's Euclidean parallel postulate ¢:::> if a line 
intersects one of two parallel lines, then it also intersects the other. 

PROPOSITION 4.8. Hilbert's Euclidean parallel postulate ¢:::> converse 
to the alternate interior angle theorem. 

PROPOSITION 4.9. Hilbert's Euclidean parallel postulate ¢:::> if t is a 
transversal to land m, l II m, and t 1- l, then t 1- m. 

PROPOSITION 4.10. Hilbert's Euclidean parallel postulate¢:::> if k II l. 
m 1- k, and n 1- l, then either m = n or m II n. 

The next proposition provides a very important consequence of 
Hilbert's Euclidean parallel postulate. It is not equivalent to that par
allel postulate without adding further assumptions to our axioms for 
Hilbert planes, as we shall see later. (Many books state that it is equiv
alent, but they are assuming other axioms.) 

PROPOSITION 4.11. In any Hilbert plane, Hilbert's Euclidean parallel 
postulate implies that for every triangle .6..ABC, 

(�A)0 + (�B)0 + (�C)0 = 180°. 

In words: The angle sum of every triangle is 180° if we assume Hilbert's 
Euclidean parallel postulate. 

PROOF: 

Refer to Figure 4.12. By the corollary to the AIA theorem, there is 
� 

a line through B parallel to line AC. Since Hilbert's Euclidean par-
allel postulate is equivalent to the converse to the AIA theorem 
(Proposition 4.8), the alternate interior angles with respect to the 

� � 
transversals BA and BC are congruent, as shown. But the three an-
gles at vertex B have degree measures adding to 180°. <11111 

We emphasize that this conclusion depends on Hilbert's Euclidean 
parallel postulate. The simple proof we gave was called by Proclus the 
Pythagorean proof (of the second assertion in Euclid 1.32) because it 

3 Transitivity of parallelism is also logically equivalent to the parallel postulate 
(Exercise 10). 
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·------ ------------------ -+-

Figure 4.12 Angle sum is 180°. 

was known to the Pythagorean school long before Euclid. The next 

corollary is Euclid's first assertion of 1.32. 

COROLLARY. Hilbert's Euclidean parallel postulate implies that the 

degree of an exterior angle to a triangle is equal to the sum of the de

grees of its remote interior angles. 

PROOF: 

Refer again to Figure 4.3 on p. 165. We have 

(�A)0 + (�B)0 + (�C)0 = 180° = (�ACD)0 + (�C)0, 

so cancel ( �C) 0• <11111 

Saccheri and Lambert Quadrilaterals 
In this section, we will study certain quadrilaterals that are extremely 

important in neutral geometry. The results are mainly due to Girolamo 

Saccheri (1667-1733), who published them in 1733 in a work called 

Euclides ab Omni Naevo Vindicatus (Euclid Freed of Every Flaw) or sim

ply Euclides Vindicatus (Euclid Vindicated). It was so far ahead of its 

time that it did not receive the appreciation it deserved until 1889, when 

the geometer Eugenio Beltrami rediscovered it. We will discuss the his

torical importance of his work in the next chapter. The path Saccheri 

followed is the correct one. I will often present proofs of his results 

that are modern simplifications and generalizations, but the ideas are 

basically his (and his predecessors' -see Rosenfeld (1988), Chapter 2, 

for the work of his predecessors). 

DEFINITION. Quadrilateral DABDC in which the adjacent angles �A 
and �B are right angles will be called bi-right; we will label such quadri-
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laterals so that the first two letters denote vertices at which the quadri

lateral has right angles. (There may or may not be right angles at one 

or both of the other vertices as well-we are not assuming anything 

about them for now.) Side AB joining the right angles will be called 

the base with respect to this labeling; its opposite side CD will be called 

the summit. <t:C and <t:D will be called the summit angles, and CA and 

DB will simply be called the sides of the bi-right quadrilateral with re

spect to this labeling. 

An isosceles bi-right quadrilateral DABDC is one whose sides are 

congruent-Le., CA� DB-and is called a Saccheri quadrilateral 

(Figure 4.13). Given any segment AB, since perpendiculars can be 

erected at A and at B (Proposition 3 .16) and a segment congruent 

to a given segment can be laid off on a given ray (Axiom C-1), we 

see that Saccheri quadrilaterals exist-in fact, they can be con

structed on any given base with any given congruence class of the 

sides. 

These quadrilaterals named after Saccheri were studied in the 

twelfth century by the Iranian poet and mathematician Omar Khayyam, 

and in the thirteenth century by the Iranian astronomer and mathe

matician Nasir Eddin (whose work had the similar title Treatise That 

Heals the Doubt Raised by Parallel Lines). These quadrilaterals were 

also studied later by several Europeans (e.g., Clavius in 1574, Giordano 

Vitale in 1680). Saccheri developed their significance more deeply. (In 

what follows, a notation such as Saccheri X stands for Proposition X 

in Saccheri's treatise.) 

PROPOSITION 4.12. (a) (Saccheri I). The summit angles of a Saccheri 

quadrilateral are congruent to each other. (b) (Saccheri II). The line 

joining the midpoints of the summit and the base is perpendicular to 

both the summit and the base. 

c Summit D 

A Base B 

Figure 4.13 Saccheri quadrilateral. 
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c D 

A B 

Figure 4.14 

PROOF: 

(a) By hypothesis and SAS, �DBA � �CAB. Then by SSS, �DCB � 
�CDA. Hence <}:'.C � <}:'.D by angle addition (Figure 4.14). 

(b) (See Figure 4.15.) Let M be the midpoint of the summit and N 
the midpoint of the base (Proposition 4.3). Then �ACM � 
�BDM by part (a) and SAS. Hence AM� BM (corresponding 
sides), whence �ANM � �BNM by SSS. By corresponding an
gles, <}:'.ANM � <}:'.BNM, but since they are supplementary an
gles, they are by definition right angles. Similarly, we have 
�ACN � �BDN by SAS and Proposition 3.23, �CNM � �DNM 
by SSS, so the Slf PRlementary angles <}:'.CMN and <}:'.DMN are 
congruent. Thus MN is perpendicular to both the base and the 
summit. <Ill 

c M D 

Figure 4.1 S 

PROPOSITION 4.13. In any bi-right quadrilateral DABDC, <}:'.C > <}:'.D 
{::::} BD >AC. In words: The greater side is opposite the greater summit 
angle (Figure 4 .16) . 

PROOF: 

Assume first BD > AC. Then by definition there is a unique point 
E between B and D such that AC � BE. Then DABEC is Saccheri, 
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D 

A B 

Figure 4.16 

so by the previous proposition, <}:ACE � <}:'.BEC. E is interior to 

<}:'.ACD (use Exercise 28). It then follows from the exterior angle the

orem and Proposition 3.21 that <}:'.D <<}:ACE< <}:'.ACD, as was 

claimed. 

Next, assume that <}:'.C > <}:'.D. Suppose that BD is not greater 

than AC (RAA hypothesis). By Proposition 3.13, either BD <AC or 

BD �AC. In the former case, reversing the roles of AC and BD, it 

has been shown that <}:'.C < <}:'.D, contradicting our hypothesis. In the 

latter case, DABDC is Saccheri, so by the previous proposition, <}:'.C 

and <}:'.D are congruent, contradicting our hypothesis. Hence BD > 

AC (RAA conclusion) . .,.. 

COROLLARY 1. Given any acute angle with vertex V. Let Y be any 

point on one side of the angle, let Y' be any point farther out on that 

side, i.e., V * Y * Y'. Let X, X' be the feet of the perpendiculars from 

Y, Y', respectively, to the other side of the angle. Then Y' X' > YX. In 

words: The perpendicular segments from one side of an acute angle 

to the other increase as you move away from the vertex of the angle 

(Figure 4 .17). 

Figure 4.17 
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PROOF: 

By the corollary to the exterior angle theorem, angles <r:..VYX and 

<r:..VY'X' are both acute. <r:..Y'YX, supplementary to <r:..VYX, is there

fore obtuse and greater than <r:..VY'X'. Now apply Proposition 4.13 

to the bi-right quadrilateral DXX'Y'Y. <11111 

COROLLARY 2. Euclid V implies Aristotle's axiom. 

PROOF: 

Refer to Figure 4.18. Let a be the given acute angle and let AB be 

the test segment for Aristotle's axiom. Let a
* be a complementary 

� 

angle, so that a
0 + a

*0 
= 90°. On a chosen side of line BA, lay off 

angle a
* at A and a 90° angle at B (Axiom C-4). By Euclid V, the 

� 

rays of those angles not part of BA meet at a point C, and by Propo-

sition 4.11 (which assumes Euclid V), <r:..C0 
= a

0
• Let Y be any point 

such that C * A * Y and let X be the foot of the perpendicular from 
� 

Y to ray CB. By Corollary 1 to Proposition 4.13, YX > AB. <11111 

The converse to this corollary does not hold because Aristotle's ax

iom is also valid in hyperbolic planes (Exercise 13, Chapter 6). 

c 

Figure 4.18 YX >AB. 

DEFINITION. A quadrilateral with at least three right angles is called 

a Lambert quadrilateral. The remaining angle, about which we are not 

assuming anything for now, is referred to as the fourth angle with re

spect to the three given right angles. (Now named after J. H. Lambert 

(1728-1777), these quadrilaterals were studied eight centuries earlier 

by the Egyptian scientist Ibn al-Haytham and also by Saccheri.) 

COROLLARY 3 (SACCHERI III, COROLLARY I). A side adjacent to 

the fourth angle () of a Lambert quadrilateral is, respectively, greater 
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than, congruent to, or less than its opposite side if and only if () is 

acute, right, or obtuse, respectively. (In Figure 4.19, DB is adjacent to 

() and CA is opposite; also, DC is adjacent to () and BA is opposite.) 

PROOF: 

This follows from the proposition and trichotomy. <11111 

A B 

Figure 4.19 Lambert quadrilateral. 

OBSERVATION. We can "halve" Saccheri quadrilateral DABDC in Fig

ure 4.15 to obtain Lambert quadrilateral DNBDM with the fourth an

gle equal to the summit angle. Conversely, we can "double" Lambert 

quadrilateral DNBDM by reflecting it across side MN to obtain Saccheri 

quadrilateral DABDC with the summit angle equal to the fourth angle 

of DNBDM. Applying Corollary 3 together with this observation, we 

obtain the following. 

COROLLARY 4 (SACCHERI III). The summit of a Saccheri quadrilat

eral is, respectively, greater than, congruent to, or less than the base 

if and only if its summit angle is acute, right, or obtuse, respectively. 

NOTE. Hilbert's Euclidean parallel postulate implies that every Lam

bert quadrilateral and every Saccheri quadrilateral is a rectangle. 

Namely, in Figure 4.19, when a perpendicular is dropped from C to 
� 

BD, the foot of that perpendicular must be D; otherwise we would have 
� 

found a second parallel to AB through C (Corollary 1 to the AIA theo-

rem). Thus this Lambert quadrilateral is a rectangle. The assertion about 

Saccheri quadrilaterals follows by halving. 

The next goal is to prove that the behavior of the summit angles 

and the fourth angles of Saccheri and Lambert quadrilaterals is uniform 

throughout the plane-e.g., if one such quadrilateral has an acute an

gle, then so do all such quadrilaterals. 
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UNIFORMITY THEOREM. 4 For any Hilbert plane, if one Saccheri quadri

lateral has acute (respectively, right, obtuse) summit angles, then so 

do all Saccheri quadrilaterals. 

The uniformity theorem has a proof which, while elementary, is 

somewhat lengthy. In order not to exhaust the patience of beginning 

readers, the proof is indicated in Major Exercises 5-8. 

COROLLARY 1. For any Hilbert plane, if one Lambert quadrilateral 

has an acute (respectively, right, obtuse) fourth angle, then so do all 

Lambert quadrilaterals. Furthermore, the type of the fourth angle is the 

same as the type of the summit angles of Saccheri quadrilaterals. 

PROOF: 

By doubling . .,.. 

DEFINITION. A Hilbert plane is called semi-Euclidean5 if all Lambert 

quadrilaterals and all Saccheri quadrilaterals are rectangles. If the fourth 

angle of every Lambert quadrilateral is acute (respectively, obtuse), we 

say that the plane satisfies the acute (respectively, obtuse) angle hy
pothesis. 

COROLLARY 2. There exists a rectangle in a Hilbert plane iff the plane 

is semi-Euclidean. Opposite sides of a rectangle are congruent to each 

other. 

COROLLARY 3. In a Hilbert plane satisfying the acute (respectively, 

obtuse) angle hypothesis, a side of a Lambert quadrilateral adjacent to 

the acute (respectively, obtuse) angle is greater than (respectively, less 

than) its opposite side. 

COROLLARY 4. In a Hilbert plane satisfying the acute (respectively, 

obtuse) angle hypothesis, the summit of a Saccheri quadrilateral is 

4 Also called the "three musketeers theorem" by historian Jeremy Gray. It shows that 
the plane is lwmogeneous (geometrically the same everywhere). Saccheri was the first 

to prove this result in his Propositions V, VI, and VII, but he used an unnecessary con

tinuity argument (see Bonola, 1955, Section 12). 
5 The term "semi-Euclidean" first appeared in the German literature on the foundations 

of geometry. It is an important name to emphasize that the "right angle hypothesis" 
does not suffice to prove Euclid V-a further axiom is needed for that, as Hilbert em

phasized. Analogous notions of "sernihyperbolic" and "sernielliptic" planes are dis
cussed and exemplified in Hartshorne's treatise. 
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greater than (respectively, less than) the base. The mid.line segment 

MN is the only common perpendicular segment between the summit 

line and the base line. If P is any point -=!=- M on the summit line and Q 

is the foot of the perpendicular from P to the base line, then PQ > MN 

(respectively, PQ < MN). As P moves away from M along a ray 

of the summit line emanating from M, PQ increases (respectively, 

decreases) . 

These are consequences of Proposition 4.13 and its corollaries. 

Angle Sum of a Triangle 
The angle sum (in degrees) of triangle .6:.ABC is (�A) 0 + ( �B) 0 + 

( �C) 0, by definition. Proposition 4.11 tells us that Hilbert's Euclidean 

parallel postulate implies that the angle sum of every triangle is 180°, 

but we are not assuming that postulate here. 

SACCHERI's ANGLE THEOREM (HIS PROPOSITION XV). For any 

Hilbert plane, 

(a) If there exists a triangle whose angle sum is <180°, then every 

triangle has an angle sum <180°, and this is equivalent to the 

fourth angles of Lambert quadrilaterals and the summit angles 

of Saccheri quadrilaterals being acute. 

(b) If there exists a triangle with angle sum = 180°, then every tri

angle has angle sum = 180°, and this is equivalent to the plane 

being semi-Euclidean. 

(c) If there exists a triangle whose angle sum is > 180°, then every 

triangle has an angle sum > 180°, and this is equivalent to the 

fourth angles of Lambert quadrilaterals and the summit angles 

of Saccheri quadrilaterals being obtuse. 

For the proof of Saccheri's theorem, we need the next lemma (Sac

cheri VIII) . 

LEMMA. Let DABDC be a Saccheri quadrilateral with summit angle 

class 0. Consider the alternate interior angles �ACB and �DBC with 

respect to diagonal CB (Figure 4.20). 

(a) �ACB < �DBC iff () is acute. 

(b) �ACB � �DBC iff () is right. 

(c) �ACB > �DBC iff () is obtuse. 
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PROOF: 

This is an application of Proposition 4.6 and the work we have just 

done . .6:.ACB and .6:.DBC have congruent sides AC and BD (by hy

pothesis) and have the common side CB congruent to itself. Propo

sition 4.6 tells us that <i:ACB is less than, congruent to, or greater 

than <i:DBC according as AB is less than, congruent to, or greater 

than CD (those are the sides of the triangles opposite these angles). 

But AB is the base and CD is the summit of our Saccheri quadri

lateral. The lemma then follows from Corollaries 2 and 4. <11111 

C D 
--��������-

() 

A B 

Figure 4.20 

PROOF OF SACCHERI'S THEOREM: 

Consider first a right triangle .6:.ACB with right angle at A. Erect a 
� 

perpendicular to AB at B, and on the ray of that perpendicular em-
� 

anating from B on the same side of AB as C, lay off BD �AC so as 

to form Saccheri quadrilateral DABDC (see Figure 4.20). By con

struction, <i:DBC is complementary to <i:CBA. Now apply the lemma. 

We conclude that the sum of the degrees of the acute angles in 

.6:.ACB is less than, equal to, or greater than 90° iff summit angle () 

is less than, equal to, or greater than 90°. By the uniformity theo

rem and its corollaries, the conclusion of Saccheri's theorem holds 

for right triangles. 

Now let .6:.ACB be arbitrary. By the second corollary to the ex

terior angle theorem, .6:.ACB has at least two acute angles-say, <i:A 

and <i:B are acute. Let D be the foot of the perpendicular from C to 
� 
AB. Then A * D * B (by an RAA argument, using the exterior angle 

theorem again). 

The angle sum� of .6:.ACB is then equal to u + r, where u, r 

is the angle sum of the acute angles in right triangle .6:.ADC, .6:.BDC, 

respectively (Figure 4.21). By Saccheri's theorem for right trangles 

just proved, u and r are either both <90° or both =90° or both 

>90°-mutually exclusive cases equivalent to the cases where� is 

<180°, = 180°, or > 180°. <11111 
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c 

A D B 

Figure 4.21 

We now show that the obtuse angle hypothesis cannot occur if Aris

totle's axiom holds. This is a new result. 

NON-OBTUSE-ANGLE THEOREM. A Hilbert plane satisfying Aristotle's 

axiom either is semi-Euclidean or satisfies the acute angle hypothesis 

(so that by Saccheri's angle theorem, the angle sum of every triangle 

is <180°). 

PROOF: 

Assume on the contrary (using the uniformity theorem) that the 

fourth angle of every Lambert quadrilateral is obtuse. Since Hilbert's 

Euclidean parallel postulate implies that Lambert quadrilaterals are 

rectangles (see note above), that postulate fails in this plane. Hence 

there is a line l and a point P not on l such that more than one par

allel to l passes through P (Figure 4.22). Denote by m the parallel 

through P obtained by the standard construction of perpendiculars 

and let n be a second parallel. Let Y be any point on the ray of n 

from P between m and l and let X be the foot of the perpendicular 

from Y to m. We claim that Aristotle's assertion fails for acute an

gle <i:YPX. Drop a perpendicular from Y to PQ with foot S. We must 
� 

have P * S * Q because any other position of S on line PQ would 
� 

contradict the parallelism of YS with m and l (Corollary 1 to the 

Q 

Figure 4.22 
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AIA theorem). In Lambert quadrilateral DXPSY, <r..Y is obtuse (RAA 

hypothesis). By Proposition 4. 13, YX <SP< PQ. Thus the perpen

dicular segments YX for <'f..YPX, as Y varies on that ray of n, are 

bounded by fixed segment PQ, contradicting Aristotle's axiom. <11111 

COROLLARY. In a Hilbert plane satisfying Aristotle's axiom, an exte

rior angle of a triangle is greater than or congruent to the sum of the 

two remote interior angles. 

By the EA theorem, that sum is a well-defined angle up to congru

ence. See Exercise 1 ( d) . 

Here is a famous theorem weaker than the non-obtuse-angle theo

rem because its hypothesis, Archimedes' axiom, is stronger than Aris

totle's axiom (Exercise 2, Chapter S). 

SACCHERI-LEGENDRE THEOREM. In an Archimedean Hilbert plane, 

the angle sum of every triangle is < 180 °. 

Direct proofs by Legendre of this theorem that don't invoke the new 

non-obtuse-angle theorem are indicated in Exercises 15 and 16. 

It is natural to generalize the Saccheri-Legendre theorem to poly

gons other than triangles. For example, let us prove that the angle sum 

of a quadrilateral ABCD is at most 360°. Break DABCD into two tri

angles, �ABC and �ADC, by the diagonal AC (see Figure 4.23). By the 

Saccheri-Legendre theorem, 

( <'f..B) 0 + ( <'f..BAC) 0 + ( <'f..ACB) 0 < 180° 

and 

( <'f..D) 0 + ( <'f..DAC) 0 + ( <'f..ACD) 0 < 180°. 

Measurement Theorem 4.3 (3) gives us the equations 

( <'f..BAC) 0 + ( <'f..DAC) 0 = ( <'f..BAD) 0 

D 

B c 

Figure 4.23 



ANGLE SUM OF A TRIANGLE 187 

and 

( <t:ACB) 0 + ( <t:ACD) 0 = ( <t:BCD) 0• 

Using these equations, we add the two inequalities to obtain the de

sired inequality 

( <t:B) 0 + ( <t:D) 0 + ( <t:BAD) 0 + ( <t:BCD) 0 < 360°. 

Unfortunately, there is a gap in this simple argument! To get the 

equations used above, we assumed by looking at the diagram (Figure 

4.23) that C was interior to <t:BAD and that A was interior to <t:BCD. 

But what if the quadrilateral looked like Figure 4.24? In this case, the 

equations would not hold. To prevent such a case, we must add a hy

pothesis; we must assume that the quadrilateral is "convex." 

D 

A c 

Figure 4.24 Non-convex quadrilateral. 

DEFINITION. Quadrilateral DABCD is called convex if it has a pair of 

opposite sides, e.g., AB and CD, such that CD is contained in one of 
� 

the half-planes bounded by AB, and AB is contained in one of the half
� 

planes bounded by CD. 6 

The assumption made above is now justified by starting with a con

vex quadrilateral. Thus we have proved the following corollary. 

6 It can be proved that this condition also holds for the other pair of opposite sides, AD 
and BC-see Exercise 28 in this chapter. The use of the word "convex" in this defini

tion does not agree with its use in Exercise 19, Chapter 3; a convex quadrilateral is ob

viously not a "convex set" as defined in that exercise. However, we can define the in
terior of a convex quadrilateral DABCD as follows: Each side of DABCD determines a 

half-plane containing the opposite side; the interior of DABCD is then the intersection 

of the four half-planes so determined. You can then prove that the interior of a con

vex quadrilateral is a convex set (Exercise 29}. 
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COROLLARY. In an Archimedean Hilbert plane, the angle sum of any 
convex quadrilateral is at most 360 °. 

NOTE ON ELLIPTIC GEOMETRY. The Saccheri-Legendre theorem is 
false in elliptic geometry (see Figure 3.24, p. 126). In fact, it can be 
proved in elliptic geometry that the angle sum of a triangle is always 
greater than 180° (see Kay, 1969). Since a triangle can have two or 
three right angles, a hypotenuse, defined as a side opposite a right an
gle, need not be unique, and a leg, defined as a side of a right trian
gle not opposite a right angle, need not exist (and if opposite an ob
tuse angle, a leg could be longer than a hypotenuse). 

NOTE FOR ADVANCED STUDENTS ABOUT NON-ARCHIMEDEAN 

GEOMETRIES.7 Non-Archimedean geometries were first considered 
by Giuseppe Veronese in 1890. Hilbert stated in his Grundlagen that 
they were "of fundamental significance." He provided an algebraic 
model of a non-Archimedean geometry. Other models were provided 
by his student Max Dehn and by Friedrich Schur (who also published 
his own Grundlagen der Geometrie in 1909). 

There is an algebraic version of Archimedes' property for ordered 
fields: The ordered field is called Archimedean if, given any positive ele
ments t and u, there exists a natural number n such that nt > u; consid
eration of u/t shows that it suffices in this property to take t = 1. Hilbert 
gave an example of a non-Archimedean ordered field F, and other ex
amples have been given since (see Projects 1 and 2). In such a field, there 
are infinitesimal and infinitely large elements. A positive element u is 
called "infinitely large" if it is greater than every natural number; that is 
the case iff its reciprocal l/u is smaller than the reciprocal l/n of every 
natural number. An element tis called infinitesimal iff its absolute value 
ltl is smaller than the reciprocal of every natural number. 

- EXAMPLE 1. F2 where Fis a non-Archimedean Pythagorean or
dered field. 

We know that the Euclidean parallel property holds in every model 
F2, so by Corollary 2 to Proposition 4.13, Aristotle's axiom holds in this 
model. But since Fis non-Archimedean, so is F2. Therefore this model 
shows that Aristotle's axiom does not imply Archimedes' axiom. 

7 Strange as non-Archimedean geometry may seem, theoretical physicists are applying 

it to the study of subatomic particles. See Branko Dragovich at http://arxiv.org/ 

PS_cache/math-ph/pdf/0306/0306023. pdf. 
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- EXAMPLE 2. A semi-Euclidean plane in which the Euclidean par

allel postulate fails. 

Let F be as in the previous example. Let II be the subplane of F2 

consisting of points (x, y), both of whose coordinates are infinitesimal, 

and lines in F2 passing through at least two such points. It is straight

forward to show that all the 13 axioms for a Hilbert plane still hold 

when interpreted in II. Furthermore, the angle sum of every triangle 

in II is still 180° because that is the case in the larger plane F2. How

ever, whenever two lines of II meet in a point in F2 whose coordinates 

are not both infinitesimal, those lines are parallel considered as lines 

of II because they do not meet in a point of II. With the appearance 

of these new parallels, the Euclidean parallel postulate fails. This ex

ample is due to Max Dehn. 

Dehn also gave an example, using infinitesimals, of a Hilbert plane 

in which the fourth angle of every Lambert quadrilateral is obtuse.8 Such 

examples are important because they contradict the assertion made in 

some books and articles that "the hypothesis of the obtuse angle" is in

consistent with the first 4 axioms of Euclid. In fact, it is consistent with 

the 13 axioms for Hilbert planes (which imply those 4 axioms). Many 

writers claim that to reject the hypothesis of the obtuse angle, one must 

explicitly assume that, as one popular historian put it, "a line can be ex

tended to any given length" or, as others stated, that "lines are infinite 

in extent." This claim is erroneous because Euclid's second postulate ex

plicitly assumes the extendability of line segments, which we have proved 

using Axioms B-2 and C-1. When these writers talk loosely about need

ing to assume "lines are infinite in extent," they imagine that the only 

geometries in which "the hypothesis of the obtuse angle" holds are the 

real spherical and elliptic geometries, where "lines" are topologically cir

cles and have finite length. Some of those writers point to Euclid's proof 

of the exterior angle theorem, claiming that it tacitly assumes that lines 

are infinite in extent. 

As our discussion on pp. 164-166 showed, what was missing in Eu

clid's proof was the betweenness axioms, especially the Plane Separa

tion Axiom B-4. Gauss noticed that gap and Pasch filled it. The exterior 

angle theorem is valid in examples like Dehn's! Saccheri and Legendre 

both recognized that an additional assumption, acceptable to the ancient 

8 "Die Legendre'schen Satze tiber die Winkelsumme im Dreieck," Mathematische An
nalen 53, 404-439, or see Hartshorne, Exercise 34.14, p. 318 (the infinitesimal neigh

borhood of a point on a non-Archimedean sphere-the whole sphere is not a Hilbert 

plane but the infinitesimal neighborhood of a point is). 
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Greeks, which suffices to reject the hypothesis of the obtuse angle, is 

Archimedes' axiom (and I showed that the weaker axiom of Aristotle 

suffices). 

Conclusion 

In this chapter, we have continued the study of elementary geometry 

without a parallel postulate (neutral geometry)-specifically, the study 

of Hilbert planes, which are models of our incidence, betweenness, and 

congruence axioms. We demonstrated the alternate interior angle (AIA) 

theorem for arbitrary Hilbert planes, which implies that for every line 

and every point P not on the line, there exists a parallel line through 

P, by the standard construction with successive perpendiculars; we do 

not know in neutral geometry whether that parallel is uni.que or not. 

We used the AIA theorem to deduce the familiar exterior angle (EA) 

theorem; from that we deduced further familiar propositions (our Propo

sitions 4.1-4.6) of Euclid, which are valid in arbitrary Hilbert planes. 

In the next section, we (unnecessarily!) brought in measurement of 

segments and angles by real numbers in order to simplify our state

ments; Archimedes' axiom was used to obtain that. Euclid didn't have 

any measurement, so many of his statements (such as the triangle in

equality) were awkward. We proved his triangle inequality in neutral 

geometry and showed that its converse is equivalent to the circle

circle continuity principle. We also proved that the angle sum of any 

two angles in a triangle is < 180 °. 

In the next section, we showed that Euclid's fifth postulate is equiv

alent for Hilbert planes to Hilbert's Euclidean parallel postulate. We 

also proved it is equivalent to several other familiar statements, such 

as the converse to the AIA theorem. A subtle point, ignored in most 

books, was that any one of these equivalent statements implies that 

the angle sum of every triangle is 180°, but it is not possible to prove 

the converse for arbitrary Hilbert planes. 

The next two sections are rich with less familiar but elementary 

concepts and results in neutral geometry that appeared in the works of 

Khayyam, Saccheri, and Lambert (among others). We introduced and 

studied the important concepts of bi-right, Saccheri, and Lambert 

quadrilaterals, which will be used extensively in subsequent chapters. 

The latter two types of quadrilaterals provided our first inkling of non

Euclidean concepts because in Euclidean geometry they are nothing but 

rectangles. 



REVIEW EXERCISE 191 

It is possible, in an arbitrary Hilbert plane, for the angle sum of a tri

angle to be <180°, = 180°, > 180°. Our main result was Saccheri's an

gle theorem that the behavior of that angle sum is uniform throughout 

the plane. Saccheri and Legendre eliminated the case where the summit 

angles of Saccheri and Lambert quadrilaterals are obtuse, but only by as

suming Archimedes' axiom. We proved that the weaker axiom of Aris

totle, whose significance was first recognized by Proclus and which is a 

purely geometric axiom (unlike Archimedes' axiom), suffices to elimi

nate the case of obtuse angles. In addition, Aristotle's axiom provides 

the missing link between the angle sum of triangles equaling 180 ° and 

Euclid's fifth postulate (see Proclus' theorem in Chapter S). 

Review Exercise 

Which of the following statements are correct? 

(1) If two triangles have the same angle sum, they are congruent. 

(2) Euclid's fourth postulate is a theorem in neutral geometry. 

(3) Theorem 4.4 shows that Euclid's fifth postulate is a theorem 

in neutral geometry. 

(4) The Saccheri-Legendre theorem tells us that some triangles ex

ist that have angle sums less than 180° and some triangles 

exist that have angle sums equal to 180 °. 

(S) The alternate interior angle theorem states that if parallel lines 

are cut by a transversal, then alternate interior angles are con

gruent to each other. 

(6) It is impossible to prove in neutral geometry that rectangles 

exist. 

(7) The Saccheri-Legendre theorem is false in Euclidean geometry 

because in Euclidean geometry the angle sum of any triangle 

is never less than 180 ° . 

(8) According to our definition of "angle," the degree measure of 

an angle cannot equal 180 °. 

(9) The notion of one ray being "between" two others is 

undefined. 

(10) It is impossible to prove in neutral geometry that parallel lines 

exist. 

(11) Archimedes' axiom is used to measure segments and angles by 

real numbers. 

(12) An exterior angle of a triangle is any angle that is not in the 

interior of the triangle. 
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(13) The SSS criterion for congruence of triangles is a theorem in 

neutral geometry. 

(14) The alternate interior angle theorem implies, as a special case, 

that if a transversal is perpendicular to one of two parallel lines, 

then it is also perpendicular to the other. 

(15) If a Hilbert plane satisfies Aristotle's axiom, then the fourth an

gle in a Lambert quadrilateral in that plane cannot be obtuse. 

(16) The ASA criterion for congruence of triangles is one of our ax

ioms for neutral geometry. 

(17) A Lambert quadrilateral can be "doubled" to form a Saccheri 

quadrilateral, and a Saccheri quadrilateral can be "halved" to 

form a Lambert quadrilateral. 

(18) If .6:.ABC is any triangle and if a perpendicular is dropped from 
� � 

C to AB, then that perpendicular will intersect AB in a point 

between A and B. 

(19) It is a theorem in neutral geometry that given any point P and 

any line l, there is at most one line through P perpendicular 

to l. 

(20) It is a theorem in neutral geometry that vertical angles are con

gruent to each other. 

(21) In the sphere interpretation, where "lines" are interpreted to 

be great circles, Euclid V holds, yet the Euclidean parallel pos

tulate does not. 

(22) The gap in Euclid's attempt to prove Theorem 4.2 can be filled 

using our axioms of betweenness. 

Exercises 

The exercises that follow are exercises in neutral geometry unless oth

erwise stated. This means that in your proofs you are allowed to use 

only those results about Hilbert planes that have been previously 

demonstrated (including results from previous exercises). 

1. (a) State the converse to Euclid V (Euclid's fifth postulate). Prove 

this converse as a proposition in neutral geometry. 

(b) Prove Corollary 1 to the exterior angle theorem. 

(c) Prove that Hilbert's Euclidean parallel postulate implies that all 

Saccheri and Lambert quadrilaterals are rectangles and that rec

tangles exist. 

(d) Prove the corollary to the non-obtuse-angle theorem. 
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2. The following purports to be a proof in neutral geometry of the SAA 

congruence criterion. Find the step in the proof that is not valid in 

neutral geometry and indicate for which special Hilbert planes the 

proof is valid (see Figure 4.5, p. 167). 

Given AC � DF, <r:..A � <r:..D, <r:..B � <r:..E. Then <r:..C � <r:..F since 

(<r:..C)0 = 180° - (<r:..A)0 - (<r:..B)0 

= 180° - ( <r:..D) 0 - ( <r:..E) 0 ( <r:..F) 0• 

Hence .6:.ABC � .6:.DEF by ASA (Proposition 3 .17). 

3. Here is a proof of the SAA criterion (Proposition 4.1) that is valid 

in neutral geometry. Justify each step (see Figure 4.25). 

c F 

A G B D H E 

Figure 4.25 

(1) Assume side AB is not congruent to side DE. (2) Then AB< 

DE or DE < AB. (3) If DE < AB, then there is a point G between A 

and B such that AG� DE. (4) Then .6:.CAG � .6:.FDE. (5) Hence 

<r:..AGC � <r:..E. (6) It follows that <r:..AGC � <r:..B. (7) This contradicts 

a certain theorem. (8) Therefore, DE is not less than AB. (9) By a 

similar argument involving a point H between D and E, AB is not 

less than DE. (10) Hence AB� DE. (11) Therefore, .6:.ABC � .6:.DEF. 

4. Prove Proposition 4.2. (Hint: See Figure 4.6. On the ray opposite to 
� 
AC, lay off segment AD congruent to A'C'. First prove .6:.DAB � 

.6:.C' A'B'; then use isosceles triangles and a congruence criterion to 

conclude.) 

5. Justify each of the 18 steps on p. 167 proving that every segment 

has a midpoint (Proposition 4.3) . Reconstruct Euclid's shorter 

proof, which uses the existence of an equilateral triangle on any 

segment (but that existence can't be proved in neutral geometry 

without a further axiom such as the circle-circle continuity 

principle). 

6. (a) Prove that segment AB has only one midpoint. (Hint: Assume 

the contrary and use Propositions 3.3 and 3.13 to derive a 

contradiction, or else derive a contradiction from congruent 

triangles.) 
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(b) Prove Proposition 4.4 on the existence of angle bisectors. Prove 

that the angle bisector is unique. 

7. Prove that every acute angle has a complementary angle and that 

if complements of two acute angles are congruent, then the acute 

angles are congruent. 

8. Prove Proposition 4.5. (Hint: If AB> BC, then let D be the point 

between A and B such that BD :::: BC (Figure 4.26). Use isosceles 

triangle �CBD and exterior angle <t:BDC to show that <t:ACB > <t:A. 

Use this result and trichotomy of ordering to prove the converse.) 

c 

A D B 

Figure 4.26 

9. Here is a sketch of an argument to prove Proposition 4.6. Fill in the 

details and justify the steps: Given <t:B < <t:B'. Use the hypothesis 

of Proposition 4.6 to reduce to the case where A= A', B = B', BC:::: 

BC', and C is interior to <t:ABC', so that you must show AC< AC' 

(see Figure 4.27 where D is obtained from the crossbar theorem). 

B 

Figure 4.27 

The case where C = D being clear, suppose Ci= D. Proposition 4.5 

reduces our task to showing <t:AC'C < <t:ACC' using the hypothesis 

to show that <t:BC'C:::: <t:BCC'. In the case where B * D * C (as in 

Figure 4.27), we have <t:AC'C < <t:BC'C and <t:BCC' < <t:ACC'. In 

the case where B * C * D, apply the exterior angle theorem twice 

(see Figure 4.28): 

<t:ACC' > <t:DCC' > <t:BC'C:::: <t:BCC' > <t:CC'D = <t:AC'C. 
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B 

Figure 4.28 

The converse implication in Proposition 4.6 follows from the di

rect implication just shown, using trichotomy. 

10. Prove Proposition 4.7. Deduce as a corollary that transitivity of par

allelism is equivalent to Hilbert's Euclidean parallel postulate. 

11. Prove Proposition 4.8. (Hint: Assume first the converse to the AIA 

theorem. Let m be the parallel to l through P constructed in the 

standard way and let n be any parallel to l through P. Use the con

gruence of alternate interior angles and the uniqueness of perpen

diculars to prove m = n. Assuming next the parallel postulate, use 

Axiom C-4 and an RAA argument to establish the converse to the 

AIA theorem.) 

12. Prove Proposition 4.9. 

13. Prove Proposition 4.10. 

14. The ancient Greek mathematician Heron gave an elegant proof of 

the triangle inequality different from the one in the text. In order 
- - -

to prove that AB + AC > BC, he bisected <r..A. He let the bisector 

meet BC at point D, which we justify via the crossbar theorem. He 

then applied the exterior angle theorem and Proposition 4.5 to tri

angles �BAD and �CAD. Fill in the details of this argument. 

15. Here is Legendre's lemma-which is needed for his proof found in 

many texts, based on the Archimedean property of angles-that the 

angle sum of every triangle is < 180 ° . He got the idea for this from 

Euclid's construction in his (incomplete) proof of the exterior angle 

theorem (I.16). Given �ABC. Let D be the midpoint of BC. Let E 
� 

be the point on the ray opposite to DA such that DE � DA. Prove 

that �AEC has the same angle sum as �ABC and that either 

(<f..AEC)0 or (<f..EAC)0 is <1/2 (<f..BAC)0• (Hint: See Figure 4.29. Use 

congruent triangles to show that ( <r..EAC) 0 + ( <r..AEC) 0 = ( <r..BAC) 0 .) 

Use Legendre's lemma to give an RAA proof of the Saccheri

Legendre theorem. 
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B 
E 

A c 

Figure 4.29 

16. Here is another proof by Legendre of the Saccheri-Legendre theo
rem that the angle sum of every triangle is <180° in an Archimedean 
Hilbert plane (Figure 4.30) . Justify the unjustified steps. (1) Let 
A1A2B1 be the given triangle, lay off n copies of segment A1A2, and 
construct a row of triangles AiAi+IBi, j = 1, ... , n congruent to 
A1A2B1, as shown in Figure 4.30. (2) The BiAi+IBi+1, j = 1, ... , n 
are also congruent triangles, the last by construction of Bn+l· 
(3) With angles labeled as in Figure 4.30, a + y + 8 = 180° and we 
have f3 + y + 8 equal to the angle sum of A1A2B1. (4) Assume on 
the contrary that f3 >a. (S) Then A1A2 > B1B2, by Proposition 4.6. 

-- -- --

(6) Also, A1B1 + n · B1B2 + Bn+1An+1 > n · A1A2, by repeated 
application of the triangle inequality. (7) A1B1 - Bn+iAn+l· (8) 

-- -- --

2A1B1 > n(A1A2 - B1B2) . (9) Since n was arbitrary, this contradicts 
Archimedes' axiom. ( 10) Hence the triangle has angle sum <180°. 

Figure 4.30 

17. Prove the following theorems: 
(a) Let y be a circle with center 0 and let A and B be two points 

on y. The segment AB is called a clwrd of y; let M be its mid-
� � 

point. If 0 i= M, then OM is perpendicular to AB. (Hint: Cor-
responding angles of congruent triangles are congruent.) 

(b) Let AB be a chord of the circle y having center 0. Prove that 
the perpendicular bisector of AB passes through the center 0 

of y. 
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18. In any Hilbert plane, prove that every triangle has an inscribed 

circle-more specifically, prove that the three angle bisectors are con

current in a point P (called the incenter) interior to the triangle which 

is equidistant from the sides of the triangle-Le., the perpendicu

lars dropped from P to the sides are congruent-so that the circle 

with center P and radius equal to any of those perpendiculars is 

tangent to the sides of the triangle. (Hint: Show first that two an

gle bisectors must meet at a point P interior to the triangle; then 

show by congruent triangles that P is equidistant from the sides and 

lies on the third angle bisector.) 

19. Prove the theorem of Thales that in a semi-Euclidean plane, an an

gle inscribed in a semicircle is a right angle (see Figure 4 .31) . 

Figure 4.31 

20. (a) Find the flaw in the following argument purporting to construct 

a rectangle. Let A and B be any two points. There is a line l 
� 

through A perpendicular to AB (Proposition 3.16) and, simi-
� 

larly, there is a line m through B perpendicular to AB. Take 

any point Con mother than B. There is a line through C per

pendicular to l-let it intersect l at D. Then DABCD is a 

rectangle. 

(b) In a general Hilbert plane, opposite sides of a parallelogram 

need not be congruent, as is illustrated by Saccheri and Lam

bert quadrilaterals in non-semi-Euclidean planes. Prove that in 

a plane satisfying the Euclidean parallel postulate, opposite 

sides and opposite angles of a parallelogram are congruent. 

21. The sphere, with "lines" interpreted as great circles, is not a model 

of neutral geometry. Here is a proposed construction of a rectangle 

on a sphere. Let a, f3 be two circles of longitude and let them in

tersect the equator at A and D. Let y be a circle of latitude in the 

northern hemisphere intersecting a and f3 at two other points, B 
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and C. Since circles of latitude are perpendicular to circles of lon

gitude, the quadrilateral with vertices ABCD and sides the arcs of 

a, y, and {3 and the equator traversed in going from A north to B 

east to C south to D west to A should be a rectangle. Explain why 

this construction doesn't work. 
� � 

22. Given A* B * C and DC l_ AC. Prove that AD> BD >CD (Figure 

4.32; use Proposition 4.5). 

D 

A B c 

Figure 4.32 

23. Given any triangle .6.DAC and any point B between A and C. Prove 

that either DB < DA or DB < DC. (Hint: Drop a perpendicular from 
� 

D to AC and use the previous exercise.) 

24. Recall from Exercise 18, Chapter 3, that a set is called convex if 

whenever points A, B are in the set, the entire segment AB is con

tained in the set. 

(a) Prove that the interior of a circle is a convex set (the interior 

is the set of all points inside the circle). 

(b) Assume the line-circle continuity principle. Show that if a line 

passes through a point inside a circle, then it also passes 

through points outside the circle. 

25. Suppose that line l meets circle y in two points C and D. Prove that: 

(a) Point P on l lies inside y if and only if C * P * D. 

(b) If points A and B are inside y and on opposite sides of l, then 

the point E at which AB meets l is between C and D. 

26. Look up and state Euclid III.20 and III.32 more precisely. Rewrite 

his proofs and show that they work in any semi-Euclidean plane. 

2 7. The proof of the uniformity theorem uses the idea of constructing 

a congruent copy of a Saccheri quadrilateral. Two Saccheri quadri

laterals are defined to be congruent if all their corresponding parts 

are congruent-their bases, their summits, their sides, and their 

summit angles. For triangles we have an axiom (C-6) and various 

propositions (ASA, SSS, SAA) which tell us that if three particular 

corresponding parts are congruent, then the other three correspon-
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ding parts are automatically congruent. State and prove one or more 

analogous propositions for Saccheri quadrilaterals. Explain how to 

construct a congruent copy. 

28. Recall that a quadrilateral DABCD is formed from four distinct points 

(called the vertices), no three of which are collinear, and from the 

segments AB, BC, CD, and DA (called the sides), which have no in

tersections except at those endpoints labeled by the same letter. The 

notation for this quadrilateral is not unique-e.g., DABCD = 

DCBAD. Two vertices that are endpoints of a side are called adja

cent; otherwise the two vertices are called opposite. A pair of sides 

having a vertex in common are called adjacent; otherwise the two 

sides are called opposite. The remaining pair of segments AC and 

BD formed from the four points are called diagonals of the quadri

lateral; they may or may not intersect at some fifth point. If X, Y, 

Z are vertices of DABCD such that Y is adjacent to both X and Z, 

then <t:XYZ is called an angle of the quadrilateral; if W is the fourth 

vertex, then <t:XWZ and <t:XYZ are called opposite angles. 

The quadrilaterals of main interest are the convex ones. By def

inition, they are the quadrilaterals such that each pair of opposite 

sides, e.g., AB and CD, has the property that CD is contained in one 

of the half-planes bounded by the line through A and B, and AB is 

contained in one of the half-planes bounded by the line through C 

and D. Using Pasch's theorem, prove that if one pair of opposite 

sides has this property, then so does the other pair of opposite sides. 

Prove, using the crossbar theorem, that the following conditions are 

equivalent: 

(a) The quadrilateral is convex. 

(b) Each vertex of the quadrilateral lies in the interior of the op

posite angle. 

(c) The diagonals of the quadrilateral meet. 

Prove that Saccheri and Lambert quadrilaterals are convex. 

Draw a diagram of a quadrilateral that is not convex. 

29. A convex quadrilateral is not a convex set in the sense of Exercise 

18, Chapter 3. However, define the interior of a convex quadrilat

eral to be the intersection of the interiors of its four angles. Prove 

that the interior of a convex quadrilateral is a convex set and that 

the point of intersection of the diagonals lies in the interior. 

30. State and prove a generalization of Pasch's theorem to Saccheri and 

Lambert quadrilaterals (or, more generally, to convex quadrilaterals). 

31. Prove that there exists a scalene triangle-one which is not isosceles. 

32. In Figure 4.33, the angle pairs ( <t:A'B'B", <t:ABB'1 and ( <t:C'B'B", <t:CBB'1 

are called pairs of corresponding angles cut off on l and l' by trans-
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t 

Figure 4.33 

versal t. Prove that corresponding angles are congruent if and only 

if alternate interior angles are congruent. 

33. (a) Define a complement of an acute angle without referring to de

gree measurement. 

(b) Suppose real number measurement of lengths does not exist

i.e., suppose the plane is non-Archimedean. State a version of 

the triangle inequality for such a plane in terms of addition of 

segment congruence classes and prove it. Do the same for 

Corollary 2 to the EA theorem. 

(c) Examples exist of Hilbert planes satisfying the obtuse angle 

hypothesis (see footnote 8). According to the Saccheri

Legendre theorem, such planes must be non-Archimedean. 

Now the angle sum of a triangle was defined by adding the 

real number degree measures of its angles, but in order to 

obtain such a measurement in Theorem 4.3, Archimedes' ax

iom was needed. Still, we would like to state that in a Hilbert 

plane satisfying the obtuse angle hypothesis, the angle sum 

of every triangle is greater than a "straight" angle, and we 

would like to prove that statement. Propose a precise defi

nition of that statement and sketch how to prove it. 

Major Exercises 
1. Fill in the details of the following argument which proves that the 

circle-circle continuity principle implies the line-circle continuity prin

ciple (see Figure 4.34; since the circle-circle continuity principle 
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c E 

0 

Figure 4.34 

holds in a Euclidean plane by definition, this shows that the line

circle continuity principle holds in a Euclidean plane). 

Let 0 be the center of y. By hypothesis, line l passes through a 

point A inside y. The goal is to prove that l intersects y in two 

points. The case where l passes through 0 is easy. Otherwise, let 

point B be the foot of the perpendicular from 0 to l. Point C is con

structed such that B is the midpoint of OC, and y' is the circle cen

tered at C having the same radius as y ( y' is the reflection of y 

across l). Prove that the hypothesis of the circle-circle continuity 

principle is satisfied-specifically that y' intersects OC in a point E' 

inside y and a point E outside y, so that y' intersects y in two points 

P, P'. Prove that these points lie on the original line l. 

2. Prove that the line-circle continuity principle implies the segment

circle continuity principle and conversely. (Hint: Use the results in 

Exercises 22 and 24(b).) 

3. (a) Assume the line-circle continuity principle. Prove that there ex

ists a right triangle with a hypotenuse of length c and a leg of 

length b iff b < c. (Hint for the "if" part: Take any point C and 

any mutually perpendicular lines through C. There exists a 

point A on one line such that IACI = b. If y is the circle cen

tered at A of radius c, point C lies inside y. Show that y in

tersects the other line in some point B. Then .6..ABC is the req

uisite right triangle.) 

(b) Assume that whenever b < c, there exists a right triangle with 

a hypotenuse of length c and a leg of length b. Prove that this 

implies the line-circle continuity principle. 
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4. Let line l intersect circle y at point A. Let 0 be the center of y. If 
� 

l J_ OA. we say that l is tangent to y at A; otherwise l is called se-

cant to y. 

(a) Suppose l is secant to y. Prove that the foot F of the perpen
dicular t from 0 to l lies inside y and that the reflection A' of 
A across tis another point at which l meets y (see Figure 4.35). 

(b) Suppose now that l is tangent to y at A. Prove that every point 
B -=f=. A lying on l is outside y, hence A is the unique point at 
which l meets y. Prove that all points of y other than A are on 
the same side of l. Prove conversely that if a line intersects a 
circle at only one point, then that line is tangent to the circle. 

r 

Figure 4.35 

t 
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The next four major exercises provide a proof of the uniformity 

theorem. The first two are lemmas needed for the main argument 
in the third and fourth. 

5. Prove Lemma 1. Given a Saccheri quadrilateral DABDC and a point 
P between C and D. Let Q be the foot of the perpendicular from P 
to the base AB (Figure 4.36). Then 

(a) PQ < BD iff the summit angles of DABDC are acute. 

(b) PQ � BD iff the the summit angles of DABDC are right angles. 

(c) PQ > BD iff the summit angles of DABDC are obtuse. 

c p D 

n 
A Q B 

Figure 4.36 
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(Hint: Apply Proposition 4.13 to the bi-right quadrilaterals DAQPC 

and DBQPD, using the fact that <t:QPC and <t:QPD are supplemen

tary, the definition of a Saccheri quadrilateral, Proposition 4.12(a), 

and trichotomy.) 

6. Prove Lemma 2. Given a Saccheri quadrilateral DABDC and a point 

P such that C * D * P. Let Q be the foot of the perpendicular from 
� 

P to AB (Figure 4.37). Then 

(a) PQ > BD iff the summit angles of DABDC are acute. 

(b) PQ � BD iff the summit angles of DABDC are right angles. 

(c) PQ < BD iff the summit angles of DABDC are obtuse. 

E 

A B Q 

Figure 4.37 

(Hints: Suppose PQ � BD. Then DAQPC is Saccheri, so apply part 

(b) of Lemma 1. Suppose PQ < BD. Then there is a unique point E 

such that Q * P * E and QE � BD. We then have two more Saccheri 

quadrilaterals DAQEC and DBQED, each of which has congruent 

summit angles. To show that <t:BDC is greater than its supplement 

<t:BDP, implying that it is obtuse, use the idea that exterior angle 

<t:EDP is greater than remote interior angle <t:ECD and that C * D * P 

implies <t:BDE < <t:ACE and subtract. 

Suppose PQ > BD. Then there is a unique point E such that 

P * E * Q and QE � BD. We again have two more Saccheri quadri

laterals DAQEC and DBQED, each of which has congruent summit 

angles. The rest of the argument is similar to the previous case. Fi

nally, show that the other direction of these three cases follows from 

trichotomy.) 

7. Prove the special case of the uniformity theorem where the midline 

segments of the two given Saccheri quadrilaterals are congruent 

(Figure 4.38). (Hints: First construct a congruent copy of DA'B'D'C' 

for which M = M' and N = N', so we can assume these midpoints 
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c C' M D' D 

f l � J J 
A A' N B' B 

Figure 4.38 

coincide, as do the summit and the base lines. Then apply the two 

lemmas in the preceding exercises.) Important remark: In this spe

cial case, we have also proved a uniformity result for Lambert 

quadrilaterals DMNBD and DMNB'D', which have common side 

MN where there are right angles and common lines containing the 

sides adjacent to MN. 

8. Here is a proof of the general case of the uniformity theorem from 

the three previous exercises. Your job is to provide justifications for 

the steps. 

PROOF: 

The case MN� M'N' having been handled, consider the case 

M'N' >MN. There is a unique point L such that L * M * N and LN � 

M'N'. We will construct a Lambert quadrilateral DLNHG with the 

fourth angle at G, congruent to half of Saccheri quadrilateral 

DA'B'D'C' (Figure 4.39). 

L G 
_J 

M _J 
K 

I I 
N H 

Figure 4.39 
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� 

On ray NB, let H be the point such that NH - N'B'. On the same 
� � 

side of LN as H and on the perpendicular to LN through L, let G 

be the point such that LG - M'D'. Then 6.LNH - 6.M'N'B', 

<tGLH - <tD'M'B', 6.GLH - 6.D'M'B', so that <tG - <tD' and, by 

addition, <tNHG - <tB', which is a right angle. 
� 

Since G and L lie on a parallel to MD, they are on the same side 
� � 

of MD, and since L is on the opposite side of MD from N, G is on 

the �pgosite side from H. � K be the point at which GH meets 

line MD, necessarily on ray MD since G and H are on the same side 
� 

of LN. 

Now apply the important remark from the special case above: 

<tMKH is of the same type as <tD. But <tMKH is also of the same 

type as <tG. Therefore <tG and <tD are the same type of angle, and 

we are done. If M'N' <MN, reverse the roles. <11111 

9. Denote by IABI the congruence class of segment AB (the set of all 

segments congruent to AB). Then, by definition and Axiom C-2, 

AB - CD ¢::} IAB I = ICDI. 

That is the underlying idea of "passing to the quotient"-replacing 

the equivalence relation - with actual equality of equivalence classes. 

We have already defined an ordering of segments: AB< CD 

means that there is a point E between C and D such that AB - CE. 

(This seems to depend on the choice of one endpoint C of segment 

CD; show that it does not.) This ordering induces an ordering of 

segment congruence classes when we define 

IAB I < ICD I ¢::}AB< CD. 

This definition seems to depend on the choice of representatives of 

the equivalence classes; using Proposition 3.13, show that it is in

dependent of that choice. Furthermore, show that Proposition 3.13 

also yields the following information: 

Trichotomy: a < b or a = b or b < a, and only one of these possi

bilities occurs. 

Transitivity: a< b and b < c:::::} a< c. 

Here a, b, care arbitrary segment congruence classes. 

We indicated in the discussion after the triangle inequality how 

to define addition of congruence classes. Show that Axiom C-3 guar

antees that addition is well-defined. 
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Here are some further properties of addition and order of seg
ment congruence classes that you should verify: 

Addition is commutative: a + b = b + a. 
Addition is associative: (a+ b) + c =a+ (b + c). 
Subtraction when defined: a < b iff there is a class c such that 

b =a+ c. 
Cancellation: a + c = b + c iff a = b. 
Compatibility of + and < : If a< b, then for any congruence class 

C, a+ C < b + C. 

If A, B, C are collinear, then A* B * C <=> IABI + IBCI = IACI. 

We see that with all these nice properties, the congruence class IABI 
of AB behaves just like a measure of length for AB, even though it 
is not a real number. (The idea for this goes back to Descartes. ) 

Projects 
1. Report on the example of a Pythagorean non-Archimedean ordered 

field in Hartshorne, Exercise 18.9, p. 163; it is the field K((t)) of for
mal Laurent series with coefficients in a Pythagorean field K. 

2. Examples of Euclidean non-Archimedean fields: In the previous ex
ample, assume now that the coefficient field K is Euclidean. Con
struct an ascending chain of formal Laurent series fields K((t,J) with 
t = t1 and t�+1 = tn for any positive integer n. Let F be the union 
of all those fields, so that an element of F is a formal Laurent se
ries in tn for some n. Show that F is a Euclidean non-Archimedean 
field (thus by adjoining iterated square roots of t, one obtains square 
roots of all positive elements-see Hessenberg and Diller (196 7) if 
you are stymied). For another example, see Hartshorne, Proposition 
18.4, p. 161. 

3. Report on Euclid's theory of content (area without numbers); use 
Hartshorne, Chapter 5, as a reference. Indicate which results de
pend on Archimedes' axiom. 

4. Go through all the propositions in Euclid's Books I-IV that we have 
not discussed and that do not refer to area. With the assistance of 
Heath's commentaries about them, report on all the flaws found in 
Euclid's proofs of them and repair those flaws using our axioms for 
a Euclidean plane and all the results we have proved in the text 
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and exercises. Be sure to tell which results (if any) are valid in neu

tral geometry and prove them without using any strictly Euclidean 

results. 

5. Report on interesting theorems about cyclic quadrilaterals (quadri

laterals that have a circumscribed circle) in Euclidean planes (use 

the web or relevant books). Such quadrilaterals are important for 

developing the theory of similar triangles in planes satisfying 

Hilbert's Euclidean parallel postulate. Develop a more general the

ory of cyclic quadrilaterals valid in neutral geometry. 

6. Comment on these statements by Edward Nelson, referring to his 

article Syntax and Semantics, accessible online at http://www.math. 

princeton.edu/ % 7Enelson/papers/s.pdf: 

(a) In the 1960s infinitesimals rose again, phoenix-like, thanks to 

the genius of Abraham Robinson, the creator of nonstandard 

analysis . . . .  So do infinitesimals exist or not? This is the wrong 

question. The question is, as Humpty Dumpty said to Alice, 

which is to be master-that's all. Mathematics is our inven

tion, and we can have infinitesimals or not, as we choose. The 

only constraint is consistency. 

(b) But what a constraint that is! Indeed, we have no reason to as

sume that the axiom systems we use in mathematics are con

sistent. For all we know, they may lead to a contradiction. Pla

tonists believe otherwise, but to a formalist their arguments 

carry no conviction. 
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History of the 
Parallel Postulate 

Like the goblin "Puck," [the feat of proving Euclid VJ has led me "up 

and down, up and down," through many a wakeful night: but 

always, just as I thought I had it, some unforeseen fallacy was sure 

to trip me up, and the tricksy sprite would "leap out, laughing ho, 

ho, ho!" 

C. L. Dodgson (Lewis Carroll) 

Review 

Let us summarize what we have done so far. We have discovered cer

tain gaps in Euclid's definitions and postulates for plane geometry. We 

filled in these gaps and firmed up the foundations for this geometry by 

presenting (a modified version of) Hilbert's definitions and axioms. We 

then built a structure of theorems on these foundations. However, the 

structure thus far erected does not rest on Euclid's parallel postulate, 

and we called this structure "neutral geometry." 

You may feel that to deny the Euclidean parallel postulate would 

go against common sense. Albert Einstein once said that "common 

sense is, as a matter of fact, nothing more than layers of preconceived 

notions stored in our memories and emotions for the most part before 

age eighteen." 

For more than two thousand years, some of the best mathematicians 

tried to prove Euclid's fifth postulate. What does it mean, according to 

our terminology, to have a proof? It should not be necessary to assume 

the parallel postulate as an axiom; one should be able to prove it from 

209 
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the other axioms, so that it would become a theorem in neutral geom
etry and neutral geometry would encompass all of Euclidean geometry. 

In this chapter, we will examine a few illuminating attempts to 
prove Euclid's parallel postulate (many other attempts are presented in 
Bonola, 1955; Gray, 1989; and Rosenfeld, 1988). It should be empha
sized that most of these attempts were made by outstanding mathe
maticians of their time, not incompetents. And even though each at
tempt was flawed, the effort was often not wasted; for, assuming that 
all but one step can be justified, when we detect the flawed step, we 
find another statement which to our surprise is equivalent1 to the par
allel postulate. You will have the opportunity to do more of this en
joyable detective work in Exercises 4-8. 

Pro cl us 

Proclus (410-485) was the head of the Neoplatonic school in Athens 
more than seven centuries after Euclid. He was primarily a philoso
pher, not a mathematician, but his Commentary on the First Book of 
Euclid's Elements is one of the main sources of information on Greek 
geometry. 

Proclus criticized Euclid's fifth postulate as follows: "This ought 
even to be struck out of the Postulates altogether; for it is a state
ment involving many difficulties .... The statement that since [the 
two lines] converge more and more as they are produced, they will 
sometime meet is plausible but not necessary." Proclus offered the 
example of a hyperbola that approaches its asymptotes as closely as 
you like without ever meeting them (see Figure 5.1). This example 
shows that the opposite of Euclid's conclusion can at least be imag
ined.2 Proclus adds: "It is then clear from this that we must seek a 
proof of the present theorem, and that it is alien to the special char
acter of postulates." 

Proclus attempted to prove the parallel postulate as follows (see Fig
ure 5.2): Given two parallel lines land m. Suppose linen cuts mat P. 
We wish to show n intersects l also (see Proposition 4. 7). Let Q be the 

1 Actually, the flawed argument only proves that the unjustified statement implies the 

parallel postulate; the converse requires further argument. I do not present any attempts 

that are uninformative. 

2 Students always object to Figure 5.1 on the grounds that the hyperbola is not "straight." 

We agreed not to use this word because we don't have a precise definition. A precise 

definition can be given in differential geometry (see Appendix A). 
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Figure 5.1 Hyperbola with its asymptotes. 
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� 
foot of the perpendicular from P to l. If n coincides with PQ, then it 

� 
intersects l at Q. Otherwise, one ray PY of n emanating from P lies be-

� � 
tween PQ and a ray PX of m. Take X to be the foot of the perpen-

dicular from Y to m. 

Proclus then argued that as the point Y recedes endlessly from P on 

n, segment XY increases without bound, by Aristotle's axi.om, so even

tually XY becomes greater than fixed segment PQ. At that stage, Y must 

be on the other side of l, hence between that position and its starting 

position, Y must have hit l, which means that line n intersects l. 

Proclus' argument is sophisticated, involving motion and between

ness. Moreover, every step in the argument can be shown to be correct 

(if we assume Aristotle's axiom)-except that the last sentence doesn't 

follow! 

How could one justify the last step? Let us drop a perpendicular YZ 

from Y to l. You might then say that (1) X, Y, and Z are always collinear, 

and (2) XZ � PQ. Thus, when XY becomes greater than PQ, XY must 

also be greater than XZ, so that Y must be on the other side of l. Here 

Q z 

Figure 5.2 
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the conclusion does indeed follow from statements (1) and (2). The 
trouble is that there is no justification for these statements! 

If this boggles your mind, it may be because Figure 5.2 makes state
ments (1) and (2) seem correct. Recall, however, that we are not al
lowed to use a diagram to justify a step in a proof. Each step must be 
proved from stated axioms or previously proved theorems. (We will 
show later that it is not possible in neutral geometry to prove state
ments (1) and (2). They can be proved only by using Euclid's parallel 
postulate or one of its equivalents.) 

This analysis of Proclus' faulty argument illustrates how careful you 
must be in the way you think about parallel lines. You probably visu
alize parallel lines as railroad tracks, everywhere equidistant from each 
other, and the ties of the tracks perpendicular to both parallels. This 
imagery is valid only in Euclidean geometry. Without the parallel pos
tulate, the only thing we can say about two lines that are parallel is 
that, by the definition of "parallel," they have no point in common. 
You can't assume they are equidistant; you can't even assume they 
have a common perpendicular segment. As Humpty Dumpty remarked 
in Alice in Wonderland: "When I use a word it means what I wish it 
to mean, neither more nor less." 

Proclus reported on an earlier attempt to justify Euclid V by the 
great second-century Greek astronomer Ptolemy. Ptolemy tried to prove 
the contrapositive (see p. 65) of Euclid V, which is logically equivalent 
to it. So he started with two parallel lines cut by a transversal. He 
pointed out correctly that if the interior angles on one side of the trans
versal add up to <180°, then the interior angles on the other side of 
the transversal (which are their supplements) add up to > 180°. He 
then argued intuitively that the rays of the parallel lines on one side of 
the transversal were "no more parallel" than the rays on the opposite 
side, so this could not happen. If one tries to make that intuitive idea 
precise, one sees that Ptolemy was tacitly assuming the converse of the 
AIA theorem, which states that parallel lines are situated symmetrically 
about any transversal. But we proved in Proposition 4.8 that the con
verse to the AIA theorem is equivalent to Euclid V in neutral geome
try, so Ptolemy was tacitly assuming what he was trying to prove. 

According to a medieval Arabic source, Archimedes also wrote a 
treatise on parallel lines. Unfortunately, it has been lost.3 

3 In 1906, philologist J. L. Heiberg found an Archimedes manuscript. It was subsequently 

lost or stolen and then turned up again in 1998. The palimpsest, erased, written over, 

and even painted over, has been scrutinized using a synchrotron X-ray beam and other 

technologies to decipher what Archimedes wrote. Do a search on the web for the lat

est information about this marvelous discovery. 
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Equidistance 
The image of parallel lines as equidistant led to several confused attempts 

to prove Euclid's parallel postulate. Posidonius (circa 150 B.c.) based his 

attempt on a different definition of "parallel lines" as two lines for which 

all the perpendicular segments dropped from either one of them to the 

other are congruent. Aside from the obvious fallacy of giving the word 

"parallel" a different meaning, Posidonius could not have proved in neu

tral geometry that such pairs of lines exist, as we shall later show. 

Proceeding more carefully, given a line l and segment PQ of a line 

perpendicular to l at Q, we can consider the set of all points P' on the 

same side of l as P such that if Q' is the foot of the perpendicular from 

P' to l, then PQ � P'Q'. Call that set the equidistant locus (or curve) to 

l through P. Christopher Clavius, in 1574, proposed the following ax

iom as an alternative to Euclid V. 

CLA vrns' AXIOM. For any line l and any point P not on l, the equi

distant locus to l through P is the set of all the points on a line through 

P (which is parallel to l). 

The heuristic argument Clavius gave for assuming this axiom was 

that the equidistant locus has the property that it "lies evenly" with 

the points on it, hence it must form a line according to Euclid's def

inition of a line! Centuries earlier, Ibn al-Haytham tried to justify this 

axiom via a kinematic argument, imagining the rigid segment PQ at

tached to line l at Q and perpendicular to l; he argued that as Q 

moved along the (straight) line l, the other end P of the segment had 

to move along a second (straight) line so long as the segment stayed 

perpendicular to l. It may be difficult to imagine that the path traced 

out by P might be curved, but anyhow kinematics is not part of pure 

geometry. 

The following theorem illuminates the status of Clavius' axiom in 

neutral geometry. 

THEOREM. The following three statements are equivalent for a Hilbert 

plane: 

(a) The plane is semi-Euclidean. 

(b) For any line l and any point P not on l, the equidistant locus 

to l through P is the set of all the points on the parallel to l 

through P obtained by the standard construction, i.e., on the 
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� 
line through P perpendicular to PQ, where Q is the foot of the 
perpendicular from P to l. 

(c) Clavius' axiom. 

PROOF: 

(b) => (c) is trivial. Assume (c), let DABDC be any Saccheri quadri
lateral, and let MN be its midline segment. Since M is on the line 
� � 
CD, Clavius' axiom tells us that M is on the equidistant locus to AB 
through C and D; i.e., MN � CA � DB. So by the corollary to the 
uniformity theorem of Chapter 4, the plane is semi-Euclidean. 

Assume (a). Let m be the parallel to l through P obtained by the 
standard construction. If P' is any other point on m and Q' is the 
foot of the perpendicular from P' to l, then DQQ'P'P is a Lambert 
quadrilateral, hence a rectangle, by (a), so the opposite sides PQ 
and P'Q' of this rectangle are congruent (Corollary 3 to Proposition 
4.13). Thus P' lies on the equidistant locus to l through P. Now let 
P' -=f=. P lie on that locus. Then DQQ'P'P is a Saccheri quadrilateral, 

� � 
hence a rectangle, by (a). Thus P'P is perpendicular to PQ at P. By 
uniqueness of the perpendicular, P' lies on m. <Ill 

As was stated in the note on non-Archimedean geometries at the 
end of Chapter 4, the Euclidean parallel postulate need not hold in an 
arbitrary semi-Euclidean non-Archimedean plane, so Clavius' axiom is 
weaker than the Euclidean parallel postulate and all attempts to prove 
the parallel postulate using just Clavius' axiom are flawed. Some me
dieval Arab mathematicians invoked Archimedes' axiom in addition to 
Clavius' axiom in their flawed attempts (see Chapter 2 of Rosenfeld, 
1988), which was the correct idea, as we shall soon show. 

Wallis 

John Wallis (1616-1703) was the most influential English mathemati
cian before Newton.4 He made very substantial contributions to the de
velopment of calculus, algebra, and analytic geometry. 

4 In his 1656 treatise Arithmetica Infinitorum (which Newton studied), Wallis introduced 

the symbol oo for "infinity," developed formulas for certain integrals, and presented his 

famous infinite product formula for 7T: 

1T 2·2·4·4·6·6·8··· 

2 1 ·3·3·5·5·7·7··· 

Wallis promoted the power of algebra in mathematics, in sharp disagreement with the 

insistence of Newton's teacher Isaac Barrow on traditional synthetic Euclidean methods. 
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John Wallis 

Wallis was astute enough not to try to prove Euclid's parallel pos

tulate in neutral geometry. Instead, in a treatise on Euclid, which he 

published in 1693, he proposed a new postulate that he believed to be 

more plausible. He phrased it as follows: 

Finally (supposing the nature of ratio and of the science of similar fig

ures already known), I take the following as a common notion: to every 

figure there exists a similar figure of arbitrary magnitude. 

In order to make Wallis' postulate precise, we will restrict our at

tention to triangles instead of arbitrary "figures." We have not devel

oped "the nature of ratio." We can circumvent that difficulty by defin

ing "similar triangles" as follows. 

DEFINITION. Two triangles are similar if their vertices can be put in 

one-to-one correspondence in such a way that corresponding angles are 

congruent (AAA). We use the notation .6.ABC - .6.DEF to indicate that 

these triangles are similar when A, B, C correspond, respectively, to D, 

E, F (see Figure 5.3). 
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F 

Figure 5.3 Similar triangles. 

WALLIS' POSTULATE. Given any triangle .6..ABC and given any seg

ment DE, there exists a triangle .6..DEF having DE as one of its sides 

such that .6..ABC � .6..DEF. 

The intuitive meaning of Wallis' postulate is that you can either 

magnify or shrink a triangle as much as you like without distortion. 

Using Wallis' postulate, the Euclidean parallel postulate can be proved 

as follows. 

PROOF: 

Given point P not on line l, let PQlm be the configuration obtained 

by the standard parallel construction. Let n be any other line through 

P. We must show that n meets l. As before, consider a ray of n em

anating from P that is between a ray of m emanating from P and 
� 

the ray PQ. For any point R on this ray, let S be the foot of the per
� 

pendicular from R to PQ (see Figure 5.4). 

Now apply Wallis' postulate to .6..PSR and segment PQ. It tells 

us that there is a point T such that .6..PSR � .6..PQT. We may assume 
� 

T lies on the same side of PQ as R (Figure 5.5)-if not, reflect across 
� 

PQ. By the definition of similar triangles, <tTPQ � <tRPS. But since 

Q 

Figure 5.4 
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Q 

Figure 5.5 

� � 
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these angles have the ray PQ =PS as a common side, and since T 
� 

lies on the same side of PQ as R, the only way they can be con-

gruent is to be equal (by the uniqueness part of Axiom C-4). Thus 
� � 

PR = PT, so that T lies on n. Similarly, <tPQT � <tPSR, a right an-

gle; hence T lies on l as well. Thus n and l meet at T, and m is the 

only line through P parallel to l. <11111 

There is no reason to believe Wallis' postulate is preferable to 

Euclid's because you will easily show in Exercise 3(a) that it is equiv

alent in neutral geometry to Euclid V. 

Wallis became publicly engaged in a dispute with the prominent 

seventeenth-century philosopher John Hobbes after Hobbes published a 

manuscript in 1655 purporting to square the circle by straightedge and 

compass and to solve other outstanding geometric problems. Wallis pub

lished a reply in the same year in which he pointed out the many errors 

and rather deplorable state of Hobbes' geometry. Proud Hobbes could not 

accept Wallis' critique and published an angry attack against him. A bit

ter, vituperative public verbal battle-encompassing much broader philo

sophical, political, and religious issues of that time, not just geometry

evolved between them that lasted 20 years. An excellent account of this 

dispute can be found in the 1999 book by Douglas M. Jesseph, Squaring 

the Circle: The War Between Hobbes and Wallis. There is an informative 

review of this book at www.maa.org/reviews/squaring.html. 

Squaring the circle was a puzzle of widespread popularity among 

the general population in the late seventeenth century. There were con

tests open to all, and the March 1686 edition of the Journal des Savants 

even reported that "one young lady positively refused a perfectly eli

gible suitor simply because he had been unable, within a given time, 

to produce any new idea about squaring the circle." 

You will find a new idea in the last section of Chapter 10. 
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Saccheri 

We next discuss further the remarkable work of the logician and Jesuit 

priest Girolamo Saccheri (1667-1733), many of whose propositions 

were proved in Chapter 4. 

We saw that the summit angles of his quadrilaterals are congruent 

to each other, and there are three possible geometries according as 

those angles are acute, right, or obtuse. Saccheri's idea was to demon

strate that the acute and obtuse angle cases lead to contradictions, leav

ing the right angle case-the case where the Saccheri quadrilateral is 

a rectangle-as the only possibility. 

By assuming the generally accepted Archimedes' axiom, Saccheri 

successfully eliminated the case of the obtuse angle (Saccheri-Legendre 

theorem, Chapter 4). But however hard he tried, Saccheri could not 

squeeze a contradiction out of "the inimical acute angle hypothesis," 

as he called it. He was able to deduce many strange results-such as 

parallel lines having one common perpendicular and then diverging on 

both sides of the perpendicular, or the possibility of parallel lines di

verging in one direction but converging asymptotically in the opposite 

direction and having a "common perpendicular at infinity" in that di

rection. He was not able to find a contradiction. 

Finally, he exclaimed in frustration: "The hypothesis of the acute 

angle is absolutely false, because [it is] repugnant to the nature of the 

straight line!" It is as if a man had discovered a rare diamond but, un

able to believe what he saw, announced it was glass. Although he did 

not recognize it (or was afraid to acknowledge it), Saccheri had dis

covered the elementary part of non-Euclidean geometry and deserves 

much acclaim for that discovery. 

There is no very serious error in Saccheri's treatise. Moreover, the 

following remarks by him show that he was aware that his work was 

not satisfying. 

It is well to consider here a notable difference between the foregoing 

refutations of the two hypotheses. For in regard to the hypothesis of the 

obtuse angle the thing is clearer than midday light. ... But on the con

trary, I do not attain to proving the falsity of the other hypothesis, that 

of the acute angle .... I do not appear to demonstrate from the viscera 

of the very hypothesis, as must be done for a perfect refutation. "5 

5 See the translation of Saccheri's 1733 treatise by G. B. Halsted (Saccheri, 1970, 
Scholion, p. 233}. Saccheri had previously published several versions of his treatise on 
logic, which Halsted, in his introduction, also lauds as far ahead of his time; for ex-
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We will further examine Saccheri's non-Euclidean results in the next 

chapter. It has been claimed by one anonymous writer that in Sac

cheri' s time, the existence of a valid non-Euclidean geometry was "quite 

literally, unthinkable-not impossible, not wrong, but unthinkable." 
Well, Saccheri did think about it. Why would a fine logician like Sac

cheri bother publishing all those correct results in non-Euclidean geom

etry if he simply believed that such a geometry was "repugnant"? He 

must have at least sensed that there was something very interesting go

ing on that he couldn't fully understand, and he wanted mathemati

cians to know about it. By claiming he had vindicated Euclid, his book 

received the stamp of approval from the Inquisition. Unfortunately, Sac

cheri died a month after its publication. 

Clairaut' s Axiom and Proclus' Theorem 

Alexis-Claude Clairaut (1713-1765) was a leading French mathematician 

who made important contributions to differential geometry. Like Wallis, 

he did not try to prove the parallel postulate in neutral geometry but re

placed it in his 1741 text Elements de Geometrie with another axiom. 

CLAIRAUT'S AXIOM. Rectangles exist. 

In his text, Clairaut tried to make geometry easier for students to 

understand, presenting it as a practical, common-sense subject. To jus

tify his axiom, Clairaut argued that "we observe rectangles all around 

us in houses, gardens, rooms, walls." 

So why didn't that settle the matter? Perhaps because the game of 

trying to prove Euclid V had been going on for so many centuries that 

it became a challenging obsession for mathematicians. Or did mathe

maticians finally recognize that geometry was not about "physical 

space"? After all, if you believe that a rectangle can be drawn on the 

ground, then you cannot also believe that the earth is spherical, be

cause rectangles do not exist on a sphere. If you think you have drawn 

a "physical rectangle," you could be mistaken because exact measure

ments are physically impossible. Or did it finally dawn on mathemati

cians that any postulate proposed to replace Euclid V-no matter how 

ample, Saccheri was the first to consider the problems of the independence of one pos
tulate from the others and of the consistency of a system of axioms. For an explana
tion of the "common perpendicular at infinity" to asymptotically parallel lines discov
ered by Saccheri, see the Conclusion in Chapter 6. 
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intuitively appealing-was weaker than or logically equivalent to 

Euclid V and therefore nothing was gained logically by the replacement? 

Even if one accepts Clairaut's axiom, it does not suffice to demon

strate Euclid's parallel postulate. Our investigations in Chapter 4 show 

that Clairaut' s axiom holds in a Hilbert plane iff the plane is semi

Euclidean. As Example 2 in Chapter 4 showed, Euclid V need not hold 

in a non-Archimedean, semi-Euclidean plane. 

Hilbert, in his lectures on geometry after the publication of the first 

edition of his Grundlagen, emphasized that the angle sum of a triangle 

equaling 180° does not imply Euclid V without a further hypothesis. 

Dehn provided a non-Archimedean model to show that. Proclus was 

the first to recognize a correct, purely geometric candidate for that ad

ditional hypothesis: Aristotle's axiom is a missing link. 

PaocLus' THEOREM. The Euclidean parallel postulate holds in a 

Hilbert plane if and only if the plane is semi-Euclidean (i.e., the angle 

sum of a triangle is 180°) and Aristotle's angle unboundedness axiom 

holds. In particular, the Euclidean parallel postulate holds in an 

Archimedean semi-Euclidean plane. 

PROOF: 

The last remark follows from the result that Archimedes' axiom im

plies Aristotle's axiom, which you will prove in Exercise 2. 

The "only if" part of the theorem was proved in Chapter 4 (Propo

sition 4.11 and Corollary 2 to Proposition 4.13). For the "if" part, 

return to the situation illustrated in Figure 5.6, where mis the par

allel to l through P obtained by the standard construction. Let S be 
� 

the foot of the perpendicular from Y to PQ. S is on the same side 
� 

of m as Y and Q because SY is parallel to m (Corollary 1 to the AIA 

theorem). Since the plane is semi-Euclidean, Lambert quadrilateral 

Q 

Figure 5.6 
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DXPSY is a rectangle, hence its opposite sides PS and XY are con

gruent (Corollary 3 to Proposition 4.13). 

We now apply Aristotle's axiom and Proclus' argument: A point 

Y exists on the given ray of n so that XY > PQ. Then PS, which is 

congruent to XY, is also > PQ, hence P * Q * S. As before, Y is on 

the same side of l as S, hence on the opposite side of l from P. By 

the definition of "opposite side," n meets l at some point between 

P and Y. <11111 

Legendre 
Adrien-Marie Legendre (1752-1833), mentioned in Chapter 1, certainly 

knew of Clairaut's text and rejected Clairaut's axiom because he be

lieved he could prove Euclid V in neutral geometry. He did not know 

of Saccheri's work and rediscovered (with different proofs) some of 

Saccheri's main theorems in neutral geometry-the most important one 

being the Saccheri-Legendre theorem in Chapter 4. Legendre also took 

Archimedes' axiom for granted. We have already discussed, in Chap

ter 1, one of Legendre's attempts to prove the parallel postulate, whose 

flaw we ask you to detect in Exercise 4. Legendre published a collec

tion of his many attempts as late as 1833, the year he died. Here is one 

of his attempts to prove that the angle sum of any triangle is 180°. 

PROOF (SEE FIGURE 5.7): 

Suppose, on the contrary, there exists a triangle .6..ABC having de

fect d-=!=- 0. By the Saccheri-Legendre theorem, d > 0. One of the an

gles of the triangle-say <tA-must then be acute (in fact, less than 
� 

60°). On the opposite side of BC from A, let D be the unique point 

such that <tDBC � <tACB and BD �AC (Axioms C-1 and C-4). Then 
� � � � 

.6..ACB � .6..DBC (SAS). Also BD II AC and BA II DC (by the alternate 

interior angle theorem, Theorem 4.1), so that D lies in the interior 

A 

Figure 5.7 
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of the acute �· Hence there is a line l thro�h D such that l in

tersects side AB in a point B1 -=!=-A and side AC in a point C1 -=!=-A. 

Because of the parallel lines, we know that B1 -=!=-B and C1 -=!=-C. 

Suppose B1 is on segment AB. Then A and B1 would be on 
� � � 

the same side of BD. Since BD II AC, A and C1 are on the same 
� � 

side of BD. Thus B1 and C1 are on the same side of BD (Axiom 

B-4). But since D lies in the interior of <r:..A, B1 * D * C1 (Proposition 

3.7). This contradiction shows that A* B * B1. Similarly, we have 

A* C * C1. Since .6:.ACB � .6:.DBC, the defect of .6:.DBC is also d. 

Therefore, by the additivity of the defect applied to the four trian

gles into which .6:.AB1 C1 has been decomposed, the defect of .6:.AB1 C1 

is greater than or equal to 2d. 

Repeating this construction for .6:.AB1 C1, we obtain .6:.AB2C2 with 

defect greater than or equal to 4d. Iterating the construction n times, 

we obtain a triangle with defect greater than or equal to 2nd, which 

can be made as large as we like by taking n sufficiently large. But 

the defect of a triangle cannot be more than 180° ! This contradic

tion shows that every triangle .6:.ABC has defect 0. <11111 

Can you see the flaw? It is easy, because we have justified every 

step but one, the sentence beginning with "Hence." That is the as

sumption you were warned on p. 115 not to make. Legendre made the 

same error as was made many centuries earlier by Simplicius (Byzan

tine, sixth century), al-Jawhari (Persian, ninth century), Nasir Eddin 

al-Tusi, and others. He failed to prove in neutral geometry that the de

fect of every triangle is zero. Nevertheless, Legendre succeeded in prov

ing the following theorem in neutral geometry. 

LEGENDRE'S THEOREM (STILL ASSUMING ARCHIMEDES' AXIOM). Hy

pothesis: For any acute <r:..A and any point D in the interior of <r:..A, there 

exists a line through D and not through A that intersects both sides of 

<r:..A. Conclusion: The angle sum of every triangle is 180°. 

You will easily see from the Klein model in Chapter 7 that the hy

pothesis of Legendre's Theorem fails in hyperbolic geometry (Figure 

7.5). Let us show that the hypothesis can be proved in Euclidean geom

etry. Drop a perpendicular from interior point D to one of the sides of 

<r:..A and let B be the foot of that perpendicular. Since <r:..A is acute, 
� 

( <r:..A) 0 + ( <r:..DBA) 0 = ( <r:..A) 0 + 90° < 180°. So BD meets the other side 

of <r:..A, by Euclid V. <11111 
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For future reference, we name this hypothesis after Legendre. 

LEGENDRE'S AxmM. For any acute angle and any point in the inte

rior of that angle, there exists a line through that point and not through 

the angle vertex which intersects both sides of the angle. 

Just like Saccheri, Legendre wrote that "it is repugnant to the na

ture of a straight line" for this axiom not to hold. 

Lambert and Taurinus 

Regarding Euclid V, Johann Heinrich Lambert (1728-1777) wrote: 

Undoubtedly, this basic assertion is far less clear and obvious than the 

others. Not only does it naturally give the impression that it should be 

proved, but to some extent it makes the reader feel that he is capable 

of giving a proof, or that he should give it. However, to the extent to 

which I understand this matter, that is just a first impression. He who 

reads Euclid further is bound to be amazed not only at the rigor of his 

proofs but also at the delightful simplicity of his exposition. This being 

so, he will marvel all the more at the position of the fifth postulate 

when he finds out that Euclid proved propositions that could far more 

easily be left unproved. 

Lambert studied quadrilaterals having at least three right angles, 

which are now named after him (though they were studied seven cen

turies earlier by the Egyptian scientist ibn-al-Haytham). A Lambert 

quadrilateral can be "doubled" (by reflecting it across an included side 

of two right angles) to obtain a Saccheri quadrilateral. Lambert was fa

miliar with Saccheri's work. Like Saccheri, Lambert disproved the ob

tuse angle hypothesis and studied the implications of the "inimical" 

acute angle hypothesis. He observed that it implied that similar trian

gles must then be congruent, which in turn implied the existence of an 

absolute unit of length (see Proposition 6.2, Chapter 6). He called this 

consequence "exquisite" but did not want it to be true, worrying that 

the absence of similar, proportional figures "would result in countless 

inconveniences," especially for astronomers. 

He also noticed that the defect of a triangle was proportional to its 

area (see Chapter 10). He recalled that on a sphere in Euclidean space, 
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Johann Heinrich Lambert 

the angle sum of a triangle formed by arcs of great circles was greater 

than 180° and that the excess over 180° of the angle sum of the tri

angle was proportional to the area of the triangle, the constant of pro

portionality being the square r2 of the radius of the sphere (see Rosen

feld, 1988, Chapter 1, or Appendix A for the case r = 1). If r is replaced 

by ir (i = v=-i), squaring introduces a minus sign that converts the 

excess into the defect in that proportionality. Lambert therefore spec

ulated that the acute angle hypothesis described geometry on a "sphere 

of imaginary radius. "6 

Fifty years passed before this brilliant idea was further elaborated 

in a booklet dated 1826 by F. A. Taurinus, who transformed the for

mulas of spherical trigonometry into formulas for what he called "log

spherical geometry" by substituting ir for r (his formulas are proved by 

a different method in Theorem 10.4, Chapter 10). When Taurinus first 

6 In fact, this idea can be explained in terms of a natural embedding of the non-Euclidean 
plane in relativistic three-space (see Chapter 7). Lambert is known for proving the 
irrationality of rr and of ex and tan x when x is rational, as well as for important 
laws he discovered in optics and astronomy. The quote is from B. A. Rosenfeld (1988), 

p. 100. 
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notified C. F. Gauss of his work, Gauss replied favorably (see the let

ter from Gauss on p. 243); but when Taurinus then urged Gauss to 

publish his own work on this topic, Gauss refused to continue com

municating. This rejection threw Taurinus into a state of despair, and 

he burned the remaining copies of his booklets. Taurinus vacillated 

over whether such a geometry actually "existed." 

Lambert cautiously did not submit his Theory of Parallels for pub

lication (it was published posthumously in 1786). It contained an er

roneous attempt to disprove the acute angle hypothesis. 

Farkas Bolyai 
There were so many attempts to prove Euclid V that by 1763 G. S. 

Kliigel was able to submit a doctoral thesis finding the flaws in 28 dif

ferent supposed proofs of the parallel postulate, expressing doubt that 

it could be proved. The French encyclopedist and mathematician 

J. L. R. d'Alembert called this "the scandal of geometry." Mathemati

cians were becoming discouraged. The Hungarian Farkas Bolyai, who 

had also tried to prove Euclid V (see Exercise 5), wrote to his son Janos: 

You must not attempt this approach to parallels. I know this way to its 

very end. I have traversed this bottomless night, which extinguished all 

light and joy of my life. I entreat you, leave the science of parallels 

alone .... I thought I would sacrifice myself for the sake of the truth. 

I was ready to become a martyr who would remove the flaw from geom

etry and return it purified to mankind. I accomplished monstrous, enor

mous labors; my creations are far better than those of others and yet I 

have not achieved complete satisfaction .... I turned back when I saw 

that no man can reach the bottom of the night. I turned back uncon

soled, pitying myself and all mankind. 

I admit that I expect little from the deviation of your lines. It seems 

to me that I have been in these regions; that I have traveled past all 

reefs of this infernal Dead Sea and have always come back with bro

ken mast and torn sail. The ruin of my disposition and my fall date 

back to this time. I thoughtlessly risked my life and happiness-aut 

Caesar aut nihil. 7 

7 The correspondence between Farkas and Janos Bolyai is from Meschkowski (1964). 
Farkas Bolyai is credited, along with W. Wallace and P. Gerwien, for having proved 

the important theorem that polygons of equal area are equidecomposable (see 

Chapter 10). 
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Farkas Bolyai 

But the young Bolyai was not deterred by his father's warnings, for 

he had a completely new idea. He assumed that the negation of 

Euclid's parallel postulate was not absurd, and in 1823 he was able to 

write to his father: 

It is now my definite plan to publish a work on parallels as soon as I 

can complete and arrange the material and an opportunity presents it

self; at the moment I still do not clearly see my way through, but the 

path which I have followed gives positive evidence that the goal will 

be reached, if it is at all possible; I have not quite reached it, but I have 

discovered such wondeful things that I was amazed, and it would be 

an everlasting piece of bad fortune if they were lost. When you, my 

dear Father, see them, you will understand; at present I can say noth

ing except this: that out of nothing I have created a strange new uni

verse. All that I have sent you previously is like a house of cards in 

comparison with a tower. I am no less convinced that these discover

ies will bring me honor than I would be if they were completed. 

We will explore this "strange new universe" in the following chapters. 

A century after Janos Bolyai wrote this letter, the English physicist 

J. J. Thomson remarked, somewhat facetiously: 



REVIEW EXERCISE 

We have Einstein's space, de Sitter's space, expanding universes, con
tracting universes, vibrating universes, mysterious universes. In fact, 
the pure mathematician may create universes just by writing down an 
equation, and indeed if he is an individualist he can have a universe 
of his own. 
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In fact, in 1949 the renowned logician Kurt Godel found a model of the 
universe that satisfies Einstein's gravitational equations, one in which 
it is theoretically possible to travel backward in time!8 

Review Exercise 

Which of the following statements are correct? 

(1) Wallis' postulate implies that there exist two triangles that are 
similar but not congruent. 

(2) A "Saccheri quadrilateral" is a quadrilateral DABDC such that 
<tCAB and <tDBA are right angles and AC� BD. 

(3) A "Lambert quadrilateral" is a quadrilateral having at least three 
right angles. 

(4) A quadrilateral that is both a Saccheri and a Lambert quadri
lateral must be a rectangle. 

(S) A hyperbola comes arbitrarily close to its asymptotes without 
ever intersecting them. 

(6) Janos Bolyai warned his son Farkas not to work on the paral
lel problem. 

(7) Saccheri succeeded in disproving the "inimical" acute angle 
hypothesis. 

(8) In trying to prove Euclid V, Ptolemy was tacitly assuming the 
converse to the AIA theorem. 

(9) It is a theorem in neutral geometry that if Z 11 m and m II n, then 

Z 11 n. 
(10) It is a theorem in neutral geometry that every segment has a 

unique midpoint. 
(11) It is a theorem in neutral geometry that if a rectangle exists, 

then the angle sum of any triangle is 180°. 

8 To date, attempts to refute Godel's model on either mathematical or philosophical 

grounds have failed. See "On the paradoxical time-structures of Godel," by Howard 

Stein, Journal of the Philosophy of Science, v. 37, December 1970, p. 589. 
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(12) It is a theorem in neutral geometry that if l and m are parallel 

lines, then alternate interior angles cut out by any transversal 

to l and m are congruent to each other. 

(13) Legendre proved in neutral geometry that for any acute <r:..A 

and any point D in the interior of <r:..A, there exists a line through 

D and not through A which intersects both sides of <r:..A. 

(14) Clairaut showed that Euclid's fifth postulate could be replaced 

in the logical presentation of Euclidean geometry by the "more 

obvious" postulate that rectangles exist, yet mathematicians 

were not appeased by Clairaut's replacement and they contin

ued to try to prove Euclid V. 

(15) Lambert guessed that there was such a thing as a "sphere of 

imaginary radius" on which the acute angle hypothesis was valid. 

(16) Gauss responded to Taurinus about his booklet on "log

spherical geometry," telling about his own unpublished work, 

but when Taurinus urged Gauss to publish it, Gauss did not 

reply. 

(17) Saccheri used the undefined notion of "repugnance" in his at

tempt to prove Euclid V by an RAA argument. 

(18) That Legendre made so many incorrect attempts to prove Eu

clid V for Archimedean Hilbert planes shows that his work in 

geometry was worthless. 

Exercises 

1. Given a right triangle .6:.PXY with right angle at X, form a new right 

triangle .6:.PX'Y' that has acute angle <r:..P in common with the given 

triangle, right angle at X', but double the hypotenuse (prove that 

this can be done); see Figure 5.8. If the plane does not satisfy the 

obtuse angle hypothesis, prove that the side opposite the acute an

gle is at least doubled, whereas the side adjacent to the acute an

gle is at most doubled. (Hint: Extend side XY far enough to drop a 
� 

perpendicular Y'Z to XY. Prove that .6:.PXY � .6:. Y'ZY and apply 

Corollary 3 to Proposition 4.13, Chapter 4.) 

2. Use Exercise 1 and the Saccheri-Legendre theorem to prove that 

Archimedes' axiom implies Aristotle's axiom-i.e. , in Figure 5.8, 

prove that as Y "recedes endlessly" from P, perpendicular segment 

XY increases without bound. (Hint: Use Archimedes' axiom and the 

fact that 2n � oo as n � oo.) Does segment PX also increase 

indefinitely? 
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Figure 5.8 
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3. (a) Prove that Euclid's fifth postulate implies Wallis' postulate (see 

Figure 5.9). (Hint: Use Axiom C-4 and the fact that in Euclid

ean geometry the angle sum of a triangle is 180°-Proposition 

4.11.) 

(b) Suppose that in the statement of Wallis' postulate we add the 

assumption AB � DE and replace the word "similar" by "con

gruent." Prove this new statement in neutral geometry. 

Figure 5.9 
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4. Reread Legendre's attempted proof of the parallel postulate in Chap

ter 1. Find the flaw and justify all the steps that are correct. Prove 

the flawed statement in Euclidean geometry. 

5. Find the unjustified assumption in the following "proof" of the par

allel postulate by Farkas Bolyai (see Figure 5.10). Given P not on 
� � 

line l, PQ perpendicular to l at Q, and line m perpendicular to PQ 
� 

at P. Let n be any line through P distinct from m and PQ. We must 

show that n meets l. Let A be any point between P and Q. Let B 

be the unique point such that A * Q * B and AQ � QB. Let R be the 
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'Y 

B 

Figure 5.10 Attempted proof by Farkas Bolyai. 

foot of the perpendicular from A to n. Let C be the unique point 

such that A* R * C and AR� RC. Then A, B, and C are not collinear 

(else R = P); hence there is a unique circle y passing through them. 

Since l is the perpendicular bisector of chord AB of y and n is the 

perpendicular bisector of chord AC of y, l and n meet at the center 

of y (Exercise 17(b), Chapter 4). 
6. The following attempted proof of the parallel postulate is similar to 

Proclus' but the flaw is different; detect the flaw with the help of 
� 

Exercise 1 (see Figure 5.11). Given P not on line l, PQ perpendic
� 

ular to l at Q, and line m perpendicular to PQ at P. Let n be any line 
� 

thro�h P distinct from m anc!...!Q. We must show that n meets l. 

Let PX be a ray of n between PQ and a ray of m emanating from P 

Figure 5.11 
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� 

and let Y be the foot of the perpendicular from X to PQ. As X re-

cedes endlessly from P, PY increases indefinitely. Hence, Y even
� 

tually reaches a position Y' on PQ such that PY'> PQ. Let X' be 

the corresponding position reached by X on linen. Now X' and Y' 
� 

are on the same side of l because X'Y' is parallel to l. But Y' and 

P are on opposite sides of l. Hence, X' and P are on opposite sides 

of l, so that segment PX' (which is part of n) meets l. 

7. Find the flaw in the following attempted proof of the parallel pos

tulate �en by J. D. Gergonne (see Figure 5.12). Given P�ot on 

line l, PQ perpendicular to l at Q, line m perpendicular to PQ at P, 
� � � 

and point A if=. P on m. Let PB be the last ray between PA and PQ 

that intersects l, B being the point of intersection. There exists a 

point C on l such that Q * B * C (Axioms B-1 and B-2). It follows 
� � � 

that PB is not the last ray between PA and PQ that intersects l, and 
� � 

hence all rays between PA and PQ meet l. Thus m is the only par-

allel to l through P. 

p A 

Figure 5.12 

8. It was stated at the beginning of this chapter that if all steps but 

one of an attempt to prove the parallel postulate are correct, then 

the flawed step yields another statement equivalent to Hilbert's par

allel postulate. Assuming Aristotle's axiom, show that for Proclus' 

attempt, that statement is: Given parallel lines l, m having a com

mon perpendicular and a point Y not lying on l or m, if X (respec

tively Z) is the foot of the perpendicular from Y to l (respectively 

to m), then X, Y, and Z are collinear. 

9. You will show in Exercise 16 that the following statement can be 

proved in Euclidean geometry: If points P, Q, R lie on a circle with 

center 0, and if <i:PQR is acute, then ( <i:PQR) 0 = 112( <i:POR) 0• In 

neutral geometry, show that this statement implies the existence of 

a triangle whose angle sum is 180°. 
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The remammg exercises in this chapter are exercises in real 

Euclidean geometry, which means you are allowed to use the parallel 

postulate and its consequences already established. We will refer to these 
results in Chapter 7. You are also allowed to use the following result, 
a proof of which is indicated in the Major Exercises. 

p ARALLEL PROJECTION THEOREM. Given three parallel lines l, m, 

and n. Let t and t' be transversals to these parallels, cutting them in 
points A, B, and C and in points A', B', and C', respectively. Then 

-- ----

AB/BC= A'B'/B'C' (Figure 5.13). 

t t' 

Figure 5.13 

10. Fundamental theorem on similar triangles. Given .6..ABC � .6..A'B'C'; 
i.e., given <r:..A � <r:..A', <r:..B � <r:..B', and <r:..C _i_C'. Then correspond
ing sides are proportional; i.e., AB/A'B' = AC/A'C' = BC/B'C' (see 

� 

Figure 5.14). Prove the theorem. (Hint: Let B" be the point on AB 
� 

such that AB" � A'B' and let C" be the point on AC such that AC" � 

A'C'. Use the hypothesis to show that .6..AB"C" � .6..A'B'C' and de-

A 

Figure 5.14 
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� � 

duce from corresponding angles that B"C" is parallel to BC. Now 

apply the parallel projection theorem.) 

1 1. Prove the converse to the fundamental theorem on similar triangles. 

(Hint: Choose B" as before. Use Pasch's theorem to show that the 
� 

parallel to BC through B" cuts AC at a point C". Then use the hy-

pothesis, Exercise 10, and the SSS criterion to show that we have 

6.ABC - 6.AB"C" - 6.A'B'C' .) 
--- ----

12. SAS similarity criterion. If <r:..A - <r:..A' and AB/ A'B' = AC/ A'C', prove 

that 6.ABC - 6.A'B'C'. (Hint: Same method as in Exercise 1 1, but 

using SAS instead of SSS.) 

13. Prove the Pythagorean theorem. (Hint: Let CD be the altitude to the 

hypotenuse; see Figure 5.15. Use the fact that the angle sum of a 

triangle equals 180° (Proposition 4.1 1 ) to show that we have 

6.ACD - 6.ABC _:::::._ 6.CBD. Apply Exercise 10 and a little algebra 

based on AB = AD + DB to get the result.) 

c 

D 
B 

Figure 5.15 

14. The fundamental theorem on similar triangles (Exercise 10) allows 

the trigonometric functions such as sine and cosine to be defined. 

Namely, given an acute angle <r:..A, make it part of a right triangle 

6.BAC with right angle at C and set 

sin <r:..A = (BC)/(AB) 
- -

cos <r:..A = (AC) I (AB). 

These definitions are then independent of the choice of the right tri

angle used. If <r:..A is obtuse and <r:..A' is its supplement, set 

sin <r:..A = +sin <r:..A' 

cos <r:..A = -cos <r:..A'. 

If <r:..A is a right angle, set 

sin <r:..A = 1 

cos <r:..A = 0. 
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Now, given any triangle .6..ABC, if a and b are the lengths of the 

sides opposite A and B, respectively, prove the law of sines, 

a sin <r:..A 

b sin <r:..B · 

(Hint: Drop altitude CD and use the two right triangles .6..ADC and 

.6..BDC to show that b sin <r:..A =CD= a sin <r:..B; see Figure 5.16.) 

Similarly, prove the law of cosines, 

c2 = a2 + b2 - 2ab cos <r:..C, 

and deduce the converse to the Pythagorean theorem. 

c 

A D B 

Figure 5.16 

15. Given A* B * C and point D not collinear with A, B, and C (Figure 

5.17). Prove that 

AB AD sin <r:..ADB 

BC CD sin <r:..CDB 

AC AD sin <r:..ADC 

BC BD sin <r:..BDC 
. 

(Hint: Use the law of sines to compute AB/ AD, CD/BC, and BD/BC 

and remember that sin <r:..ABD =sin <r:..CBD.) 

D 

A B c 

Figure 5.17 
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16. Let y be a circle with center 0 and let P, Q, and R be three points 

on y. Prove that if P and R are diametrically opposite, then �PQR 
� 

is a right angle, and if 0 and Q are on the same side of PR, then 

( �PQR) 0 = 112( �POR) 0• (Hint: Again use the fact that the triangu

lar angle sum is 180°. There are four cases to consider, as in Fig

ure 5.18.) State and prove the analogous result when 0 and Q are 
� 

on opposite sides of PR. 

p 

Q 

R 

Figure 5.18 

17. Prove that if two angles inscribed in a circle subtend the same arc, 

then they are congruent; see Figure 5.19. (Hint: Apply the previous 

exercise after carefully defining "subtend the same arc.") 

Figure 5.19 <tPQR ==: <tPQ'R. 

18. Prove that if �PQR is a right angle, then Q lies on the circle y hav

ing PR as diameter. (Hint: Use uniqueness of perpendiculars and 

Exercise 16.) 
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Major Exercises 
These exercises furnish the proof of the parallel projection theorem in 

Euclidean geometry (p. 232; also see Figure 5.13). 

1. Prove the following results about Euclidean parallelograms: 

(a) Opposite sides (and likewise, opposite angles) of a parallelo

gram are congruent to each other. 

(b) A parallelogram is a rectangle iff its diagonals are congruent, 

and in that case the diagonals bisect each other. 

(c) A parallelogram has a circumscribed circle iff it is a rectangle. 

(Hint for the "only if" part: Opposite angles must subtend semi

circles.) 

(d) A rectangle is a square iff its diagonals are perpendicular. 

2. Let k, l, m, and n be parallel lines, distinct, except that possibly l = 

m. Let transversals t and t' cut these lines in points A, B, C, and D 

and in A', B', C', and D', respectively (Figure 5.20). If AB� CD, 

prove that A'B' � C'D'. (Hint: Construct parallels to t through A' 

and C'. Apply Major Exercise 1 (a) and the congruence of corre

sponding angles.) 

3. Prove that parallel projection preserves betweenness; i.e., in Figure 

5.13, if A* B * C, then A'* B' * C'. (Hint: Use Axiom B-4). 

4. Prove the parallel projection theorem for the special case in which 
--

the ratio of lengths AB/BC is a rational number p/q. (Hint: Divide 

AB into p congruent segments and BC into q congruent segments 

so that all p + q segments will be congruent. Use Major Exercise 2, 

applying it p + q times.) 

5. The case where AB/BC is an irrational number x is the difficult case. 
----

Let A'B'/B'C' = x'. The idea is to show that every rational number 

Figure 5.20 

t t' 
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p/q less than x is also less than x' (and, by symmetry, vice versa). 
This will imply x = x' since a real number is the least upper bound 
of all the rational numbers less than it (see any good text on real 

� -

analysis). To show this, lay off on BA a segment BD of length pCB/q 
and let D' be the parallel projection of D onto t'. From p/q < x, de
duce B * D * A. Now apply Major Exercises 3 and 4 to show that 
p/q < x'.9 

6. Given a segment AB of length a with respect to some unit segment 
01 (see Theorem 4.3). Using straightedge and compass only, show 
how to construct a segment of length Va. (Hint: Extend AB to a 
segment AC of length a + 1; erect a perpendicular through B and 
let D be one of its intersections with the circle having AC as diam
eter; apply the theory of similar triangles to show that BD = Va. 

Review the construction in Exercise 14, Chapter 1.) 
7. Prove that given any line l, two points A and B not on l are on the 

same side S of l if and only if they lie on a circle contained in S. (Hint: 
If they are on the same side S, let M be the midpoint and m the per
pendicular bisector of AB. Any circle through A and B has its center 

� 
on m. If AB II l, take any point P between M and the point where m 

meets l and use the circle through A, B, and P (see Exercise 10, Chap
ter 6). Otherwise, if A is closer to l than is B, let the perpendicular 
from A to l meet mat 0. Show that the circle centered at 0 with ra
dius OA �OB lies in S. Be sure to indicate where the hypothesis that 
the geometry is Euclidean is used; see Exercise P-20, Chapter 7.) 

8. Let II be a real Euclidean plane-i.e., a Hilbert plane satisfying 
Dedekind's axiom and Hilbert's Euclidean parallel postulate. By The
orem 4.3, there exists a real number measure of lengths of segments 
in II with respect to some chosen unit segment. Let 0 be any point 
in II, let l, m be two lines through 0 that are perpendicular, and 
let r, s be rays of l, m respectively emanating from 0. Define a one
to-one mapping 'P of II onto �2 as follows: q;(O) = (0, O). For any 
point P if=. 0, let P', P" be the intersections with l, m of the lines 
through P that are perpendicular to l, m respectively. Let x = P'O, 
y = P"O, where we define 00 = 0 in the case where P lies on l or 
m. Then define q;(P) = (±x, ±y), where the plus sign is chosen if 
P', P" lie on rays r, s respectively, and, if not, the appropriate mi
nus sign is chosen for the one or both of them that lie(s) on the 

9 This clever method of proof was discovered by the ancient Greek mathematician 

Eudoxus-see E. C. Zeeman, "Research, Ancient and Modern," Bulletin of the Institute 
of Mathematics and Its Applications, 10 (1974): 272-281, Warwick University, England. 
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opposite ray. Prove, using the Pythagorean equation, that cp is an 
isomorphism of II onto IR2 with its structure of Euclidean plane de

fined in Example 3, p. 139. This result enables us to use coordi

nates and do analytic geometry in a real Euclidean plane. 

Projects 
1. Eudoxus was also the founder of theoretical astronomy in antiquity 

(his work was later refined by Ptolemy). In his model, the universe 

was bounded by "the celestial sphere," so that the physical inter

pretation of Euclid's second and third postulates was false! Even 

Kepler and Galileo believed in an outer limit to the world. It was 

Rene Descartes (1596-1650) who promoted the idea that we live in 

infinite, unbounded Euclidean space. Report on these issues, using 

Torretti (1978) as one reference. 

2. Our treatment of similar triangles in the previous exercises used real 

numbers. Hilbert, with a later refinement by G. Vaitali, showed that 

the theory of similar triangles can be fully developed elegantly with

out real numbers. In that approach, the constants of proportional

ity come from the intrinsic field of segment arithmetic. Report on 

that development, using Hartshorne, Sections 19, 20, as a reference. 

3. Our definition of "Euclidean plane" given in Chapter 3 avoids 

Dedekind's axiom (which is equivalent to bringing in real numbers), 

replacing that axiom with the circle-circle continuity principle. What 

then are the possible Euclidean planes? It turns out they are the 

models F 2, where F is a Euclidean field. This result is the precise 

modern formulation of what Descartes, Fermat, Euler et al. did when 

they brought in analytic geometry! If we drop the circle-circle con

tinuity principle from our list of axioms but keep Hilbert's Euclid

ean parallel postulate, it is still the case that all models have the 

form F2, but now we can only assert that F is a Pythagorean field. 

Curiously, equilateral triangles on arbitrary bases still exist 

in those models, but Euclid's proof of Euclid 1.1 can no longer be 

used; the result is proved algebraically using the fact that v'3 is in 

F. Report on these lovely results, using Hartshorne, Section 21, as 

a reference. 



The Discovery of 
Non-Euclidean 

Geometry 

Out of nothing I have created a strange new universe. 

Janos Bolyai 

Janos Bolyai 
It is remarkable that sometimes when the time is right for a new idea 

to come forth, the idea occurs to several people more or less simulta

neously. Thus it was in the eighteenth century with the discovery of 

the calculus by Newton in England and Leibniz in Germany, and in the 

nineteenth century with the discovery of non-Euclidean geometry. 

When Janos Bolyai (1802-1860) announced privately his discoveries in 

non-Euclidean geometry, his father Farkas admonished him: 

It seems to me advisable, if you have actually succeeded in obtaining 

a solution of the problem, that, for a two-fold reason, its publication 

be hastened: first, because ideas easily pass from one man to another 

239 
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who, in that case, can publish them; secondly, because it seems to be 

true that many things have, as it were, an epoch in which they are dis

covered in several places simultaneously, just as the violets appear on 

all sides in springtime. 1 

Janos Bolyai did publish his discoveries, as a 26-page appendix to a 
mathematical treatise by his father (the Tentamen, 1831). Farkas sent 
a copy to his friend, the German mathematician Carl Friedrich Gauss 
(1777-1855), undisputedly the foremost mathematician of his time. 
Farkas Bolyai had become close friends with Gauss 35 years earlier, 
when they were both students in Gottingen. After Farkas returned to 
Hungary, they maintained an intimate correspondence,2 and when 
Farkas sent Gauss his own attempt to prove the parallel postulate, Gauss 
tactfully pointed out the fatal flaw. 

Janos Bolyai 

1 Quoted in Meschkowski (1964). The title of J. Bolyai's appendix is "The Science of 

Absolute Space with a Demonstration of the Independence of the Truth or Falsity of 

Euclid's Parallel Postulate (Which Cannot Be Decided a Priori) and, in Addition, the 

Quadrature of the Circle in Case of Its Falsity." 

2 For the complete correspondence (in German), see Schmidt and Stackel (1972). 
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Janos was 13 years old when he mastered the differential and in

tegral calculus. His father wrote to Gauss begging him to take the young 

prodigy into his household as an apprentice mathematician. Gauss 

never replied to this request (perhaps because he was having enough 

trouble with his own son Eugene, who had run away from home). Fif

teen years later, when Farkas mailed the Tentamen to Gauss, he cer

tainly must have felt that his son had vindicated his belief in him, and 

Janos must have expected Gauss to publicize his achievement. One can 

therefore imagine the disappointment Janos must have felt when he 

read the following letter to his father from Gauss: 

If I begin with the statement that I dare not praise such a work, you 

will of course be startled for a moment: but I cannot do otherwise; to 
praise it would amount to praising myself; for the entire content of the 
work, the path which your son has taken, the results to which he is 
led, coincide almost exactly with my own meditations which have oc

cupied my mind for from thirty to thirty-five years. On this account I 

find myself surprised to the extreme. 
My intention was, in regard to my own work, of which very little 

up to the present has been published, not to allow it to become known 

during my lifetime. Most people have not the insight to understand our 
conclusions and I have encountered only a few who received with any 

particular interest what I communicated to them. In order to under
stand these things, one must first have a keen perception of what is 
needed, and upon this point the majority are quite confused. On the 

other hand, it was my plan to put all down on paper eventually, so that 
at least it would not finally perish with me. 

So I am greatly surprised to be spared this effort, and am overjoyed 

that it happens to be the son of my old friend who outstrips me in such 

a remarkable way.3 

Despite the compliment in Gauss' last sentence, Janos was bitterly 

disappointed with the great mathematician's reply; he even imagined 

that his father had secretly informed Gauss of his results and that Gauss 

was now trying to appropriate them as his own. A man of fiery tem

perament, who had fought and won 13 successive duels (unlike 

Galois, who was killed in a duel at age 20), Janos never published any 

of his results in the 14,000 pages of notes he left. A translation of his 

3 Wolfe (1945). Gauss did write to Gerling about the appendix a month earlier, saying: 

"I find all my own ideas and results developed with greater elegance .... I regard this 

young geometer Bolyai as a genius of the first order." That makes it all the more puz

zling why Gauss did not help further Janos' mathematical career. 
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immortal appendix can be found in J. J. Gray (2004). In 1851, Janos 

wrote: 

In my opinion, and as I am persuaded, in the opinion of anyone judg

ing without prejudice, all the reasons brought up by Gauss to explain 
why he would not publish anything in his life on this subject are pow

erless and void; for in science, as in common life, it is necessary to 
clarify things of public interest which are still vague, and to awaken, 

to strengthen and to promote the lacking or dormant sense for the true 

and right. Alas, to the great detriment and disadvantage of mankind, 
only very few people have a sense for mathematics; and for such a rea

son and pretence Gauss, in order to remain consistent, should have 

kept a great part of his excellent work to himself. It is a fact that, among 

mathematicians, and even among celebrated ones, there are, unfortu

nately, many superficial people, but this should not give a sensible man 
a reason for writing only superficial and mediocre things and for leav

ing science lethargically in its inherited state. Such a supposition may 
be said to be unnatural and sheer folly; therefore I take it rightly amiss 

that Gauss, instead of acknowledging honestly, definitely and frankly 

the great worth of the Appendix and the Tentamen, and instead of ex
pressing his great joy and interest and trying to prepare an appropriate 

reception for the good cause, avoiding all these, he rested content with 
pious wishes and complaints about the lack of adequate civilization. 

Verily, it is not this attitude we call life, work and merit.4 

Gauss 

There is evidence that Gauss had anticipated some of J. Bolyai's dis

coveries-in fact, that Gauss had been working on non-Euclidean geom

etry since the age of 15, i.e., since 1792 (see Bonola, 1955, Chapter 3). 

In 1817, Gauss wrote to W. Olbers: "I am becoming more and more 

convinced that the necessity of our [Euclidean] geometry cannot be 

proved, at least not by human reason nor for human reason. Perhaps 

4 Quoted in L. Fejes Toth, Regular Figures (Macmillan, New York, 1964), pp. 98-99. See 
the very informative review of Gray's book on Bolyai by Robert Osserman at 

http://www.ams.org/notices/200509/rev-osserman.pdf. See also an earlier history, 
Jdnos Bolyai, Append.ix, F. Kartesi, ed., Elsevier, 1987, and the article by E. Kiss in 
Prekopa and Molnar (2005) that discusses Bolyai's unpublished discoveries in number 

theory, etc. 
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in another life we will be able to obtain insight into the nature of space, 

which is now inattainable." In 1824, Gauss answered F. A. Taurinus, 

who had attempted to investigate the theory of parallels: 

In regard to your attempt, I have nothing (or not much) to say except 

that it is incomplete. It is true that your demonstration of the proof that 

the sum of the three angles of a plane triangle cannot be greater than 

180° is somewhat lacking in geometrical rigor. But this in itself can eas

ily be remedied, and there is no doubt that the impossibility can be 

proved most rigorously. But the situation is quite different in the sec

ond part, that the sum of the angles cannot be less than 180°; this is 

the critical point, the reef on which all the wrecks occur. I imagine that 

this problem has not engaged you very long. I have pondered it for over 

thirty years, and I do not believe that anyone can have given more 

thought to this second part than I, though I have never published any

thing on it. 

The assumption that the sum of the three angles is less than 180° 

leads to a curious geometry, quite different from ours [the Euclidean], 

but thoroughly consistent, which I have developed to my entire satis-

Carl Friedrich Gauss 
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faction, so that I can solve every problem in it with the exception of 

the determination of a constant, which cannot be designated a priori. 

The greater one takes this constant, the nearer one comes to Euclidean 

geometry, and when it is chosen infinitely large, the two coincide. The 

theorems of this geometry appear to be paradoxical and, to the unini

tiated, absurd; but calm, steady reflection reveals that they contain noth

ing at all impossible. For example, the three angles of a triangle be

come as small as one wishes, if only the sides are taken large enough; 

yet the area of the triangle can never exceed a definite limit, regardless 

of how great the sides are taken, nor indeed can it never reach it. 

All my efforts to discover a contradiction, an inconsistency, in this 

non-Euclidean geometry have been without success, and the one thing 

in it which is opposed to our conceptions is that, if it were true, there 

must exist in space a linear magnitude, determined for itself (but un

known to us). But it seems to me that we know, despite the say

nothing word-wisdom of the metaphysicians, too little, or too nearly 

nothing at all, about the true nature of space, to consider as absolutely 

impossible that which appears to us unnatural. If this non-Euclidean 

geometry were true, and it were possible to compare that constant with 

such magnitudes as we encounter in our measurements on the earth 

and in the heavens, it could then be determined a posteriori. Conse

quently, in jest I have sometimes expressed the wish that the Euclid

ean geometry were not true, since then we would have a priori an 

absolute standard of measure. 

I do not fear that any man who has shown that he possesses a 

thoughtful mathematical mind will misunderstand what has been said 

above, but in any case consider it a private communication of which 

no public use or use leading in any way to publicity is to be made. Per

haps I shall myself, if I have at some future time more leisure than in 

my present circumstances, make public my investigations. 5 

It is amazing that, despite his great reputation, Gauss was actually 
afraid to make public his discoveries in non-Euclidean geometry. He 
wrote to F. W. Bessel in 1829 that he feared "the howl from the Boeo
tians" if he were to publish his revolutionary discoveries.6 He told 

5 Wolfe (1945), pp. 46-47. 

6 An allusion to dull, obtuse individuals. Gauss had more important work to do than 

to get into a quarrel with them. "Actually, the 'Boeotian' critics of non-Euclidean 

geometry-conceited people who claimed to have proved that Gauss, Riemann, and 

Helmholz were blockheads-did not show up before the middle of the 1870s. If you 

witnessed the struggle against Einstein in the Twenties, you may have some idea of 

[the] amusing kind of literature [produced by these critics] .... Frege, rebuking Hilbert 

like a schoolboy, also joined the Boeotians . . . .  'Your system of axioms,' he said to 

Hilbert, 'is like a system of equations you cannot solve"' (Freudenthal, 1962). 



LOBACHEVSKY 245 

H. C. Schumacher that he had "a great antipathy against being drawn 

into any sort of polemic." 

The "metaphysicians" referred to by Gauss in his letter to Taurinus 

were followers of Immanuel Kant, the supreme European philosopher 

in the late eighteenth century and much of the nineteenth century. 

Gauss' discovery of non-Euclidean geometry refuted Kant's position that 

Euclidean space is inherent in the structure of our mind. In his Critique 

of Pure Reason (1781), Kant declared that "the concept of [Euclidean] 

space is by no means of empirical origin, but is an inevitable necessity 

of thought." Gauss, in that letter to F. Bolyai, also wrote about " . . . 

the mistake Kant made in stating that space was merely the form of 

our looking at things." 

Another reason that Gauss withheld his discoveries was that he was 

a perfectionist, one who published only completed works of art. His 

devotion to perfected work was expressed by the motto on his seal, 

pauca sed matura ("few but ripe"). There is a story that the distin

guished mathematician K. G. J. Jacobi often came to Gauss to relate 

new discoveries, only to have Gauss pull out some papers from his 

desk drawer that contained the very same discoveries. Perhaps it is be

cause Gauss was so preoccupied with original work in many branches 

of mathematics, as well as in astronomy, geodesy, and physics (he co

invented an improved telegraph with W. Weber), that he did not have 

the opportunity to put his results on non-Euclidean geometry into pol

ished form. The few results he wrote down were found among his pri

vate papers after his death. 

Gauss has been called "the prince of mathematicians" because of 

the range and depth of his work. (See the biographies by Bell, 1934; 

Dunnington, 1955; and Hall, 1970.) 

Lobachevsky 
Another actor in this historical drama came along to steal the limelight 

from both J. Bolyai and Gauss: the Russian mathematician Nikolai 

Ivanovich Lobachevsky (1792-1856). He was the first to actually pub

lish an account of non-Euclidean geometry, in 1829. Lobachevsky ini

tially called his geometry "imaginary," then later "pangeometry." His 

work attracted little attention on the continent when it appeared be

cause it was written in Russian. The reviewer at the St. Petersburg 

Academy rejected it, and a Russian literary journal attacked Loba

chevsky for "the insolence and shamelessness of false new inventions" 
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Nikolai Ivanovich Lobachevsky 

(Boeotians howling, as Gauss predicted). Nevertheless, Lobachevsky 
courageously continued to publish further articles in Russian and then 

a treatise in 1840 in German,7 which he sent to Gauss. In an 1846 let
ter to Schumacher, Gauss reiterated his own priority in developing non

Euclidean geometry but conceded that "Lobachevsky carried out the 

task in a masterly fashion and in a truly geometric spirit." At Gauss' 

secret recommendation, Lobachevsky was elected to the Gottingen Sci

entific Society. (Why didn't Gauss recommend Janos Bolyai?) 

Lobachevsky openly challenged the Kantian doctrine of space as a 

subjective intuition. In 1835 he wrote: "The fruitlessness of the attempts 
made since Euclid's time ... aroused in me the suspicion that the truth 

. . .  was not contained in the data themselves; that to establish it the 

aid of experiment would be needed, for example, of astronomical ob

servations, as in the case of other laws of nature." (Gauss privately 

7 For a translation of this paper, see Bonola (1955). For corrections to that translation 
and an attempt to explain what Lobachevsky and Bolyai did, see Chapter 10 of Jeremy 
J. Gray's Ideas of Space: Euclidean, Non-Euclidean and Relativistic, Oxford University 
Press, 2nd ed., 1989. Gray has also argued that Gauss' claim to priority in discovering 
non-Euclidean geometry is unjustified by concrete evidence; see his article "Gauss and 
Non-Euclidean Geometry" in Prekopa and Molnar (2005). 
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agreed with this view, having written to Olbers in 1817: "Perhaps we 
shall come to another insight in another life into the nature of space, 
which is unattainable for us now. But until then we must not put Geom
etry on a par with Arithmetic, which exists purely a priori, but rather 
with Mechanics .... "The great French mathematicians J. L. Lagrange 
(1736-1813) and J. B. Fourier (1768-1830) tried to derive the parallel 
postulate from the law of the lever in statics.) 

Lobachevsky has been called "the great emancipator" by Eric Tem
ple Bell; his name, said Bell, should be as familiar to every schoolboy 
as that of Michelangelo or Napoleon.8 Unfortunately, Lobachevsky was 
not so appreciated in his lifetime; in fact, in 1846 he was fired from 
the University of Kazan, despite 20 years of outstanding service as a 
teacher and administrator. He had to dictate his last book in the year 
before his death, for by then he was blind. 

It is amazing how similar are the approaches of J. Bolyai and 
Lobachevsky and how different they are from earlier work. Both de
veloped the subject much further than Gauss. Both attacked plane geom
etry via the "horosphere" in hyperbolic three-space (it is the limit of 
an expanding sphere through a fixed point when its radius tends to in
finity). Both showed that geometry on a horosphere, where "lines" are 
interpreted as "horocycles" (limits of circles), is Euclidean. Both showed 
that Euclidean spherical trigonometry is valid in hyperbolic geometry, 
and both constructed a mapping from the sphere to the non-Euclidean 
plane to derive the formulas of non-Euclidean trigonometry (including 
the formulas Taurinus discovered-see Chapter 10 for a simpler deri
vation using a plane model). Both had a constant in their formulas that 
they could not explain; the later work of Riemann showed it to be the 
curvature of a hyperbolic plane. 

It is not entirely accurate to say that J. Bolyai and Lobachevsky "dis
covered" non-Euclidean geometry. We have seen that Saccheri, Lambert, 
and Taurinus discovered some basic results in non-Euclidean geometry 
before them, only these predecessors still doubted that such a geometry 
was consistent and actually "existed." J. Bolyai and Lobachevsky did be
lieve in its noncontradictory existence, but they did not convincingly es
tablish that. What they did was brilliantly elaborate its properties if it did 
exist. In an 1865 note on Lobachevsky's work, Arthur Cayley wrote: 
". . . it would be very interesting to find a real geometric interpretation 
of Lobachevsky's system of equations." In 1868 Eugenio Beltrami finally 
found one-see Chapter 7. 

8 Bell (1954, Chapter 14). 
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Subsequent Developments 
It was not until after Gauss' death in 1855, when his correspondence 

was published, that the mathematical world began to take non-Euclid

ean ideas seriously. (Yet, as late as 1894, an incorrect attempt to prove 

Euclid V was published in Arthur Cayley's Journal of Pure and Applied 

Mathematics. Cayley himself never accepted the non-Euclidean geom

etry of Bolyai-Lobachevsky, though he did work in elliptic geometry.) 

Some of the best mathematicians (Beltrami, Klein, Poincare, and Rie

mann) took up the subject, extending it, clarifying it, and applying it 

to other branches of mathematics, notably complex function theory. In 

1868 Eugenio Beltrami settled once and for all the question of a proof 

for the parallel postulate. He proved that no proof was possible-by 

exhibiting a Euclidean model of non-Euclidean geometry. (We will dis

cuss his model in the next chapter.) 

Bernhard Riemann, who was a student of Gauss, had the most pro

found insight into the geometry, not just the logic. In 1854, he built 

upon Gauss' discovery of the intrinsic geometry on a surface in Eu

clidean three-space. Riemann invented the concept of an abstract geo

metrical surface that need not be embeddable in Euclidean three-space 

yet on which the "lines" can be interpreted as geodesics and the in

trinsic curvature of the surface can be precisely defined. Elliptic (and, 

of course, spherical) geometry "exist" on such surfaces that have con

stant positive curvature, while the hyperbolic geometry of Bolyai and 

Lobachevsky "exists" on such a surface of constant negative curvature. 

That is the view of geometers today about the "reality" of those non

Euclidean planes. We will describe Gauss and Riemann's idea only in 

Appendix A, since it is too advanced for the level of this text. Riemann 

presented the idea of a geometric manifold of arbitrary dimension n, 

not just n = 2 or 3, and defined a notion of curvature for it. He made 

the revolutionary suggestion that the universe might be finite in extent 

(as the ancient Greeks believed) but without any boundary if its cur

vature was slightly positive. A further generalization of that idea pro

vided the geometry for Einstein's general theory of relativity. 

Interestingly, a direct relationship between the special theory of rel

ativity and hyperbolic geometry was discovered by the physicist Arnold 

Sommerfeld in 1909 and elucidated by the geometer Vladimir Varieak 

in 1912. A model of hyperbolic plane geometry is a sphere of imagi

nary radius with antipodal points identified in the three-dimensional 
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Georg Friedrich Bernhard Riemann 

space-time of special relativity, vindicating Lambert's idea (see Chap
ter 7; or Rosenfeld, 1988, pp. 230, 270; or Yaglom, 1979, p. 222 ff.). 
Moreover, Taurinus' technique of substituting ir for r to go from spher
ical trigonometry to hyperbolic trigonometry received a structural ex
planation in 1926-192 7 when Elie Cartan developed his theory of Rie
mannian symmetric spaces: The Euclidean sphere of curvature 1/r2 is 
"dual" to the hyperbolic plane of curvature -1/r2 (see Helgason, 2001). 

Non-Euclidean Hilbert Planes 

Let us begin our investigation of the particular non-Euclidean plane 
geometry explored by Saccheri, Lambert, Gauss, J. Bolyai, and 
Lobachevsky, nowadays called hyperbolic geometry (a.k.a. 
Lobachevskian or Bolyai-Lobachevskian geometry). To arrive at a cor
rect axiomatization for this geometry, we will proceed along historical 
lines, not dogmatically. Consider the following. 
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Figure 6.1 

NEGATION OF HILBERT'S EUCLIDEAN PARALLEL POSTULATE. There 
exist a line l and a point P not on l such that at least two distinct lines 
parallel to l pass through P. 

In a plane where such a configuration exists, the entire line l lies 
in the interior of <tAPB (Figure 6.1) without meeting either side, which 
Legendre tacitly assumed to be impossible-that is the flaw in his at

tempted proof of Euclid V presented in Chapter 1. A Hilbert plane sat
isfying this negation will be called a non-Euclidean Hilbert plane. 

To develop an interesting geometry from the consequences of this 
axiom,9 we will need to assume more than just the negation of the 
Euclidean parallel postulate, for there are some non-Euclidean Hilbert 
planes which are not that important (such as the ones satisfying the 
obtuse angle hypothesis). One additional assumption is Aristotle's 
axiom, discussed in Chapters 3-5. Saccheri recognized the impor
tance of that statement for non-Euclidean geometry; it was his Propo
sition XXI, and he proved it from Archimedes' axiom (Exercise 2, 

Chapter 5). 

BASIC THEOREM 6.1. A non-Euclidean plane satisfying Aristotle's ax
iom satisfies the acute angle hypothesis. From the acute angle hy
pothesis alone, the following properties follow: The angle sum of every 
triangle is <180°, the summit angles of all Saccheri quadrilaterals are 
acute, the fourth angle of every Lambert quadrilateral is acute, and rec
tangles do not exist. The summit of a Saccheri quadrilateral is greater 
than the base. The segment joining the midpoints of the summit and 
the base is perpendicular to both, is the shortest segment between the 
base line and the summit line, and is the only common perpendicular 
segment between those lines. A side adjacent to the acute angle of a 
Lambert quadrilateral is greater than the opposite side. 

9 In previous editions of this book, it was incorrectly called the "hyperbolic axiom." 
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PROOF: 

The non-obtuse-angle theorem in Chapter 4 tells us that in a plane 

satisfying Aristotle's axiom, the angle sum of every triangle is 

<180°. Proclus' theorem in Chapter 5 tells us that the angle sum 

cannot equal 180° because we assumed Aristotle's axiom and the 

plane was non-Euclidean. The only remaining possibility is that it 

is <180°. In that case, the remaining assertions follow from all our 

work in Chapter 4. <11111 

The negation of Hilbert's Euclidean parallel postulate referred to 

some line l and some point P not on l, but we can prove a universal 

version of that property. 10 

UNIVERSAL NON-EUCLIDEAN THEOREM. In a Hilbert plane in which 

rectangles do not exist, for every line l and every point P not on l, there 

are at least two parallels to l through P. 

p 

.._,........_L= ---------���--+-�������-+-m 
-----1: s 

Q R 

t 

Figure 6.2 

PROOF: 

Let PQlm be the standard configuration. Let R be another point on 

l, erect perpendicular t to l through R, and let S be the foot of the 
� 

perpendicular from P to t (Figure 6.2). Then PS is parallel to l since 

they are both perpendicular to t (Corollary to the AIA theorem). It 

is a different parallel than m; otherwise S would lie on m and 

DPQRS would be a rectangle. <11111 

10 In previous editions, we called this result the "universal hyperbolic theorem." That 
name is incorrect because the result is also valid in non-Euclidean planes other than 
the hyperbolic ones. 
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COROLLARY. In a Hilbert plane in which rectangles do not exist, for 

every line l and every point P not on l, there are infinitely many par

allels to l through P. 

PROOF: 

Just vary the point R in the above construction. The nonexistence 

of rectangles again guarantees that the parallels constructed are 

distinct. <11111 

The Defect 
Since the angle sum of every triangle 6.ABC in a plane as above is 

<180°, that angle sum is the measure of an angle-namely, an angle 

constructed by successively juxtaposing the three angles of 6.ABC. The 

positive measure of the supplement of that angle is called the defect11 
of the triangle and is denoted B(ABC). Thus by definition, 

(�A)0 + (�B)0 + (�C)0 + B(ABC) = 180°. 

PROPOSITION 6.1 (ADDITIVITY OF THE DEFECT). If D is any point 

between A and B (Figure 6.3), then 

B(ABC) = B(ACD) + B(BCD). 

c 

A D B 

Figure 6.3 

PROOF: 

This follows immediately from the definition of the defect, from the 

fact that for the supplementary angles at point D, (�ADC) 0 + 

( �BDC) 0 = 180°, and from ( �C) 0 = ( �ACD) 0 + (�BCD) 0• <11111 

11 Hartshorne defines the defect as the congruence class of that supplement, not its mea
sure. His definition avoids the use of Archimedes' axiom. 
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REMARK. In Exercise 28 of Chapter 4, we studied the notion of a con

vex quadrilateral. One characterization of convex quadrilaterals is that 

each vertex lies in the interior of the opposite angle. From that one eas

ily sees (Figure 6.4) that in a plane satisfying the acute angle hypothe

sis, the angle sum of every convex quadrilateral is <360°. The defect of 

a convex quadrilateral is defined to be 360 ° minus its angle sum. 

Similar Triangles 
Consider next Wallis' postulate, which cannot hold in a non-Euclidean 

plane because we saw in Chapter 5 that it implies the Euclidean par

allel postulate. The negation of Wallis' postulate asserts that sometimes 

a triangle similar to a given triangle does not exist. Once again, we can 

prove a universal version of this statement: Similar noncongruent tri

angles never exist! 

PROPOSITION 6.2 (No SIMILARITY). In a plane satisfying the acute 

angle hypothesis, if two triangles are similar, then they are congruent. 

In other words, AAA is a valid criterion for congruence of triangles. 

A 

Figure 6.5 
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PROOF: 

Assume on the contrary that there exist triangles .6..ABC and .6..A'B'C' 

which are similar but not congruent. Then no corresponding sides 

are congruent; otherwise the triangles would be congruent (ASA). 

Consider the triples (AB, AC, BC) and (A'B', A'C', B'C') of sides of 

these triangles. One of these triples must contain at least two seg

ments that are larger than the two corresponding segments of the 

other triple, e.g., AB> A'B' and AC> A'C'. By definition of> there 

exist points B" on AB and C" on AC such that AB"� A'B' and AC"� 

A'C' (see Figure 6.5). By SAS, .6..A'B'C' � .6..AB"C". Hence, corre

sponding angles are congruent: <i:AB"C" � <i:B', <i:AC"B" � <i:C. By the 

hypothesis that .6..ABC and .6..A'B'C' are similar, we have <i:AB"C" � 
�� 

<i:B, <i:AC"B" � <i:C (Axiom C-5). This implies that B"C" II BC by cor-

responding angles (AIA theorem and Exercise 32, Chapter 4), so that 

quadrilateral DBB"C"C is convex (Exercise 28, Chapter 4). By sup

plementary angles, 

( <i:B) 0 + ( <i:BB"C") 0 
= 180° = ( <i:C) 0 + ( <i:CC"B") 0• 

It follows that convex quadrilateral DBB"C"C has angle sum 360°. 

This contradicts the remark after the proof of Proposition 6.1. <11111 

A consequence of Proposition 6.2 is that in a plane satisfying the 

acute angle hypothesis, an angle and a side of an equilateral triangle 

determine one another uniquely. If we assume the circle-circle conti

nuity principle, then we know from Euclid's construction in his first 

proposition that given any segment, an equilateral triangle exists hav

ing that segment as its side. In a hyperbolic plane (studied later in this 

chapter), for every acute angle () < 60°, an equilateral triangle exists 

having () as its angle; see Chapter 10 for a construction (corollary to 

the right triangle construction theorem). 

Parallels Which Admit a Common Perpendicular 
In Chapter 5, in our comment on Proclus' failed attempt to prove Eu

clid V, the reader was warned not to presume that a pair of parallel 

lines look like railroad tracks-Le., not to presume, as Clavius did ex

plicitly, that the set of points on a line through P parallel to a given 

line l coincides with the equidistant curve to l through P. We saw that 

Clavius' assumption is equivalent to the plane being semi-Euclidean. 

Negating that condition, we can prove the following precise result. 
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: 1 1 I : :. 

X B' C' 

Figure 6.6 AA' � BB' � CC' � . . . .  

PROPOSITION 6.3. In a plane in which rectangles do not exist, if 

l II l', then any set of points on l equidistant from l' has at most two 

points in it. 

PROOF: 

Assume, on the contrary, that three points A, B, and C on l are equi

distant from l'. By Axiom B-3, we may assume A * B * C. If A', B', 

and C' on l' are the feet of the perpendiculars from A, B, C, re

spectively, to l', then AA' � BB' � CC' by the RAA hypothesis. So 

we obtain three Saccheri quadrilaterals DA'B'BA, DA'C'CA, and 

DB'C'CB (see Figure 6.6). 

We know that the summit angles of any Saccheri quadrilateral 

are congruent (Proposition 4.12). By transitivity (Axiom C-5), the 

supplementary angles at B are congruent to each other, hence are 

right angles. Thus these Saccheri quadrilaterals are rectangles, con

tradicting our hypothesis that rectangles do not exist. <11111 

The proposition states that at most two points at a time on l can be 

equidistant from l'. It allows the possibility that there are pairs of points 

(A, B), (C, D), . . .  , on l such that each pair is equidistant from l'

e.g., AA' � BB' and CC' � DD' dropping perpendiculars-but AA' is 

not congruent to CC'. A diagram for this might be Figure 6.7, which 

suggests that there is a point of l that is closest to l', with l diverging 

Figure 6.7 



256 T H E D I S C 0 V E R Y 0 F N 0 N - E U C L I D E A N G E 0 M E T R Y 

from l' symmetrically on either side of this closest point (under the 

acute angle hypothesis). We will prove that this is indeed the case. (I 

hope the reader is not too shocked to see line l drawn as being 

"curved!") 

PROPOSITION 6.4. In a Hilbert plane satisfying the acute angle hy

pothesis, if l 11 Z' and if there exists a pair of points A and B on l equi

distant from l', then l and l' have a unique common perpendicular seg

ment MM' dropped from the midpoint M of AB. MM' is the shortest 

segment joining a point of l to a point of l', and the segments AA' and 

BB' increase as A, B recede from M. 

PROOF: 

The common perpendicular segment is obtained by joining the mid

points of the summit and the base of Saccheri quadrilateral DA'B'BA 

(Proposition 4.12). That it is unique follows from the nonexistence 

of rectangles. The other assertions follow from the acute angle hy

pothesis and Propositions 4.5 and 4.13 of Chapter 4. <11111 

PROPOSITION 6.S. In a Hilbert plane in which rectangles do not ex

ist, if lines l and l' have a common perpendicular segment MM', then 

they are parallel and that common perpendicular segment is unique. 

Moreover, if A and B are any points on l such that M is the midpoint 

of AB, then A and B are equidistant from l'. 

PROOF: 

The first statement follows from the corollary to the AIA theorem 

in Chapter 4 and the nonexistence of rectangles. Suppose now that 

M is the midpoint of AB, with A and B on l, and let A', B' be the 

feet of the perpendiculars from A, B to l'. We must prove that AA' � 

BB' (see Figure 6.8). 

A M B 

--��__.--��--------�----....._��----- z' 
I\ M' B' 

Figure 6.8 
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Observe that .6..AM'M � .6..BM'M (SAS), so that AM' �BM' and 

<i:AM'M � <i:BM'M. Their complementary angles <i:A'M' A and 

<i:B'M'B are then congruent, and we obtain .6..AA'M � .6..BB'M 

(SAA). Hence AA'� BB'. <11111 

The preceding propositions give us a good understanding of parallel 

lines that have a common perpendicular in a plane satisfying the acute 

angle hypothesis. We know that such parallel lines exist from the stan

dard construction. There remains another possibility for parallel lines in 

such planes: that there is no pair of points on l equidistant from l' and 

no common perpendicular between these lines! According to Proposition 

4.13 on bi-right quadrilaterals DA'B'BA, l would diverge from l' in one 

direction and converge toward l' in the opposite direction without meet

ing it (see Figure 6.9). (Omar Khayyam, trying to prove Euclid V, assumed 

as a new axiom that this second type of parallel lines could not exist.) 

As we will discuss in the next section, a further axiom is needed to guar

antee that, in certain planes satisfying the acute angle hypothesis, the sec

ond type of parallel lines really does exist. 

Figure 6.9 BB' > AA'. 

Limiting Parallel Rays, Hyperbolic Planes 
Saccheri, Gauss, J. Bolyai, and Lobachevsky all took for granted that 

parallel lines of the second type exist in a very specific manner which 

we will now describe. Here is the intuitive idea (see Figure 6.10). 
� 

Let PQlm be a standard configuration. Consider one ray PS of m 
� � 

and consider various rays between PS and PQ. Some of these rays, 
� � 

such as PR, will intersect l, while others, such as PY, will not (uni-

versal non-Euclidean theorem). Now imagine R receding endlessly from 

Q along its ray of l. The master geometers just mentioned all took it 
� � 

for granted that PR would approach a certain limiting ray PX. That ray 

could not intersect l, for if X were on l, there would exist a point R 



258 T H E D I S C 0 V E R Y 0 F N 0 N - E U C L I D E A N G E 0 M E T R Y 

Figure 6.10 

� 
further out on l-i.e., R * X * Q (Axiom B-2)-and PX would not be the 

� 

limit. (Saccheri called PX "the first ray which fails to meet l. ") None 
� � � 

of the rays PY that lie between PS and PX intersect l, for if one of them 
� 

did, PX would also have to intersect l by the crossbar theorem. Ac-
� 

cording to Figure 6.10, we could call PX the '!!! limiting parallel ray 

to l emanating from P (in a Euclidean plane, PX would coincide with 
� 

PS). Similarly, there would be a right limiting parallel ray to l ema-
� 

nating from P on the opposite side of PQ. 

WARNING It is not possible to prove that limiting parallel rays exist in 

every plane satisfying the acute angle hypothesis. F. Schur found a non

Archimedean counterexample (the infinitesimal neighborhood of the origin 

in a non-Archimedean Klein model), and later an Archimedean counterex

ample was found (the interior of a virtual circle-see Hartshorne, Exercises 

39.25-39.31). 

ADV AN CED THEOREM. In non-Euclidean planes satisfying Aristotle's 

axiom and the line-circle continuity principle, limiting parallel rays ex

ist for every line l and point P not on l. 

My proof of this theorem12 is based on the classification due to 
W. Pejas of all possible Hilbert planes (see Appendix B). I hope that 
someday an elementary proof of this theorem will be found that could 
be presented in a text at this level. Janos Bolyai foresaw this result 
when he gave the following straightedge-and-compass construction of 

the limiting parallel ray in such a plane. 

J. BOLYAI's CONSTRUCTION OF THE LIMITING PARALLEL RAY. Let 
PQlm be a standard configuration. Let R be any point on l different 
from Q and let S be the foot of the perpendicular from R to m. Then 

12 See M. J. Greenberg, "Aristotle's Axiom in the Foundations of Hyperbolic Geometry," 
Journal of Geometry, 33 (1988): 53-57. A proof is sketched at the end of Appendix B. 
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Figure 6.11 

DSPQR is a Lambert quadrilateral with acute angle at vertex R (The

orem 6.1). By Corollary 3 to Proposition 4.13, PS< QR. Also, we 

have PR> QR (hypotenuse greater than leg). By the segment-circle 

continuity principle, a consequence of the line-circle continuity prin

ciple (Major Exercise 2, Chapter 4), the circle with center P and ra

dius congruent to QR will intersect segment SR in a unique point X 
� 

between S and R. Janos Bolyai claimed that ray PX is the limiting 
� 

parallel ray to l emanating from P on the same side of PQ as R (see 

Figure 6.11). 

In non-Archimedean examples where the ray constructed by J. 

Bolyai's method is not limiting parallel to l, it does have the property 

that so shocked Saccheri: It has "a common perpendicular with l at 

infinity! "13 

We will prove below that in a non-Euclidean plane satisfying 

Dedekind's axiom, limiting parallel rays always exist. However, Bolyai's 

construction shows that only a very mild quadratic continuity as

sumption is needed for the existence of limiting parallel rays, not the 

full power of the real number system! Hilbert's idea was simply to study 

Hilbert planes in which limiting parallel rays always exist, which fi

nally provides the axiom we need. 

DEFINITION. Given a line l and a point P not on l. Let Q be the foot 

of the perpendicular from P to l. A limiting parallel ray to l emanating 
� 

from P is a ray PX that does not intersect l and such that for every ray 
� � � � 
PY which is between PQ and PX, PY intersects l. 

HILBERT'S HYPERBOLIC AXIOM OF PARALLELS. For every line l and 
� 

every point P not on l, a limiting parallel ray PX emanating from P ex
� 

ists and it does not make a right angle with PQ, where Q is the foot of 

the perpendicular from P to l. 

13 See M. J. Greenberg, "On J. Bolyai's Parallel Construction," Journal of Geometry, 12(1) 
(1979): 45-64. 
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DEFINITION. A Hilbert plane in which Hilbert's hyperbolic axiom of 
parallels holds is called a hyperbolic plane. Obviously a hyperbolic plane 
is non-Euclidean. 

PROPOSITION 6.6. In a hyperbolic plane, with notation as in the above 
� 

definition, <tXPQ is acute. There is a ray PX' emanating from P, with 
� � 

X' on the opposite side of PQ from X, such that PX' is another limit-
ing parallel ray to l and <tXPQ � <tX'PQ. These two rays, situated sym

� 
metrically about PQ, are the only limiting parallel rays to l through P. 

PROOF: 
---+ 

Let PQlm be the standa� configuration and let PS be a r� of m with 
S on the same side of PQ as X. If <tXPQ were obtuse, PS would lie 

� � 
between PQ and PX, hence would intersect l by definition of a limit-
ing parallel ray; but that contradicts m bein& parallel to l. Hence <tXPQ 
is acute. The other limiting parallel ray PX' emanating from P is ob-

� � 
tained by reflecting PX across line PQ. Uniqueness follows from the 
definition of a limiting parallel ray and the ordering of angles. <11111 

DEFINITION. With the above notation, acute angles <tXPQ and <tX'PQ 
are called angles of parallelism for segment PQ. Lobachevsky denoted 
their congruence class (or, par abus de langage, any angle congruent 
to them) by II (PQ). 

Saccheri, in his Proposition XXXII, recognized the existence of this 
acute angle; Proclus noted that possible existence many centuries ear
lier.14 Major Exercise 5 shows that II(PQ) depends only on the con
gruence class of PQ. 

Hilbert and his followers' development of plane hyperbolic geome
try from his hyperbolic axiom is a beautiful tour de force. Although it 
is all carried out at the same elementary level that we have been work
ing at in this book, the arguments are far too lengthy for our purpose. 
See Hartshorne, Chapter 7, for all the details. 

Instead we will bring in our deus ex machina, as classical Greek 
theatre called it (a god comes down from heaven to save the day): 
Dedekind's axiom. 

THEOREM 6.2. In a non-Euclidean plane satisfying Dedekind's axiom, 
Hilbert's hyperbolic axiom of parallels holds, as do Aristotle's axiom 
and the acute angle hypothesis. 

14 See the Morrow edition (1992) of Proclus, p. 290. 
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PROOF: 

For the second part, we know from Chapter 3 that Dedekind's ax

iom implies Archimedes' axiom, and you showed in Exercise 2, 

Chapter 5, that Archimedes' axiom implies Aristotle's axiom.15 The 
acute angle hypothesis follows from Basic Theorem 6.1. 

For the first part, refer again to Figure 6.10 above. To prove rig-
� � 

orously that PX exists, consider the line SQ (Figure 6.12). Let �1 be 
� 

the set of all points T on segment SQ such that PT meets l, together 
� 

with all points on the ray opposite to QS; let �2 be the complement 
of �1 (so Q E �1 and SE �2). By the crossbar theorem (Chapter 3), 

if point T on segment SQ belongs to �1, then the entire segment TQ 
� 

(in fact, TQ) is contained in �1. Hence (�1, �2) is a Dedekind cut. 
� 

By Dedekind's axiom (Chapter 3), there is a unique point X on SQ 
� 

such that for P1 and P2 on SQ, P1 * X * P2 if and only if X -=!=- P1, 

X -=!=- P2, P1 E �i. and P2 E �2· 
� 

By definition of �1 and �2, rays below PX all meet l and rays 
� � 

above PX do not. We claim that PX does not meet l either. Assume 
� 

on the contrary that PX meets l in a point U (Figure 6.12). Choose 
any point V on l to the left of U, i.e., V * U * Q (Axiom B-2). Since 

� 
V and U are on the same side of SQ (Exercise 9, Chapter 3), V and 
P are on opposite sides, so VP meets SQ in a point Y. We have 

Y * X * Q (Proposition 3. 7), so Y E �2, contradicting the fact that 
� � 
PY meets l. It follows that PX is the left limiting parallel ray (we 
obtain the right limiting parallel ray in a similar manner). 

s p 

v u Q 

Figure 6.12 

To prove symmetry, assume on the contrary that angles �XPQ 
and �X'PQ are not congruent, e.g., ( �XPQ) 0 < ( �X'PQ) 0• By Ax-

� � 
iom C-4, there is a ray between PX' and PQ that intersects l (by 

15 In fact, Aristotle's axiom holds in any hyperbolic plane: See Exercise 13. So does the 
circle-circle continuity principle: See Appendix B or Hartshorne, Corollary 43.4. 
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the definition of limiting ray) in a point R' such that <t:R'PQ � 

� 

<t:XPQ. Let R be the point on the opposite side of PQ from R' such 

that R * Q * R' and RQ � R'Q (Axiom C-1). Then �RPQ � �R'PQ 

(SAS). Hence <t:RPQ � <t:R'PQ, and by transitivity (Axiom C-5), we 
� 

have <t:RPQ � <t:XPQ. But this is impossible because PR is between 
� � 
PX and PQ (Axiom C-4) . .,.. 

WARNING In the section on incidence geometry, Chapter 2, we called 

the "hyperbolic parallel property" the property that there is more than one 

parallel to l through P (the property in the universal non-Euclidean theo

rem above). Do not confuse that property with the one in Hilbert's hyper

bolic axiom of parallels! The latter implies the former, but not conversely, 

unless additional axioms are assumed (such as Dedekind's or the two ax

ioms in the advanced theorem). 

DEFINITION. A non-Euclidean plane satisfying Dedekind's axiom is 

called a real hyperbolic plane. 

COROLLARY 1. All the results proved previously in this chapter hold 

in real hyperbolic planes. 

They also hold in general hyperbolic planes-see Hartshorne, Chap

ter 7. 

Engel's theorem in Chapter 10 guarantees that Bolyai's construction 

gives the limiting parallel ray in a real hyperbolic plane. The con

struction is also justified for the Klein model at the end of Chapter 7 

(pp. 344-345). 

COROLLARY 2. A Hilbert plane satisfying Dedekind's axiom is either 

real Euclidean or real hyperbolic. 

More generally, from the advanced theorem, a Hilbert plane satis

fying Aristotle's axiom and the line-circle continuity principle is either 

Euclidean or hyperbolic. 

Classification of Parallels 
We have discussed two types of parallels to a given l. The first type 

consists of parallels m such that land m have a common perpendicu

lar; m diverges from l on both sides of the common perpendicular. The 

second type consists of parallels that approach l asymptotically in one 

direction (i.e., they contain a limiting parallel ray in that direction) and 
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diverge from l in the other direction. If m is the second type of paral

lel, Exercises 6 and 7 show that l and m do not have a common per

pendicular. We have implied that these two are the only types of par

allels, and this is the content of the next theorem. 

THEOREM 6.3. In a hyperbolic plane, given m parallel to l such that 

m does not contain a limiting parallel ray to l in either direction. Then 

there exists a common perpendicular to m and l (which is unique by 

Proposition 6.5). 

This theorem is proved by Borsuk and Szmielew (1960, p. 291) by 

a continuity argument, but their proof gives you no idea of how to 

actually find the common perpendicular. There is an easy way to find 

it in the Klein and Poincare models discussed in the next chapter. Hilbert 

gave a direct construction, which we will sketch. (Project 1 gives 

another.) 

PROOF: 

Hilbert's idea is to find two points H and K on l that are equidis

tant from m, for once these are found, the perpendicular bisector 

of segment HK is also perpendicular tom (see Basic Theorem 6.1). 

Choose any two points A and B on l and suppose that the perpen

dicular segment AA' from A to m is longer than the perpendicular 

segment BB' from B to m (see Figure 6.13). Let E be the point be-
� 

tween A' and A such that A'E � B'B. On the same side of AA' 
� 

as B, let EF be the unique ray such that <tA'EF � <tB'BG, where 

A* B * G. The key point that will be proved in Major Exercises 2-6 
� � 

is that EF intersects AG in a point H. Let K be the unique point on 
� � � 
BG such that EH � BK. Drop perpendiculars HH' and KK' to m. The 

upshot of these constructions is that DEHH' A' is congruent to 

DBKK'B' ( just divide them into triangles). Hence the corresponding 

sides HH' and KK' are congruent, so that the points H and K on l 

are equidistant from m, as required. <Ill 

Figure 6.13 Hilbert's construction of the common perpendicular. 
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p 

Figure 6.14 

SUMMARY. Given a point P not on l, there exist exactly two limiting 

parallel rays to l through P, one in each direction. There are infinitely 

many lines through P that do not enter the region between the limit

ing rays and l. Each such line is divergently parallel to l and admits a 

unique common perpendicular with l (for one of these lines the com

mon perpendicular will go through P, but for all the rest the common 

perpendicular will pass through other points). 

A NOTE ON TERMINOLOGY. In most books on hyperbolic geometry, 

the word "parallel" is used only for lines that contain limiting parallel 

rays. The other lines, which admit a common perpendicular, have var

ious names in the literature: "non-intersecting," "ultraparallel," "hy

perparallel," and "superparallel." We will continue to use the word 

"parallel" to mean "non-intersecting." Following J. Bolyai, a parallel to 

l that contains a limiting parallel ray to l will be called an asymptotic 

parallel; a parallel to l that admits a common perpendicular to l will 

be called a divergently parallel line. Rays that are limiting parallel will 

be denoted by a brace in diagrams (see Figure 6.14). 

Strange New Universe? 
In this chapter, we have only begun to investigate the "strange new 

universe" of hyperbolic geometry. You can develop much more of this 

geometry by doing the exercises, major exercises, and projects in this 

chapter. You will encounter new entities such as asymptotic triangles, 

lines of enclosure, and ideal and ultra-ideal points at infinity in the 

projective completion of the hyperbolic plane. 

If you consider this geometry too strange to pursue, you are in for 

a surprise. You will see in the next chapter that if the undefined terms 
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of hyperbolic geometry are suitably interpreted, hyperbolic geometry 
can be considered a part of Euclidean geometry! 

Meanwhile, notice how we have deepened our understanding of the 
role of Hilbert's Euclidean parallel postulate Pin Euclidean geometry. 
To simplify, let us work in real neutral geometry-the theory of Hilbert 
planes that satisfy Dedekind's axiom. Any statement Sin the language 
of real neutral geometry that is a theorem in real Euclidean geometry 
(P :::::} S) and whose negation is a theorem in real hyperbolic geometry 
( � P :::::} �s) is equivalent in real neutral geometry to P (by RAA). As 
an example, take the statement S: "There exist similar non-congruent 
triangles." Ten other examples are in Exercise 1; you will have the 
pleasure in that exercise of providing many more. 

The angle of parallelism II(PQ) is the key to the deeper results in 
hyperbolic geometry. Major Exercise 9 shows that it can be any acute 
angle. It can be used to define segments geometrically, which is im
possible in Euclidean geometry (see p. 411, Chapter 9). For example, 
Schweikart's segment class is defined to be the congruence class of a 
segment whose angle of parallelism is half a right angle (Major Exer
cise 5 shows that all such segments are congruent ). One of the great
est discoveries by J. Bolyai and Lobachevsky is their formula for the 
measure of II(PQ) (see Theorems 7.2 and 10.2). 

An important topic we will sketch in Chapter 10 is the theory of 
area in hyperbolic planes. It is completely different from the Euclidean 
theory of area, which is based on squares-there are no squares in hy
perbolic planes. The area of a Euclidean triangle can be made as large 
as you like by taking the base and the height as large as needed. How
ever, in a hyperbolic plane, the possible areas of triangles are bounded 

because it is a fundamental theorem that the area of a triangle is pro

portional to its defect and of course the defect is bounded by 180°. But 
in order to make sense of this strange result, noted by Lambert, one 
must first clarify what is meant by "area." We defer to other good 
texts16 for the details. 

The reader's attention is called to Major Exercise 13 of this chap
ter. That exercise constructs the projective completion of a hyperbolic 

plane, analogous to the construction of the projective completion of an 
affine plane in Chapter 2, but here we add an entire region at infinity 
to the hyperbolic plane, not just a line at infinity : The hyperbolic plane 

16 See Moise (1990) or Hartshorne. Charles Dodgson (Lewis Carroll) refused to accept 
such a strange result, not comprehending how the areas of triangles could be bounded 
when the lengths of their sides are unbounded. 
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lies inside a conic at infinity called the absolute, consisting of all the 

ideal points where asymptotic parallels meet; the tangent to the ab

solute at that meeting point can be considered the "common perpen

dicular at infinity" whose discovery shocked Saccheri. Outside that 

conic lie all the ultra-ideal points where divergent parallels meet. This 

projective completion is the idea behind the Klein model discussed in 

the next chapter. Another use is the following nice result. 

PERPENDICULAR BISECTOR THEOREM. Given any triangle in a hy

perbolic plane, the perpendicular bisectors of its sides are concurrent 

in the projective completion. 

Unlike Euclidean planes, those perpendicular bisectors need not be 

concurrent in an ordinary point; they may meet in the projective com

pletion at an ideal or ultra-ideal point (see Exercises 10 and 11). 

NOTE ON OUR AXIOMATIC DEVELOPMENT. By simply negating 

Hilbert's Euclidean parallel postulate, one allows nonclassical, non

Archimedean Hilbert planes discovered by Dehn, such as semi

Euclidean ones that are not Euclidean and ones satisfying the obtuse 

angle hypothesis. They can be ruled out by assuming Aristotle's axiom, 

which reduces us to certain planes satisfying the acute angle hypothe

sis. Some of those are nonclassical because limiting parallel rays do not 

exist (my advanced theorem and the second result mentioned in foot

note 15 tell us that the line-circle continuity principle is then necessary 

and sufficient to obtain that existence). Yet all the classical non

Euclidean geometers (Saccheri, Gauss, J. Bolyai, and Lobachevsky) ar

gued intuitively that limiting parallel rays do exist. So Hilbert simply took 

that existence as an axiom and only studied the hyperbolic planes it 

defines. Hilbert did not wish to bring in the powerful field of real num

bers where it was not needed (see the quote by him in Appendix B). 

Since Hilbert's development is long and complicated, we invoked 

Dedekind's axiom to prove the existence of limiting parallel rays as well 

as Aristotle's axiom and the acute angle hypothesis. That is what we 

called real plane hyperbolic geometry. It is less general than Hilbert's 

theory, which permits coordinatization from arbitrary Euclidean fields 

(including non-Archimedean ones), not just from the field � of real 

numbers. The theory of real hyperbolic planes is categorical: All its 

models are isomorphic to the real models in the next chapter (see 

Hartshorne). But the theory of hyperbolic planes in Hilbert's more gen-
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eral sense is not categorical since not all Euclidean fields are isomor

phic (e.g., the constructible field K is not isomorphic to IR). 

Our main tasks in the next chapter will be to prove that axiomatic 

hyperbolic plane geometry is just as logically secure as plane Euclid

ean geometry and to reveal how it can be visualized from a Euclidean 

point of view. 

Review Exercise 

Which of the following statements are correct? 

(1) The negation of Hilbert's Euclidean parallel postulate states that 

for every line l and every point P not on l there exist at least 

two lines through P parallel to l. 

(2) It is a theorem in neutral geometry that if lines l and m meet 

on a given side of a transversal t, then the sum of the degrees 

of the interior angles on that given side oft is less than 180°. 

(3) Gauss began working on non-Euclidean geometry when he was 

15 years old. 

( 4) The philosopher Kant taught that our minds could not conceive 

of any geometry other than Euclidean geometry. 

(S) The first mathematician to publish an account of hyperbolic 

geometry was Lobachevsky. 

(6) The crossbar theorem asserts that a ray emanating from a ver

tex A of 6.ABC and interior to <r:..A must intersect the opposite 

side BC of the triangle. 

(7) It is a theorem in hyperbolic geometry that for any segment AB 

there exists a square having AB as one of its sides. 

(8) In hyperbolic geometry, the summit angles of Saccheri quadri

laterals are always acute. 

(9) In hyperbolic geometry, if 6.ABC and 6.DEF are equilateral tri

angles and <r:..A - <r:..D, then the triangles are congruent. 

(10) In hyperbolic geometry, given a line l and a fixed segment AB, 

the set of all points on a given side of l whose perpendicular 

segment to l is congruent to AB equals the set of points on a 

line parallel to l. 

(11) In hyperbolic geometry, any two parallel lines have a common 

perpendicular. 

(12) In hyperbolic geometry, the fourth angle of a Lambert quadri

lateral is obtuse. 
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(13) In hyperbolic geometry, some triangles have angle sum less 

than 180° and some triangles have angle sum equal to 180°. 

(14) In hyperbolic geometry, if point Pis not on line l and Q is the 

foot of the perpendicular from P to l, then an angle of paral

lelism for P with respect to l is the angle that a limiting paral
� 

lel ray to l emanating from P makes with PQ. 

(15) J. Bolyai showed how to construct limiting parallel rays using 

the segment-circle continuity principle. 

(16) In hyperbolic geometry, if l II m, then there exist three points 

on m that are equidistant from l. 

(17) In hyperbolic geometry, if m is any line parallel to l, then there 

exist two points on m which are equidistant from l. 

(18) In hyperbolic geometry, if Pis a point not lying on line l, then 

there are exactly two lines through P parallel to l. 

(19) In hyperbolic geometry, if Pis a point not lying on line l, then 

there are exactly two lines through P perpendicular to l. 

(20) In hyperbolic geometry, if l II m and m II n, then l II n (transi

tivity of parallelism). 

(21) In hyperbolic geometry, if m contains a limiting parallel ray to 

l, then l and m have a common perpendicular. 

(22) In hyperbolic geometry, if l and m have a common perpendic

ular, then there is one point on m that is closer to l than any 

other point on m. 

(23) In hyperbolic geometry, if m does not contain a limiting par

allel ray to l and if m and l have no common perpendicular, 

then m intersects l. 

(24) In hyperbolic geometry, the summit of any Saccheri quadrilat

eral is greater than the base. 

(25) Every valid theorem of neutral geometry is also valid in hy

perbolic geometry. 

(26) In hyperbolic geometry, opposite angles of any parallelogram 

are congruent to each other. 

(27) In hyperbolic geometry, opposite sides of any parallelogram are 

congruent to each other. 

(28) In hyperbolic geometry, let <i:P be any acute angle, let X be 

any point on one side of this angle, and let Y be the foot of 

the perpendicular from X to the other side. If X recedes with

out bound from P along its side, then Y will recede without 

bound from P along its side. 

(29) In hyperbolic geometry, if three points are not collinear, there 

is always a circle that passes through them. 
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(30) In hyperbolic geometry, there exists an angle and there exists 

a line that lies entirely within the interior of this angle. 

(31) Limiting parallel rays exist in Euclidean planes. 

Exercises 

1. This is perhaps the most important exercise in this book. It is a 

payoff for all the work you have done. Come back to this exercise as 

you do subsequent exercises and read further in the book. Your as

signment in this exercise is to make a long list of geometric statements 

that are equivalent to the Euclidean parallel postulate in the sense that 

they hold in real Euclidean planes and do not hold in real hyperbolic 

planes. The statements proved in neutral geometry are valid in both 

Euclidean and hyperbolic planes, so ignore them. To get you started, 

here are 10 statements that qualify. They do not say anything about 

parallel lines, so you might have been surprised before studying this 

subject that they are equivalent to the Euclidean parallel postulate. 

Every triangle has a circumscribed circle. 

Wallis' postulate on the existence of similar triangles. 

A rectangle exists. 

Clavius' axiom that the equidistant locus on one side of a line is 

the set of points on a line. 

Some triangle has an angle sum equal to 180°. 

An angle inscribed in a semicircle is a right angle. 

The Pythagorean equation holds for right triangles. 

A line cannot lie entirely in the interior of an angle. 

Any point in the interior of an angle lies on a segment with end

points on the sides of the angle. 

Areas of triangles are unbounded. 

2. This problem has five parts. In the first part we will construct 

Saccheri quadrilaterals associated with any triangle .6..ABC. Then 

we will apply this construction. Figure 6.15 illustrates the case 

where the angles of the triangle at A and B are acute; you are in

vited to draw the figure when one of these angles is obtuse or 

right. 

(a) Let I, J, K be the midpoints of BC, CA, AB, respectively. Let D, 

E, F be the feet of the perpendiculars from A, B, C, respec
� 

tively, to U (which is called a medial line). Prove, in any Hilbert 
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c 

Figure 6.15 

plane, that AD� CF� BE, hence that DEDAB is a Saccheri 
quadrilateral with base ED, summit AB. Show that a triangle 
and its associated Saccheri quadrilateral have equal content
i.e., that you can dissect the Saccheri quadrilateral region into 
polygonal pieces and then reassemble these pieces to construct 
the triangular region. 

(b) Prove that the perpendicular bisector of AB is also perpendi
� 

cular to IJ. (Hint: Use a result about Saccheri quadrilaterals.) 
� 

Hence if the plane is hyperbolic, U is divergently parallel to 
� 

AB. Assume now the plane is real, so lengths can be assigned 
(Theorem 4.3) and the Saccheri-Legendre theorem applies. 

- - - - -

(c) Prove that ED= 2U. Deduce that AB> 2U (respectively AB = 
2U) if the plane is hyperbolic (respectively is Euclidean). 

(d) Prove that K, F, and C are collinear if and only if AC� BC 
(isosceles triangle). If that is the case, prove that F is the mid
point of CK iff the plane is Euclidean. If K, F, and C are not 

� 

collinear and the J&ine is �t Euclidean, prove that CF is not 
perpendicular to AB (ray CF does intersect AB at some point 
Gin the case shown, where the angles at A and B are acute, 
by the crossbar theorem, but CG is not an altitude of the tri
angle if the plane is not Euclidean). 

(e) Show that if the Pythagorean equation holds_for all right tri
angles and if <t:C is a right angle, then AB= 2U can be proved. 
Deduce from part (c) that such a plane must be Euclidean. (Use 
these results to add to your answers to Exercise 1.) 

The remaining exercises are in hyperbolic geometry. You can use 
the results proved in this chapter as well as any results proved 
in neutral geometry in previous chapters. Do not use any of the 



EXERCISES 271 

Euclidean results from Exercises 10-18 and the major exercises 

of Chapter 5. 

3. Assume that the parallel lines l and l' have a common perpendicu

lar segment MM'. Prove that MM' is the shortest segment between 

any point of l and any point of l'. (Hint: In showing MM' < AA', 

first dispose of the case in which AA' is perpendicular to l' by means 

of a result about Lambert quadrilaterals and then take care of the 

other case by Exercise 22, Chapter 4.) 
4. Again, assume that MM' is the common perpendicular segment be

tween l and l'. Let A and B be any points of l such that M * A * B 

and drop perpendiculars AA' and BB' to l'. Prove that AA'< BB'. 

(Hint: Use Proposition 4.13; see Figure 6.16.) 

Figure 6.16 

M 

D 

A 
B �z 

5. Given parallel lines l and m. Given points A and B that lie on the 

opposite side of m from l; i.e., for any point P on l, A and P are on 

opposite sides of m, and B and P are on opposite sides of m. Prove 

that A and B lie on the same side of l. (This holds in any Hilbert 

plane.) 
� 

6. Let PY be a limiting parallel ray to l through P and let X be a point 

on this ray between P and Y (Figure 6.17). It may seem intuitively 
� 

obvious that XY is a limiting parallel ray to l through X, but this re-

quires proof. Justify the steps that have not been justified. 

p 

Figure 6.17 
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PROOF: 
� � � 

(1) We must prove that any ray XS between XY and XR meets l, 

where R is the foot of the perpendicular from X to l. (2) S and Y 
� 

are on the same side of XR. (3) P and Y are on opposite sides of 
� � 
XR. (4) By Exercise 5, S and Y are on the same side of PQ. (S) S 

� � 
and R are on the same side of XY =PY. (6) Q and R are on the 

� � 
same side of PY. (7) Q and S are on the same side of PY. (8) Thus, 
� � � 
PS lies between PY and PQ, so it intersects l in a point T. (9) Point 

� 
X is exterior to .6:.PQT. (10) XS does not intersect PQ. (11) Hence 
� � 
XS intersects QT (Proposition 3. 9(a)), so XS meets l . .,.. 

� 
7. Let us assume instead that XY is limiting parallel to l, with P * X * Y. 

� 
Prove that PY is limiting parallel to l. (Hint: See Figure 6. 18. You 

� 
must show that PZ meets l in a point V. Choose any S such that 

� 
S * P * Z. Show that SX meets PQ in a point U such that U * P * Q. 

� 
Choose any W such that U * X * W and show that XW is between 
� � � 
XY and XR so that XW meets l in a point T. Apply Proposition 3. 9(a) 

to get V.) 

Figure 6.18 

� 
8. Let PX be the right limiting parallel ray to l through P and let Q 

and X' be the feet of the perpendiculars from P and X, respectively, 

to l (Figure 6.19). Prove that PQ >XX'. (Hint: Use Exercise 6 to 

p 

-+------'--"---__.__._____ ______ y l} 
(! )(' 

Figure 6.19 
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show that <i:X'XY is acute and that <i:X'XP is obtuse, so that Propo

sition 4.13, Chapter 4, can be applied to DPQX'X.) This exercise 

shows that the distance from X to l decreases as X recedes from P 

along a limiting parallel ray. In fact, one can prove that the distance 

from X to l approaches zero (see Major Exercise 11). 

9. Assume that the parallel lines l and l' have a common perpendicu-
� 

lar PQ. For any point X on l, let X' be the foot of the perpendicu-

lar from X to l'. Prove that as X recedes endlessly from P on l, the 

segment XX' increases indefinitely; see Figure 6.20. (Hint: We saw 

that it increases in Exercise 4. Drop a perpendicular XY to the lim-
� � 

iting parallel ray between PX and PX'. Use the crossbar theorem to 
� 

show that PY intersects XX' in a point Z. Use Proposition 4.5 to 

show that XZ > XY. Conclude by applying Aristotle's axiom.) 

Figure 6.20 
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10. In Exercise 5, Chapter 5, we saw the elder Bolyai's false proof of 

the parallel postulate. The flaw in his argument was the assump

tion that every triangle has a circumscribed circle, i.e., that there is 

a circle passing through the three vertices of the triangle. The idea 

of the Euclidean proof of this assumption is to show that the per

pendicular bisectors of the sides of the triangle meet in a point and 

that this point is the center of the circumscribed circle. Figure out 

how Euclid's fifth postulate is used to prove that two of the per

pendicular bisectors l and m have a common point (use Proposi

tion 4.10) and then argue by congruent triangles to prove that the 

third perpendicular bisector passes through that point and that the 

point is equidistant from the three vertices. (Hint: Join the common 
� 

point D to the midpoint N of the third side and prove that DN is 

perpendicular to the third side; see Figure 6.21.) 

11. Part of the argument in Exercise 10 works for hyperbolic geometry; 

that is, if two of the perpendicular bisectors have a common point, 

then the third perpendicular bisector also passes through that point. 
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A 

n 

Figure 6.21 

In hyperbolic geometry, there will be triangles for which two of the 

perpendicular bisectors are parallel (otherwise the elder Bolyai's 

proof would be correct). Moreover, these perpendicular bisectors 

can be parallel in two different ways. Suppose that they are diver

gently parallel; that is, suppose that the perpendicular bisectors l 

and m have a common perpendicular t (see Figure 6.22). Prove that 

the third perpendicular bisector n is also perpendicular to t. (Hint: 

Let A', B', and C' be the feet on t of the perpendiculars dropped 

from A, B, and C, respectively. Let l bisect AB at L and be perpen

dicular to tat L' and let m bisect BC at M and be perpendicular to 

tat M'. Let N be the midpoint of AC. Show by Proposition 6.5 that 

t 

A I\ 

c C' 

Figure 6.22 Perpendicular bisectors of ,6.ABC have common perpendicular t. 
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AA' - BB' and CC' - BB'. Hence DC' A' AC is a Saccheri quadrilat

eral with N the midpoint of its summit AC. If N' is the midpoint of 
� 

the base A'C', use Theorem 6.1 to show that n = NN' is perpendi
� 

cular to t and AC; see Major Exercise 7 for the asymptotically par-

allel case.) 

12. In Theorem 4.1 it was proved in neutral geometry that if alternate in

terior angles are congruent, then the lines are parallel. Strengthen this 

result in hyperbolic geometry by proving that the lines are divergently 

parallel, i.e., that they have a common perpendicular. (Hint: Let M be 

the midpoint of transversal segment PQ and drop perpendiculars MN 

and ML to lines m and l; see Figure 6.23. Prove that L, M, and N are 

collinear by the method of congruent triangles.) 

Figure 6.23 

13. Prove that Aristotle's axiom holds in a hyperbolic plane. (Hint: For 

the given acute angle, lay off a segment of parallelism along one 

side and erect the perpendicular ray at the end of that segment 

which is limiting parallel to the other side. On that perpendicular 

ray, lay off the challenge segment AB, at the end of which erect the 

perpendicular ray that hits the other side of the angle, and from that 

point of intersection X drop a perpendicular XY to the first side. 

From the Lambert quadrilateral thus formed, deduce that XY > AB.) 

14. Prove that a non-Euclidean Hilbert plane satisfying the important corol

lary to Aristotle's axiom (stated on p. 133) also satisfies the acute an

gle hypothesis. (Hint: Find a triangle whose angle sum is <180° .) 

15. Comment on the following injunction by Saint Augustine: "The good 

Christian should beware of mathematicians and all those who make 

empty prophesies. The danger already exists that the mathemati

cians have made a covenant with the devil to darken the spirit and 

to confine man in the bonds of Hell. " 
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p B A 

Figure 6.24 

Major Exercises 
� � � 

1. Let A, D be the points on the same side of line BC such that BA II CD . 

Then the figure consisting of segment BC (called the base) and rays 
� � 

BA and CD (called the sides) is called the biangle [ABCD with vertices 
B and C (see Figure 6.24). The interior of [ABCD is the intersection 

of the interiors of its angles <tABC and <tDCB; if P lies in the interior 
� 

and Xis either vertex, ray XP is called an interior ray. We write the 
� � 

relation BA I CD when these rays are sides of a biangle and when 
� 

every interior ray emanating from B intersects CD; in that case, we 
� � 

say that BA is limiting parallel to CD, generalizing the previous defi-

nition which required <tDCB to be a right angle, and we say that the 
� � 

biangle [ABCD is closed at B. Given BA I CD, prove the following 
� ---->; 

generalization of Exercise 6: If P * B * A or if B * P * A, then PA I CD. 
� � � � 

2. Symmetry of limiting parallelism. If BA I CD, then CD I BA. (In that 

case, we say simply that biangle [ABCD is closed.) Justify the un

justified steps in the proof (see Figure 6.25). 

PROOF: 

(1) Assume that [ABCD is not closed at C. (2) Then some interior 
� � 

ray CE does not intersect BA. (3) Point E, which so far is just a la-

bel, can be chosen so that <tBEC < <tECD, by the important coral-

B A 

Figure 6.25 
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lary to Aristotle's axiom, Chapter 3. (4) Segment BE does not in-
� � � 

tersect CD. (S) Interior ray BE intersects CD in a point F, and 

B * E * F. (6) Since <tBEC is an exterior angle for .6..EFC, we have 

<tBEC > <tECF. (7) Contradiction. (I am indebted to George E. Mar

tin for this simple proof.) <11111 
� � 

3. Transitivity of limiting parallelism. If AB and CD are both limiting 
---* 

parallel to EF , then they are limiting parallel to each other. Justify 

the steps in the proof. 

A 
-+----...-��������������-+- B 

H 

Figure 6.26 

PROOF: 
� � 

(1) AB and CD have no point in common. (2) Hence there are 
� � � � 

two cases depending on whether EF is between AB and CD or AB 
� � � 

and CD are both on the same side of EF. (3) In the case where EF 
� � � 

is between AB and CD, let G be the intersection of AC with EF (see 
---* 

Figure 6.26). We may assume G lies on ray EF; otherwise we can 
� � ---* 

consider GF. (4) Any ray AH interior to <tGAB must intersect EF in 
� � 

a point I. (S) IH , lying interior to <tCIF, must intersect CD. (6) Hence 
� � � 

any ray AH interior to <tCAB must intersect CD, so AB is limiting 
� 

parallel to CD. 

Step (7) is the following sublemma. That this requires such a 

long proof was overlooked even by Gauss. The proof (for which I 

am indebeted to Edwin E. Moise) uses our hypotheses of limiting 

parallelism. If we had made the weaker hypothesis of just parallel 

lines, the sublemma would not follow, as you will show in Exer

cise K-2(c) of Chapter 7. <11111 

� � � 
SUBLEMMA. If AB and CD are both on the same side of EF , then one 

� � � 
of them, say CD, is between AB and EF. 

PROOF OF SUBLEMMA: 

(1) It suffices to prove there is a line transversal to the three rays 
� � ---* 
AB , CD, EF. (2) In the case where A and F are on the same side of 
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� � � � 

EC, then ray EA is interior to <tE. (3) Then EA intersects CD, by 
� 

symmetry. (4) So EA is our transversal. (S) In the case where A and 
� 

F are on opposite sides of EC, let G be the point at which AF meets 
� 

EC (see Figure 6.27). (6) Choosing H such that E * F * H, we have 
� � � 

FH I AB. (7) <tHFG > <tE. (8) Therefore there is a ray FI interior to 
� � 

<tHFA = <tHFG such that <tHFI � <tE. (9) FI meets AB at a point J. 
� � � 

(10) FJ II EC. (11) EC intersects side AF and does not intersect side 
� 

Fl of .6..AFJ. (12) Hence EC intersects Al and is our transversal. <11111 

CONCLUSION OF PROOF OF TRANSITWITY (SEE FIGURE 6.28): 
� 

(8) Then AE intersects CD in a point G, which we may assume lies 
� � � 

on ray CD. (9) Any ray AH interior to <tGAB intersects EF in a point 
� 

I. (10) Since CD enters .6..AEI at G and does not intersect side EI, it 
� � 

must intersect AI. (11) Therefore, CD is limiting parallel to AB. <11111 

� � 

NOTE 1. The last four steps did not use the hypothesis that CD I EF; 

they therefore prove that any line between two asymptotically parallel 

lines is asymptotically parallel to both and in the same direction. 

A 

Figure 6.28 
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NOTE 2. Given rays r ands, definer� s to mean that r cs or 
s c r or r Is. Major Exercises 1-3 show that this is an equivalence 

relation among rays. An equivalence class of rays is called an ideal 

point, or an end, and we adopt the convention that it lies on all 
(and only those) lines containing the rays making up the class. Since 
a point on a line breaks the line into two opposite rays and oppo
site rays are not equivalent, we see that every line has two ends ly

ing on it. The set of all ideal points was named the absolute by Cay
ley. (This is the beginning of constructing a hyperbolic analogue of 
the projective completion of an affine plane described in Chapter 2; 

we continue the construction in Major Exercise 13. The absolute is 
analogous to the line at infinity of the affine plane, but the absolute 
could not be a new line because it intersects each old line in two 
points; it will turn out to be a conic in the projective completion.) 

If R, S are the vertices of r, s, where r I s, and n is the ideal 
point determined by these rays, we write r =PO and s = sn and 
refer to the closed biangle with sides r, s as the singly asymptotic 

triangle .6..RSil. The next two exercises show that these triangles 
have some properties in common with ordinary triangles. (You can 
similarly define as an exercise doubly (two ideal points) and triply 

(three ideal points) asymptotic triangles.) 

4. Exterior angle theorem. If .6..PQil is a singly asymptotic triangle, the 
exterior angles at P and Q are greater than their respective oppo
site interior angles. Justify the steps in the proof. 

PROOF (SEE FIGURE 6.29): 

(1) Given R * Q * P. We must show that <tRQil is greater than 
� � 

<tQPil. (2) Let QD be the unique ray on the same side of PQ as ray 
Qil such that <tRQD � <tQPil. (3) If U * Q * D, then <tUQP � QPil. 

p 

R 

------------------------------� n 

Figure 6.29 
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� � � 
(4) By Exercise 12, QD is divergently parallel to Pll. (5) Hence QD 

� � 
is between QR and Qll. (6) <}:'.RQll > <}:'.QPll . .,.. 

5. Congruence theorem. If in asymptotic triangles �ABO and �A'B'll' 

we have <}:BAO� <}:'.B' A'll', then <}:ABO� <}:'.A'B'll' if and only if 

AB � A'B'. Justify the steps in the proof and deduce as a corollary 

that PQ � P'Q' if and only if II(PQ) 0 = II(P'Q') 0• 

A 
D D' 

Q' 

B B' 

Figure 6.30 

PROOF (SEE FIGURE 6.30): 

(1) Assume AB� A'B' and on the contrary <}:ABO> <}:'.A'B'll'. 
� � 

(2) There is a unique ray BC between Bil and BA such that <}:ABC � 
� 

<}:'.A'B'll'. (3) BC intersects All in a point D. (4) Let D' be the unique 

point on A'll' such that AD� A'D'. (5) Then �BAD� �B' A'D'. 

(6) Hence <}:'.A'B'D' � <}:'.A'B'll', which is absurd. (7) Assume con

versely that <}:ABO� <}:'.A'B'll' and, on the contrary, A'B' <AB. (8) 

Let C be the point on AB such that BC � B 'A' and let Cll be the 

ray from C limiting parallel to All (see Figure 6.31). (9) Then Cll 

is also limiting parallel to Bil. (10) By the first part of the proof, 

<}:'.BCll � <}:'.B'A'll'; hence we have <}:'.BCll �<}:BAO. (11) But 

<}:'.BCll > <}:BAO, which is a contradiction . .,.. 

A 

Figure 6. 31 

� 
6. Conclusion of the proof of Theorem 6.3. We wish to show that EF 

� 
intersects AG (see Figure 6.32). Justify the steps in the proof. 
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Figure 6. 32 

PROOF: 
� �� � 

(1) Let A'M be limiting parallel to EF, A'N limiting parallel to AG, 
� � 

and B'P limiting parallel to BG. (2) Since EA' :::: BB' and <t:A'EF:::: 
� � 

<t:B'BG, we have <t:EA'M:::: <t:BB'P. (3) B'L differs from B'P, and 
� � � 

A'L differs from A'N. (4) <t:MA'L:::: <t:PB'L. (5) B'P is limiting par-
� 

allel to A'N. (6) Hence <t:NA'L is smaller than <t:PB'L. (7) It follows 
� � � � 

that A'M lies between A'N and A' A, so it must intersect AG in a 
� 

point J. (8) J is on the same side of EF as A'; hence it is on the 
� 

side opposite from A. (9) Thus Al intersects EF in a point H, which 
� � 

must be on EF because H is on the same side of AA' as J. <Ill 

Where was the hypothesis of this theorem used? 

7. In Exercises 10 and 11 we considered the perpendicular bisectors 

of the sides of �ABC and showed that (1) if two of them have 

a common point, the third passes through that point; (2) if two 

of them have a common perpendicular, the third has that same 

perpendicular. It follows that if two of them are asymptotically 

parallel, then any two of them are asymptotically parallel. This 

result can be strengthened as follows: If perpendicular bisectors 

l and m are asymptotically parallel in the direction of ideal point 

n, then the third perpendicular bisector n is asymptotically par

allel to l and m in the same direction n. Give the proof and jus

tify each step. The proof is based on the following two lemmas. 

LEMMA 6.1. Given �ABC. Let l, m, and n be the perpendicular bi

sectors of sides AB, BC, and AC at their midpoints L, M, and N, re-
- - - -

spectively. Let AC> AB and AC > BC (AC is the longest side). Then l, 

m, and n all intersect AC. 
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Figure 6.33 

PROOF: 

(1) ( �B) 0 > (�A) 0 and ( �B) 0 > ( �C) 0• (2) Hence there is a point 

L' on AC such that �A � �L'BA, and a point M' on AC such that 

�C � �M'BC (see Figure 6.33). (3) Then we have AL' � BL' and 
� 

CM' �BM'. (4) Thus l is the line joining L to L', and m = MM'. 

(S) It follows that all three perpendicular bisectors cut AC. <11111 

LEMMA 6.2 No line intersects all three sides of a trebly asymptotic 

triangle. 

PROOF: 
� 

(1) Suppose that a line t cuts l at Q and m at P. (2) Then ray PQ 

of t lies between the rays Pil2 and Pili, which are limiting parallel 

to l (see Figure 6.34). (3) Pil3, the other ray through P that is lim

iting parallel to n, is opposite to Pil2. ( 4) Hence Pili lies between 
� � � 
PQ and Pil3. (S) Thus PQ does not intersect n. (6) Similarly, QP 

does not intersect n. <11111 

8. Given any angle �A'OA. It is a theorem in hyperbolic geometry that 

there is a unique line l called the line of enclosure of this angle such 

Figure 6.34 
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� � 

that l is limiting parallel to both sides OA' and OA Only the idea of the 
proof is given here; fill in the details (Hartshorne, Proposition 40.6). 

Assume that A and A' are chosen so that OA - OA�see Figure 
6.35). Let A'il be the limiting parallel ray to OA through 

� 

A', and A"i. the limiting parallel ray to OA' through A. Let the rays 
r and r

' be the bisectors of <t"i.Ail and <tilA'"i.,, respectively. The 
idea of the proof is to show that the lines m and m

' containing these 
rays are neither intersecting nor asymptotically parallel, so that, by 
Theorem 6.3, they have a unique common perpendicular l that turns 
out to be the line of enclosure of <tA'OA. (See also Exercise K-11, 

Chapter 7; the advantage of this complicated proof is that it yields 
a straightedge-and-compass construction.) 

9. Use the result of the previous exercise to prove that every acute an
gle is an angle of parallelism, i.e., given an acute angle <):BOA, there 

� � 

is a unique line l pe�ndicular to BO and limiting parallel to OA. 
(Hint: Reflect across OB.) 

Alternatively, fill in the details of the following continuity proof 
� 

of Lobachevsky. First show that there exist perpendiculars to OB 
� 

that fail to intersect OA by the following argument. In Figure 6.36, 

B is the foot of the perpendicular from A and OB - BB'. If the per
� 

pendicular at B' intersects OA at A', then 

80A'B' = 80AB' + 8AA'B' = 280AB + 8AA'B' > 280AB. 
� 

If we iterate this doubling along OB and the perpendicular always 
� 

hits OA, the defects of the resulting triangles will increase indefi-
nitely. So we must eventually arrive at a point where the perpen

� 

dicular fails to intersect OA. 
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0 B B' c R 

Figure 6.36 

Second, apply Dedekind's axiom to obtain "the first" such per

pendicular ray r emanating from R. 
� � 

Finally, show that r I OA: For any interior ray RS, let C be the 
� � 

foot of the perpendicular from S; show that CS hits OA at some 

point D and apply Pasch's theorem to .6..0CD . 

10. Let land m be divergently parallel lines and let t be their common 

perpendicular cutting lat Q and mat P (Figure 6.37). Let r be a ray 

of l emanating from Q and s the ray of m emanating from P on the 

same side oft as r. Prove that there is a unique point R on r such 

that the perpendicular to l through R is limiting parallel to s. Prove 

also that for every point R' on r such that R' * R * Q, the perpen

dicular to l through R' is divergently parallel to m. (Hint: Use Ma

jor Exercises 3 and 9.) 

r 

R' R 

Figure 6.37 

t 

p 

Q 

11. Let ray r emanating from point P be limiting parallel to line l and 

let Q be the foot of the perpendicular from P to l (Figure 6.38). Jus-
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p 

R r----
Q T Q' 

] 
Figure 6.38 

tify the terminology "asymptotically parallel" by proving that for 

any point R between P and Q there exists a point R' on ray r such 

that R'Q' � RQ, where Q' is the foot of the perpendicular from R' 

to l. (Hint: Use Major Exercise 3 and Proposition 6.6 to prove that 

the line through R that is asymptotically parallel to l in the oppo

site direction from r intersects r at a point S. Show that if T is the 

foot of the perpendicular from S to l, the point R' obtained by re-
� 

fleeting R across line ST is the desired point.) 

Similarly, show that the lines diverge in the other direction. Use 

a similar method to prove that the perpendiculars dropped from one 

line divergently parallel to another are unbounded. 

12. Let land n be divergently parallel lines and PQ their common per

pendicular segment. The midpoint S of PQ is called the symmetry 
point of land n. Let m be the perpendicular to PQ through S. Let 

n and il' be the ideal points of l and let � and �, be the ideal 

points of n (labeled as in Figure 6.39). By Major Exercise 8, there 

are unique lines "joining" these ideal points. Prove that (a) il�' and 

�il' meet at S; (b) mis perpendicular to both n� and il'�'. (Hint: 

Use Major Exercise 5 and the symmetry part of Proposition 6.6.) 

13. Projective completion of the hyperbolic plane. The ideal points were 

defined in Note 2 after Major Exercise 3. By adding them as ends 

Figure 6.39 

L' p n t._�������...,.......,..�������-tL 
I I 
I I 
I I 

I 
I I 

n,t._������____.__._�������-tn 
Q 
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to our lines, we ensure that asymptotically parallel lines meet at an 

ideal point; Major Exercise 11 shows that the lines do converge in 

the direction of that common end. We need to add more "points at 

infinity" to ensure that divergently parallel lines will meet. Two di

vergently parallel lines have a unique common perpendicular t. A 

third line perpendicular to t can be considered to have "the same 

direction" as the first two, so all three should meet at the same 

point, just as in the projective completion of the Euclidean plane. 

We therefore define the pole P(t) to be the set of all lines perpen

dicular to t and specify that P(t) lies on all those lines and no 

others; poles of lines are called ultra-ideal points. Note here that 

t i=- u :::::} P(t) i=- P(u) (uniqueness of the common perpendicular, if 

one exists), unlike the Euclidean case. A "point" of the projective 

completion CJ/' is defined to be either a point of the hyperbolic plane 

(called "ordinary") or an ideal point or an ultra-ideal point. 

We also add new "lines at infinity" as follows. The polar p(A) 

of an ordinary point A is the set of all poles of lines through A, and 

the only points incident with p(A) are those poles; polars of ordi

nary points are called ultra-ideal lines. The polar p(il) of an ideal 

point n consists of n and all poles of lines having n as an end; 

again, the incidence relation is E, and p(il) is called an ideal line. 

The polar of an ultra-ideal point P(t) is just t. A "line" of CJ/' is de

fined to be a polar of a point of CJ/'. We have defined incidence al

ready. The pole of p(A) is A and of p(il) is n. 

THEOREM. CJ/' is a projective plane and p is a polarity (an isomorphism 

of CJ/' onto its dual plane). 

Since the ideal points are the only points of CJ/' that lie on their 

polars, the absolute y is by definition the conic determined by po

larity p, and p(il) is the tangent line to y at il (see Project 2, Chap

ter 2). If n and � are the two ends of ordinary line t, then, by def

inition, the point of intersection of the two tangent lines p(il) and 

p(�) is P(t), which gives geometric meaning to the rather abstract 

P(t). Moreover, the interior of y is the set of ordinary points since 

every line through an ordinary point is ordinary and intersects y twice. 

Your exercise is to prove this theorem. To get you started, we 

show that Axiom 1-1 holds for CJ/': 

� 

(i) Two ordinary points A, B lie on ordinary line AB and do not 

lie on any "extraordinary" lines by definition of the latter. 
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(ii) Given ordinary A and ideal il, they are joined by the ordinary 
line containing ray Ail. 

(iii) Given ideal points il and �' let A be any ordinary point and 

consider the rays � and Ail. If these are opposite, then the 
line containing them joins il and�; otherwise, the line of en

closure (Major Exercise 8) of the angle determined by these 
coterminal rays joins il and �. 

(iv) Given ordinary A and ultra-ideal P(t), the line joining them is 
the perpendicular to t through A. 

(v) Given ideal il and ultra-ideal P(t). If il lies on t, these points 
lie on p(il); by the definition of incidence, they do not lie on 

any other extraordinary line, and they could not lie on an or

dinary line u because u would then be both asymptotically par
allel to and perpendicular to t. If il does not lie on t, let A be 
a point on t. If ray Ail is at right angles to t, the line contain

ing Ail joins il to P(t); otherwise, Major Exercise 9 ensures 

that there is a unique line u 1- t such that Ail is limiting par

allel to u and u joins il to P(t). 

(vi) Given ultra-ideal points P(t) and P(u), t meets u either at or

dinary point A, in which case p(A) is the join, or at ideal point 

il, in which case p(il) is the join, or, by Theorem 6.3, at 

ultra-ideal point P(m), in which case m (the common perpen

dicular to t and u) joins P(t) and P(u). 

Projects 
1. Here is another construction for the common perpendicular between 

divergently parallel lines l and n. It suffices to locate their symme

try point S, for a perpendicular can then be dropped from S to both 

lines (Figure 6.39, p. 285). Take any segment AB on l. Construct 
point C on l such that B is the midpoint of AC and lay off any seg
ment A'B' on n congruent to AB. Let M, M', N, and N' be the mid-

� 

points of AA', BB', BA', and CB', respectively. Then the lines MM' 
� 

and NN' are distinct and intersect at S. (The proof follows from the 
theory of glide reflections; see Exercises 21 and 22 in Chapter 9; also 
see Coxeter, 1998, p. 269, where it is deduced from Hjelmslev's mid

line theorem.) Report on a proof. 

2. Report on the development of plane hyperbolic geometry from 

Hilbert's hyperbolic axiom of parallelism alone, without bringing in 

Dedekind's axiom, using Hartshorne, Chapter 7, as one reference. 



288 T H E D I S C 0 V E R Y 0 F N 0 N - E U C L I D E A N G E 0 M E T R Y 

Describe some proofs in your report, particularly a proof of the acute 

angle hypothesis and the proof of the existence of the line of en

closure of an angle. 

3. Report on Hilbert's arithmetic of ends, using his Foundations of 

Geometry, Appendix III for reference. Hilbert constructs a field that 

can be used to coordinatize a general hyperbolic plane and do an

alytic geometry in it. 

4. Report on Joan Richards' study of the resistance to non-Euclidean 

geometry in late nineteenth-century England; see her Mathematical 

Visions: The Pursuit of Geometry in Victorian England, Chapters 2 

and 3, Academic Press, 1988. Your report should discuss the contri

butions of Hermann von Helmholtz and William Clifford toward en

lightening the English on the philosophical implications of Riemann's 

new ideas about space. Search the library or the web for more in

formation on how Helmholtz and Clifford spread the ideas of non

Euclidean geometry and developed them further, with Clifford's work 

being a precursor of general relativity 45 years before Einstein-e.g., 

http://members.aol.com/jebco lst/Paraphysics/twistl .htm 



Independence of the 
Parallel Postulate 

All my efforts to discover a contradiction, an inconsistency, in this 

non-Euclidean geometry have been without success. . . . 

C. F. Gauss 

Consistency of Hyperbolic Geometry 
In the previous chapter, you were introduced to hyperbolic geometry 

and presented with some theorems that must seem very strange to 

someone accustomed to Euclidean geometry. Even though you may ad

mit that the proofs of these theorems are correct, given our assump

tions, you may feel that the basic assumption of hyperbolic geometry

the hyperbolic parallel axiom of Hilbert-is a false assumption. Let's 

examine what might be meant by saying it's false. 

What sort of experiment could I perform to show that the hyper

bolic axiom or the negation of Hilbert's Euclidean parallel postulate is 

false? First of all, I would have to understand what this statement 

means. What does it mean that l is a "line," that P is a "point" not 

"on" l, and that there is at most one "parallel" to l through P? I might 

represent "points" and "lines" with paper, pencil, and straightedge. 

Suppose I draw the perpendicular from P to l, draw line m through P 

perpendicular to PQ, and then draw a linen through P, making a very 

289 
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Q 

Figure 7.1 

small angle e with m (Figure 7.1). Using Euclidean trigonometry, I can 

calculate exactly how far out on n I would have to go to get to the 

point where n is supposed to intersect l, but if e is small enough, that 

point might be very far away. Thus I could not physically perform the 

experiment to prove that the negation of Euclid Vis false. 

But is geometry about lines that we can draw? Pure geometry is 

about idealized lines, which are concepts, not objects. The only exper

iments we can perform on these idealized lines are thought experi

ments. So the question should be: Can we conceive of a non-Euclidean 

geometry? Kant said no, that Euclidean geometry is a priori true. At 

that time, of course, no one had yet conceived of a different geometry. 

It is in this sense that J. Bolyai and Lobachevsky "created a new 

universe." 

Other questions can be raised. Mathematicians reject many ideas 

because they either lead to contradictions or do not lead anywhere, i.e., 

do not prove fruitful, useful, or interesting. Does the hypothesis of the 

acute angle lead to a contradiction? Saccheri imagined it would and 

tried to prove Euclid's parallel postulate that way. Is hyperbolic geom

etry fruitful, useful, or interesting? 

Let us postpone the latter question until the end of Chapter 8 (the 

answer is yes!) and take up the former: Is hyperbolic geometry con

sistent? As was explained in Chapter 2, this is a question in meta

mathematics, i.e., a question outside a mathematical system about the 

system itself. The question is not about lines or points or other geo

metric entities; it is a question about the whole system of axioms, def

initions, and propositions in plane hyperbolic geometry. 

If hyperbolic geometry were inconsistent, an ordinary mathemati

cal argument could derive a contradiction. Saccheri tried to do this and 

failed. Could it be that he wasn't clever enough, that someday some 

genius will find a contradiction? 
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On the other hand, can it be proved that hyperbolic geometry is 

consistent-can it be proved that there is no possible way to derive a 

contradiction? 

We might ask the same question about Euclidean geometry: How 

do we know it is consistent? Of course, this was never a burning ques

tion before the discovery of non-Euclidean geometry simply because 

everyone believed Euclidean geometry to be consistent since it was sup

posedly an idealization of physical space. Remarkably enough, if we 

make this belief an explicit assumption, it is possible to give a proof 

that hyperbolic geometry is consistent. 

METAMATHEMATICAL THEOREM 1. If Euclidean geometry is consis

tent, then so is hyperbolic geometry. 

Granting this result for the moment, we get the following important 

corollary. 

COROLLARY. If Euclidean geometry is consistent, then no proof or dis

proof of Euclid's parallel postulate from the axioms of neutral geome

try will ever be found-Euclid's parallel postulate is independent of the 

other postulates. 

PROOF: 

To prove the corollary, assume on the contrary that a proof in neu

tral geometry of Euclid's parallel postulate exists. Then hyperbolic 

geometry would be inconsistent since one of its theorems (the nega

tion of Euclid V) contradicts a proved result (recall that neutral 

geometry is part of hyperbolic geometry). But Metamathematical 

Theorem 1 asserts that hyperbolic geometry is consistent relative to 

Euclidean geometry. This contradiction proves that no neutral proof 

of Euclid's parallel postulate exists (RAA). The hypothesis that 

Euclidean geometry is consistent ensures that no disproof exists 

either. <11111 

Thus 2000 years of efforts to prove Euclid V were in vain. 

Of course, when we say this, we are assuming the consistency of 

the venerable Euclidean geometry. Had Saccheri, Legendre, F. Bolyai, 

or any of the dozens of other scholars succeeded in proving Euclid V 

from Euclid's other axioms, with the noble intention of making Eu

clidean geometry more secure and elegant, they would have instead 

completely destroyed Euclidean geometry as a consistent body of 

thought! (I urge you, dear reader, to go over the preceding statements 
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very carefully to make sure you have understood them. If you have not 
understood, you have missed the main point of this text.)1 Euclid is 
"vindicated" by the failure of all those dedicated mathematicians who 
arduously attempted to prove his fifth postulate from his other postu
lates; the independence of Euclid V (assuming consistency) shows 
that his insight was profound in assuming a statement that is not 
"obvious." 

In the form given here, Metamathematical Theorem 1 is due to 
Eugenio Beltrami (1835-1899); a different proof was later given by Fe
lix Klein (1849-1925). Beltrami proved the relative consistency of real 
hyperbolic geometry in 1868 using differential geometry in a manner 
influenced by Riemann's new ideas. Klein recognized that projective 
geometry could be used to give another proof. In 1871 he applied the 
method to hyperbolic geometry that Arthur Cayley used in 1859 to ex
press distance and angle measure projectively for Euclidean and ellip
tic geometries. We will discuss their work in the next sections. 

To prove Metamathematical Theorem 1, we have to again ask our
selves, what is a "line" in hyperbolic geometry-in fact, what is the 
hyperbolic plane? The honest answer is that we don't know; it is just 
an abstraction. A hyperbolic "line" is an undefined term describing an 
abstract concept that resembles the concept of a Euclidean line except 
for its parallelism properties. Then how shall we visualize hyperbolic 
geometry? In mathematics, as in any other field of research, posing the 
right question is vital. 2 

The question of "visualizing" for us means finding Euclidean ob
jects that represent hyperbolic objects since we are accustomed to see
ing diagrams for Euclidean geometry. More precisely, this means find
ing a Euclidean model for hyperbolic geometry. In Chapter 2, we 
discussed the idea of models for an axiom system; there we showed 
that the Euclidean parallel postulate is independent of the axioms for 
incidence geometry by exhibiting three-point and five-point models of 
incidence geometry that do not satisfy the Euclidean parallel postulate 
and a four-point model that does. Here we want to know whether the 

1 William F. Orr has written the delightful short story "Euclid Alone," about a scientist 
who believed he had proved Euclidean geometry inconsistent; see http://www.cs. 

kun.nl/ rv freek/jordan/euclidalone.html. Some authors state flatly that hyperbolic geom

etry has been proved consistent because it has Euclidean models; it does not occur to 
them that the consistency of Euclidean geometry is a hypothesis, not a proven result. 

2 I. I. Rabi, the Nobel Prize-winning physicist, recounted that when he was a boy re

turning home from school, his mother would usually say, "Did you ask any good ques
tions in school today?" (My thanks to Robert W. Fuller for this anecdote.) 
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Euclidean parallel postulate is independent of a much larger system of 
axioms, namely, the axioms for neutral geometry (e.g., the axioms for 
a Hilbert plane plus Dedekind's axiom). We can show that it is, and 
by the same method-exhibiting models. 

Beltrami's Interpretation 
Since Beltrami's work was based on differential geometry, we can only 
sketch in broad terms what he accomplished. His 1868 paper Saggio di 

Interpretazione della Geometria Non-Euclidea ("Essay on an Interpreta
tion of Non-Euclidean Geometry") has been misrepresented by some 
popular writers. They claim that he found a model for a region of the 
real hyperbolic plane only on a certain surface in Euclidean three-space 
called the pseudosphere. He did find that. However, Beltrami also found 
a model for the entire real hyperbolic plane as a disk in �2, where hy
perbolic lines are represented by Euclidean chords but where the dis
tance function is of course not the usual Euclidean distance.3 Here is 
an excerpt from the "sales talk" Beltrami felt he needed to give to be
gin his groundbreaking study. It shows how controversial these notions 
still were in 1868. 

In recent times the mathematical public has begun to take an interest 

in some new concepts which seem destined, if they prevail, to change 

profoundly the whole complexion of classical geometry. 

These concepts are not particularly recent. The master GAUSS 

grasped them at the beginning of his scientific career, and although his 

writings do not contain an explicit exposition, his letters confirm that 

he had always cultivated them and attest his full support for the doc

trine of LOBACHEVSKY. 

Such attempts at radical innovation in basic principles are encoun

tered not infrequently in the history of ideas. Today they are a natural 

result of the critical spirit which accompanies all scientific investiga

tion. When these attempts are presented as the fruits of conscientious 

and sincere investigations, and when they receive the support of a pow

erful, undisputed authority, it is the duty of men of science to discuss 

them calmly, avoiding equally both enthusiasm and disapproval. ... 

3 See p. 11 of the English translation in John Stillwell, Sources of Hyperbolic Geometry, 
American Mathematical Society History of Mathematics Series, vol. 10, 1996. Beltrami's 

model will be explained in the following sections in a manner that does not require 

knowledge of differential geometry. 
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In this spirit we have sought, to the extent of our ability, to con

vince ourselves of the results of LOBACHEVSKY's doctrine; then, fol

lowing the tradition of scientific research, we have tried to find a real 

substrate for this doctrine, rather than admit the necessity for a new 

order of entities and concepts. 

By "a real substrate" Beltrami meant what we now call a Euclidean 

model, and having such a model provides a proof of Metamathemati

cal Theorem 1. However, Beltrami did not set out to prove the relative 

consistency of hyperbolic geometry or the independence of the Euclid

ean parallel postulate. His purpose was to show that Lobachevsky had 

not introduced strange new concepts at all, but had merely described 

the theory of geodesics on surfaces of constant negative curvature, con

cepts that were familiar to differential geometers. 

Eugenio Beltrami 

Here is another excerpt, showing that Lambert and Taurinus were 

on the right track: 

One finds many analogies between the geometries of the sphere and 

the plane-where the straight lines correspond to geodesics, i.e., great 

circles-analogies which have been noted in geometry for a long time. 



BELTRAMI'S INTERPRETATION 

If other analogies, of different type but the same origin, have not been 

given equal attention, it is probably because the idea of mapping flex

ible surfaces onto one another has not become familiar until recently . 

. . . We can explain the passage from Euclidean to non-Euclidean 

planimetry in terms of the difference between the surfaces of zero cur

vature and the surfaces of negative curvature. 

295 

What Beltrami did was map an abstract complete surface of constant 
negative curvature onto a disk in IR2, sending the geodesics of that sur
face onto chords of the disk, and then observe that the geometry was 
hyperbolic. 

The curvature of surfaces was first defined and studied in detail by 
Gauss. He formulated the concept of a geometry intrinsic to a surface, 
and his famous Theorema Egregium showed that his curvature was in
trinsic (see Appendix A). Gauss' student H.F. Minding studied surfaces 
of constant negative curvature. He gave the example of the pseudo
sphere, which is obtained by rotating a curve called a tractrix around 
its asymptote. It looks like an infinitely long horn. A tractrix is char
acterized by the property that the tangent line from any point on the 
curve to the asymptote has constant length (see Figure 7 .2). 

y 

Pseudosphere 

0 

Figure 7.2 

As was stated, the pseudosphere is not a model of the entire real 
hyperbolic plane but only a model of a horocyclic4 sector in which 
the boundary segments have been identified. Still, the pseudosphere 
made a stunning impression in helping people visualize plane hyper
bolic geometry at least locally. (Construction of the pseudosphere from 

4 Horocycles will be discussed in Chapters 9 and 10. 
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a horocyclic sector is analogous to taking a segment in the real 

Euclidean plane, taking two rays emanating from the endpoints of 

the segment, perpendicular to and on the same side of it, and then 

identifying those two rays to form an infinitely long cylinder with a 

boundary.) 

Curiously, in 1839 and 1840 when Minding and in 1857 when Co

dazzi published their research on surfaces of constant negative curva

ture, exhibiting the trigonometry on such surfaces, nobody noticed that 

their formulas were the same as Lobachevsky's until Beltrami made the 

connection, influenced by Riemann's idea of an abstract geometric sur

face. In a subsequent 1868 article, 5 Beltrami acknowledged Riemann's 

ideas and applied them to derive three different models of n-dimen

sional hyperbolic geometry. In the case where n = 2, one of those mod

els is the disk model he exhibited in the previous paper, and the other 

models (which we will discuss later in this chapter) are now named 

after Henri Poincare, who studied them in 1882 and applied them to 

complex function theory and to quadratic forms. In this second article, 

Beltrami gives a differential-geometric proof of the result discovered 

by Wachter in 1816 and shown independently by J. Bolyai and 

Lobachevsky that a horosphere in hyperbolic three-space has a con

stant curvature of zero, hence its geometry is Euclidean. Beltrami con

cludes that the formerly mysterious non-Euclidean geometry of 

Lobachevsky and J. Bolyai is now transparent from the viewpoint of 

Riemann. He says: 

Thus all the concepts of non-Euclidean geometry are perfectly matched 

in the geometry of a space of constant negative curvature. It remains 

to observe only that whereas the concepts of planimetry receive a true 

and proper interpretation, because they are constructible on a real sur

face, those which embrace three dimensions are susceptible only to an 

analytic representation. . . . Experience does not seem to accord with 

the results of this more general geometry .... It could be, however, 

that the triangles we have measured and the portions of space we have 

observed have been too small, just as measurements on a small por

tion of the terrestrial surface are insufficiently precise to reveal the 

sphericity of the globe. 

5 Translated by Stillwell as "Fundamental Theory of Spaces of Constant Curvature," ibid., 

pp. 35-62. Robert Osserman, in his review of Gray's book on Bolyai, states that over

looking the importance of Beltrami's second article has been "a great historical wrong." 

See also John Milnor, 1982, "Hyperbolic Geometry: The First 150 Years," Bulletin of 
the American Mathematical Sodety (N.S.) 6: 9-24. 
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Eugenio Beltrami (1835-1899) made other important contributions to 
differential geometry, analysis, and physics.6 It was he who, in 1889, 

resurrected the long-neglected work of Saccheri. 

The Beltrami-Klein Model 

Felix Klein (1849-1925), in an 1871 article with the translated title 
"On the So-called Non-Euclidean Geometry,"7 presented the Beltrami 
disk model via projective geometry. His formulation is simpler, more 
general, and more widely known, so the model has come to be named 
after him. If you read Major Exercise 13 in Chapter 6 on the proj
ective completion of the hyperbolic plane, you will understand the 
motivation for the Klein model. Instead of constructing the projective 
plane from the hyperbolic plane, Klein does the reverse. We will not 

follow Klein exactly because our purpose is to construct a model 
within a Euclidean plane, which itself has a completion to a proj
ective plane. But the basic idea is Klein's. 

Felix Klein was a master of many branches of mathematics and a 
very influential teacher. His history of nineteenth-century mathematics 
shows how familiar he was with all aspects of the subject. Klein's fa
mous inaugural address in 1872, his Erlanger Programme, made the 
study of groups of transformations and their invariants the key to geom
etry (see Chapter 9); this work emerged out of his collaboration with 
Sophus Lie. Klein's lectures on non-Euclidean geometry, published in 
1928 after his death, are masterpieces of exposition. His work on com
plex function theory was a major mathematical contribution, summa
rized in the four volumes he wrote jointly with Robert Fricke. Poin
care, who competed with Klein in the study of automorphic functions, 
named the groups which occur in that theory after Klein; those groups 
are still an active area of research today. 

While Abel had shown that the general polynomial equation of de
gree 5 could not be solved by radicals, Klein used the symmetry group 
of the icosahedron and elliptic modular functions to solve it. In topol
ogy, there is a compact nonorientable surface called the "Klein bottle"; 
it cannot be embedded in Euclidean three-space without crossing it
self. Another surface for the study of which he is famous is the "Klein 

6 See, for example, http://www-groups.dcs.st-and.ac.uk/�history/Mathematicians/ 
Beltrami.html and the references therein. 

7 Stillwell, ibid., pp. 63-111. 
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Felix Klei.n 

quartic." Klein also very actively worked to improve mathematical 

teaching.8 

For the Klein model, we fix once and for all a circle y in a Euclid

ean plane (Cayley called y the "absolute"). If 0 is the center of y and 

OR is a radius, the interior of y by definition consists of all points X 

such that OX< OR. In Klein's model, the points in the interior of y 

represent the points of the hyperbolic plane. 

Recall that a chord of y is a segment AB joining two points A 

and B on y. We wish to consider the segment without its endpoints, 

which we will call an open chord and denote by A)(B. In Klein's 

model the open chords of y represent the lines of the hyperbolic 

plane. The relation "lies on" is represented in the usual sense: P lies 
� 

on A) (B means that P lies on the Euclidean line AB and P is be-

tween A and B. The hyperbolic relation "between" is represented by 

the usual Euclidean relation "between." This much is easy. The rep

resentation of "congruence" is much more complicated, and we will 

8 See http://wwwgroups.dcs.stand.ac.uk/�history/Mathematicians/Klein.html and the 
references therein for more detail about the life and work of Klein. See the last section 
of Chapter 8 for more on the Klein quartic. 
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discuss it later on in this chapter (The Projective Nature of the 

Beltrami-Klein Model). 

It is immediately clear from Figure 7.3 that the negation of Hilbert's 

Euclidean parallel postulate holds in this representation. 

Figure 7.3 

Here the two open chords m and n through P are both parallel to 

the open chord l-for what does "parallel" mean in this representation? 

The definition of "parallel" states that two lines are parallel if they have 

no point in common. In Klein's representation, this becomes: Two open 

chords are parallel if they have no point in common (in the definition 

of "parallel," replace the word "line" by "open chord"). The fact that 

the three chords, when extended, may meet outside the circle y is 

irrelevant-points outside of y do not represent points of the hyper

bolic plane. So let us summarize the Beltrami-Klein proof of the rela

tive consistency of hyperbolic geometry as follows. 

First, a glossary is set up to "translate" the five undefined terms 

("point," "line," "lies on," "between," and "congruent") into their in

terpretations in the Euclidean model (we have done this for the first 

four terms). All the defined terms are then interpreted by "translating" 

all occurrences of undefined terms. For instance, the defined term "par

allel" was interpreted by replacing every occurrence of the word "line" 

in the definition by "open chord." Once all the defined terms have been 

interpreted, we have to interpret the axioms of the system. Incidence 

Axiom 1, for example, has the following interpretation in the Klein 

model. 

INCIDENCE AXIOM 1 (KLEIN). Given any two distinct points A and 

B in the interior of circle y. There exists a unique open chord l of y 

such that A and B both lie on l. 
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We must prove that this is a theorem in Euclidean geometry (and 

similarly, prove the interpretations of all the other axioms). Once all 

the interpreted axioms have been proved to be theorems in Euclidean 

geometry, any proof of a contradiction within hyperbolic geometry 

could be translated by our glossary into a proof of a contradiction in 

Euclidean geometry. From our assumption that Euclidean geometry is 

consistent, it follows that no such proof exists. Thus if Euclidean geom

etry is consistent, so is hyperbolic geometry. 

We must now backtrack and prove that the interpretations of the 

axioms of hyperbolic geometry in the Klein model are theorems in Eu

clidean geometry. Let us prove Axiom 1-1 (Klein) stated above. 

PROOF: 
� 

Given A and B interior to y. Let AB be the Euclidean line through 

them (see Figure 7 .4). This line intersects y in two distinct points 

C and D. Then A and B lie on the open chord C) (D, and, by Ax

iom 1-1 for Euclidean geometry, this is the only open chord on which 

they both lie . .,.. 

c 

Figure 7.4 

Figure 7.5 Limiting parallel rays. 
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In the second step of the proof, we used the line-circle continuity 

principle of Euclidean geometry, which states that a line passing through 

the interior of a circle intersects the circle in two distinct points. This 

can be proved from the circle-circle continuity principle (see Major Ex

ercise 1, Chapter 4). Verifications of the interpretations of the other in

cidence axioms, the betweenness axioms, and Dedekind's axiom (if the 

Euclidean plane is real) are left as exercises; the congruence axioms 

are verified later in this chapter. 

One nice aspect of the Klein model is that it is easy to visualize 

the limiting parallel rays (see Figure 7 .5). Let P be a point interior 

to y and not on the open chord A)(B. A and B are points on the cir

cle and therefore do not represent points in the hyperbolic plane; 

they represent ideal points and are called the ends of the hyperbolic 

line represented by A) (B. Then the limiting parallel rays to A) (B from 

P are represented by the segments PA and PB with the endpoints A 

and B omitted. It is clear that any ray between these limiting paral

lel rays intersects the open chord A) (B, whereas all other rays ema

nating from P do not. The symmetry and transitivity of limiting par

allelism are utterly obvious in the Klein model, as is the fact that 

every angle has a line of enclosure (given <i:QPR, if A is the end of 
� � 

PQ and B is the end of PR, then A) (B is the line of enclosure of 

<i:QPR). Thus four fundamental theorems of axiomatic real hyper

bolic geometry, whose proofs were fairly difficult, are perfectly clear 

in the Klein model. Compare Theorem 6.2 and Major Exercises 2, 3, 

and 8, Chapter 6. 

Let us conclude this section by considering the interpretation in the 

Klein model of "congruence," the subtlest part of the model. One 

method of interpretation is to use a system of numerical measurement 

of angle degrees and segment lengths. Two angles would then be in

terpreted as congruent if they had the same number of degrees, and 

two segments would be interpreted as congruent if they had the same 

length. The catch is that Euclidean methods of measuring degrees and 

lengths cannot be used. If we use Euclidean length, for example, then 

every line (i.e., open chord) would have a finite length less than or 

equal to the length of a diameter of y. This would invalidate the in

terpretations of Axioms B-2 and C-1, which ensure that lines are infi

nitely long. 

We will further discuss the matter in this chapter (in the sections 

Perpendicularity in the Beltrami-Klein Model and The Projective Na

ture of the Beltrami-Klein Model), but first let's consider the Poincare 

models, in which congruence of angles is easier to describe. 
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The Poincare Models 

A disk model due to Henri Poincare (1854-1912) also represents points 

of the hyperbolic plane by the points interior to a Euclidean circle y, 

but lines are represented differently. First, all open chords that pass 

through the center 0 of y (i.e., all open diameters l of y) represent 

lines. The other lines are represented by open arcs of circles orthogonal 

to y. More precisely, let 8 be a circle orthogonal to y (at each point of 

intersection of y and 8 the radii of y and 8 through that point are per

pendicular ). Then intersecting 8 with the interior of y gives an open 

arc m, which by definition represents a hyperbolic line in the Poincare 

model. So we will call Poincare line, or "P-line," either an open diam

eter l of y or an open circular arc m orthogonal to y (see Figure 7 .6). 

A point interior to y "lies on" a Poincare line if it lies on it in the 

Euclidean sense. Similarly, "between" has its usual Euclidean inter

pretation (for A, B, and Con an open arc coming from an orthogonal 
� � 

circle 8 with center P, B is between A and C if PB is between PA 
� 

and PC). 

The interpretation of congruence for segments in the Poincare model 

is complicated, being based on a way of measuring length that is dif-

Henri Poincare 
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0 

Figure 7.6 

A 

Figure 7.7 

Figure 7.8 

ferent from the usual Euclidean way, just as in the Klein model (see 

p. 320). Congruence for angles has the usual Euclidean meaning, how

ever, and this is the main advantage of the Poincare model over the Klein 

model. 9 Specifically, if two directed circular arcs intersect at a point A, 

the number of degrees in the angle they make is by definition the num

ber of degrees in the angle between their tangent rays at A (see Figure 

7.7). Or, if one directed circular arc intersects an ordinary ray at A, the 

number of degrees in the angle they make is by definition the number 

9 Technically, we say that the Poincare model is confonnal-meaning it represents an
gles accurately-while the Klein model is not. Another example of a conformal model 
is Mercator's map of the surface of the earth. 
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of degrees in the angle between the tangent ray and the ordinary ray 

at A (see Figure 7.8). 

Having interpreted all the undefined terms of hyperbolic geometry 

in the Poincare model, we get (by substitution) interpretations of all 

the defined terms. For example, two Poincare lines are parallel if and 

only if they have no point in common. Then all the axioms of hyper

bolic geometry get translated into statements in Euclidean geometry, 

and it will be shown in the section Inversion in Circles, Poincare Con

gruence later in this chapter that these interpretations are theorems in 

Euclidean geometry. Hence the Poincare model furnishes another proof 

that if Euclidean geometry is consistent, so is hyperbolic geometry. 

The limiting parallel rays in the Poincare model are illustrated in 

Figure 7.9. Here we have chosen l to be an open diameter A)(B; the 
� 

rays are circular arcs that meet AB at A and B and are tangent to this 

line at those points. You can see how these rays approach l asymptot

ically as you move out toward the ideal points represented by A and B. 

Figure 7.9 Limiting rays. 

0 

Figure 7.10 Divergent parallels. 
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Figure 7.10 illustrates two parallel Poincare lines with a common 

perpendicular. The diagram shows how m diverges from l on either 

side of the common perpendicular PO. 

Figure 7.11 illustrates a Lambert quadrilateral. You can see that the 

fourth angle is acute. By adding the mirror image of this Lambert quadri

lateral, we get a diagram illustrating a Saccheri quadrilateral (Fig

ure 7.12). 

0 

Figure 7.11 Lambert quadrilateral. 

Figure 7.12 Saccheri quadrilateral. 

You may be surprised that we have two different models of hyper

bolic geometry, one due to Klein and the other to Poincare. (There is 

a third model, also due to Poincare, and a fourth model on one sheet 

of a hyperboloid in three-space will be described later in this chapter.) 

Yet you may have the feeling that these models are not "essentially dif

ferent." In fact, these models are isomorphic in the technical sense that 

one-to-one correspondences can be set up between the "points" and 
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"lines" in one model and the "points" and "lines" in the other so as to 

preserve the relations of incidence, betweenness, and congruence. Such 

isomorphism is illustrated in Figure 7.13. We start with the Klein model 

and consider, in Euclidean three-space, a sphere of the same radius sit

ting on the plane of the Klein model and tangent to it at the origin. We 

project upward orthogonally the entire Klein model onto the lower hemi

sphere of this sphere; by this projection, the chords in the Klein model 

become arcs of circles orthogonal to the equator. We then project stereo

graphically from the north pole of the sphere onto the original plane. 

The equator of the sphere will project onto a circle larger than the one 

used in the Klein model, and the lower hemisphere will project stereo

graphically onto the inside of this circle. Under these successive trans

formations, the chords of the Klein model will be mapped one-to-one 

onto the diameters and orthogonal arcs of the Poincare model. In this 

way the isomorphism of the models may be established. 

One can actually prove that all possible models of real hyperbolic 

geometry are isomorphic to one another, i.e., that the axioms for real 

hyperbolic geometry are categorical. The same is true for real Euclid

ean geometry. The categorical nature of real Euclidean geometry is es

tablished by introducing Cartesian coordinates into the real Euclidean 

plane. Analogously, the categorical nature of real hyperbolic geometry 

Nt 
,, 
I \ 

1\ 
----\- ' 

I \ 

I \ 

I \ 

I \ 
I \ 

I 
I 

Figure 7.13 Isomorphism of Klein and Poincare models. 
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is established by introducing Beltrami coordinates into the real hyper

bolic plane (for which real hyperbolic trigonometry must first be 

developed) .10 

In the other Poincare model mentioned here, the points of the hy

perbolic plane are represented by the points of one of the Euclidean 

half-planes determined by a fixed Euclidean line. If we use the Carte

sian model for the Euclidean plane, it is customary to make the x-axis 

the fixed line and then to use for our model the upper half-plane con

sisting of all points (x, y) with y > 0. Hyperbolic lines are represented 

in two ways: 

1. As rays emanating from points on the x-axis and perpendicular to 

the x-axis; 

2. As semicircles in the upper half-plane whose center lies on the x

axis (see Figure 7.14). 

00 

Figure 7.14 P-lines in upper half-plane model. 

Incidence and betweenness have the usual Euclidean interpretations. 

This model is conformal also (degrees of angles are measured in the 

Euclidean way). Measurement of lengths will be discussed later. 

To establish isomorphism with the previous models, choose a point 

E on the equator of the sphere in Figure 7 .13 and let II be the plane 

tangent to the sphere at the point diametrically opposite to E. Stereo

graphic projection from E to II maps the equator onto a line in II and 

the lower hemisphere onto the lower half-plane determined by this line. 

Notice that the points on this line represent ideal points. However, one 

ideal point is missing: The point E got lost in the stereographic pro

jection. It is customary to imagine an ideal "point at infinity" oo that 

corresponds to E; it is the common end of all the vertical rays. 

Like Gauss, Henri Poincare made profound discoveries in many 

branches of mathematics and physics. He even started a new branch 

10 See Chapter 10 as well as Borsuk and Szmielew (1960, Chapter 6). 
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of mathematics, algebraic topology, inventing the fundamenta l group 

and other concepts. Settling his famous conjecture about the three
sphere is one of the seven millennium problems for the solution of 
which the Clay Institute is offering a million-dollar prize. He was a pi
oneer in the currently very active field of dynamics and chaos theory, 
as well as in function theory in several complex variables. He used his 
models of hyperbolic geometry to discover new theorems about auto
morphic functions of a complex variable. There is a widely published 
account of his two experiences, while on vacation, of suddenly realiz
ing that the transformations he had used to define Fuchsian functions 
and the arithmetic transformations of ternary quadratic forms are iden
tical to those of hyperbolic geometry.11 This epiphany solidified the ac
ceptance of hyperbolic geometry by the mathematics community and led 
to very important further research still ongoing today (see the last section 
of Chapter 8). Poincare made major contributions to several branches 
of mathematical physics, particularly celestial mechanics. He was nearly 
a co-discoverer with Einstein of the theory of relativity in physics. Poin
care is also important as a philosopher of science (Chapter 8 has a dis
cussion of his conventionalist philosophy of mathematics ) .12 

Perpendicularity in the Beltrami-Klein Model 
The Klein model is not conformal. Congruence of angles is interpreted 
differently from the usual Euclidean way and will be explained later in 
this chapter. Here we will describe only those angles that are congru
ent to their supplements, namely, right angles. 

Let land m be open chords of y. To describe when l 1- m in the 
Klein model, there are two cases to consider: 

- CASE 1. One of l and m is a diameter. Then l 1- m in the Klein 
sense if and only if l 1- min the Euclidean sense (see Figure 7.15). 

- CASE 2. Neither l norm is a diameter. In this case, we associate 
with la certain point P(l) outside of y called the pole of land defined 

11 See, for example, "Mathematical Creation," in vol. 4 of The World of Mathematics, 
J. R. Newman, ed., Allen & Unwin Ltd., London, 1960, pp. 2041-2050. 

12 See http://www-groups.dcs.st-and.ac. uk/� history /Mathematicians/Poincare.html, 
http://www.utm.edu/research/iep/p/poincare.htm and the references therein for more 

detail about the life and work of Henri Poincare, who was the cousin of the president 
of France, Raymond Poincare. Also see The Poincare Conjecture by D. O'Shea (Walker, 
2007). 
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0 

Figure 7.15 

as follows. Let ti and t2 be the tangents to y at the endpoints of l. Then 

by definition P(l) is the unique point common to ti and t2 (ti and t2 

are not parallel because l is not a diameter); see Figure 7.16. 

It turns out that l is perpendicular to m in the sense of the Klein 

model if and only if the Euclidean line extending m passes through the 

pole of l. 

This description of perpendicularity will be justified later. We can 

use it to see more easily why divergently parallel lines have a com

mon perpendicular. We are given two parallel lines that are not 

asymptotically parallel. In the Klein model, this means that we are 

given open chords l and m that do not intersect and do not have a 

common end. How do we find their common perpendicular k? Let's 

discuss case 2, leaving case 1 as an exercise. By the above descrip

tion of perpendicularity, if k were perpendicular to both l and m, 

the extension of k would have to pass through the pole of l and the 

pole of m. Hence to construct k, we need only join these poles by a 

P(l) 

Figure 7.16 m is Klein perpendicular to l. 
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P(m) 

Figure 7.17 k is Klein perpendicular to l and m. 

Euclidean line and take k to be the open chord of y cut out by this 

line (Figure 7 .17) . 13 

We will use the language of the projective completion, Major Ex

ercise 13, Chapter 6, to describe the behavior of pairs of lines in the 

Klein model. Let us call the points inside circle y (which represent all 

the points in the hyperbolic plane) ordinary points. We already called 

the points on the circle y ideal points. Let us call the points outside y 

ultra-ideal points. Finally, for every diameter of y, let us add the point 

"at infinity" such that all the Euclidean lines parallel in the Euclidean 

sense to this diameter meet in this point at infinity in the projective 

completion of the Euclidean plane (see Chapter 2). These points at in

finity will also be called ultra-ideal. We can then say that two Klein 

lines "meet" at an ordinary point, an ideal point, or an ultra-ideal point, 

depending on whether they are intersecting, asymptotically parallel, or 

divergently parallel, respectively. The ultra-ideal point at which diver

gently parallel Klein lines l and m "meet" is the pole P(k) of their com

mon perpendicular k (see Figure 7 .17). 

This language is suggestive of further theorems in hyperbolic geom

etry. For example, we know that two ordinary points determine a unique 

line, and we have seen that two ideal points also determine a unique 

line, the line of enclosure of Major Exercise 8, Chapter 6. We can ask 

the same question about two points that are ultra-ideal or about two 

points of different species. For example, an ordinary point and an ideal 

13 If land m did have a common end n, the Euclidean line joining P(l} and P(m) would 
be tangent to 'Y at n. That is why Saccheri claimed that asymptotically parallel lines 
have "a common perpendicular at infinity," and this he found repugnant. 
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Figure 7.18 

Ultra-ideal 
-=........----�-----------

' ' ' ' '
-.....Ultra-ideal 

' ' 

or ultra-ideal point always determine a unique ordinary line, but two 

ultra-ideal points may or may not (see Figure 7.18). Let us translate 

back from this language, say, in the case of an ordinary point 0 and 

an ultra-ideal point P(l) that is the pole of a Klein line l. What is the 

Klein line "joining" 0 to P(l)? It is the unique Klein line m through 0 
that is perpendicular in the sense of the Klein model to the line l (see 

Figure 7.16). We leave the other cases for exercises. 

If you did most of the exercises in hyperbolic geometry in Chapter 

6, deriving results without having reliable diagrams to guide you, the 

Klein and Poincare models must come as a great relief. It is a useful 

exercise to take an absurd diagram like Figure 6.22 and draw those di

vergently parallel perpendicular bisectors of the triangle more accu

rately in one of the models. It is amazing that J. Bolyai and Lobachevsky 

were able to visualize hyperbolic geometry without such models, es

pecially since they worked in three dimensions. They must have had 

non-Euclidean eyesight. 

A Model of the Hyperbolic Plane from Physics 
This model comes from the theory of special relativity. In Cartesian 

three-space !R3, with coordinates denoted x, y, and t (for time), dis

tance will be measured by the Minkowski metric 

ds2 = dx2 + dy2 - dt2• 

Then with respect to the Minkowski metric, the surface of equation 

x2 + y2 - t2 = -1 
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is a "sphere" centered at the origin 0 = (O, 0, O) of imaginary radius 
i = v=l. (As was mentioned in Chapter 5, Lambert was the first to 
wonder whether such a model existed.) In Euclidean terms, it is a two
sheeted hyperboloid (surface of revolution obtained by rotating the hy
perbola t2 - x2 = 1 around the x-axis). We choose the sheet �: t > 1 
as our model. It looks like an infinite bowl (see Figure 7.19). Analo
gously with our interpretation of "lines" on a sphere in Chapter 2, Ex
ercise lO(c), "lines" are interpreted to be the sections of� cut out by 
planes through O; thus a "line" is one branch of a hyperbola on �. 

Here is an isomorphism of� with the Beltrami-Klein model a. The 
plane t = 1 is tangent to � at the point C = (O, 0, 1). Let a be the unit 
disk centered at C in this plane. Projection from 0 gives a one-to-one 
correspondence between the points of a and the points of � (i.e., point 

� 

P of a corresponds to the point P' at which ray OP pierces �). Simi-
larly, each chord m of a lies on a unique plane II through 0, and m 

Figure 7.19 Isomorphism of Klein and hyperboloid models. 
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corresponds to the section m' of� cut out by II. This isomorphism of 

incidence models can be used to interpret betweenness and congruence 

on�. Alternatively, they can be defined in terms of the measurement 
of arc length induced on � by the Minkowski metric; then further ar

gument is needed to verify that our correspondence is indeed an iso
morphism of models of hyperbolic geometry. Another justification of� 
as a model of the hyperbolic plane will be given analytically in Chap

ter 10 (see the discussion of Weierstrass coordinates in the section Co
ordinates in the Hyperbolic Plane). 

NOTE. From the point of view of Einstein's special relativity theory, 

� can be identified with the set of plane uniform motions, and the hy
perbolic distance can be identified with the relative velocity of one mo

tion with respect to the other. A glossary can be set up to translate 
every theorem of hyperbolic geometry into a theorem of relativistic 

kinematics, and conversely. See Yaglom (1979, p. 225 ff.). See also 
Chapter 10 of Ramsay and Richtmyer (1995) for a more detailed dis

cussion of this model and its relation to special relativity. 

Inversion in Circles, Poincare Congruence 
In order to define congruence in the Poincare models and verify the 

axioms of congruence, we must study inversion in a Euclidean circle; 

when interpreted in the model, this transformation turns out to be re

flection across a line in the hyperbolic plane. This theory is part of Eu

clidean geometry and is called inversive geometry. It originated with 
Apollonius in ancient Greece and was developed much further by Jakob 

Steiner in the 1820s and by August Mobius in the 1850s, among 
others. 

Steiner was a purist about using only synthetic methods in geome
try, considering that calculation replaces thinking whereas geometry 
stimulates thinking. While our development will be primarily synthetic, 

we will not be so austere as Steiner and will occasionally use coordi
nate methods available to us in �2. This is justified by Major Exercise 

8, Chapter 5, which showed, using the Pythagorean equation, that a 
real Euclidean plane must be isomorphic to �2. (Almost everything we 

do works just as well in F2, where Fis any Euclidean field.) We will 

use the results on similarity and circles proved for a real Euclidean 

plane in the exercises toward the end of Chapter 5. 
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DEFINITION. Let y be a circle of radius r, center 0. For any point 

P i=- 0 the inverse P' of P with respect to y is the unique point P' on 
� - -

ray OP such that (OP) (OP') = r2 (see Figure 7.20). 

The following properties of inversion are immediate from the 

definition. 

PROPOSITION 7 .1. (a) P = P' if and only if P lies on the circle of in

version y. (b) If P is inside y, then P' is outside y; if P is outside y, 

then P' is inside y. (c) (P')' = P. 

0 p P' 

Figure 7.20 

P' 

Figure 7.21 

DEFINITION. If TU is a chord of circle y which is not a diameter, then 

the pole of TU is the point of intersection of the tangents to y at T and 

U (see Figure 7.21). That point exists because TU is a transversal to 

those tangents satisfying the hypothesis of Euclid V. 

The next two propositions tell how to construct the inverse point 

with a straightedge and compass. 
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PROPOSITION 7.2. Suppose Pi=- 0 is inside y. Let TU be the chord of 
� 

y through P, which is perpendicular to OP. Then the inverse P' of P is 

the pole of chord TU (see Figure 7.21). 

PROOF: 
� 

Suppose the tangent to y at T cuts OP at point P'. Right triangle 

.6:.0PT is similar to right triangle .6:.0TP' (since they have <i:TOP in 

common and the angle sum is 180°). Hence corresponding sides are 

proportional (Exercise 10, Chapter 5). Note that OT = r, so we get 
- -

(OP)/r = r/(OP'), which shows that P' is inverse to P. Reflecting 
� 

across OP (Major Exercise 2, Chapter 3), we see that the tangent to 

y at U also passes through P', so P' is indeed the pole of TU. <11111 

PROPOSITION 7.3. If P is outside y, let Q be the midpoint of segment 
- -

OP. Let <T be the circle wit�center � and radius OQ = QP. Then <T cuts 

y in two points T and U, PT and PU are tangent to y, and the inverse 

P' of P is the intersection of TU and OP (see Figure 7 .22). 

Figure 7.22 

PROOF: 

By the circle-circle continuity principle (Chapter 3), <Tandy do meet 

in two points T and U. Since <i:OTP and <i:OUP are inscribed in semi-
� 

circles of u, they are right angles (Exercise 16, Chapter 5); hence PT 
� 

and PU are tangent to y. If TU meets OP in a point P', then P is the 

inverse of P' (Proposition 7 .2); hence P' is the inverse of P in y. <11111 

The next proposition shows how to construct the Poincare line join

ing two ideal points-the line of enclosure of <i:TOU in Figure 7.23. 

PROPOSITION 7 .4. Let T and U be points on y that are not diametri

cally opposite and let P be the pole of TU. Then we have PT� PU, 
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y 

Figure 7.23 

� � 

<}:'.PTU � <}:PUT, OP J_ TU, and the circle 8 with center P and radius 
- -

PT = PU cuts 'Y orthogonally at T and U (see Figure 7 .23). 

PROOF: 

By the definition of pole, <}:OTP and <}:'.OUP are right angles; so by 

the hypotenuse-leg criterion, �OTP� �OUP. Thus PT� PU and 

<}:OPT� <}:'.OPU. The base angles <}:'.PTU and <}:PUT of the isosceles 
� 

triangle � TPU are then congruent, and the angle bisector PO is per-

pendicular to the base TU. The circle 8 is then well defined because 
- -- � 

PT = PU and 8 cuts 'Y orthogonally by our hypothesis that PT and 
� 

PU are tangent to 'Y· <11111 

LEMMA 7.1. Given that point 0 does not lie on circle 8. (a) If two 

lines through 0 intersect 8 in pairs of points (Pi. P2) and (Qi, Q2), re-
- - ----

spectively, then (0Pi)(OP2) = (OQi)(OQ2). This common product is 

called the power of 0 with respect to 8 when 0 is outside 8, and mi

nus this product is called the power of 0 when 0 is inside 8. (b) If 0 

is outside 8 and a tangent to 8 from 0 touches 8 at point T, then (OT)2 

equals the power of 0 with respect to 8. 

PROOF: 

(a) Since angles that are inscribed in a circle and subtend the same 

arc are congruent (Exercise 17, Chapter 5), we have 

<}:'.P2P1Q2 � <}:'.P2Q1Q2 

<}:'.P1Q2Q1 � <}:'.P1P2Q1 
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(see Figure 7.24). It follows that �QP1Q2 and �QQ1P2 are similar, 
- -- -- -

so that (QP1)/(QQ1) = (QQ2)/(QP2), as asserted. 

(b) Let C be the center of 8 and let line QC cut 8 at P1 and P2, with 

Q * P 1 * C * P 2. By the Pythagorean theorem, 

(QT)2 
= (QC)2 - (CT)2 

= (QC - CT) (QC + CT) 

(see Figure 7 .25.) . .,.. 

0 

Figure 7.24 

Figure 7.25 

PROPOSITION 7 . S . Let P be any point that does not lie on circle 'Y 

and that does not coincide with the center Q of y, and let 8 be a cir

cle through P. Then 8 cuts 'Y orthogonally if and only if 8 passes through 

the inverse point P' of P with respect to 'Y· 
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PROOF: 

Suppose first that 8 passes through P'. Then the center C of 8 lies 
on the perpendicular bisector of PP' (Exercise 17, Chapter 4); hence 
- -

CO> CP (Exercise 27, Chapter 4) and 0 lies outside 8. Therefore, 
there is a point T on 8 such that the tangent to 8 at T passes through 
0 (Proposition 7.3). Lemma 7.l(b) then gives (OT)2 = (OP)(OP') = 

r2, so that T also lies on y and 8 cuts y orthogonally. 
Conversely, let 8 cut y orthogonally at points T and U. Then the 

tangents to 8 at T and U meet at 0, so that 0 lies outside 8. It fol
� 

lows that OP cuts 8 again at a point Q. By Lemma 7.l(b), we have 
r2 = (OT)2 = (OP) (OQ), so that Q = P', the inverse of P in y . .,.. 

COROLLARY. Let P be as in Proposition 7.5. Then the locus of the cen
ters of all circles 8 through P orthogonal to y is the line l, which is the 
perpendicular bisector of PP'. If P is inside y, then l is a line in the ex
terior of y. Conversely, let l be any line in the exterior of y, let C be 
the foot of the perpendicular from 0 to l, let 8 be the circle centered 
at C which is orthogonal to y (constructed as in Proposition 7.3), and 
let P be the intersection of 8 with OC; then l is the locus of the cen
ters of all circles orthogonal to y that pass through P. 

PROOF: 

Any 8 orthogonal to y must pass through P and P', so its center C 
must be equidistant from P and P'. The locus of all such C is the 
perpendicular bisector of PP'. As we have seen, the center of any 
circle 8 orthogonal to y lies outside y. We leave the converse as an 
easy exercise. .,.. 

Proposition 7.5 can be used to construct the P-line joining two points 
P and Q inside y that do not lie on a diameter of y. First, construct the 
inverse point P', using Proposition 7.2. Then construct the circle 8 de
termined by the three noncollinear points P, Q, and P' (use Exercise 10, 
Chapter 6). By Proposition 7.5, 8 will be orthogonal to y; intersecting 8 

with the interior of y gives the desired P-line. This verifies the interpre
tation of Axiom 1-1 for the Poincare disk model. The verification is even 
simpler for the Poincare upper half-plane model: Given two points P and 
Q that do not lie on a vertical ray, let the perpendicular bisector of Eu
clidean segment PQ cut the x-axis at C. Then the semicircle centered at 
C and passing through P and Q is the desired P-line. 

We could also have verified the interpretations of the incidence ax
ioms, the betweenness axioms, and Dedekind's axiom by using iso-
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morphism with the Klein model (where the verifications are trivial). 

The advantage of the argument we gave is that it provides an explicit 

construction, and constructions are a main theme of this section. 

We turn now to the congruence axioms. Since angles are measured 

in the Euclidean sense in the Poincare models, the interpretation of Ax

iom C-5 is trivially verified. Consider Axiom C-4, the laying off of a 

congruent copy of a given angle at some vertex A (for the disk model). 

If A is the center of y, the angle is formed by diameters and the lay

ing off is accomplished in the Euclidean way. If A is not the center 0 

of y, then the verification is a matter of finding a unique circle 8 through 

A that is orthogonal to y and tangent to a given Euclidean line l that 

passes through A and not through 0 (since the tangents determine the 

angle measure). By Proposition 7 .5, 8 must pass through the inverse 

A' of A with respect to y. The center C of 8 must lie on the perpendi

cular bisector of chord AA' (Exercise 17, Chapter 4); call this bisector 

m. If 8 is to be tangent to l at A, then C must also lie on the perpen

dicular n to l at A. So 8 must be the circle whose center is the inter

section C of m and n and whose radius is CA (see Figure 7 .26). 

To define congruence of segments in the disk model, we introduce 

the following definition of length. 

DEFINITION. Let A and B be points inside y and let P and Q be the 

ends of the P-line through A and B. We define the cross-ratio (AB, PQ) 

by 

"( 

Figure 7.26 

(AP)(BQ) 
(AB, PQ) = 

(BP) (AQ) 
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where, for example, AP is the Euclidean length of the Euclidean seg
ment AP). We then define the Poincare length d(AB) by 

d(AB) = llog(AB, PQ) I. 

IMPORTANT REMARK. This definition makes no sense for Euclidean 
planes coordinatized by an arbitrary Euclidean field F because there is 
no log function defined for such fields as there is for any Euclidean 
subfield of IR. The only reason for introducing the log here is for the 
length to be additive, as is customary and as will soon be proved. The 
logarithm function converts multiplication into addition, but why is it 
necessary to do that? We could just as well have length be multiplica
tive, as it would be if we simply used the cross-ratio and dispensed 
with the logarithm, with one proviso: The order in which we write the 
letters (AB, PQ) matters. It doesn't matter when we bring in the ab
solute value of the log, as we will soon show. So to use (AB, PQ) as 
our multiplicative P-length for P-segment AB, we must specify that on 
the circular arc which is the P-line joining A to B, A lies between P 
and B. Then B lies between A and Q, and by this convention the mul
tiplicative P-length is also equal to (BA, QP), as a little algebra shows. 
The multiplicative length is denoted µ.(AB) .14 We leave it to the reader 

to verify that everything we do with the additive version of P-length works 

equally well with the multiplicative definition just given when the for

mulas are adjusted appropriately; hence our results are also valid for ar

bitrary Euclidean fields. 

P-length d(AB) does not depend on the order in which we write P 
and Q: If (AB, PQ) = x, then we have (AB, QP) = l/x, and therefore 
llog(l/x)I =I-log xi= llog xl. Furthermore, since (AB, PQ) =(BA, QP), 
we see that d(AB) also does not depend on the order in which we write 
A and B. 

We may therefore interpret the Poincare segments AB and CD to be 
Poincare-congruent if d(AB) = d(CD). With this interpretation, Axiom 

C-2 is immediately verified. 
Suppose we fix the point A on the P-line from P to Q and let point 

B move continuously from A to P, where Q * A * B * P, as in Figure 
7.27. The cross-ratio (AB, PQ) will increase continuously from 1 to oo 

- - - -

since (AP)/(AQ) is constant, BP approaches zero, and BQ approaches 
PQ. If we fix B and let A move continuously from B to Q, we get the 

14 Robin Hartshorne introduced this very valuable notion, which will be exploited in Ap

pendix B-see his Section 39. He described the cross-ratio as "magic" because one 

cannot visualize it geometrically. It is the fundamental invariant for coordinate pro

jective geometry (Exercise 68, Chapter 9}. 
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� 
same result. It follows immediately that for any Poincare ray CD, there 

� 
is a unique point E on CD such that d(CE) = d(AB), where A and B 

are given in advance. This verifies Axiom C-1. 

'Y 
B 

Figure 7.27 

REMARK. The argument just given is valid only for the real Euclid

ean plane because it appeals to the intermediate value theorem for con

tinuous functions of a real variable. An argument that works for arbi

trary Euclidean planes will be given after the sublemma following 

Theorem 7 .1. 

We next verify Axiom C-3. This will follow immediately from the 

additivity of the Poincare length, which asserts that if A * C * B in the 

sense of the disk model, then d(AC) + d(CB) = d(AB). To prove this 

additivity, label the ends so that Q *A * B * P. Then the cross-ratios 

(AB, PQ), (AC, PQ), and (CB, PQ) are all greater than 1 (because AP > 
-- -

BP, BQ > AQ, etc.); their logs are thus positive, and we can drop the 

absolute value signs. We have 

d(AC) + d(CB) = log(AC, PQ) + log(CB, PQ) 

= log[(AC, PQ) (CB, PQ)], 

but (AC, PQ) (CB, PQ) = (AB, PQ), as can be seen by canceling terms. 

Finally, to verify Axiom C-6 (SAS), we must study the effect of in

versions on the objects and relations in the disk model. 

DEFINITION. Let 0 be a point and k a positive number. The dilatwn 

with center 0 and ratw k is the transformation of the Euclidean plane 
� 

that fixes 0 and maps a point P -=f=. 0 onto the unique point P* on OP 
-- --

such that OP* = k(OP) (so that points are moved radially from 0 a dis-

tance k times their original distance) . 

LEMMA 7.2. Let 8 be a circle with center C -=f=. 0 and radius s. Under 

the dilation with center 0 and ratio k, 8 is mapped onto the circle 8* 
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with center C* and radius ks. If Q is a point on 8, the tangent to 8* at 

Q* is parallel to the tangent to 8 at Q. 

PROOF: 

Choose rectangular coordinates so that 0 is the origin. Then the di

lation is given by (x, y) � (kx, ky). The image of the line having 

equation ax + by = c is the line having equation ax + by = kc; 
� 

hence the �ma&e is parallel to the original line. In particular, CQ is 

parallel to C*Q*, and their perpendiculars at Q and Q*, respectively, 

are also parallel. If 8 has equation (x - ci)2 + (y - c2)2 = s2, then 

8* has equation (x - kci)2 + (y - kc2)2 = (ks)2, from which the 

lemma follows. ..,.. 

REMARK. The argument just given uses analytic geometry for the first 

time. It is quicker than a synthetic argument, which can also be given. 

PROPOSITION 7 .6. Let 'Y be a circle of radius r and center 0, 8 a cir

cle of radius s and center C. Assume that 0 lies outside 8; let p be the 

power of 0 with respect to 8 (see Lemma 7.1). Let k = r2/p. Then the 

image 8' of 8 under inversion in 'Y is the circle of radius ks whose cen

ter is the image C* of C under the dilation from 0 of ratio k. If P is 

any point on 8 and P' is its inverse in 'Y· then the tangent t' to 8' at P' 

is the reflection across the perpendicular bisector of PP' of the tangent 

to 8 at P (see Figure 7 .28). 

PROOF: 
� 

Since 0 is outside 8, OP either cuts 8 in another point Q or is tan-

gent to 8 at P (in which case let Q = P). Then 

OP' OP' OP r2 
OQ OQ OP p 

which shows that P' is the image of Q under the dilation from 0 of 

ratio k = r2/p. Hence 8* = 8'. By Lemma 7.2, the tangent t' to 8' 

at P' is parallel to the tangent u to 8 at Q. Let t be tangent to 8 at 

P. By Proposition 7.4, t and u meet at a point R such that <}::RQP -

<}::RPQ. Then t and t' meet at a point S such that <}::SP'P - <}::SPP' 

by transitivity of congruence and corresponding angles of parallel 

lines in a Euclidean plane. Since 6.PSP' is an isosceles triangle (base 

angles are congruent), S lies on the perpendicular bisector of PP'. 

Hence t' is the reflection of t across this perpendicular bisector. ..,.. 
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0 

Figure 7.28 

COROLLARY. Circle 8 is orthogonal to circle "Y if and only if 8 is mapped 

onto itself by inversion in "Y· 

PROOF: 

If 8 is orthogonal to "Y and P lies on 8, then p = (OP)(OP') = r2 

(Proposition 7.5 and Lemma 7.1), so k = 1 and 8 = 8'. Conversely, 

if 8 = 8', then p = r2 and 8 passes through the inverse P' of P in 

y, so that by Proposition 7.5, 8 is orthogonal to "Y· <11111 

LEMMA 7 .3. Let 0 be the center of circle y, let P and Q be two points 

that are not collinear with 0, and let P' and Q' be their inverses in "Y· 

Then �POQ is similar to �Q'OP' (Figure 7.29). 

PROOF: 

The triangles have <}:POQ in common and we have (OP) (OP') = 

r2 = (OQ) (OQ'). Thus the SAS similarity criterion is satisfied (Ex

ercise 12, Chapter 5). <11111 

Q' 

0 p P' 

Figure 7.29 
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PROPOSITION 7. 7. Let l be a line not passing through the center 0 of 

circle y. The image of l under inversion in y is a punctured circle with 

missing point 0. The diameter through 0 of the completed circle 8 is 

(when extended) perpendicular to l (see Figure 7.30). 

PROOF: 

Let A be the foot of the perpendicular from 0 to l, P be any other 

point on l, and A' and P' their inverses in y. By Lemma 7.3, 6.0P' A' 

is similar to 6.0AP. Hence <tOP' A' is a right angle, so that P' must 

lie on the circle 8 having OA' as a diameter (Exercise 18, Chapter 

S). Conversely, if we start with any point P' on 8 other than 0 and 
� 

let OP' cut l in P (using Euclid V), then reversing the above argu-

ment shows that P' is the inverse of P in y. <11111 

Figure 7.30 

NOTE. A line through 0 is transformed into itself by inversion in y, 

by the definition of inversion. 

PROPOSITION 7 .8. Let 8 be a circle passing through the center 0 of 

y. The image of 8 minus 0 under inversion in y is a line l not through 

O; l is parallel to the tangent to 8 at 0. 

PROOF: 

Let A' be the point on 8 diametrically opposite to 0, let A be its in-
� 

verse in y, and let l be the line perpendicular to OA at A (see Fig-

ure 7.30). By the proof of Proposition 7.7, inversion in y maps l 

onto 8 minus O; hence, it must map 8 minus 0 onto l (Proposition 

7.l(c)). <11111 
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Reflection in a Euclidean line preserves the magnitude but reverses 

the sense of directed angles (angles whose rays have a specified or

der). The next proposition generalizes this to inversions. 

PROPOSITION 7.9. A directed angle of intersection of two circles is 

preserved in magnitude but reversed in sense by an inversion. The 

same applies to the angle of intersection of a circle and a line or of two 

lines. 

PROOF: 

Suppose that circles 8 and u intersect at point P with tangents l and 

m there. Let P' be the inverse of P in y, let 8' and u
' be the im

ages of 8 and u under inversion in y, and let l' and m
' be their re

spective tangents at P'. The first assertion then follows from the fact 

that l' and m
' are the reflections of l and m across the perpendic

ular bisector of PP' (Proposition 7 .6). The other cases follow from 

Propositions 7. 7 and 7. 8. <11111 

The next proposition shows that inversion preserves the cross-ratio 
used to define Poincare length. 

PROPOSITION 7.10. If A, B, P, Q are four points distinct from the 

center 0 of y and A', B', P', Q' are their inverses in y, then we have 

(AB, PQ) = (A'B', P'Q'). 

PROOF: 

By Lemma 7.3, we see that (AP)/(OA) = (A'P')/(OP') and that 
-- ----

(AQ)/(OA) = (A'Q')/(OQ'), whence: 

(1) 

Similarly, 

(2) 

AP 

AQ 

AP OA 

OA AQ 

OQ' A'P' 

OP' A'Q'
. 

BQ OP' B'Q' 

BP 
-

OQ' B'P' 
. 

Multiplying equations (1) and (2) gives the result. <11111 

PROPOSITION 7 .11. Let circle 8 be orthogonal to circle y. Then in

version in 8 maps y onto y and maps the interior of y onto itself. In

version in 8 preserves incidence, betweenness, and congruence in the 

sense of the Poincare disk model inside y. 
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PROOF: 

The corollary to Proposition 7.6 tells us that y is mapped onto it
self. Suppose that P is inside y and P' is its inverse in 8. Let C be 

� 
the center ands the radius of 8. Let CP cut y at Q and Q', so that 
by Proposition 7.5 (CQ) (CQ') = s2 = (CP) (CP'). Since P lies between 
Q and Q', we have the inequalities CQ < CP < CQ'. Taking the re
ciprocal reverses inequalities, and we get s2/CQ > s2/CP > s2/CQ', 
which is the same as CQ' > CP' > CQ. Thus P' lies between Q and 
Q' and therefore is inside y. 

By Propositions 7.6, 7.8, and 7.9, inversion in 8 maps any circle 
<T orthogonal to y either onto another circle u

' orthogonal to y or onto 
a line u

' orthogonal to y, i.e., a line through the center 0 of y. The 
line <T joining 0 to C is mapped onto itself, and any other line <T through 
0 is mapped onto a circle u

' punctured at C, which is orthogonal to 
y (by Propositions 7.7 and 7.9). In all these cases, the above argu
ment shows that the part of <T inside y maps onto the part of u

' in
side y. Hence P-lines are mapped onto P-lines. 

If A and B are inside y and P and Q are the ends of the P-line 
through A and B, then inversion in 8 maps P and Q onto the ends of 
the P-line through A' and B'. By Proposition 7.10, d(AB) = d(A'B'), so 
congruence of segments is preserved. Proposition 7.9 shows that con
gruence of angles is also preserved. Furthermore, Poincare between
ness is also preserved because B is between A and D if and only if A, 

B, and D are Poincare-collinear and d(AD) = d(AB) + d(BD) . .,.. 

NOTE. If, in the statement of Proposition 7.11, 8 is taken to be a line 
through 0 and "inversion in 8" is replaced by "reflection across 8," 

then the conclusion of Proposition 7 .11 still holds-see Major Exercise 
2, Chapter 3. Proposition 7.11 shows that in the P-model, inversion is 
the interpretation of hyperbolic reflection for P-lines that are not di
ameters of y. Combining these two cases of P-lines, we call either of 
these two transformations P-reflections. 

THEOREM ON THE CONSTRUCTION OF P-REFLECTIONS. For any two 
points A, B in the disk, a unique P-line 8 can be constructed such that 
the P-reflection in 8 interchanges A and B. The intersection of 8 with 
the P-line joining A and B is their P-midpoint. 

PROOF: 

We start with the case where neither A nor B is 0. Let A', B' be 
the inverses of A, B in y. Let us work backward. Suppose that 8 is 
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the desired circle orthogonal to y. Then inversion in 8 must inter

change A' and B' as well as interchanging A and B. Hence the cen-
� � 

ter C of 8 must be the intersection of the E-lines AB and A'B' if they 

are distinct and meet; then Proposition 7 .3 tells how to construct 

the unique circle 8 orthogonal to y with center C. What if those 

E-lines are equal? They will be equal only when A and B lie on a 

diameter d, in which case the center C of 8 must lie on the exten

sion d of that diameter. Construct the E-lines a, f3 perpendicular to 

d at A, B, respectively, and let them intersect y on a chosen side 

of d at A", B", respectively. Then C will be the intersection of d with 

A"B
?, 

since inversion in 8 must interchange A" and B". What if those 

E-lines are parallel? That will happen only when A and B are equi

distant from O; then reflection in the diameter perpendicular to d 
� � 

will interchange A and B. Similarly, in the case where AB and A'B' 

are distinct but parallel, we must have AO � BO, so A and B will 
� 

be interchanged by reflection in the diameter perpendicular to AB. 

Finally, if, say, A= 0, then C will again be the intersection of 

d with A"B
?, 

. .,.. 

We come finally to the verification of the SAS axiom. We are given 

two Poincare triangles .6:.ABC and .6:.XYZ inside y such that <r:..A � <r:..X, 

d(AC) = d(XZ), and d(AB) = d(XY) (Figure 7.31). We must prove that 

the triangles are Poincare-congruent. We first reduce to the case where 

A = X = 0 (the center of y): By the theorem just proved, if A if=. 0, there 

is a unique circle e orthogonal to y such that inversion in e maps A to 

O; by Proposition 7.11, inversion in e maps the Poincare triangle .6:.ABC 

onto a Poincare-congruent Poincare triangle .6:.0B'C'. In the same way, 

Figure 7.31 Proof of SAS for the Poincare model. 



328 INDEPENDENCE OF THE PARALLEL POSTULATE 

Poincare triangle 6.XYZ can be mapped by inversion onto a Poincare

congruent Poincare triangle 6.0Y'Z' (see Figure 7.31). 

LEMMA 7.4. If d(OB) = d, then OB= r(ed - l)/(ed + 1), where e is 

the base of the natural logarithm and r is the radius of y. 

PROOF: 

If P and Q are the ends of the diameter of y through B, labeled so 

that Q * 0 * B * P, then d = log(OB, PQ) . Exponentiating both sides 

of this equation gives 

OP BQ BQ r+ OB 
ed = (OB PQ) = -===- · -===- = -===- = -' OQ BP BP r - OB ' 

and solving this equation for OB gives the result. <11111 

COROLLARY. OB is P-congruent to OC iff they are Euclidean-congruent. 

Returning to the proof of SAS, we have shown that we may assume 

that A= X = 0. By Lemma 7.4 and the SAS hypothesis, we see that 
- -- -
OB = OY, OC = OZ, and <tBOC � <tYOZ. Hence a suitable Euclidean ro-

tation about 0-combined, if necessary, with reflection in a diameter

will map Euclidean triangle 6.0BC onto Euclidean triangle 6.0YZ. This 

transformation maps y onto itself, and the orthogonal circle through B 

and C onto the orthogonal circle through Y and Z, preserving Poincare 

length and angle measure. Hence the Poincare triangles 6.0BC and 

6.0YZ are Poincare-congruent. <11111 

NOTE. We have verified SAS in the Poincare disk model by superpo

sition, which was Euclid's idea! More precisely, we verified SAS 

by "rigidly moving" one triangle onto the other via a sequence of 

P-reflections. In fact, we have proved the following strong result (us

ing Proposition 7 .11). 

THEOREM 7 .1. Two triangles in the Poincare disk model are 

P-congruent if and only if one can be mapped onto the other by a suc

cession of P-reflections. 

Let us call a transformation of the Poincare disk model which is a 

composition of P-reflections a P-rigid-motion. Such a transformation pre

serves incidence, betweenness, and P-congruence in the model. These 

motions will be studied in greater detail in Chapter 9. For now, we 

need the following result. 
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SuBLEMMA. (a) For any two points A, B in the Poincare disk model, 

there is a P-rigid-motion sending A to B. (b) For any three noncollinear 
� 

points A, B, B', there is a P-rigid-motion fixing A and sending P-ray AB 
� 

to P-ray AB'. 

PROOF: 

(a) In fact, we previously proved that there is a P-reflection that in

terchanges A and B. (b) If Ai= 0, let R be the P-reflection sending 
� � 

A to 0 and let R(B) = C, R(B') = C'. The P-rays AB and AB' are 

mapped by R to P-rays emanating from 0, which are just part of 

Euclidean rays emanating from 0 that form a Euclidean angle with 

vertex 0. If S is the Euclidean reflection across the Euclidean bi-
� � 

sector of <i:COC', then S interchanges OC and OC'. Then the P-rigid-
� � 

motion RSR fixes A and sends P-ray AB to P-ray AB'. <11111 

Let us use this sublemma to give a verification of Axiom C-1 for 

the P-model, which does not appeal to continuity (hence is valid in ar

bitrary Euclidean planes, not just the real Euclidean plane). We are 

given a P-segment AB, a point A', and a P-ray r emanating from A'. 

C-1 requires us to find a point B' on r such that we have AB� A'B' 

(P-congruence). By (a), there is a P-rigid-motion T sending A to A'. By 
� 

(b), there is a P-rigid-motion S fixing A' and sending P-ray T(AB) to r. 

Let B' = ST(B). Then AB � A'B' because P-rigid-motions map any P

segment onto a P-congruent P-segment (a consequence of Proposition 

7.10 and the corollary to Lemma 7.4). <11111 

We have verified the axioms for a Hilbert plane in the Poincare 

disk model. It follows that all propositions and theorems valid in 

Hilbert planes are valid in this model. It is, however, an interesting 

exercise to verify some of those propositions in the model by direct 

Euclidean constructions. For example, in the sublemma above, the 

P-rigid-motions mentioned can actually be taken to be P-reflections. 

We've shown that for part (a). For part (b), we can use the 

P-reflection across the P-angle-bisector t of P-angle <i:BAB'. In Exer

cise P-4 you are asked to construct t (we did that in the special case 

where A= 0). 

It remains to verify Hilbert's hyperbolic axiom of parallels for the 

Poincare disk model. Just use the isomorphism with the Klein model, 

where the verification is trivial. For a direct construction of the 

P-limiting parallel rays, see Exercise P-10. 

Having verified that the Poincare disk model is indeed a model of 

plane hyperbolic geometry within a Euclidean plane, we have proved 
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Metamathematical Theorem 1: If plane Euclidean geometry is consistent, 

then so is plane hyperbolic geometry. 15 

Let us next study what P-circles look like in the Poincare disk model. 

PROPOSITION 7 .12. A P-circle is a Euclidean circle in the disk, and 

conversely, but the P-center differs from the Euclidean center except 

when the center is 0. 

PROOF: 

Consider first the case where the P- or E-center of the circle is 0. 

The result follows from the corollary to Lemma 7.4. Next, suppose 

the P-center of the P-circle 8 is A -=/= 0. Let R be the P-reflection in

terchanging A and 0. Then R(8) is a P-circle with P-center 0, hence 

a Euclidean circle with E-center 0 by the first case. By Proposition 

7 .6, 8 = R(R(8)) is a Euclidean circle with Euclidean center C not 

equal to A (Proposition 7 .6 tells us that C is the image of 0 under 

a certain dilation from the center A' of e, not the image A of 0 un

der R). 

Conversely, let 8 be a Euclidean circle inside the disk, having 

Euclidean center O' -=/= 0. Let the line m joining 0 to O' intersect 8 

at points A, B (m is both a P-line and an E-line). Let M be the 

P-midpoint of AB and let R be the inversion (P-reflection) inter

changing M and 0. Then R(8) is a Euclidean circle with diameter 

R(A)R(B). Since 0 is the P-midpoint of this diameter, it is also the 

Euclidean midpoint (corollary to Lemma 7 .4), so 0 is the Euclidean 

center of R(8), and R(8) is a P-circle with P-center 0. Hence we see 

that 8 = R(R(8)) is a P-circle with P-center M . .,.. 

COROLLARY. The circle-circle continuity principle holds in the Poin

care disk model within a Euclidean plane. 

PROOF: 

P-circles are Euclidean circles inside the disk, and the inside of a 

circle is the same. So the result follows from that principle in the 

Euclidean plane . .,.. 

NOTE. This corollary furnishes a proof that the circle-circle (hence 

line-circle) continuity principle holds in all hyperbolic planes once it is 

15 The converse to this metatheorem has also been proved recently-see Project 1 and 
the application of polar coordinates in Chapter 10. 
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proved that every hyperbolic plane is isomorphic to a Poincare disk 

model within a Euclidean plane. Hartshorne, Section 43, proves the lat

ter using Hilbert's Euclidean field of ends. It would be interesting to 

have a direct, synthetic proof of those principles. 

CONSTRUCTION OF THE P-CIRCLE WITH GIVEN P-CENTER AND 

P-RADIUS, AS WELL AS ITS E-CENTER. Given distinct points A, B in 

the disk. We wish to construct the P-circle e with P-center A passing 

through B. We have shown that it is a Euclidean circle, so we need 

only find its E-center C and construct the E-circle e with E-center C and 

E-radius CB. If A = 0, then C = 0, so suppose A -=/= 0. Then the diam

eter d of y through A is a P-line through the P-center of e and so must 

be orthogonal to e; that means it passes through the E-center C of e. 

If B does not lie on d, construct the E-circle 8 orthogonal to y through 

A and B (the E-circle through A, B, and A'); it cuts out the P-line join

ing A to B, which cuts out a P-diameter of e, so e is orthogonal to 8 

at B. That means the tangent t to 8 at B passes through C. Hence C is 

the point where d meets t (see Figure 7 .32). 

Suppose B lies on d. Construct the P-perpendicular 8 to d at A: It 

is cut out of the disk by the E-circle through A and A' whose center is 

the midpoint of AA'. Construct the inverse B' of B in 8 (as in Propo

sition 7.3). Then B' has the same P-distance from A as B, and so lies 

one. Hence the E-center C of e is the E-midpoint of BB'. <Ill 

y 

Figure 7.32 Construction of E-center C of P-circle e. 
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EUCLIDEAN CHARACTERIZATION OF THE P-CENTER. Since P-circles 
are just E-circles e inside y, we can ask what the P-center of e is from 
the Euclidean point of view. In any Hilbert plane, the center of a cir
cle e is characterized as the point of concurrence of all the lines that 
intersect e orthogonally. Knowing the interpretation of "line" in the 
Poincare model, we see that the P-center A of e is the point of con
currence inside y of all E-circles that intersect both e and y orthogo
nally and of the unique diameter of y, which intersects e orthogonally. 
(Those E-circles and that diameter extended have another point of con
currence outside y-namely, the inverse A' of A in y.) 

We will now apply the Poincare model to determine the formula of 
J. Bolyai and Lobachevsky for the angle of parallelism. Let II(d) de
note the number of radians in the angle of parallelism corresponding 
to the Poincare distance d (the number of radians is 1T/180 times the 
number of degrees). 

THEOREM 7 .2. In the Poincare disk model, the formula for the angle 
of parallelism is e-d = tan[II(d)/2] .16 

In this formula, e is the base for the natural logarithm. The trigono
metric tangent function is defined analytically as sin/cos, where the 
sine and cosine functions are defined by their Taylor series expansions 
(given in Chapter 10). The tangent is not to be interpreted as the ratio 
of opposite to adjacent for a right triangle in the hyperbolic plane! 

PROOF: 

By definition of the angle of parallelism, d is the Poincare distance 
d(PQ) from some point P to some Poincare line l, and II(d) is the 
number of radians in the angle that a limiting parallel ray to l through 

� 
P makes with PQ. We may choose l to be a diameter of y and Q to 
be the center of y, so that P lies on the perpendicular diameter. A 

limiting parallel ray through P is then an arc of a circle 8 orthogo
nal to y such that 8 is tangent to l at one end �. The tangent line 
to 8 at P therefore meets l at some interior point R that is the pole 
of chord P� of 8, and, by Proposition 7.4, <i:RP� and <i:�P both 
have the same number of radians f3 (see Figure 7.33). Let a = II(d), 
which is the number of radians in <i:RPQ. Since 2{3 is the number 
of radians in <i:PRQ (exterior to .:lPR�), we get a + 2{3 = 1T/2, or 

16 Theorem 7.2 uses real numbers, of course. Hartshorne has a version of it, valid in ar
bitrary hyperbolic planes, which uses his multiplicative length and his algebraic ver
sion of the tangent function: See his Proposition 41.9. 
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f3 
= 

n/4 - a/2. The Euclidean distance PQ is r tan {3, so that, by 

the proof of Lemma 7 .4, 

ed= l+tanf3
. 

1 - tan f3 

Using the formula for f3 and the trigonometric identity 

tan ( 1T 
_ 

�) = 1 - tan(a/2) 
, 

4 2 1 + tan(a/2) 

we get the desired formula after some algebra. <11111 

Figure 7.33 Bolyai-Lobachevsky formula proved for Poincare model. 

We have developed only enough of the geometry of inversion in cir

cles to verify the axioms in the Poincare disk model. You will find fur

ther developments in the exercises and in Chapters 9 and 10. Inversion 

has many other applications in geometry, notably in Feuerbach's famous 

theorem on the nine-point circle of a triangle, the problem of Apollonius 

(Hartshorne, Section 38), and the construction of linkages that change lin

ear motion into curvilinear motion (see Kay, 1969, and Pedoe, 1970). 

The Projective Nature of the Beltrami-Klein Model 
Although the Klein model is also located on an open disk in a Euclid

ean plane, it can best be understood via the projective completion of 
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that Euclidean plane, which is also the model's projective completion 

as a hyperbolic plane (see Major Exercise 13, Chapter 6). We know 

now that the Klein interpretation is a model of hyperbolic plane geom

etry because it is isomorphic to the Poincare disk model, as we showed. 

To be more explicit, consider the unit sphere � in Cartesian three

dimensional space given by the equation xf + � + zj = 1. Let y be the unit 

circle in the equatorial plane of �' determined by the equation x3 = 0 and 

the equation for�. We will represent both the Poincare disk and the Klein 

disk by the set a of points inside y, and we will take as our isomorphism 

F the composite of two mappings: If N is the north pole (0, 0, 1) of�' first 

project a onto the southern hemisphere of� stereo graphically from N. Then 

project orthogonally back upward to the disk a (see Figure 7.34). 

The isomorphism F will be considered to go from the Poincare model 

to the Klein model. By an easy exercise in similar triangles, you can 

show that F is given in coordinates by 

Or, if we ignore the third (zero) coordinate and use the single complex 

coordinate z = x1 + ix2, then F is given by 

2z 
F(z) = 

1 + lzl2. 

N 

Figure 7.34 Isomorphism F via the sphere. 

It is clear that F maps a diameter of y onto the same diameter (but 

moving the points on the diameter out toward the circle) . Let 8 be a 

circle orthogonal to y and cutting y at points P and Q. We claim that 

F maps the Poincare line with ends P and Q onto the open chord P)(Q. 

In fact, if A is on the arc of 8 from P to Q inside y, then F(A) is the 
� 

point at which OA hits chord PQ (see Figure 7 .35). 
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y 

/ 
/ 

/ 
"' 

Figure 7.35 Isomorphism F within the disk. 

PROOF: 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

>C 

We can prove this as follows. Suppose the center C of 8 has coor

dinates (c1, c2). By Proposition 7.3, the points P and Q are the in

tersections with y of the circle having CO as diameter. After sim

plifying, the equation of this circle turns out to be 

(1) 

Combining this equation with the equation xt + x1 = 1 for y gives 

the equation 

(2) 

for the line joining P to Q (called the polar of C with respect to y). 

Since 8 is orthogonal to y, <i:OQC is a right angle, and the 

Pythagorean theorem gives 

(3) 

for the square of the radius of 8. Hence 8 is the circle 

(X1 - Ci)2 + (X2 - C2)2 
= ct + cl - 1, 

which simplifies to 

(4) 

If now A = (a1, a2) lies on 8 and F(A) = (b1, b2) is its image under 

F, we have for j = 1, 2, 

(5) bj = 2ajf (l + at + a1), 

(6) 
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It follows that 

(7) 

and hence F(A) lies on the polar of C, as asserted. <11111 

We now use the isomorphism F to define congruence in the Klein 

model. Two segments (respectively, two angles) are interpreted to be 

Klein-congruent if their inverse images under Fin the Poincare model 

are Poincare-congruent (as was defined before). With this interpreta

tion, the verification of the congruence axioms is immediate. (It fol

lows from this interpretation that the Klein model is conformal only 

at 0.) 
Next, let us justify the previous description of perpendicularity in the 

Klein model. According to the above definition, two Klein lines l and 

m are Klein-perpendicular if and only if their inverse images p-1 (l) 
and p-1(m) are perpendicular Poincare lines. There are three cases to 

consider. 

- CASE 1. Both l and m are diameters. In this case, it is clear that 

perpendicularity has its usual Euclidean meaning. 

- CASE 2. Only l is a diameter. Then p-1 (l) = l. The only way 

p-1(m), an arc of an orthogonal circle 8, can be perpendicular to l 
is if the Euclidean line extending l passes through the center C of 8 

(see Figure 7 .36). In that case, the extension of l is the perpendicu

lar bisector of chord m (Exercise 17, Chapter 4). Conversely, if l is 

perpendicular to m in the Euclidean sense, l bisects m, and hence 

the extension of l goes through C and l is then perpendicular to arc 

p-l(m). 

0 

Figure 7.36 
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- CASE 3. Neither l nor m is a diameter. Then p-1(l) and p-1(m) 
are arcs of circles 8 and u orthogonal to y. Suppose 8 is orthogonal to 
u. By Proposition 7.4, the centers of these circles are the poles P(l) and 
P(m) of l and m since these circles meet y at the ends of l and m. Let 
P and Q be the ends of m. Inversion in 8 interchanges P and Q since 
this inversion maps bothy and u onto themselves (corollary to Propo
sition 7.6). But if P and Qare inverse in 8, the Euclidean line joining 
them has to pass through the center P(l) of 8 (see Figure 7.37). 

Conversely, if the extension of m passes through P(l), then P and 
Q are inverse to each other in 8 (since points on y are mapped onto y 
by inversion in 8). By Proposition 7.5, u is orthogonal to 8. <11111 

Next, let us describe the interpretation of reflections in the Klein 
model. In both Euclidean and hyperbolic geometries, the reflection in 
a line m is the transformation Rm of the plane, which leaves each point 
of m fixed and transforms a point A not on m as follows. Let M be the 
foot of the perpendicular from A to m. Then, by definition, Rm(A) is 

P(l) 

Figure 7.37 

A 

M 

Figure 7.38 A' is the reflection of A across m. 
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the unique point A' such that A'* M *A and A'M �MA (Figure 7.38). 

In Major Exercise 2, Chapter 3, you showed that reflection preserves 

incidence, betweenness, and congruence in any Hilbert plane. 

Returning to the Klein model, assume first that m is not a diame

ter of y and let P be its pole. To drop a Klein perpendicular from A to 

m, we draw the line joining A and P. Let it cut m at M and let t be 

the chord of y cut out by this Euclidean line. Let Q be the pole of t 
and draw the line joining Q and A .  Let this line cut y at� and�, and 

let n be the open chord�)(�' . Draw the line joining�, and M and let 

it cut y again at point n. If we now join n and Q, we obtain a line 
that cuts t at A' and y again at il' (see Figure 7.39). 

CONTENTION. The point A' just constructed is the reflection in the 
Klein model of A across m. The Euclidean lines extending n� and il'�' 

meet at P, and il�' meets il'� at point M. 

One justification for this construction is given in Major Exercise 12, 

Chapter 6. Here is another. Start with divergently parallel Klein lines 

l =Oil' and n = ��, and their common perpendicular t. Let l meet t 
in A' and n meet t in A and let M be the midpoint of A A' in the sense 
of the model. Let m be the Klein line through M Klein-perpendicular 

to t; m is obtained by joining M to the pole Q of t. Ray M�' is limit

ing parallel to n. If we reflect across m, then n is mapped onto the line 

p 

Figure 7.39 A' is the Klein reflection of A across m. 
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through A' Klein-perpendicular to t, namely, the line l. The end �, is 
mapped onto the end of l on the same side oft as�,, namely, the point 

il'. Hence ray M�' is mapped onto ray Mil'. Now reflect across t; il' 
is sent to il, so Mil' is mapped to Mil. But successive reflections in 

the Klein-perpendicular lines m and t combine to give the 180° rota
tion about M .  Hence Mil is the ray opposite to M�'. Similarly, M� is 

the ray opposite to Mil'. Since reflection in m sent�, toil' and� to 
il, �'il' and �il must both be Klein-perpendicular to m and their Eu

clidean extensions meet at the pole P of m. 

Second, let us describe the Klein reflection for the case in which m 

is a diameter of y. In this case, P is a point at infinity, t is perpen
dicular to m in the Euclidean sense, and M is the Euclidean midpoint of 

chord t (since a diameter perpendicular to a chord bisects it). Chord il� 

was shown to be perpendicular to diameter m in the argument above, 
� 

so il is the Euclidean reflection of � across m. Hence Qil is the 
� 

Euclidean reflection of Q� , and we deduce that A' is the ordinary 

Euclidean reflection of A across diameter m (see Figure 7 .40). 

In order to describe the Klein reflection more succinctly, let us re

turn to the notion of cross-ratio (AB, CD) defined by the formula 

AC BD 
(AB, CD) 

= AD 
. 

BC 
. 

DEFINITION. If A, B, C, and D are four distinct collinear points in the 

Euclidean plane such that (AB, CD) 
= 

1, we say that C and D are har

monic conjugates with respect to AB and that ABCD is a harmonic 

tetrad. By symmetry of the cross-ratio, A and B are then also harmonic 
conjugates with respect to CD. 

Figure 7.40 A' is the Euclidean reflection of A across diameter m. 
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Another way to write the condition for a harmonic tetrad is 
-- --

AC/ AD = BC/BD. Since C and D are distinct, one must be inside seg-

ment AB and the other outside (so that "C and D divide AB internally 

and externally in the same ratio"). Moreover, given AB, then C and D 

determine each other uniquely. For example, suppose A * C * B and let 
--

k = AC/CB. If k < 1, then D is the unique point such that D * A * B 
- -

and DB= AB/(1 - k), whereas if k > 1, then D is the unique point 
- -

such that A* B * D and DB= AB/(k - 1); see Figure 7.41. The case 

where k = 1 is indeterminate, for there is no point D outside AB such 
- -

that AD= BD. Thus the midpoint M of AB has no harmonic conjugate. 

This exception can be removed by completing the Euclidean plane to 

the real projective plane by adding a "line at infinity" (see Chapter 2). 

Then the harmonic conjugate of M is defined to be the "point at in-
� 

finity" on AB. 

There is a nice way of constructing the harmonic conjugate of C 

with respect to AB with a straightedge alone: Take any two points I 
� � � 

and J collinear with C but not lying on AB. Let Al meet BI at point K 
� � � � 

and let AI meet BJ at point L. Then AB meets KL at the hamwnic con-

jugate D of C (Figure 7.42). 

D A c B 
k= 1/2 

A c B D 
k=2 

Figure 7.41 

I 

A c B D 

Figure 7.42 

We will justify this hamwnic construction momentarily. Meanwhile, 
� 

as a device to help remember the construction, "project" line ID to in-

finity. Then our figure becomes Figure 7.43. Since DA'B'K'L' is now a 

parallelogram, we see that C' is the midpoint of A'B' and its harmonic 
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� 

conjugate is the "point at infinity" D' on A'B'. (This mnemonic device 

can be turned into a proof based on projective geometry; see Eves, 

1972, Chapter 6.) 

If you will now refer back to Figure 7.39, where the Klein reflec

tion A' of A was constructed, you will see that A' is the hamwnic con

jugate of A with respect to MP. Just relabel the points in Figure 7.39 by 

the correspondences I-�', J-�, K-n, L-il', A-P, B-M, C-A, and D-A' to 

obtain a figure for constructing the harmonic conjugate. 

I' 

Figure 7.43 

DEFINITION. Let m be a line and P a point not on m. A transforma

tion of the Euclidean plane called the harmonic homology with center 

P and axis m is defined as follows. Leave P and every point on m fixed. 

For any other point A, let the line t joining P to A meet m at M. As

sign to A the unique point A' on t, which is the harmonic conjugate 

of A with respect to MP. 

With this definition we can restate our result. 

THEOREM 7.3. Let m be a Klein line that is not a diameter of y and 

let P be its pole. Then reflection across m is interpreted in the Klein 

model as restriction to the interior of y of the harmonic homology with 

center P and with axis the Euclidean line extending m. If m is a di

ameter of y, then reflection across m has its usual Euclidean meaning. 

To justify the harmonic construction, we need the notion of a per

spectivity. This is the mapping of a line l onto a line n obtained by pro

jecting from a point P not on either line (Figure 7 .44). It assigns to point 
� � 

A on l the point A' of intersection of PA with n. (Should PA be parallel to 

n, the image of A is the point at infinity on n.) P is called the center of 

this perspectivity. 
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p 

Figure 7.44 Perspectivity with center P. 

LEMMA 7.S. A pespectivity preserves the cross-ratio of four collinear 
points; i.e., if A, B, C, and D are four points on line l and A', B', C', 
and D' are their images on line n under the perspectivity with center 
P, then (AB, CD) = (A'B', C'D'). 

PROOF: 

By Exercise 15, Chapter 5, we have 

and 

which give 

AC AP sin <i:APC 
= 

BC BP sin <i:BPC 

BD BP sin <i:BPD 
= 

AD AP sin <i:APD ' 

(sin <i:APC) (sin <i:BPD) 
(AB, CD) = 

(sin <i:BPC) (sin <i:APD) 
. 

But sin <i:APC = sin <i:A'PC', sin <i:BPD = sin <i:B'PD', and so on, 
so we obtain the same formula for (A'B', C'D'). 

� � 

Now refer back to Figure 7.42. Let IJ meet KL at point M. Us-
ing the perspectivity with center I, Lemma 7.5 gives us the relation 
(AB, CD) = (LK, MD), whereas using the perspectivity with center 
J, we get (AB, CD) = (KL, MD). But (KL, MD) = l/(LK, MD), by 
the definition of cross-ratio. Hence (AB, CD) is its own reciprocal, 
which means that (AB, CD) = 1; i.e., ABCD is a harmonic tetrad, 
as asserted. This justifies the harmonic construction previously 
given. <11111 

Next, we will apply Theorem 7 .3 to calculate the length of a seg
ment in the Klein model. According to our general procedure, length 
in the Klein model is defined by pulling back to the Poincare model 
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via the inverse of the isomorphism F and using the definition of length 
already given there. Thus the length d'(AB) of a segment in the Klein 
model is given by d'(AB) = d(ZW) = llog(ZW, PQ)I, where A= F(Z), 
B = F(W), and P and Q are the ends of the Poincare line through Z and 
W. By our earlier result illustrated in Figure 7.35, P and Q are also the 
ends of the Klein line through A and B. 

The next theorem shows how to calculate d' (AB) directly in terms of 
A, B, P, and Q. In its proof we will need the remark "the cross
ratio (AB, PQ) is preserved by any Klein reflection." This is clear if we are 
reflecting in a diameter of y. Otherwise, by Theorem 7.3, the Klein re
flection is a harmonic homology whose center R lies outside y. A reflec
tion in the hyperbolic plane preserves collinearity, so for any Klein line l, 

the mapping of l onto its Klein reflection n is just the perspectivity with 
center R. Therefore, Lemma 7.5 ensures that the cross-ratio is preserved. 

THEOREM 7 .4 . If A and B are two points inside y and P and Q are 
the ends of the chord of y through A and B, then the Klein length of 
segment AB is given by the formula 

d'(AB) = � llog(AB, PQ)I. 

PROOF: 

We saw in the verification of the SAS axiom for the Poincare disk 
model that any Poincare line can be mapped onto a diameter by an 
inversion in a suitable orthogonal circle. Proposition 7 . 10 guaran
tees that cross-ratios are preserved by inversions. The transforma
tion of the Klein model that corresponds to this inversion under our 
isomorphism F is a harmonic homology (Theorem 7 .3), and this 
preserves cross-ratios of collinear points by the above remark. Hence 
we may assume that A and B lie on a diameter. 

Let A = F(Z) and B = F(W), so that, by definition, we have 
d' (AB) = d(ZW). After a suitable rotation (which preserves cross
ratios), we may assume that the given diameter is the real axis. Its 
ends P and Q then have complex coordinates -1, + 1. If Z and W 
have real coordinates z and w, then 

(ZW, PQ) = 
1 + z . 1 -w

' 1-z l+w 

(AB, PQ) = 
1 + F(z) 
1 - F(z) 

1 - F(w) 
----

1 + F(w). 
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2z _ 1 - 2z + lzl2 
1 - F(z) = 1 - --

1 + lzl2 
-

1 + lzl2 

1 + F(z) = 
1 + 2z + lzl2 

1 + lzl2 

1 + F(z) _ 1 + 2z + lzl2 
1 - F(z) 

-
1 - 2z + lzl2 · 

Since z is real, z = :±: lzl and we get 

1 + F(z) 
= 
( 1 + z )2

· 1 - F(z) 1 - z 

From this and the formula obtained from it by substituting w for z, 
it follows that (AB, PQ) = (ZW, PQ)2, and taking logarithms of both 
sides proves the theorem. <11111 

NOTE. In the proof just given, and earlier, we have used real and com
plex numbers. However, everything we have done so far in this sec
tion is valid over an arbitrary Euclidean field F, not just over �. once 
one makes the following observation: Complex numbers were only used 
as a shorthand to abbreviate more complicated formulas involving two 
real variables (the real and imaginary parts of these complex numbers). 
That shorthand can also be used over F by formally adjoining a sym
bol i whose square is - 1 and manipulating the elements a + bi with 
a, b E F in the same way complex numbers are manipulated-Le., for 
those who know abstract algebra, by working in the field F(i). 

Finally, let us apply our results to justify J. Bolyai's construction 

of the limiting parallel ray (Chapter 6). We are given a Klein line l 

and a point P not on it. Point Q on l is the foot of the Klein perpendic
ular t from P to l, and m is the Klein perpendicular to t through P. Let 
R be any other point on l, and S, the foot on m of the Klein perpendic
ular from R. Bolyai's construction is based on the contention that if the 

� 
limiting parallel ray to l from P in the direction QR meets RS at X, then 
PX is Klein-congruent to QR. 

Let T and M be the poles oft and m. Let n and il' be the ends 
of l. If we join these ends to M, the intersections � and�, with y 

will be the ends of the Klein reflection n of l across m. 

As Figure 7.45 shows, the collinear points n, X, P, and �, are 
in perspective with the collinear points n, R, Q, and il' (in that or-
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der), the center of the perspectivity being M. By Lemma 7.5, such 

a perspectivity preserves cross-ratios, so that we have (XP, il�') = 

(RQ, Oil'). Theorem 7.4 tells us that d'(XP) = d'(RQ), justifying 

Bolyai's contention. (In the case where m is a diameter of y, M is 

a point at infinity; then instead of Lemma 7.5 we use the parallel 

projection theorem (preceding Exercises 10-18, Chapter 5) to de

duce the above equality of cross-ratios, or move the figure by a har

monic homology so that mis not a diameter.) <11111 

M 

T 

Figure 7.45 Bolyai's construction in the Klein model. 

NOTE: The method used to prove Theorems 7.2 and 7.4 is very use

ful for solving other problems in the Klein and Poincare models. The 

idea is that the figure being studied can be moved, by a succession of 

hyperbolic reflections, to a special position where one or more of the 

hyperbolic lines is represented by a diameter of the absolute circle y 

and one point is the center 0 of y. The movement to this special po

sition does not alter the geometric properties of the figure, and in that 

special position, elementary arguments and calculations based on Eu

clidean geometry can be used to solve the problem. 

For example, if P, P' i= 0, then the statement OP � OP' has the 

same truth value whether interpreted in the Euclidean, Poincare, or 

Klein sense (according to Lemma 7 .4 and Theorem 7 .4), and �POP' 

has the same measure in all three senses. In particular, a hyperbolic 

circle with hyperbolic center 0 is represented in both models by a Eu

clidean circle with Euclidean center 0. 
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You will see some nice applications of this method in Exercises 

K-15, K-17 through K-20, and P-5, and in Chapters 9 and 10. The gen

eral study of geometric motions is in Chapter 9. 

Let us apply this method to verify the Bolyai-Lobachevsky for

mula in the Klein model: Let a= Il(AB). Take A to be the center of 

the unit Klein disk and also the vertex of angle a. The end of the side 

of a not containing B is a point non the unit circle. OBA is a Euclid

ean right triangle and also a singly asymptotic Klein right triangle with 

right angle at B since AB is a segment of a diameter PQ. The Euclid-
- -

ean length AB is equal to cos a since All = 1. If P * A * B * Q, we cal-

culate the cross-ratio 

(AB, PQ) = 
BQ 

= 
1 - cos a

. 
BP 1 +cos a 

But by a trigonometric formula, this is equal to tan(a/2) . .,.. 

Conclusion 

We have proved that Euclid V cannot be proved from the axioms of 

neutral geometry by studying three isomorphic models of plane hy

perbolic geometry within a Euclidean plane-one named after Klein 

and the other two after Poincare (although Beltrami found all three of 

them first). Thus the attempts over 2000 years to prove Euclid V from 

his other axioms had to fail (if Euclidean geometry is consistent). These 

models make the "strange new universe" of hyperbolic geometry much 

less strange and help us visualize it. In the process of verifying the hy

perbolic axioms in the Poincare models, we have learned a good deal 

of inversive geometry (much more will be found in the P-exercises) and 

some more projective geometry for the Klein model (see the H-exercises 

and the H-exercises) . 

Review Exercise 

Which of the following statements are correct? 

(1) Although 2000 years of efforts to prove the parallel postulate as 

a theorem in neutral geometry have been unsuccessful, it is still 

possible that someday some genius will succeed in proving it. 
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(2) If we add to the axioms of neutral geometry the elliptic paral

lel postulate (that no parallel lines exist) , we get another con

sistent geometry called elliptic geometry. 

(3) All the ultra-ideal points in the Klein model are points in the 

Euclidean plane outside y. 

(4) Both the Klein and Poincare models are "conformal" in the sense 

that congruence of angles has the usual Euclidean meaning. 

(5) In the Poincare model, "lines" are represented by all open di

ameters of a fixed circle y and by all open arcs inside y of cir

cles intersecting y. 

(6) For any chord A) (B whatever of circle y, the tangents to y at 

the endpoints A and B of the chord meet in a unique point 

called the pole of that chord. 

(7) In the Poincare model, two Poincare lines are interpreted as 

"perpendicular" if and only if they are perpendicular in the 

usual Euclidean sense. 

(8) In the Klein model, two open chords are interpreted to be "per

pendicular" if and only if they are perpendicular in the usual 

Euclidean sense. 

(9) Inversion in a given circle maps all circles onto circles. 

(10) Ultra-ideal points have no representation in the Poincare 

models. 

(11) Four points in the Euclidean plane form a harmonic tetrad if 

they are collinear and their cross-ratio equals 1. 

(12) If point 0 is outside circle 8 and a tangent from 0 to 8 touches 

8 at point T, then the power of 0 with respect to 8 is equal to 

the square of the distance from 0 to T. 

(13) Let point P lie on circle 8 and let P' and 8' be their inverses 

in another circle y such that y does not pass through P or the 

center of 8. Then the tangent to 8' at P' is parallel to the tan

gent to 8 at P. 

(14) The inverse of the center of a circle 8 is the center of the in

verted circle 8'. 

(15) In order for the midpoint M of segment AB to have a harmonic 

conjugate with respect to AB, for all A and B, a Euclidean plane 

must be extended to a projective plane by adding a line of 

points at infinity. 

(16) If a geometric statement in real hyperbolic geometry holds when 

interpreted in the Klein or Poincare models, then that state

ment is a theorem in hyperbolic geometry. 
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(17) If 0 is the center of the Poincare disk and e is a P-circle whose 

P-center A is not 0, then the E-center C of e is E-between 0 

and A. 

The following exercises will be divided into four categories: (1) K

exercises, on the Klein model; (2) P-exercises, on the Poincare models 

and on circles; (3) H-exercises, on harmonic tetrads and theorems of 

Menelaus, Ceva, Gergonne, and Desargues; (4) projects. The K-exercises 

and P-exercises are extremely important for a visual understanding of 

plane hyperbolic geometry. 

K-Exercises 

K-1. Verify the interpretations of the incidence axioms, the between

ness axioms, and Dedekind's axiom (if the Euclidean plane is 

real) for the Klein model. 

K-2. (a) Let l be a diameter of y and let m be an open chord of y 

that does not meet l and whose endpoints differ from the 

endpoints of l. Draw a diagram showing the common per

pendicular k to l and m in the Klein model. (Hint: Use the 

pole of m and the case 1 description of perpendicularity.) 

(b) Let l and m be intersecting open chords of y. It is a valid 

theorem in hyperbolic geometry that for any two intersect

ing nonperpendicular lines there exists a third line perpen

dicular to one of them and asymptotically parallel to the 

other (see Major Exercise 9, Chapter 6). Draw the two lines 

in the Klein model that are perpendicular to l and asymp

totically parallel to m (on the left and right, respectively). 

This shows that the angle of parallelism can be any acute 

angle whatever. Explain. 

(c) In the Euclidean plane, any three parallel lines have a com

mon transversal. Draw three parallel lines in the Klein model 

that do not have a common transversal. 

K-3. (a) In the Klein model, an ideal point and an ordinary point al

ways determine a unique Klein line. Translate this back into 

a theorem in hyperbolic geometry about limiting parallel 

rays. 

(b) Suppose the ultra-ideal points P(l) and P(m) are poles of 

Klein lines l and m, respectively. You saw in Figure 7.18 

that the Euclidean line joining P(l) and P(m) need not cut 
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through the circle y and hence need not determine a Klein 

line. Show that the only case in which there is a Klein line 

joining P(l) and P(m) is when lines l and m are divergently 

parallel. 

(c) Suppose the ultra-ideal point P(l) is the pole of a Klein line 

l and n is an ideal point; n is uniquely determined by a 

ray r in the direction of n. State the necessary and suffi

cient conditions on rand l in order that P(l) and n deter

mine a Klein line. Translate this into a theorem in hyper

bolic geometry. 

K-4. Given chords l and m of y that are not diameters. Suppose the 

line extending m passes through the pole of l. Prove that the line 

extending l passes through the pole of m. (Hint: Use either equa

tion (2), in the last section of this chapter, or the theory of or

thogonal circles.) 

K-5. Use the Klein model to show that in the hyperbolic plane there ex

ists a pentagon with five right angles and there exists a hexagon 

with six right angles. (Hint: Begin with two lines having a com

mon perpendicular. Locate the poles of these two lines, then draw 

an appropriate line through each of the poles, etc.) Does there ex

ist, for all n > 5, an n-sided polygon with n right angles? 

K-6. Justify the following construction of the Klein reflection A' of A 

across m, which is simpler than the one in Figure 7.39. Let A 

be an end of m and let P be the pole of m. Join A to A and let 

this line cut y again at <I>. Join <I> to P and let this line cut y at 
� 

<I>'. Then A' is the intersection of AP with A<I>' (see Figure 7.46). 

p 

Figure 7.46 Simpler construction of the Klein reflection. 
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K-7. Given a segment AA' in the Klein model. Show how to construct 

its hyperbolic midpoint with straightedge and compass (see Fig

ures 7.39 and 7 .40). 

K-8. Construct triangles in the Klein model such that the perpendi

cular bisectors of the sides are (a) divergently parallel and (b) 

asymptotically parallel. (See Exercise 11 and Major Exercise 7, 

Chapter 6.) 

K-9. Prove the formula 

2z F(z) = 
1 + lzl2 

for the isomorphism F of the Poincare model onto the Klein model 

(see Figure 7 .34). What is the formula for the inverse isomor

phism? Angle measure in the Klein model is defined so that F 
preserves angle measure; draw the diagram which illustrates this. 

K-10. Let A= (0, 0), let B = (0, f), and let l be the diameter of y cut 

out by the x-axis. 

(a) Find the Klein length d' (AB). 

(b) Find the coordinates of the point M on segment AB that rep

resents its midpoint in the Klein model. 

(c) Find the equation of the equidistant curve to l through B. 

Show that it is an arc of an ellipse. 

K-11. Let n and il' be distinct ideal points and A an ordinary point. 
� 

Let P be the pole of chord Oil' and let Euclidean ray AP cut y 

at �. Prove that A� represents the bisector of <i:ilAil' in the 

Klein model (see Figure 7 .47). Apply this result to justify the 

construction of the line of enclosure given in Major Exercise 8, 

Chapter 6. (Hint: Use Proposition 6.6.) 

p 

Figure 7.47 Angle bisector in Klein model. 
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K-12. In Exercise 18, Chapter 4, you proved the theorem that the an

gle bisectors of a triangle in hyperbolic geometry (in fact, in neu

tral geometry) are concurrent. Using the construction of angle 

bisectors given in the previous exercise and the glossary of the 

Klein model, translate this theorem into a famous theorem in 

Euclidean geometry due to Brianchon (see Figure 7.48). This 

gives a hyperbolic proof of a Euclidean theorem (for a Euclid

ean proof, see Coxeter and Greitzer, 1967, p. 77). 

Figure 7.48 Brianchon's theorem. 

K-13. It is a theorem in hyperbolic geometry that inside every trebly 

asymptotic triangle a�nA there is a unique point G equidistant 

from all sides, which is the point of concurrences of the alti

tudes. Show that in the Klein model this theorem is a conse
quence of Gergonne's theorem in Euclidean geometry, which as

serts that if the inscribed circle of .6..PQR touches the sides at 

points A, �' and n, then segments P�, Qil, and RA are con

current (see Figure 7.49 and Exercise H-9). Show that 

( <i:AG�) 0 = 120° in the sense of degree measure for the Klein 

model. (Hint: To take care of the special case where one side of 

.6..�ilA is a diameter, apply a harmonic homology to transform 

to the case where Gergonne's theorem applies.) 

Note that G is the hyperbolic center of the inscribed hy

perbolic circle of a�nA. 
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Q :E 

Figure 7.49 Gergonne point G is Klein incenter of trebly asymptotic triangle. 

K-14. In order to express the Klein length d'(AB) = t llog(AB, PQ)I in 
terms of the coordinates (ai. a2) of A and (bi. b2) of B, prove 
that with a suitable ordering of the ends P and Q of the Klein 
line through A and B, you have the formula 

(AB, PQ) 

a1b1 + a2b2 - 1 - V (a1 - bi)2 + (a2 - bz)2 - (a1b2 - a2bil2 

a1b1 + a2b2 - 1 + V (a1 - bi)2 + (a2 - bz)2 - (a1b2 - a2bil2 
· 

(Hint: If A and B have complex coordinates z and w, then P and 
Q have complex coordinates tz + (1 - t)w and uz + (1 - u)w, 
where t and u are roots of a quadratic equation Dx2 + 2Ex + F = 
0 expressing the fact that P and Q lie on the unit circle. Find the 
coefficients D, E, and F and show that 

t(l - u) E + F - �F 
(AB, PQ) = u(l - t) = 

E + F + YE2 - DF
. 

K-15. Use the formula for Klein length given in Theorem 7.4 to derive 
a proof of the Bolyai-Lobachevsky formula in Theorem 7.2 for 
the Klein model. (Hint: Take the vertex of the angle of paral
lelism a to be the center 0 of the absolute and show that the 
Klein distance d' corresponding to a is given by 

d' = _!_ log 
1 + cos a . 

2 1 - cos a 

Then use a half-angle formula from trigonometry.) 
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K-16. (a) Show that a Cartesian line l of equation Ax + By + C = 0 is 

a secant of the unit circle if and only if 

A2 + B2 - C2 > 0. 

We will denote the expression on the left of this inequality 

by 1z12• 
(b) Prove that if P' = (x' , y ') is the Klein reflection of point 

P = (x, y) across l, then 

x' = 

lll2x - 2A(Ax +By+ C) 
1z12 + 2C(Ax +By+ C) 

, 

, _ IZl2Y - 2B(Ax +By+ C) 
y - 1z12 + 2C(Ax +By+ C) 

(Hint: Use Theorem 7.3. In the case where C = 0, the Eu

clidean reflection is easy to calculate. If C-=/= 0, the pole L 

of l has coordinates ( -A/C, -B/C) , according to equation 

(2) in the last section of this chapter; you must calculate 
� 

the coordinates of the point M where line LP meets l and 

then calculate the coordinates of the harmonic conjugate P' 

of P with respect to L and M.) 
(c) Suppose l is a secant of the unit circle and let line l' -=/= l be 

another secant, having equation A'x + B' y + C' = 0. Show 

that the algebraic criterion for the Klein lines cut out by l 
and l' to be Klein-perpendicular is AA' +BB' - CC' = 0. 

(Hint: If C -=/= 0, use the coordinates of the pole of l.) 
(d) Let l and l' be secants as above. The determinant criterion 

for them to be parallel is 

d ( A B) 1 1 D = et 
A' B' 

= AB - BA = 0. 

The Klein lines they cut out will a fortiori then be Klein

parallel. Suppose now D-=/= 0. Then the Klein lines cut out 

by these secants are Klein-parallel iff the point at which the 

secants meet is not inside the unit circle. Show that an al

gebraic equation on those coefficients which is necessary 

and sufficient for them to intersect on the unit circle (so 

that the Klein lines they cut out are asymptotically parallel) 

is 

(BC' - B'C)2 + (AC' - A'C)2 = D2• 
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Find an algebraic inequality on the coefficients of l and l' 

which is necessary and sufficient for them to intersect inside 

the unit circle. (Hint: Knowledge of Cramer's rule in two

dimensional linear algebra is helpful here to solve for the co

ordinates of the point of intersection. The quantities being 

squared on the left side of this equation are also subdeter

minants of the 2 x 3 matrix of coefficients.) 

K-17. The line perpendicular to the bisector of <r:..A at A is called the 

external bisector of <r:..A (because its rays emanating from A bi

sect the two supplementary angles to <r:..A). You proved (in Ex

ercise 18, Chapter 4) that the (internal) bisectors of the angles 

of .6..ABC concur in the center I of the inscribed circle-this is a 

theorem in neutral geometry. 

(a) Prove that in Euclidean geometry the internal bisector of 

<r:..A is concurrent with the external bisectors of <r:..B and <r:..C. 

(b) Deduce from the Klein model that in hyperbolic geometry, 

the internal bisector of <r:..A is "concurrent" with the exter

nal bisectors of <r:..B and <r:..C in a point which may be ordi

nary, ideal, or ultra-ideal (see Figure 7.50). (Hint for part 

(a): Use the facts that the bisector of an angle is the locus 

of interior points equidistant from the sides and that exter

nal bisectors are not parallel. Hint for part (b): Take I to be 

the center 0 of the absolute y and notice, using K-11, that 

the hyperbolic internal bisectors, being diameters of y, coin

cide with the Euclidean internal bisectors. Hence the hyper

bolic external bisectors, being perpendicular to the diameters 

of y, coincide with the Euclidean external bisectors.) 

Figure 7.50 Three possible positions of the absolute. 
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K-18. It is a theorem in Euclidean geometry that the altitudes of an 
acute triangle are concurrent and the lines containing the alti
tudes of an obtuse triangle are concurrent (see Problem 8, Chap
ter 9). Applying this theorem to the Klein model, deduce that in 
hyperbolic geometry the altitudes of an acute triangle are con
current and that the lines containing the altitudes of an obtuse 
triangle are "concurrent" in a point that may be ordinary, ideal, 
or ultra-ideal. (Hint: Place the triangle so that one vertex is O; 

show that the Klein lines containing the altitudes then coincide 
with the Euclidean perpendiculars from the vertices to the op
posite sides. Use the crossbar and exterior angle theorems to ver
ify that for acute triangles the point of concurrence is ordinary.) 

K-19. (a) Prove, using analytic geometry, that the medians (segments 
from a vertex to the midpoint of the opposite side) of a tri
angle in a Euclidean plane are concurrent (simplifying the 
algebra by placing one vertex at the origin). Show that this 
result can be proved synthetically from the converse to De
sargues' theorem (see Exercise H-10 and Project 1, Chap
ter 2) in the projective completion of the Euclidean plane. 
(Hint: Each medial line joining midpoints is parallel to the 
line containing the third side, so the point of intersection of 
these lines in the projective completion lies on the line at 
infinity.) 

(b) Show that this theorem also holds in hyperbolic geometry 
by a special position argument in the Klein model.17 (Hint: 
If 0 is the hyperbolic midpoint of AB, it is also the Euclid
ean midpoint; if J, I are the hyperbolic midpoints of 

� 

AC, BC, use Exercise 2(b), Chapter 6, to show that JI is Eu-
� � � 

clidean-parallel to AB-that is, JI "meets" AB in the har-
monic conjugate at infinity of 0 with respect to A and B. 
The result then follows from the converse to harmonic con
struction in Figure 7.51.) Alternatively, as in part (a), ap
ply the converse to Desargues' theorem to .6..ABC and .6..IJK 
formed by the midpoints of the sides of .6..ABC. Use per
pendicular bisector concurrence in the projective comple
tion and Exercise 2(b), Chapter 6, to show that the points 

17 Bachmann (1959, p. 74), has proved the concurrence of the medians for arbitrary 

Hilbert planes and, more generally, for his "metric" planes, using his calculus of re

flections-based on Hjelmslev's methods. Hartshorne used those methods to prove, 

for arbitrary Hilbert planes, that if two altitudes of a triangle meet, then the third al

titude is concurrent with them. See his Theorem 43.15, p. 430. 
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y A 0 B 

Figure 7.51 Concurrence of medians in Klein model. 

of intersection in the projective completion of correspond

ing sides of these two triangles lie on the polar of the point 

of concurrence of the perpendicular bisectors. 

(c) Refer to Figure 6.15 and Exercise 2, Chapter 6. If .6:.ABC is 

not isosceles, then according to part (d) of that exercise, the 

perpendiculars dropped from vertices of the triangle to me

dial lines are not altitudes of .6:.ABC if the plane is hyper

bolic. Show, using the Klein model, that those perpendicu

lars are also concurrent in the projective completion. (Hint: 

Apply the converse to Desargues' theorem to .6:.ABC and to 

the triangle in the projective completion formed by the poles 

of the medial lines of .6:.ABC. To show that the hypothesis 

of the converse to Desargues' theorem is satisfied by these 

two triangles, again apply perpendicular bisector concur

rence in the projective completion to deduce that the poles 

of the perpendicular bisectors of .6:.ABC are collinear.) This 

gives us a new special point of a triangle in the hyperbolic 

plane! 

K-20. (a) In any Hilbert plane, let DABCD have both pairs of oppo

site sides congruent. Prove that both pairs of opposite an

gles are congruent and that the lines containing opposite 

sides have a common perpendicular (use Exercise 12, Chap

ter 6), in particular are parallel. Such a quadrilateral will be 

called a symmetric parallelogram. Prove that DABCD is a 

symmetric parallelogram iff the diagonals bisect each other. 

Let S be their common midpoint. Prove that the diagonals 

of a symmetric parallelogram are perpendicular iff all four 

sides are congruent, and in that case DABCD has an in

scribed circle with center S. Prove that the diagonals of a 
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symmetric parallelogram are congruent iff all four angles 

are congruent (in a semi-Euclidean plane, that happens iff 

DABCD is a rectangle), and in that case DABCD has a cir

cumscribed circle with center S. DABCD is called a regular 
4-gon if all four sides and all four angles are congruent. 

(b) Prove that in a Euclidean plane, every parallelogram is sym

metric, whereas in a hyperbolic plane, there exist parallel

ograms that are not symmetric. 

(c) Suppose that DABCD is a symmetric parallelogram in a hy

perbolic plane, with S the midpoint of its diagonals. Show 

that for each pair of opposite sides, S is the symmetry point 

for the lines containing those sides, in the sense of Major 

Exercise 12, Chapter 6. In the Klein model, suppose also 

that S = 0. Show that DABCD is a Euclidean parallelogram, 

that it is a Euclidean rectangle iff all four angles are Klein

congruent, and that it is a Euclidean square iff it is a hy

perbolic regular 4-gon. 

(d) In a Euclidean plane, use the results above about parallel

ograms to give a synthetic proof of the following theorem: 

In .6..ABC, let B', C' be the midpoints of AC, AB, respec

tively. BB' and CC' meet at a point G, by the crossbar the

orem. Let L, M be the midpoints of BG, CG, respectively. 

Then BL� LG� GB' and CM� MG� GC'. In words: G is 

two-thirds of the distance from each vertex to the opposite 

midpoint. Deduce from this that the three medians of .6..ABC 

are concurrent. (Hint: Show that DLMB' C' is a parallelo

gram.) 

K-21. It has been shown by Jenks that in hyperbolic geometry, "be

tweenness," "congruence," and "asymptotic parallelism" can all 

be defined in terms of incidence alone. (An important conse

quence of this observation is that every collineation of the hy

perbolic plane is a motion; see Chapter 9). Here are his obser

vations (draw diagrams in the Klein model to see what is going 

on). First, three distinct lines a, b, c form an asymptotic trian

gle abc if and only if for any point P on any one of them-say, 

on a-there exists a unique line pi= a through P which is par

allel to both b and c (p is called an asymptotic transversal through 

P). Second, a I b (a asymptotically parallel to b) if and only if 

there exists a line c such that a, b, c form an asymptotic trian

gle. Third, given three points P, Q, R on a line m, P * Q * R if 

and only if given any a i= m through P, bi= m through R, and 
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c such that a, b, c form an asymptotic triangle, every line through 

Q meets at least one of the sides of abc. Fourth, segment PQ on 

a is congruent to segment P'Q' on a' if and only if either (1) 

a I a' and both are asymptotically parallel to the join of the meets 

of the asymptotic transversals through P and P' and through Q 

and Q', or (2) both are asymptotically parallel to some line a" 

on which lies a segment P"Q" congruent with both PQ and P'Q' 

in the sense of (1). Justify (1) by drawing the diagram in the 

Klein model and then applying Lemma 7. 5 and Theorem 7.4 (see 

Blumenthal and Menger, 1970, p. 220). 

P-Exercises 

P-1. Using the glossary for the Poincare disk model, translate the fol

lowing theorems in hyperbolic geometry into theorems in Eu

clidean geometry: 

(a) If two triangles are similar, then they are congruent. 

(b) If two lines are divergently parallel, then they have a com

mon perpendicular and the latter is unique. 

(c) The fourth angle of a Lambert quadrilateral is acute. 

P-2. State and prove the analogue of Proposition 7.6 when 0 lies in

side 8 and the power p of 0 with respect to 8 is negative. 

P-3. Let 8 be a circle with center C and a a circle not through C hav

ing center A. Let A' be the inverse of A in 8 and let circle a' be 

the image of a under inversion in 8. Prove that A' is the inverse 

of C ina' and hence that A' is not the center of a'. (Hint: Show 

that any circle f3 through A' and C is orthogonal to a' by ob

serving that the image {3' of f3 under inversion in 8 is a line or

thogonal to a.) 

P-4. Construct the P-angle-bisector t of a P-angle <i:BAB' in the case 

where A if=. 0. (Hint: Choose B and B' so that P-segments AB and 

AB' are P-congruent. Then find the construction of the 

P-perpendicular-bisector of P-segment BB' previously worked out 

in the text.) 

P-5. We have proved that P-circles in the disk are E-circles, and con

versely. We also showed how to construct the E-center of a 

P-circle given its P-center. Show conversely, given an E-circle 

in the disk and its E-center, how to construct its P-center. (Hint: 

It comes down to constructing the P-midpoint of a certain 

E-segment that is contained in a diameter of the disk.) 
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P-6. In the hyperbolic plane with some given unit of length, the dis
tanced for which the angle of parallelism Il(d) 0 = 45° is called 
Schweikart's constant. Schweikart was the first to notice that if 
6.ABC is an isosceles right triangle with base BC, then the length 
of the altitude from A to BC is bounded by this constant, which 
is the least upper bound of the lengths of all such altitudes. Prove 
that for the length function we have defined for the Poincare 
disk model, Schweikart's constant equals log(l + Vz) (see Fig
ure 7.52). (Hint: Schweikart's constant is the Poincare length d 
of segment OP in Figure 7.52. Show that the Euclidean length 
of OP is V2 - 1 and apply Lemma 7 .4 to solve for d.) 
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Figure 7.52 Schweikart's segment OP. 

P-7. Let a be a circle with center A and radius of length r, and f3 a 
circle with center B and radius of lengths. Assume Ai= B and 

� - -

let C be the unique point on AB such that AC2 - BC2 = r2 - s2. 
� 

The line through C perpendicular to AB is called the radical axis 
of the two circles. 
(a) Prove (e.g., by introducing coordinates) that C exists and is 

unique and that for any point P different from A and B, P 
lies on the radical axis if and only if PA2 - PB2 = r2 -s 2. 

(b) For any point X outside both a and {3, let T be a point of 
� 

a such that XT is tangent to a at T; similarly let U on f3 be 
� - -

a point of tangency for XU. Prove that XT = XU if and only 
if X lies on the radical axis of a and f3. 

� 
(c) Prove that if a and f3 intersect in two points P and Q, PQ 

is their radical axis. 
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Figure 7.53 

(d) Prove that if a and f3 are tangent at point C, the radical axis 

is the common tangent line through C. 

(e) Let X be a point outside both a and {3. Prove that X lies on 

the radical axis of a and f3 if and only if X has the same 

power with respect to a and f3 (see Lemma 7.1). 

P-8. Given two nonintersecting, nonconcentric circles a and f3 with 

centers A and B, respectively. Justify the following straightedge

and-compass construction of the radical axis of a and {3. Draw 

any circle 8 that cuts a in two points A' and A" and cuts f3 in 
� � 

two points B' and B". If A' A" and B'B" intersect in a point P, 

then P lies on the radical axis; the latter is therefore the per
� 

pendicular to AB through P. (Hint: Draw tangents PS, PT, and 

PU from P to 8, a, and f3 and apply Exercises P-7(b) and P-7(c) 
- - --

to show that PT= PS = PU. See Figure 7.53.) 

P-9. Use Exercise P-7 to verify by a straightedge-and-compass con

struction that in the Poincare model two divergently parallel 

Poincare lines have a common perpendicular. (Hint: There are 

four cases to consider, depending on whether the Poincare line 

is a diameter of y or an arc of a circle a orthogonal to y and de

pending on whether radical axes intersect or not. One case is il

lustrated in Figure 7.54. In the case where the radical axes are 

parallel, use the fact that the perpendicular bisector of a chord 

of a circle passes through the center of the circle (Exercise 17, 

Chapter 4) .) 

P-10. Given any Poincare line l and any Poincare point P not on l. 

Construct the two rays from P in the Poincare model that are 

limiting parallel to l. (If l is an arc of a circle a orthogonal to y 
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a. 

Figure 7.54 Common Poincare perpendicular of divergent parallels. 

and intersecting y at A1 and A2, then the problem amounts to 

constructing a circle f3i through P that is orthogonal to y and 

tangent to a at Ai for each of i = 1, 2. See Figure 7.55 and use 

Proposition 7.5.) 

Figure 7.55 Poincare limiting parallel rays. 

P-11. We define three types of coaxal pencils of circles as follows: 

(1) Given a line t and a point C on t. The corresponding tan
gent coaxal pencil consists of all circles tangent to t at C. 

(2) Given two points A and B. The corresponding intersecting 
coaxal pencil consists of all the circles that pass through 

both A and B, and A and B are the limiting points of this 

pencil. 

(3) Given a circle y and a line t not meeting y. The corre

sponding non-intersecting coaxal pencil consists of y and all 

other circles 8 such that tis the radical axis of y and 8. 
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Prove the following: 

(a) Any two nonconcentric circles belong to a unique coax:al 

pencil. 

(b) Given a coax:al pencil C. All pairs of circles belonging to C 

have the same radical axis, and the centers of all circles in 

C lie on a line perpendicular to this radical axis called the 

line of centers of C. (Hint: See Exercise P-7.) 

P-12. Given circle y with center 0. For any point P -=f=. 0, if P' is the 

inverse of P in y, then the line through P' that is perpendicular 
� 

to OP is called the polar of P with respect to y and will be de-

noted p(P). When P lies outside y, its polar joins the points of 

contact of the two tangents to y from P (see Figure 7 .22). When 

P lies on y, its polar is the tangent to y at P, and this is the only 

case in which P lies on p(P). Prove the following duality prop

erty. B lies on p(A) if and only if A lies on p(B). (Hint: If B lies 
� 

on p(A), let B' be the foot of the perpendicular from A to OB. 

See Figure 7.56. Show that .6.0AB' is similar to .6.0BA' and de

duce that B' is the inverse of B in y. For the significance of this 

operation of polar reciprocation for the theory of conics, see 

Coxeter and Greitzer, 1967, Chapter 6.) 

B 

Figure 7.56 Polar reciprocation for a circle. 

P-13. Given an acute angle in the Poincare model. Construct the unique 

Poincare line that is perpendicular to a given side of this angle 

and limiting parallel to the other. This shows that the angle of 

parallelism can be any acute angle whatever. (Hint: If both Poin

care lines are arcs of orthogonal circles a and {3, let P' be the 



P-EXERCISES 363 

intersection with y of the part of a containing the given ray and 
� 

let P be the other intersection with y of P'B, B being the center 

of {3; see Figure 7.57. Show that P and P' are the inverse points 

in circle {3, then find the point of intersection of the tangents to 

y at P and P'. Compare with Major Exercise 9, Chapter 6.) 

Given acute angle 

Figure 7.57 Construction of Poincare segment of parallelism. 

P-14. Prove the following: 

(a) The set of all circles orthogonal to two given circles y and 

8 tangent at C is the tangent coaxal pencil through C whose 

line of centers is the common tangent t to y and 8. 

(b) The set of all circles orthogonal to two given non-intersecting 

non-concentric circles y and 8 is the intersecting coaxal pen

cil whose line of centers is the radical axis t of y and 8 and 

whose limiting points are the two points at which every 

member of this pencil cuts the line joining the centers of y 

and 8. 

(c) The set of all circles orthogonal to two given circles y and 8 

intersecting at A and B is the non-intersecting non-concentric 
� 

coaxal pencil whose line of centers is AB and whose radical 

axis is the perpendicular bisector of AB (see Figure 7.58). 

P-15. Given three circles a, {3, and y. Is there always a fourth circle 8 

orthogonal to all three of them? If so, is 8 unique? (Hint: Con

sider the radical axes of the three pairs of circles obtained from 

the three given circles; the center of 8 must lie on all three rad

ical axes and must lie outside the three circles.) 

P-16. Given a circle y with center 0. 

(a) Given P -=f=. 0 and P' its inverse in y. Prove that inversion in 

y maps the pencil of lines through P' onto the intersecting 
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Figure 7.58 Orthogonal coaxal pencils. 

coaxal pencil of circles through 0 and P and maps the or

thogonal pencil of concentric circles centered at P' onto the 

non-intersecting coaxal pencil of circles whose radical axis 

is the perpendicular bisector of OP. 

(b) Given a line l through 0. Prove that inversion in y maps 

the pencil of lines parallel to l onto the pencil of circles tan

gent to l at 0. 

P-17. The inversive plane is obtained from the Euclidean plane by ad

joining a single point at infinity oo, which by convention lies on 

every Euclidean line but does not lie on any Euclidean circle. By 

a "circle" we mean either an ordinary Euclidean circle or a line 

in the inversive plane. Two parallel Euclidean lines meet at oo 

when extended to inversive lines; as "circles" they will be con

sidered to be tangent at oo. Given an ordinary circle y with cen

ter 0, define the inverse of 0 in y to be oo. By inversion in a 

"circle" we mean either inversion in an ordinary circle or re

flection across a line. Prove the following: 

(a) Inversion in a given "circle" maps "circles" onto "circles." 

(b) If A and B are inverse to each other in a "circle" a, and if 

under inversion in another "circle" f3 they map to A', B', 

a
'

, then A' and B' are in verse to each other in a
'

. (Hint for 

part (b): Show that any "circle" y' through A' and B' is 
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orthogonal to a' by observing that inversion preserves or

thogonality-use Propositions 7.5 and 7.9.) 

P-18. In addition to the tangent, intersecting, and non-intersecting 

coaxal pencils of circles defined in Exercise P-11, define three 

further pencils of "circles" in the inversive plane as follows: 

(4) All the circles having a given point as center 

(5) All the lines passing through a given ordinary point 

(6) A given line and all lines parallel to it 

Furthermore, given a coaxal pencil of circles, we will consider 

its radical axis as one more "circle" belonging to the pencil. Prove 

the following: 

(a) Two distinct "circles" belong to a unique pencil of "circles." 

(b) A pencil of "circles" is invariant as a set under inversion in 

any "circle" in the pencil. (Hint for part (b): The statement 

is obvious for the three new types of pencils just introduced. 

For the three coaxal types, use the two preceding exercises.) 

P-19. Construct a regular 4-gon in the Poincare disk model. (Hint: 

Choose a point A if=. 0 on the line y = x; let B (respectively, D) 

be its reflection across the x-axis (respectively, the y-axis) and 

let C be obtained from A by 180° rotation about 0. Show that 

DABCD is a regular 4-gon. Note that as A approaches 0, <r:..A ap

proaches a �ht angle, while as A moves away toward the ideal 

end of ray OA, <r:..A approaches the zero angle.) 

P-20. Use the Poincare model to show that in the hyperbolic plane, 

there exist two points A, B lying on the same side S of a line l 

such that no circle through A and B lies entirely within S. This 

shows that the result in Major Exercise 7, Chapter 5, is another 

statement equivalent to Euclid's parallel postulate. (Hint: Propo

sition 7.12.) 

H-Exercises 

Once again, these are exercises for a Euclidean plane. 

- � 
H-1. Let M be the midpoint of AB, let r =MA, and let C, D on AB lie 

on the same side of M, with A, B, C, D distinct. Then C and D 

are harmonic conjugates with respect to AB if and only if we 

have r2 = (MD) (MC). 

H-2. If y and 8 are orthogonal circles, if AB is a diameter of y, and 
� 

if 8 cuts AB in points C and D, then C and D are harmonic 
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Figure 7.59 

conjugates with respect to AB; conversely, if a diameter of one 
circle is cut harmonically by a second circle when the diameter 
is extended, then the two circles are orthogonal (see Figure 7 .59). 

(Hint: If T is a point of intersection of y and 8, use Lemma 7.1 
to show that the circles are orthogonal if and only if (OT)2 = 

--

(OC)(OD). Now apply Exercise H-1.) 
H-3. Given three collinear points A, B, and C. Prove that the fourth 

harmonic point D is the inverse of C in the circle having AB as 
diameter. (Hint: Use Exercise H-2 and Proposition 7.5.) 

H-4. Sensed magnitudes. Given two points A, B. Assign arbitrarily an 
� 

order (i.e., a direction) to AB. Then the length of AB will be con-
sidered positive or negative according to whether the direction 
from A to B is the positive or negative direction on the line. We 
will denote this signed length by AB, so that we have AB = - BA. 

� 

If C is a third point on the directed line AB, we define the signed 
ratio in which C divides AB to be AC/CB. 
(a) Prove that this signed ratio is independent of the direction 

assigned to the line and that point C is uniquely determined 
by this ratio. (Note that C would not be uniquely deter
mined by the unsigned ratio.) 

(b) Given parallel lines l and m. Let transversals t and t' cut l 

and m in B, C and B', C', respectively and let t meet t' at 
point A. Prove that AB/BC =AB' /B'C' (use the fundamen
tal theorem on similar triangles, Chapter 5). 

� 

H-5. Theorem of Menelaus. Given .6..ABC and points D on BC, E on 
� � 

CA, and F on AB that do not coincide with any of the vertices 
of the triangle. Define the linearity number by the relation 
[ABC/DEF] = (AF/FB) (BD/DC) (CE/EA). Then a necessary and 
sufficient condition for D, E, and F to be collinear (Figure 7.60) 

is that [ABC/DEF] = - 1 . (Hint: If D, E, and F lie on a line l, let 
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� 

the parallel m to l through A cut BC at G. Use Exercise H-4 to 

get CE/EA= CD/DG and AF/FB =GD/DB and deduce that the 

linearity number is -1. Conversely, use Exercise H-4 to show 
� � 

that EF cannot be parallel to BC. If these lines meet at D', use 

the first part of the proof and the hypothesis to show that 

BD/DC = BD' /D'C and apply Exercise H-4(a).) 

A 

Figure 7.60 

A A 

Figure 7.61 

H-6. Theorem of Ceva. Given .6..ABC and a third point D (respectivelv, 
� �� � 

E, F) on BC (respectively, on AC, AB). Then the three lines AD, 
� � 

BE , and CF are either concurrent or parallel if and only if 

[ABC/DEF] = + 1 (see Figure 7.61). (Hint: Suppose that the three 

lines meet at O; apply Menelaus' theorem to .6..ADB and .6..ADC 

to obtain two different expressions for OD/ AO, then divide one 

expression by the other to see that the linearity number is + 1. 

If the three lines are parallel, apply Exercise H-4(b). Conversely, 

if the linearity number is + 1 and the three lines are not paral-
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� � � � 

lel, let BE and CF, for example, meet at 0 and let AO meet BC 
at D'. Use the first part of the proof and the hypothesis to show 
that BD/DC = BD' /D'C and apply Exercise H-4(a).) 

H-7. Given four collinear points A, B, C, and D. Define their signed 

cross-ratio (AB, CD) by (AB, CD) = (AC/CB)/(AD/DB). 
(a) Prove that ABCD is a harmonic tetrad if and only if we have 

(AB, CD) = -1. 

(b) Prove that signed cross-ratios are preserved by perspectiv
ities and parallel projections (see Lemma 7.5 and the par
allel projection theorem preceding Exercise 10, Chapter S). 

H-8. Prove that ABCD is a harmonic tetrad if and only if we have that 
l/AB = f(l/AC + l/AD). 

H-9. Suppose the inscribed circle of .6..ABC touches sides BC, CA, and 
AB at D, E, and F, respectively. Prove that AD, BE, and CF are 
concurrent in a point G called the Gergonne point of .6..ABC; see 
Figure 7.62. (Hint: By Execise 18, Chapter 4, the center I of the 
inscribed circle lies on all three angle bisectors; this gives three 
pairs of congruent right triangles that can be used to verify the 
criterion of Ceva's theorem.) 

B 

Figure 7.62 Gergonne point. 

H-10. Use the theorem of Menelaus to prove Desargues' theorem as 
stated in Project 1, Chapter 2. (Hint: Referring to Figure 2.10, 
apply Menelaus' theorem to .6..BCP, .6..CAP, and .6..ABP and then 
multiply the three equations to get [ABC/RST] = -1. Now ap
ply Menelaus' theorem once more.) By the principle of duality, 
this also proves the converse to Desargues' theorem, which is 
its dual. Combining these two results yields the following theo
rem, which actually holds in any projective plane coordinatized 
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by a division ring: Two triangles are in perspective from a point 

if and only if they are in perspective from a line. 

H-11. Use the theorem of Menelaus to prove Pappus' theorem as stated 

in Project 3, Chapter 2. (Hint: Referring to Figure 2.13 and us

ing · to denote the intersection of lines, let N = BA' · B' A, let 

L =CA' · C' A, and let M = BC' · B'C. Pappus asserts that L, M, 

N are collinear. Consider the generic case where the points 

U =BC' · B'A, V =CA' · B'A, and W =CA' · C'B form a trian

gle. Apply Menelaus' theorem to this triangle and the five triples 

of collinear points LC' A, CMB', A'BN, CBA, and A'C'B' to ob

tain five linearity numbers that are equal to -1. Do the algebra 

required to show the sixth linearity number needed to prove 

Pappus' assertion is also equal to -1. The nongeneric case re

quires a separate argument.) 

H-12. Apply Ceva's theorem to prove that (a) the medians of a trian

gle are concurrent, (b) the altitudes of a triangle are concurrent. 

Apply Menelaus' theorem to prove Pascal's theorem for a circle: 

If a hexagon is circumscribed by a circle and the three pairs of 

opposite sides intersect (if necessary, when extended), then those 

three points of intersection are collinear. (Refer to Coxeter and 

Greitzer, 1967, Section 3.8.) 

Projects 

1. A model of a Euclidean plane can be constructed within a hyper

bolic plane II, not just within hyperbolic space on the horosphere. 

The idea is to fix a point 0 and take as "points" all the points of 

II, but interpret "lines" as the hyperbolic lines through 0 plus all 

the (singly) equidistant curves for those lines, with "incidence" in

terpreted as a point lying on that "line" in the hyperbolic plane. Be

tweenness is induced by the betweenness relation in II. It is straight

forward to verify the incidence and betweenness axioms and the 

Euclidean parallel property for this interpretation. The more diffi

cult part is to define a suitable congruence relation and to verify 

the congruence axioms. (This model shows that Clavius and the 

Greek and Islamic geometers before him, who proposed that equi

distant curves were straight lines, may have unconsciously been 

working within a hyperbolic plane!) See if you can work that out. 

One method is given in Chapter 10. 
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To be more concrete, take II to be the Poincare disk model within 

a Euclidean plane and 0 to be the center of the disk. Then "lines" 

are diameters of the circle y, which is the rim of the disk, plus arcs 

in the disk of Euclidean circles intersecting y at the ends of a di

ameter. Figure out appropriate measures of angles and segment 

lengths so as to satisfy the congruence axioms. One would then 

have a Euclidean model within a hyperbolic model within a Eu

clidean plane-not philosophically significant, but a possible guide 

to understanding the abstract problem. 

2. Report on the determination of angle and segment measure in a real 

projective plane relative to a distinguished conic called the absolute, 

which may be real, imaginary, or degenerate. The resulting geome

tries, which include the elliptic, hyperbolic, and parabolic among 

several others (such as the Galilean and Minkowskian), are called 

Cayley-Klein geometries since Arthur Cayley had the original idea and 

Felix Klein brought it to fruition. When the absolute is real, the met

rical formulas are exactly those obtained for hyperbolic geometry, and 

when the absolute is imaginary, the formulas are the same as those 

of elliptic geometry. One reference, if you read German, is Klein (1968). 

A brief reference in English is Chapter 12, Section 6, in vol. II of Fzm

damentals of Mathematics: Geometry, H. Behnke, F. Bachmann, 

H. Kunle, and K. Fladt, eds. , MIT Press, Cambridge, MA, 1974. A more 

detailed account of all nine plane Cayley-Klein geometries, with ap

plications to physics, can be found in I. M. Yaglom, A Simple Non

Euclidean Geometry and Its Physical Basis, Springer, New York, 1979. 

If you do a search on the web, you will find many articles applying 

Cayley-Klein geometries to quantum physics and to engineering, e.g. , 

http://www. parcellular . fsnet. co. uk/SpinS % 20master. htm. 

3. If you have a facility with computer drawing of diagrams in Poincare 

models of the real hyperbolic plane, draw an accurate version in one 

of those models for the atrocious Figure 6. 22 illustrating perpendicu

lar bisectors of a triangle that do not meet in an ordinary point but 

that themselves have a common perpendicular. Also, draw the case 

where the perpendicular bisectors meet at an ideal point. I would love 

to see those drawings if you can do them (please send them to me 

c/o W. H. Freeman & Co. , 41 Madison Avenue, New York, NY 10010). 

Here are some online references for drawing in Poincare models: 

http://cgm. cs. mcgill. ca/labdocs/CinderellaManual/Texts/ 

Introduction. html 

http://cs. unm. edu/�joel/NonEuclid/ 



Philosophical 
Implications, 

Fruiiful 
Applications 

The value of non-Euclidean geometry lies in its ability to liberate us 

from preconceived ideas in preparation for the time when exploration 

of physical laws might demand some geometry other than the 

Euclidean. 

G. F. B. Riemann 

What Is the Geometry of Physical Space? 
We have shown that if Euclidean geometry is consistent, so is hyper

bolic geometry, since we can construct models for it within Euclidean 

geometry. Conversely, it can be proved that if hyperbolic geometry is 

consistent, so is Euclidean geometry, via the model described at the 

end of the Coordinates in the Real Hyperbolic Plane section in Chap

ter 10. Traditionally, the Euclidean plane has been modeled by the 

371 
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points on the horosphere in hyperbolic three-space, with the horocy

cles acting as "lines" and with the metric induced from the hyperbolic 

metric, but now we have a model of the Euclidean plane within the 

hyperbolic plane. Thus, the two geometries are equally consistent. 

You may grant now that, logically speaking, hyperbolic geometry 

deserves to be put on an equal footing with Euclidean geometry. But 

you may also feel that hyperbolic geometry is just an amusing intel

lectual pastime, whereas Euclidean geometry accurately represents the 

physical world we live in and is therefore far more important. Let's ex

amine this idea a little more closely. 

Certainly, engineering and architecture are evidence that Euclidean 

geometry is extremely useful for ordinary measurement of distances 

that are not too large. However, the representational accuracy of Eu

clidean geometry is less certain when we deal with larger distances. 

For example, let us interpret a "line" physically as the path traveled by 

a light ray. We could then consider three widely separated light sources 

forming a physical triangle. We would want to measure the angles of 

this physical triangle in order to verify whether the sum is 180° or not 

(such an experiment would presumably settle the question of whether 

space is Euclidean or hyperbolic). 

F. W. Bessel, a friend of Gauss, performed such a measurement, us

ing the angle of parallax of a distant star. The results were inconclu

sive. Why? Because any physical experiment involves experimental er

ror. Our instruments are never completely accurate. Suppose the sum 

did turn out to be 180°. If the error in our measurement were at most 

1/100 of a degree, we could conclude only that the sum was between 

179.99° and 180.01°. We could never be sure that it actually was 180°. 

Suppose, on the other hand, that measurement gave us a sum of 

179°. Although we could conclude only that the sum was between 

178.99° and 179.01°, we would be certain that the sum was less than 

180 °. In other words, the only conclusive result of such an experiment 

would be that space is hyperbolic! 1 The inconclusiveness of Bessel's 

experiment shows only that if space is hyperbolic, the defects of ter

restrial triangles are extremely small. 

To repeat the point: Because of experimental error, a physical ex

periment can never prove conclusively that space is Euclidean-it can 

prove only that space is non-Euclidean. 

The discussion can be made more subtle. We must question the na

ture of our instruments-aren't they designed on the basis of Euclid-

1 If the measurement gave us a sum of 181 ° with error at most .01 °, we would conclude 
that space is elliptic. 
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Albert Einstein 

ean assumptions? We must question our interpretation of "lines"

couldn't light rays travel on curved paths? We must question whether 

space, especially space of cosmic dimensions, cannot be described by 

geometries other than these two. 

The latter is in fact our present scientific attitude. According to Ein

stein, space and time are inseparable and the geometry of space-time 

is affected by matter, so that light rays are indeed curved by the grav

itational attraction of masses. Space is no longer conceived of as an 

empty Newtonian box whose contours are unaffected by the rocks put 

into it. The problem is much more complicated than Euclid or 

Lobachevsky ever imagined-neither of their geometries is adequate for 

our present conception of space. This does not diminish the historical 

importance of non-Euclidean geometry. Einstein said, "To this inter

pretation of geometry I attach great importance, for should I not have 

been acquainted with it, I never would have been able to develop the 

theory of relativity. "2 

2 See George Gamow (1956), which tells how Einstein developed a geometry appropri
ate to general relativity from the ideas of Georg Friedrich Bernhard Riemann (1826-
1866). 
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Here is the famous response of Poincare to the question of which 

geometry is true: 

If geometry were an experimental science, it would not be an exact sci

ence. It would be subjected to continual revision .... The geometrical ax

ioms are therefore neither synthetic a priori intuitions nor experimental 

facts. They are conventions. Our choice among all possible conventions is 

guided by experimental facts; but it remains free, and is only limited by 

the necessity of avoiding every contradiction, and thus it is that postu

lates may remain rigorously true even when the experimental laws which 

have determined their adoption are only approximate. In other words, the 

axioms of Geometry (I do not speak of those of arithmetic) are only defi

nitions in disguise. What then are we to think of the question: Is Euclid

ean Geometry true? It has no meaning. We might as well ask if the met

ric system is true and if the old weights and measures are false; if Cartesian 

coordinates are true and polar coordinates false. One geometry cannot be 

more true than another: it can only be more convenient. [italics added] 3 

Essay Topic 18 at the end of this chapter provides a vivid example 

due to Poincare illustrating this conventionalist philosophy with regard 

to physics and the hyperbolic plane. 

You may think that Euclidean geometry is the most convenient-it 

is for ordinary engineering, but not for the theory of relativity. More

over, R. K. Luneburg contends that visual space, the space mapped on 

our brains through our eyes, is most conveniently described by hyper

bolic geometry. 4 

Philosophers are still arguing about Poincare's philosophy of conven

tionalism. One school, which includes Newton, Helmholtz, Russell, and 

Whitehead, contends that space has an intrinsic metric or standard of 

measurement. The other school, which includes Riemann, Poincare, Clif

ford, and Einstein, contends that a metric is stipulated by convention. The 

discussion can become very subtle (see Torretti, 1978, Chapter 4). 

What Is Mathematics About? 
The preceding discussion sheds new light on what geometry, and in 

general, mathematics, is about. Geometry is not about light rays, but 

3 H. Poincare (1952), p. 50. 
4 R. K. Luneburg (1947), and his article in the Optical Sodety of America Journal, Octo

ber 1950, p. 629. See also the articles by 0. Blank in that same journal, December 1958, 
p. 911, and March 1961, p. 335, and the explanation in Trudeau (1987), pp. 251-254. 
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the path of a light ray is one possible physical interpretation of the un
defined geometric term "line." Bertrand Russell once said that "math
ematics is the subject in which we do not know what we are talking 
about nor whether what we say is true." This is because certain prim
itive terms, such as "point," "line," and "plane," are undefined and 
could just as well be replaced with other terms without affecting the 
validity of results. Instead of saying "two points determine a unique 
line," we could just as well write "two alphas determine a unique beta." 
Despite this change in terms, the proofs of all our theorems would still 
be valid because correct proofs do not depend on diagrams; they de
pend only on stated axioms and the rules of logic. Thus, geometry is 
a purely formal exercise in deducing certain conclusions from certain 
formal premises. Mathematics makes statements of the form "if . . .  
then"; it does not say anything about the meaning or truthfulness of 
the hypotheses. The primitive notions (such as "point" and "line") ap
pearing in the hypotheses are implicitly defined by these axioms, by 
the rules, as it were, that tell us how to play the game.5 

To illustrate how radically different this view of mathematics is, ob
serve the following interaction (Torretti, 1987, p. 235). Gottlob Frege 
(1848-1925), who is considered the founder of modern mathematical 
logic, wrote to Hilbert: 

I give the name of axioms to propositions which are true, but which 

are not demonstrated because their knowledge proceeds from a source 

which is not logical, which we may call space intuition. The truth of 

the axioms implies of course that they do not contradict each other. 

That needs no further proof. 

Frege has stated the traditional view. Hilbert replied: 

Since I began to think, to write and to lecture about these matters, I 

have always said exactly the contrary. If the arbitrarily posited axioms 

do not contradict one another or any of their consequences, they are 

true and the things defined by them exist. That is for me the criterion 

of truth and existence. 

Hilbert knew that Euclidean and hyperbolic geometries are equally con
sistent, so it follows that for him they "exist" and are both "true." The 
discovery that Euclidean geometry was not "absolute truth" had a lib
erating effect on mathematicians, who now feel free to invent any set 

5 For a clear exposition of this viewpoint, which is due to Hilbert, see Hempel (1945). 



376 PHILOSOPHICAL IMPLICATIONS, FRUITFUL APPLICATIONS 

of axioms they wish and deduce conclusions from them. In fact, this 

freedom may account for the great increase in the scope and general

ity of modern mathematics. Georg Cantor, the daring founder of infi

nite set theory, with its cardinal and ordinal numbers, said: "The 

essence of mathematics is its freedom." In a 1961 address, Jean 

Dieudonne remarked on Gauss' discovery of non-Euclidean geometry: 

[It] was a turning point of capital significance in the history of mathe

matics, marking the first step in a new conception of the relation be

tween the real world and the mathematical notions supposed to account 

for it; with Gauss' discovery, the rather naive point of view that math

ematical objects were only "ideas" (in the Platonic sense) of sensory 

objects became untenable, and gradually gave way to a clearer com

prehension of the much greater complexity of the question, wherein it 

seems to us today that mathematics and reality are almost completely 

independent, and their contacts more mysterious than ever. 6 

The Controversy about the Foundations 
of Mathematics 
It would be misleading to say that mathematics is just a formal game 

played with symbols and having no broader significance. Mathemati

cians do not arbitrarily make up axioms-it is unlikely that anyone 

would ever develop a geometry in which it is assumed that nonsup

plementary right angles are never congruent to each other. Axioms must 

lead to interesting and fruitful results. Of course, some axioms that ap

pear uninteresting may turn out to have surprising consequences-this 

was the case with the hyperbolic axiom, which was virtually ignored 

during the lifetimes of Gauss, Bolyai, and Lobachevsky. If, however, 

axiom systems do not bear interesting results, they become neglected 

and eventually forgotten. 

Arguing against the description of mathematics as a "formal game," 

R. Courant and H. Robbins (1941) insist that "a serious threat to the 

very life of science is implied in the assertion that mathematics is noth

ing but a system of conclusions drawn from definitions and postulates 

that must be consistent but otherwise may be created by the free will 

of the mathematician. If this description were accurate, mathematics 

6 J. Dieudonne, L'Oeuvre Mathematique de C. F. Gauss, Poulet-Malassis Alenc;on: L'Im
primerie Alenc;onnaise, 1961. 
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could not attract any intelligent person. It would be a game with def

initions, rules and syllogisms, without motivation or goal." 

And Hermann Weyl has remarked: 

The constructions of the mathematical mind are at the same time free 
and necessary. The individual mathematician feels free to define his no
tions and to set up his axioms as he pleases. But the question is, will 
he get his fellow mathematicians interested in the constructs of his imag
ination? We can not help feeling that certain mathematical structures 
which have evolved through the combined efforts of the mathematical 
community bear the stamp of a necessity not affected by the accidents 
of their historical birth. 7 

Axiom systems that are fruitful can also be controversial in the 

mathematical world, as are the axioms for infinite sets developed by 

Georg Cantor, E. Zermelo, and others. A controversy occurs because 

some outstanding mathematicians (such as Weyl, L. E. J. Brouwer, and 

Errett Bishop in the case of infinite sets) simply do not believe all these 

axioms. If axioms were truly meaningless formal statements, how could 

there be any controversy about them? Is there any controversy about 

the rules of chess? It would seem that the formalist viewpoint-the 

view that mathematics is just a formal game-is a dodge to avoid hav

ing to face the difficult philosophical and psychological problem of the 

nature of mathematical creations or discoveries. Just what is asserted 

when a mathematician claims that something exists? When the 

Pythagoreans discovered that the hypotenuse of an isosceles right tri

angle was not commensurable with the leg, they tried to keep this dis

covery secret, calling such lengths "irrational." Nowadays we aren't 

upset over numbers like Vz. Similarly, mathematicians have accom

modated themselves to "imaginary" numbers such as i = \/=1, ex

ploited by J. Cardan. 8 

The most "fundamentalist" position on the philosophy of mathe

matics is that of Leopold Kronecker, a leading German mathematician 

in the late nineteenth century. According to Kronecker, "God created 

7 From H. Weyl, "A Half-Century of Mathematics," American Mathematical Monthly, 58 

(1951): 523-553. 

8 Jacques Hadamard has said about Cardan: "It would naturally be expected that the dis

covery of imaginaries, which seems nearer to madness than to logic and which, in fact, 

has illuminated the whole mathematical science, would come from such a man whose 

adventurous life was not always commendable from the moral point of view, and who 

from childhood suffered from fantastic hallucinations .... " (Hadamard, 1945). For the 

history and importance of -v=I, see Nahin (1998). 
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the whole numbers-all else is man-made." In particular, Kronecker re
pudiated Georg Cantor's theory of transfinite cardinal and ordinal num
bers. Hilbert later defended Cantor, proclaiming that "no one shall ex
pel us from the paradise which Cantor has created for us." Subsequently 
Kronecker was portrayed as the nasty reactionary whose rejection of 
Cantor's revolutionary new ideas drove Cantor to the insane asylum 
(see Bell, 1961); this may be a myth, and the philosophical issues un
derlying the Kronecker-Cantor controversy are far from settled. 

In the twentieth century, Cantor's set theory, made precise by the 
Zermelo-Fraenkel (ZF) axioms, became the new "absolute truth" that 
was the foundation for all of mathematics. However, there was some 
controversy about one axiom, the axiom of choice (AC), and there was 
so much uncertainty about another idea of Cantor's that it was called 
a "hypothesis"-the continuum hypothesis (CH). The first on Hilbert's 
famous 1900 list of 23 problems was to prove or disprove CH. Forty 
years later, Kurt Godel created a model of the other ZF axioms in which 
both AC and CH were true; that demonstrated the impossibility of dis
proving them. History repeated itself when, in 1963, models were cre
ated 9 in which either AC or CH or both were false. Thus AC and CH 
are independent of the other ZF axioms and of each other. There ex
ists an equally valid non-Cantorian set theory, just as there is an equally 
valid non-Euclidean geometry. 

One mystery about mathematics is perhaps the most compelling of 
all. If mathematical creations are merely arbitrary fancies, how is it that 
some turn out to have physical applications-for example, applications 
that enable us to calculate orbits well enough to put men on the moon? 
When the Greeks developed the theory of ellipses, they had no inkling 
that it would have applications to a "space race."10 

These questions and viewpoints are not intended to confuse you, 
but to point up the fact that mathematics is alive, ever changing, and 
incomplete. Moreover, according to a metamathematical theorem of Kurt 
Godel, mathematics is forever destined to remain incomplete. He proved 
that there will always be valid mathematical statements that cannot be 
demonstrated from systems of axioms that are broad enough to include 
arithmetic (see DeLong, 2004). In other words, Godel provided a formal 
demonstration of the inadequacy of formal demonstrations! 

9 By Paul J. Cohen; see P. J. Cohen and R. Hersh, "Non-Cantorian Set Theory," Scien

tific American, 217 (December 1967). 
10 See E. Wigner, "The Unreasonable Effectiveness of Mathematics," Communications in 

Pure and Applied Mathematics, 13 (1960): 1 ff. 
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Kurt Godel 

Perhaps the following remarks by Rene Thom are an appropriate 

reaction to Godel' s incompleteness theorem: 

The mathematician should have the courage of his private convictions; 

he would then affirm that mathematical structures have an existence 

independent of the human mind that thinks about them. The form of 

this existence is undoubtedly different from the concrete and material 

existence of the external world, but it is nevertheless subtly and pro

foundly linked to objective existence. For how else explain-if mathe

matics is merely a gratuitous game, the random product of our cere

bral activities-its indisputable success in describing the universe? 

Mathematics is encountered-not only in the rigid and mysterious laws 

of physics-but also, in a more hidden but still indubitable manner, in 

the infinitely playful succession of forms of the animate and inanimate 

world, in the appearance and destruction of their symmetries. That's 

why the Platonic hypothesis of Ideas informing the universe is-despite 

appearances-the most natural and philosophically the most economi

cal. But, at any instant, mathematicians have only an incomplete and 



380 P H IL 0 S 0 PH I CA L I M P LI CA T IO N S , F RU I T F U L A P P L I C A T I 0 N S 

fragmentary vision of this world of Ideas . . . , we have to recreate it 

in our consciousness by a ceaseless and permanent reconstruction. . . . 

With this confidence in the existence of an ideal universe, the mathe

matician will not overly worry about the limits of formal procedures, 

he will be able to forget the problem of consistency. For the world of 

Ideas infinitely exceeds our operational possibilities, and the ultima ra

tio of our faith in the truth of a theorem resides in our intuition-a the

orem being above all, according to a long-forgotten etymology, the ob

ject of a vision.11 

The Meaning 
In the first edition of this book, I ended this chapter with that inspir
ing quote from Thom (the founder of "catastrophe theory"). Further 
inquiry into these questions prompts me to a more somber conclusion. 
Namely, there is at present no intelligible account of what the state
ments of pure mathematics are about. 

My claim that the formalist viewpoint is a dodge is substantiated 
by the following revealing admission by Jean Dieudonne:12 

On foundations we believe in the reality of mathematics, but of course 

when philosophers attack us with their paradoxes we rush to hide be

hind formalism and say "Mathematics is just a combination of mean

ingless symbols," and then we bring out Chapters 1 and 2 on set the

ory. Finally we are left in peace to go back to our mathematics and 

do it as we have always done, with the feeling each mathematician 

has that he is working with something real. This sensation is proba

bly an illusion, but is very convenient. That is Bourbaki's attitude to

ward foundations. 

An article by Reuben Hersh13 forcefully demonstrates the philosophi
cal plight of the working mathematician, who is "a Platonist on week
days and a formalist on Sundays." Hersh contends that the tension 
caused by holding contradictory views on the nature of his work must 

11 R. Thom, '"Modern' Mathematics: An Educational and Philosophic Error?" American 

Sdentist, November 1971, p. 695 ff. The translation here is my own from the original 
(in L'Age de Science, III (3): 225). 

12 "The work of Nicholas Bourbaki," American Mathematical Monthly, 77 (1970): 134-

145. 
13 "Some Proposals for Reviving the Philosophy of Mathematics," Advances in Mathe

matics 31 (1979): 31-50. 
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affect the self-confidence of a person who is supposed, above all things, 
to hate contradiction. 

Dieudonne admits that the Platonic view is probably an illusion. In 
a very interesting essay, Gabriel Stolzenberg14 argues that the illusion 
consists in being taken in by a present-tense language of objects and 

their properties, a language that has the appearance-but only that
of being meaningful. The psychological act of accepting this appear
ance produces a notion of "reality" so strong that it becomes very dif
ficult to step aside and question it. 

We have already seen examples of such illusion. If one believes that 
points and lines in the plane are "real objects," then they either satisfy 
Euclid's fifth postulate or they don't (with the corollary belief that Eu
clidean geometry is either "true" or "false"). Similarly, if sets are "real 
objects," then they either satisfy Cantor's continuum hypothesis or they 
don't (Godel believed that they don't). 

The fundamental illusion, according to Stolzenberg (and Brouwer 
before him), is the belief that a mathematical statement can be "true" 
without anyone being able to know it. This belief is so strong that only 
the few constructivist mathematicians have been willing to give it up. 
They contend that "g is true" is a signal to announce a state of know
ing, which one has attained by means of an act of proof. Stolzenberg 
(1978) claims (p. 265): 

What one "sees" or "discovers" at the conclusion of an act of proof is 

that a certain structure (which is constructed in the course of the prooO 

displays a certain form: a form of the type that, according to the con

ventions of mathematical language use that have been established, en

titles anyone who observes it to say "g> is true." But "g> is true" is 

merely what one says, not what one sees; the expression itself is merely 

the "brand name" for the type of thing that one sees at the conclusion 

of the proof. And it is a type of thing that may be seen only by con

structing a proof-not because we need to use the proof as "a ladder" 

to get ourselves into a position to see it but rather because what one 

sees is "in" the structure that is created by the act "of making the proof." 

An interesting consequence of this position is that "the knower" is 
brought into the philosophy of mathematics (just as "the observer" has 

14 "Can an Inquiry into the Foundations of Mathematics Tell Us Anything Interesting 
about Mind?" in Psyclwlogy and Biology of Language and Thought, Essays in Honor 

of Eric Lenneberg, G. Miller and Elizabeth Lenneberg, eds. (New York: Academic Press, 
1978, 221-269). 
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been brought into the philosophy of physics by Heisenberg's uncer
tainty principle). 

If indeed the philosophical impasse is the result of a linguistic illu
sion, then deep insights are needed to develop a new language system. 

On the other hand, the Platonic "illusion" has shown itself to be 
very valuable heuristically (e.g., Godel credited the Platonic viewpoint 
for his insights). An intelligible justification for Platonic heuristics may 
someday be found Gust as one was found in the twentieth century by 
the logician Abraham Robinson for the "illusory" infinitesimals used in 
the seventeenth century by the founders of the calculus). Physics has 
continued to advance despite the even worse mess in its philosophical 
foundations, so the proverbial "working mathematicians" will have no 
trouble continuing to ignore the irritating question of the meaning of 
their theorems. 

Paul J. Cohen recently challenged Hilbert's optimism that mathe
matical reasoning from axioms could resolve all mathematical ques
tions. Cohen asserted: "The vast majority of questions even in ele
mentary number theory, of reasonable complexity, are beyond the reach 
of any such reasoning."15 

The Fruiifulness of Hyperbolic Geometry for Other 
Branches of Mathematics, Cosmology, and Art 
While the philosophy of mathematics may be at an impasse, mathe
matics itself certainly is not. In particular, hyperbolic geometry, which 
was considered a dormant subject when I first started teaching it, is 
very much alive and has turned out to have extraordinary applications 
to other branches of mathematics and to models of the shape of the 
universe. All the applications are too extensive to explain in detail here, 
so we briefly introduce six of them to show you how important it is. 
This is just intended to whet your interest for further study, so don't 
be disturbed if you only get a rough idea of these topics. 

15 See his article "Skolem and pessimism about proof in mathematics," Philosophical 
Transactions of the Royal Society of London, Series A, 363 (2005): 2407-2418. Cohen 
also stated: "Even if the formalist position is adopted, in actual thinking about math

ematics one can have no intuition unless one assumes that models exist and that 
the structures are real .... there is a reality to mathematics, but axioms cannot de

scribe it." 
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-1. UNIFORMIZATION OF COMPACT CONNECTED ORI

ENTABLE SURFACES These surfaces (meaning two-dimensional topo

logical manifolds) were long known to be just spheres with handles, 

the number of handles being the genus g of the surface S. The surface 

can be "unrolled" into its universal covering space U, which is simply 

connected (any loop can be shrunk to a point). Topologically, U is ei

ther the sphere (if g = O) or the plane �2, and in the latter case, S is 

a quotient space of �2 under the action of a discontinuous fixed-point

free group G. 

Uniformization has to do with a deeper structure, a canonical geom

etry of constant curvature on S. For g = 0 it is obviously spherical geom

etry (if we considered nonorientable surfaces as well, elliptic geometry 

would occur). For g = 1, the surface Sis topologically a torus. The cov

ering map U � S transports the Euclidean geometry on �2 to a Rie

mannian geometry on S of constant curvature 0, endowing S with the 

structure of a flat torus; the group G is generated by two independent 

translations, which are isometries of the Euclidean plane. (Of course, 

this geometry on the torus is not the same as its geometry as a dough

nut sitting in �3, whose curvature is not constant.) 

For all g > 1, �2 must be replaced with the Poincare disk D, to 

which it is homeomorphic, but which, as we know, models hyperbolic 

geometry. Group G is a discrete group of hyperbolic isometries of D, 

and the covering map induces on Sa Riemannian geometry of constant 

negative curvature, creating a hyperbolic surface. 

This great result is just the beginning of a long study. Some references 

are Stillwell's relatively informal Geometry of Surfaces (1992), 16 Beardon 

(1983), and Hubbard (2006). For the case g = 2, where Sis obtained by 

identifying sides of a regular octagon in D, see http://mathworld. 

wolfram.com/UniversalCover.html, which includes a pretty illustration. 

Uniformization was originally studied as part of complex function 

theory on Riemann surfaces, but that approach does not generalize to 

three dimensions. 

- 2. THURSTON'S GEOMETRIZATION CONJECTURE FOR 

THREE-DIMENSIONAL MANIFOLDS William Thurston conjectured 

(and proved in special cases) that three-manifolds also have geometric 

structures which enable us to classify them. In two dimensions we saw 

that there are three possible geometries; in three dimensions there are 

16 See my customer review on amazon.com. Isometries will be studied in the next chapter. 
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eight, and two of them involve hyperbolic geometry. Thurston em

phasized the importance of hyperbolic manifolds. A corollary of his con

jecture is the Poincare conjecture about the three-sphere, for a proof 

of which the Clay Institute is offering a million dollar prize, and for his 

proof of it that is still being checked as of this writing, Grigory Perel

man was awarded a Fields Medal in 2006. See O'Shea (2007). 

Here are some online links for information about these topics: 

http://en.wikipedia.org/wiki/Geometrization_conjecture 

http:/ /www.msri.org/publications/books/Book31/files/cannon. pdf#se 

arch=% 22applications % 20of % 20hyperbolic % 20geometry% 22 

http://www.ams.org/notices/200402/fea-anderson.pdf 

http://www.math.sunysb.edu/�jack/PREPRINTS/tpc.pdf#search= 

% 221ohn%20Milnor % 20Poincare % 20Conjecture % 22 

See also Thurston (1997), Casson and Bleiler (1988), Ratcliffe (2nd 

ed., 2006), W. Thurston, "Three dimensional manifolds, Kleinian 

groups and hyperbolic geometry," Bulletin of the American Mathemat

ical Society (N.S.) 6 (1982): 357-381, and http://en.wikipedia.org/wiki/ 

William_ Thurston. 

Jeffrey Weeks' program Snap Pea, used for studying hyperbolic three

manifolds, is at http://geometrygames.org/SnapPea/index.html. 

Not Knot is a guided tour of computer-animated hyperbolic space. 

It proceeds from the world of knots to their complementary spaces

what' s not a knot. Profound theorems of recent mathematics show that 

most knot complements carry the structure of hyperbolic geometry: 

http://www.geom.uiuc.edu/graphics/pix/Video_Productions/Not_Knotj. 

- 3. MODULAR FORMS, SHIMURA-TANIYAMA THEOREM, AND 

FERMAT'S LAST THEOREM This topic is a confluence of ideas from 

analysis, number theory, algebraic geometry, and hyperbolic geometry. 

The proof of the above theorems (by Andrew Wiles and Richard Tay

lor in the semistable case, sufficient to deduce Fermat's last theorem 

(FLT) as a corollary because of earlier work by Gerhard Frey, Jean

Pierre Serre, and Ken Ribet) was one of the greatest accomplishments 

of twentieth-century mathematics. Much very important research on 

the subject of modular forms is ongoing. 

In Chapter 9, we will show that in the upper half-plane model Hof 

the hyperbolic plane, the group PSL (2, IR) of 2 x 2 real matrices with 

determinant 1 modulo sign acts on H as the group of orientation-
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preserving isometries. The modular group f is the subgroup PSL(2, �) 

of those matrices with integer entries. In analytic number theory, the 

action of this group and its congruence subgroups is studied. 

Of fundamental importance in algebraic number theory and alge

braic geometry are elliptic curves. Barry Mazur's version of the 

Shimura-Taniyama theorem states that every elliptic curve defined over 

Q admits a hyperbolic uniformization that is periodic with respect to a 

congruence subgroup of r. Mazur wrote: "It is the confluence of two 

uniformizations, the Euclidean one, and the hyperbolic one of arith

metic type, that puts an exceedingly rich geometric structure on an 

arithmetic elliptic curve, and that carries deep implications for arith

metic questions." 

Two sources of information about these topics are A First Course in 

Modular Forms, by F. Diamond and J. Shurman (2006), and Modular 

Forms and Fermat's Last Theorem, edited by G. Cornell, J. Silverman, 

and G. Stevens. See also: 

http://en.wikipedia.org/wiki/Taniyama % E2 % 80 % 93Shimura_ 

theorem 

http://www.pbs.org/wgbh/nova/transcripts/2414proof.html 

http://www.ams.org/notices/199911/comm-darmon.pdf#search= 

% 22Shimura-Taniyama % 20Theorem % 22 

Arakelov geometry is a new type of geometry that arose out of the 

study of Diophantine algebraic geometry. A 2002 article by Yuri Manin 

and Matilde Marcolli at http://arxiv.org/PS_cache/hep-th/pdf/0201/ 

0201036.pdf states: "We show that the relation between hyperbolic 

geometry and Arakelov geometry at arithmetic infinity involves exactly 

the same geometric data as the Euclidean AdS3 holography of black 

holes." 

- 4. FUCHSIAN AND KLEINIAN GROUPS This is an older subject 

that goes back to the competition between Klein and Poincare but which 

is still very active, related to fractal geometry. The book Indra's Pearls 

by David Mumford, Caroline Series, and David Wright (Cambridge Uni

versity Press, 2002) is a beautifully illustrated introductory treatment 

of the subject. See also: 

http://en.wikipedia.org/wiki/Fuchsian_group 

http://en.wikipedia.org/wiki/Kleinian_group 
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- 5. THE GEOMETRY OF THE UNIVERSE Einstein's description 

of the universe is via a four-dimensional space-time geometry. When 

we speak here of "the geometry of the universe," we are considering 

a three-dimensional slice of space-time at a particular instant. Possible 

models to describe this geometry are developed from three-dimensional 

spherical, Euclidean, or hyperbolic geometries. If you search the web 

for this topic, you will find an enormous number of web pages about 

it. Here are a few recommendations. 

The latest edition of Jeffrey Weeks' The Shape of Space is ostensi

bly written at a high school level but covers very sophisticated topics 

such as the eight geometries relevant to Thurston's geometrization con

jecture and programs of astronomical observation that might tell us the 

precise topology and geometry of the universe. It is reviewed at 

http://www.maa.org/reviews/shapeofspace.html. 

Some introductory web references: 

The beautifully illustrated 1999 Scientific American article "Is Space 

Finite?" at http://cosmos.phy.tufts.edu/�zirbeljast21/sciam/ 

IsSpaceFinite. pdf#search = % 22Is % 20Space % 20Finite % 3F % 22 

The also well-illustrated 2005 article about the Poincare dodecahe

dral universe at http://luth2.obspm.fr/�luminetjphysworld. 

pdf#search = % 22Dodecahedral % 20universe % 22 

Weeks' "flight simulator" for tilings of three-dimensional spherical, 

flat, and hyperbolic spaces at http://geometrygames.org/ 

CurvedSpaces/index.html 

The 1998 Cornish and Weeks article "Measuring the Shape of the 

Universe" at http://www.ams.org/notices/19981 l/cornish.pdf# 

search= % 22shape % 20of % 20the % 20universe % 22 

See also http://en.wikipedia.org/wiki/Shape_of_the_universe 

- 6. TESSELLATIONS OF THE HYPERBOLIC PLANE, THE ART OF 

M. C. ESCHER A tessellation is a covering of the plane by a figure re

peated over and over again, with overlaps only along the boundary of 

the figure. Another word for a tessellation is a tiling, and the generat

ing figure is a tile. 

The simplest figure is a regular polygon (all sides and all angles 

congruent), possibly giving rise to a regular tessellation, defined as an 

edge-to-edge covering of the plane by copies of a regular polygon in 

which the same number of polygons meet at each vertex. In the Eu

clidean plane, the only possible such tessellations are by equilateral tri

angles, squares, or hexagons. 
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But in the hyperbolic plane there are infinitely many different reg
ular tessellations. Each regular tessellation has its Schlafli symbol 

{p, q}, which indicates that q regular p-gons surround each vertex. A 

necessary and sufficient condition that a hyperbolic tessellation {p, q} 

exists is that (p - 2) (q - 2) > 4; thus each such {p, q} has a dual tes

sellation { q, p}. The proof of this criterion is based on the fact that a 
regular p-gon with angle () has angle sum pO < 180(p - 2). For every 

such (), a regular p-gon exists with angle (). To fit exactly q of these 
about a point, we must have qO = 360. Substituting this in the previ

ous inequality leads to the necessity. For sufficiency, when () satisfies 

that equation, one must show that repeatedly reflecting the regular 
p-gon across its edges generates the tessellation. For example, using 

equilateral triangles p = 3, q must be at least 7, unlike the Euclidean 
tessellation {3, 6}. 

Triangle tessellations of the hyperbolic plane are very important. 

Start with any triangle and try to generate a tessellation by repeatedly 

reflecting across the edges. This will actually generate a tessellation if 
and only if the angles of the triangle, in radian measure, have the form 

n/p, n/q, 'lT/r, where p, q, r are integers satisfying the inequality 

l + l + l < 1, 
p q r 

asserting that the angle sum is <'TT. Notation for such a triangle is 

(p, q, r). 
A famous example is the {7, 3} regular tessellation generated by (2, 

3, 7). Klein discovered that 336 triangles in this tessellation aggregate to 
form a regular 14-gon (see Figure 8.1), and the surface obtained from 
suitably identifying sides of this 14-gon has genus 3 and represents a 
quartic curve in P2(C). A beautifully illustrated discussion of the Klein 

quartic is at http://math.ucr.edu/home/baez/klein.html; the mathemat
ics and history are explained by Jeremy Gray at http://www.msri.org/ 

publications/books/Book35/files/gray.pdf, which also shows how hyper

bolic tessellations are related to hyperbolic surfaces (topic 1). The key 

theorem about this relationship is due to Poincare in 1882 (see Still

well, ibid., p. 180). 
In the hyperbolic plane, one can also consider tessellations in which 

some of the vertices are ideal points. For example, under the action of 

the modular group PSL(2, .l), the Poincare upper half-plane is tessel

lated by singly asymptotic triangles-(3, 3, oo) triangles in an extension 

of the above notation (Figure 8.2). See http://en.wikipedia.org/wiki/ 
Modular_group, which leads us back to topic 4. 
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Figure 8.1 Regular 14-gon generated by (2, 3, 7) triangles. 
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Figure 8.2 The tessellation of the Poincare upper half-plane generated by 

the fundamental domain of the modular group. 
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M. C. Escher's Circle Limit drawings are based on hyperbolic tes
sellations. The great geometer H. S. M. Coxeter corresponded with Es
cher and wrote about his art-see, e.g., http://www.mathaware.org/ 
mam/03/essayl.html and the references therein. 

If you search the web, you will find a great many sites about tes
sellations. You will find many lovely illustrations, such as at 

http://www.hadron.org/ � hatch/HyperbolicTesselations/ 
http://www2u.biglobe.ne.jp/ � hsaka/mandara/index.html 
http://alephO.clarku.edu/ �djoyce/poincare/poincare.html 
http:/ /mcs.open.ac. uk/tcl2/nonE/nonE.html 
http://comp.uark.edu/�strauss/papers/hypcomp.pdf 

Review Exercise 

Which of the following statements are correct? 

(1) It is impossible to verify by physical experiments whether hy
perbolic geometry is true because hyperbolic geometry is not 
about physical entities. 

(2) If we interpret the undefined terms of geometry physically, e.g., 
by interpreting "line" as "path of a light ray in empty space," 
then it makes sense to ask whether this interpretation is a model 
of Euclidean geometry; however, due to experimental error, 
physical experiments could never prove conclusively that it is 
a model. 

(3) Hyperbolic geometry is consistent if and only if Euclidean geom
etry is consistent. 

(4) Poincare maintained that it was meaningless to ask which 
geometry is "true," and that it only makes sense to ask which 
geometry is more "convenient" for physics. 

(S) The most convenient geometry for astrophysics is neither Eu
clidean nor hyperbolic geometry but a more complicated geom
etry of space-time developed by Einstein out of ideas from Rie
mann. 

(6) The Klein and Poincare models, although they appear to be dif
ferent, are actually isomorphic to each other. 

(7) Hyperbolic geometry, although equally as consistent as Eu
clidean geometry, has no application to other branches of math
ematics or to other sciences. 
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Some Topics for Essays 
1. Comment on this quotation from Albert Einstein: "As far as the 

mathematical theorems refer to reality, they are not sure, and as 

far as they are sure, they do not refer to reality. " (See Hempel, 

1945, for a development of this theme.) 

2. Report on the debate about the philosophy of conventionalism, us

ing Griinbaum (1968), Poincare (1952), and Nagel (1939) as sources. 

3. Report on the use of hyperbolic geometry to describe binocular vi

sion, referring to Luneburg and Blank (see note 4 in this chapter). 

4. It can be said that the discovery of non-Euclidean geometry led to 

the extensive modern development of mathematical logic. Elabo

rate on this statement using DeLong (2004), Chapters 1 and 2, as 

a source. 

5. Jacques Hadamard said: "Practical application is found by not look

ing for it, and one can say that the whole progress of civilization 

rests on that principle . . . .  It seldom happens that important math

ematical researches are directly undertaken in view of a given prac

tical use: they are inspired by the desire which is the common mo

tive of every scientific work, the desire to know and understand. "17 

Along the same lines, David Hilbert maintained that in spite of 

the importance of the applications of mathematics, these must 

never be made the measure of its value. And the mathematician 

Jacobi said that "the glory of the human spirit is the sole aim of 

all science. " 

Nevertheless, Lobachevsky believed that "there is no branch of 

mathematics, however abstract, that may not someday be applied 

to phenomena of the real world. " 

Comment on these viewpoints. 

6. Read the "Socratic Dialogue on Mathematics " in Renyi (1967) and 

discuss the following questions therein: 

(a) "Is it not mysterious that one can know more about things 

which do not exist than about things which do exist?" 

(b) "How do you explain that, as often happens, mathematicians 

living far from each other and having no contact independently 

discover the same truths?" 

7. Comment on the following statement by Michael Polanyi (1964; 

see especially Chapter 6, Sections 9-11): 

17 Hadamard (1945); see especially Chapter 9. 
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We can now turn to the paradox of a mathematics based on a system 
of axioms which are not regarded as self-evident and indeed cannot 

be known to be mutually consistent. To apply the utmost ingenuity 
and the most rigorous care to prove the theorems of logic or mathe
matics while the premises of these inferences are cheerfully accepted, 
without any grounds being given for doing so . . . might seem alto

gether absurd. It reminds one of the clown who solemnly sets up in 
the middle of the arena two gateposts with a securely locked gate be
tween them, pulls out a large bunch of keys, and laboriously selects 
one which opens the lock, then passes through the gate and carefully 

locks it after himself-while all the while the whole arena lies open on 
either side of the gateposts where he could go round them unhindered. 

8. Comment on the following statements: 

There is a scientific taste just as there is a literary or artistic one .... 
Concerning the fruitfulness of the future result-about which, strictly 

speaking, we most often do not know anything in advance-[ the] sense 
of beauty can inform us and I cannot see anything else allowing us 
to foresee .... Without knowing anything further we feel that such a 
direction of investigation is worth following .... Everybody is free to 

call or not to call that a feeling of beauty. This is undoubtedly the way 
the Greek geometers thought when they investigated the ellipse, be
cause there is no other conceivable way. (Hadamard, 1945.) 

We dwell on mathematics and affirm its statements for the sake of 

its intellectual beauty .... For if this passion were extinct, we would 
cease to understand mathematics; its conceptions would dissolve and 
its proofs carry no conviction. Mathematics would become pointless and 
lose itself in a welter of insignificant tautologies .... (Polanyi, 1964.) 

We all believe that mathematics is an art. The author of a book 
or the lecturer in a classroom tries to convey the structural beauty of 
mathematics to his readers, to his listeners. In this attempt he must 
always fail. Mathematics is logical, to be sure; each conclusion is 

drawn from previously derived statements. Yet the whole of it, the 
real piece of art, is not linear; worse than that, its perception should 
be instantaneous.18 
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9. Comment on the following statements. G. H. Hardy (1940) said: 

For me, and I suppose for most mathematicians, there is another re
ality, which I will call "mathematical reality"; and there is no sort of 

18 Emil Artin, "Review of Algebre by N. Bourbaki," Bulletin of the American Mathemat
ical Sodety, 59 (1953): 474. 
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argument about the nature of mathematical reality among either math

ematicians or philosophers .... A man who could give a convincing 

account of mathematical reality would have solved very many of the 

most difficult problems of metaphysics .... I believe that mathemat

ical reality lies outside us, that our function is to discover or obseroe 

it, and that the theorems which we prove, and which we describe 

grandiloquently as our "creations," are simply the notes of our ob

servations. This view has been held, in one form or another, by many 

philosophers of high reputation from Plato onwards .... 

Heinrich Hertz, the discoverer of radio waves, said: 

One cannot escape the feeling that these mathematical formulas have 

an independent existence and an intelligence of their own, that they 

are wiser than we are, wiser even than their discoverers, that we get 

more out of them than was originally put into them. 

10. Comment on the following remarks by Kurt Godel: 

I don't see any reason why we should have less confidence in this 

kind of perception, i.e., in mathematical intuition, than in sense per

ception, which induces us to build up physical theories and to expect 

that future sense perceptions will agree with them and, moreover, to 

believe that a question not decidable now has meaning and may be 

decided in the future. The set theoretical paradoxes are hardly any 

more troublesome for mathematics than deceptions of the senses are 

for physics. . . . Evidently the "given" underlying mathematics is 

closely related to the abstract elements contained in our empirical 

ideas. It by no means follows, however, that the data of this second 

kind [mathematical intuitions], because they cannot be associated with 

actions of certain things upon our sense organs, are something purely 

subjective, as Kant asserted. Rather, they, too, may represent an as

pect of objective reality. But as opposed to the sensations, their pres

ence in us may be due to another kind of relationship between our

selves and reality .19 

Godel in this passage speaks primarily of set theoretical intuition. 

As far as geometric intuition is concerned, the following, accord

ing to Godel, would have to be added: 

Geometrical intuition, strictly speaking, is not mathematical, but rather 

a priori physical intuition. In its purely mathematical aspect our Eu-

19 K. Godel, "What Is Cantor's Continuum Problem?" in Benacerraf and Putnam's Phi

losophy of Mathematics, 2nd ed. (Englewood Cliffs, N.J.: Prentice-Hall, 1964}, p. 271. 
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clidean space intuition is perfectly correct, namely, it represents cor

rectly a certain structure existing in the realm of mathematical objects. 

Even physically it is correct "in the small. "20 

11. Comment on the following quotation from Rolf R. Loehrich: 

The communication of a new mathematical system or game meets 

with peculiar obstacles. Each mathematician has a preferred game. A 

new game may not capture his interest if it is significantly different 

from those he has been accustomed to play. . . . 

A mathematical system is hardly ever presented axiomatized at its 

inception. Successful axiomatization is a fruition of an exercitium cog

itandi. Once a system is axiomatized, mathematical activity can be 

played as a game, as a manipulation of symbols by virtue of rule

systems thought of as invented, but this does not assert that the math

ematician who invented or presumably discovered the system meant 

to play a game. . . . Roberts and I are convinced that there is what 

might be adequately referred to as a mathematical universe. We be

lieve that, with the complex instrumentations and empirical data set 

forth in Exercitium Cogitandi, the ontological value of confrontations 

belonging to this universe can be determined with a high degree of 

accuracy .... If this is true, then indeed a mathematician may think 

of himself as an explorer of the mathematical universe, and any new 

mathematical system functions as the inception of a possible creation 

of a universe which comprehends any of the other universes. 21 
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12. Write an essay on the development of geometry in ancient Greece, 

using the resources of your school library. You may be particu

larly interested in the female mathematician Hypatia. 

13. Comment on the following remarks about the true role of logic in 

mathematics: 

If logic is the hygiene of the mathematician, it is not his source of 

food; the great problems furnish the daily bread on which he thrives. 

We have learned to trace our entire science back to a single source, 

constituted by a few signs and by a few rules for their use; this is 

an unquestionable stronghold, inside which we could hardly confine 

ourselves without risk of famine, but to which we are always free 

to retire in case of uncertainty or external danger. (A. Weil, "The 

Future of Mathematics," American Mathematical Monthly, 57 (1950): 

295-306.) 

20 Private communication to the author, October 1973. 
21 R. R. Loehrich (with L. G. Roberts}, Exercitium Cogitandi, vol. II (Oxford: Center for 

Medieval and Renaissance Studies, 1978}. 
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Thus, in a sense, mathematics has been most advanced by those 

who distinguished themselves by intuition rather than by rigorous 

proofs. (Felix Klein.) 

Discovery, after all, is more important in science than strict de

ductive proof. Without discovery there is nothing for deduction to at

tack and reduce to order. (E. T. Bell, Development of Mathematics, 

2nd ed. McGraw-Hill, New York, 1945, p. 83.) 

14. Report on Imre Lakatos' critique of the formalist philosophy of 

mathematics and his ideas on how mathematics is discovered, as 

presented in his book Proofs and Refutations: The Logic of Mathe

matical Discovery (New York: Cambridge University Press, 1976). 

Here are some pertinent Lakatos quotes: 

Euclid has been the evil genius particularly for the history of mathe

matics and for the teaching of mathematics, both on the introductory 

and the creative levels. . . . The two activities of guessing and prov

ing are rigidly separated in the Euclidean tradition .... It was the in

fallibilist philosophical background of Euclidean method that bred the 

authoritarian traditional patterns in mathematics, that prevented pub

lication and discussion of conjectures, that made impossible the rise 

of mathematical criticism .... The discovery of non-Euclidean geome

tries (by Lobatschewsky in 1829 and Bolyai in 1831) shattered infal

libilist conceit. . . . There is no infallibilist logic of scientific discov

ery, one which would infallibly lead to results; there is a fallibilist 

logic of discovery which is the logic of scientific process. 

15. Write a detailed report on the theory of area in hyperbolic geom

etry using Moise (1990), Chapter 24, as a reference. 

16. Report on Bertrand Russell's doctoral dissertation An Essay on the 

Foundations of Geometry (Dover reprint, 1956). Show how Russell 

very capably refutes theories of geometry due to Kant and other 

philosophers, but then proclaims his own incorrect notion of space 

(that was later refuted by Einstein). See also the critique in Tor

retti (1978), Chapter 4. 

17. Report on Chapter 3 of Roberto Torretti's sublime treatise Philos

ophy of Geometry from Riemann to Poincare (1978). This chapter 

is on the foundations of geometry. Here is one important quote: 

The fact that these semi-circles [in the Poincare upper half-plane 

model] behave exactly like Euclidean lines with regard to every logi

cal consequence of Hilbert's axioms [for neutral geometry] bespeaks 
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a deep analogy between them, which can come as a shock only to the 

mathematically uneducated. To maintain that line means something 

entirely different in Bolyai-Lobachevsky geometry and in Euclidean 

geometry is not more reasonable than to say that heart has a com

pletely different meaning in the anatomy and physiology of elephants 

and in that of frogs. 
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18. To further illustrate his contention that it is meaningless to ask 

which geometry is "true," Poincare invented a "universe" U oc

cupying the interior of a sphere S of radius R in Euclidean space, 

in which the following physical laws hold: 

(a) At any point P inside S, the absolute temperature Tis directly 

proportional to R2 - r
2

, where r is the distance from P to the 

center of S. 

(b) The length, width, and height of an object vary directly with 

the absolute temperature of the object. 

(c) All objects in U instantaneously take on the temperatures of 

their locations. 

(d) Light travels along the shortest path from one point to another. 

Show that an inhabitant of U could not detect his change in tem

perature and size as he moves about with a thermometer or a tape 

measure, and that he could never reach the boundary S of his uni

verse, so would consider it infinitely far away. Poincare showed 

that the shortest path in U joining point A to point B is the smaller 

arc of the circle through A and B that cuts S orthogonally. Hence, 

if an inhabitant interprets "straight line segment" in his universe 

to be the path of a light ray, he would conclude that the "true" 

geometry of his world was hyperbolic. In other words, this is a re

gion of Euclidean space that, because of different and undetectable 

physical laws, appears to its inhabitants to be non-Euclidean. Com

ment, using Poincare (1952) as a reference, as well as Torretti 

(1978) and Griinbaum (1968). 

19. Albert Einstein stated: "The concept 'true' does not tally with the 

assertions of pure geometry, because by the word 'true' we are 

eventually in the habit of designating always the correspondence 

with a 'real' object; geometry, however, is not concerned with the 

relation of the ideas involved in it to objects of experience, but 

only with the logical connection of these ideas among themselves." 

Read as much of his Relativity (2005 edition, for example) as you 

can and comment on this quote by him as well as anything else 

he says that interests you. 
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Geometric 
Transformations 

I have spent a lifetime applying Klein's program to differential 

geometry. 

W. Blaschke 

Klein's Erlanger Programme 
In 1872, a year after his decisive publication of the projective models 
for non-Euclidean geometries, Felix Klein was appointed (at age 23) to 
a chair at the University of Erlangen. He submitted an inaugural re
search proposal describing a new unifying principle for classifying the 
various geometries that were rapidly being developed and for discov
ering relationships between them. This Erlanger Programme has had 
an enormous impact on all of mathematics to the present day.1 

The key notion, according to Klein, involves the group of all auto
morphisms of a mathematical structure. In Chapter 2, we defined the 
concept of an isomorphism of one model onto another, and in Chap
ter 7 we used a specific isomorphism to relate the Klein and Poincare 

1 For an English translation of Klein's lecture, see the Bulletin of the New York Mathe
matical Society, 2 (1893): 215-249. And see the project at the end of this chapter. 
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models of the hyperbolic plane. An isomorphism mapping a given model 
onto itself is called an autorrwrphism of that model; thus an automor
phism is a one-to-one mapping (or transformation) of each basic set of 
objects in the model onto itself that preserves the basic relations among 
the objects. In geometry, an automorphism is often called a symmetry. 

The importance of the group of automorphisms was first recognized 
in connection with the problem of solving an algebraic equation by rad
icals. Evariste Galois ( 1811-1832) showed that a solution by radicals was 
possible if and only if the group of automorphisms of the field extension 
generated by the roots of the equation is a solvable group. This implies 
Abel's particular discovery that the general equation of degree 5 cannot 
be solved by radicals. Klein later discovered a relation between the group 
of rotations of an icosahedron and the roots of the quintic equation that 
explained why the latter can be solved by elliptic functions.2 

Here is an example of the simplest type of geometric automorphism. 

- EXAMPLE 1. Consider models of incidence geometry (Chapter 
2). The basic sets of objects are the sets of points and lines, and the 
only basic relation is incidence of a point and a line. An automorphism 
Twill therefore map each point P and each line l onto a point P' and 
a line l' such that P lies on l if and only if P' lies on l'. By Axiom 1-1, 
a line is determined by any two points lying on it, so Tis determined 
as a mapping of lines once its effect on the points is known, namely, 

� � 
T(PQ) = P'Q'. 

Since T preserves incidence and is one-to-one on the set of lines, it has 
the property that three points 0, P, Q are collinear if and only if their 
images O', P', Q' are collinear. Hence an automorphism of a model of 
incidence geometry is called a collineation. 

For example, in the three-point model, every permutation of the 
three noncollinear points is a collineation. However, for the seven-point 
projective plane (Figure 9. 1), you can show that, of the 7! = 5040 per
mutations of the points, only 168 are collineations (Exercise 1). 

It is important to note that an automorphism not only preserves the 
basic relations but also all the relations that can be defined from them. 
For example, a collineation of an incidence plane preserves parallelism 
Cl II m => l' II m'). 

2 See Klein's Lectures on the Icosahedron, 2nd English edition (New York: Dover Books, 
2003). 
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Figure 9.1 Seven-point projective plane. 

Groups 
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Transformations of a set onto itself can be multiplied by first applying 
one transformation T and then another transformation S; thus the com
posite transformation ST is defined by the equation 

(O) ST(x) = S(T(x)) 

for all x in the set. 
With this multiplication, the set C§ of all automorphisms of a struc

ture has itself the stucture of a group, which means that the following 
properties hold: 

1. S, TE C§ =} STE C§. 
2. IE C§ (where I is the identity transformation that leaves all the ob

jects fixed; the identity transformation satisfies IT = T = TI for all 
TE C§). 

3. TE C§ =} T-1 EC§ (where the inverse T-1 of T is characterized by 
the equations TT-1 = I = T-1T ). 

4. S(TU) = (ST ) U for all S, T, U E C§ (this associative law is an im
mediate consequence of the definition (O) of multiplication). 

To illustrate these properties, let us consider rotations about a point 
0, which will be rigorously defined later but can now be thought of as 
transformations that turn the entire plane through a certain angle about 
0. If T is the rotation through t0 clockwise and S the rotation through 
s0 clockwise, then ST is the rotation through (s + t) 0 clockwise. T-1 
is the rotation through t0 counterclockwise. I can be thought of as the 
rotation through 0°. 
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WARNING The product ST is not, in general, equal to the product TS in 

the opposite order, as the next example shows. 

- EXAMPLE 2. Consider the equilateral triangle .6:.ABC situated 

symmetrically about its centroid 0 in Figure 9.2. If we let T be the ro

tation through 120° counterclockwise about 0 and let S be the reflec-
� 

tion across the altitude AO, then TS leaves C fixed and interchanges A 
� 

and B (in fact, TS is the reflection across CO); whereas ST leaves B 
� 

fixed and interchanges A and C (ST is the reflection across BO). 

If two transformations, S, T happen to have the property ST= TS, 

we say that they commute, and a collection of transformations in which 

every pair commutes is called commutative (or Abelian, after the great 

Norwegian mathematician N. H. Abel). For instance, any two rotations 

about the same point 0 commute. 

The more structure a geometry has, the smaller its group of auto

morphisms. Neutral geometry is incidence geometry with the additional 

relations of betweenness and congruence; hence the group of auto

morphisms of a neutral geometry is the subgroup of those collineations 

T for which betweenness and congruence are invariant, i.e., for which 

A * B * C :::::} A' * B' * C' 

AB� CD:::::} A'B' � C'D' 

(we will systematically use X' to denote the image of any object X

point, line, circle, etc. -under a transformation denoted T). We have 

not assumed T preserves congruence of angles because this can be 

proved: If <tABC � <tDEF, we can assume by Axiom C-1 that AB � DE 

and BC� EF, so that AC� DF (SAS); since T preserves congruence of 

segments, .6:.A'B'C' � .6:.D'E'F' (SSS), hence <tA'B'C' � <tD'E'F'. No

tice also that if a transformation preserves betweenness, it must be a 

collineation (by Axioms B-1 and B-3). 

A 

Figure 9.2 
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The principal objective of this chapter will be to explicitly determine 

all the automorphisms of Euclidean and hyperbolic planes and to classify 

them according to their geometric properties, particularly their invariants. 

We say that a property or relation is "invariant" under a transfor

mation or group of transformations if the property or relation still holds 

after the transformations are applied; a geometric figure is "invariant" 

if it is mapped onto itself by the transformations. 

"Invariance" and "group" are the unifying concepts in Klein's 

Erlanger Programme. Groups of transformations had been used in 

geometry for many years, but Klein's originality consisted in revers

ing the roles, in making the group the primary object of interest and 

letting it operate on various geometries, looking for invariants. For 

example, the group PSL(2, �) of 2-by-2 projective transformations 

with real coefficients (see Proposition 9.26) operates on both the hy

perbolic plane and the real projective line; for the latter operation, 

the cross-ratio of four points is the fundamental invariant, whereas 

for the former operation, the length of a segment (which is calcu

lated by means of cross-ratios in the Klein and Poincare models) is 

the fundamental invariant. 

Klein classified the following geometries as subgeometries of real 

plane projective geometry: 

1. Affine geometry is the study of invariants of the subgroup of those 

projective transformations (called affine transformations) that leave 

the line at infinity invariant (points at infinity may be moved by 

affine transformations, but they stay on the line at infinity). 

2. Hyperbolic geometry is the study of invariants of the subgroup of 

those projective transformations that leave a given real conic ("the 

absolute") invariant. 

3. Elliptic geometry is the study of invariants of the subgroup of 

those projective transformations that leave a given imaginary conic 

invariant. 

4. Parabolic geometry is the study of invariants of the subgroup of 

those affine transformations (called similarities) that leave invari

ant the two imaginary circular points at infinity (see Exercise 72). 

5. Euclidean geometry is the study of invariants of the subgroup of 

those similarities (called motions) that preserve length (which is de

fined in terms of an arbitrarily chosen unit segment). 

During the two decades preceding Klein's address, Cayley and 

Sylvester had developed a general theory of algebraic invariants to-
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gether with a systematic procedure for determining generators and 

relations for them (see J. Dieudonne and J. Carrell, Invariant 

Theory, Old and New, New York: Academic Press, 1971). Klein pro

posed to translate geometric problems in projective geometry into 

algebraic problems in invariant theory, where such problems could 

be solved by the known algebraic methods (for a readable explana

tion of this program, see Part 3 of Klein's Geometry, which is Part 2 

of his Elementary Mathematics from an Advanced Standpoint, New 

York: Dover, 2004). 

Klein's idea of looking for various actions or representations of a 

group and their invariants has proved to be fruitful in many branches 

of mathematics and physics, not just in geometry. 

In physics, for example, the invariance of Maxwell's equations 

for electromagnetism under Lorentz transformations suggested to 

Minkowski a new geometry of space-time whose group of automor

phisms is the Lorentz group; this was the beginning of relativity the

ory, for which Einstein at one point considered the name Invari

antentheorie. In atomic physics, the regularities revealed in the 

periodic table are a direct consequence of invariance under rota

tions. In elementary particle physics, considerations of invariance 

and symmetry have led to several nontrivial predictions. Physical 

entities such as energy, momentum, electrical charge, and spin have 

all been defined in terms of invariants, each one for a specific group 

of transformations. Each law of conservation in physics corresponds 

to a certain group of transformations. E. Wigner has said that in the 

future we may well "derive the laws of nature and try to test their 

validity by means of the laws of invariance rather than to try to de

rive the laws of invariance from what we believe to be the laws of 

nature. "3 

In this chapter, we will explore the insights Klein's point of view 

gives to plane Euclidean and hyperbolic geometries. From our axioms 

we will deduce a description of all possible motions, showing how they 

are built up from reflections (see Table 9.1, p. 430). Then we will show 

how to calculate using these transformations in terms of the coordi

nates in our models. We will implement Klein's program by replacing 

congruence axioms with group axioms. Finally, we will apply group

theoretic methods to questions of symmetry. 

3 E. Wigner, "Invariance in Physical Theory," Proceedings of the American Philosophical 

Sodety, 93 (1949): 521-526. 
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Applications to Geometric Problems 
Here are some examples4 of geometric problems that can easily be 
solved using transformations; the solutions will use certain properties 
of reflections, rotations, translations, and dilations, which will be 
demonstrated in the following sections. The purpose in discussing these 
problems at this time is to illustrate concretely the power of transfor
mation techniques. You will better comprehend the solutions after you 

study the theory that follows, and I suggest that you then reread these 
solutions and test your understanding with Exercises 73-78. 

- PROBLEM 1. Given two points A, B on the same side of line l. 
� � 

Find the point Con l such that CA and CB make congruent angles with 
l (if l were a mirror, ACB would be the path of a ray of light traveling 
from A to B by reflecting in l) . 

- SOLUTION. (See Figure 9.3.) Let B' be the reflection of B across 
l. Then C is the intersection of A B' with l. 

A 

Figure 9.3 

- PROBLEM 2. Point Q is called a center of symmetry for figure F 

if whenever A A' is a segment having Q as midpoint and A is in F, then 
A' also belongs to F. Show that a figure can only have zero, one, or 

infinitely many centers of symmetry. 

- SOLUTION. Q is a center of symmetry if and only if the figure 
is invariant under the half-turn (180° rotation) Ho about Q. A triangle 

4 Several hundred more examples will be found in the monumental three-volume trea
tise by I. M. Yaglom, Geometric Transfonnations, Washington, DC: Mathematical As
sociation of America, 1962. 
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has zero, a circle has one, and a line has infinitely many centers of 

symmetry. Suppose figure F has at least two centers Q and Q'. Then 

HQ(Q') = Q" is a third center, HQ·(Q") is a fourth center, etc. 

NOTE. The preceding problems were stated and solved in neutral geom

etry. For the remaining problems, we will assume the geometry to be 

Euclidean. 

- PROBLEM 3. Let L, M, N be the respective midpoints of sides 

AB, BC, CA of .6..ABC. Let 01, 02, 03 be the circumcenters (i.e., the cen

ters of the circumscribed circles) of triangles .6..ALN, .6..BLM, .6..CMN, 

respectively, and let P1, P2, P3 be the incenters (i.e., the centers of the 

inscribed circles) of these same triangles. Show that we have the rela

tion .6..010203 � .6..P1P2P3. 

- SOLUTION. (See Figure 9.4.) Observe that each of the three tri

angles is obtained from each of the others by a translation-e.g., trans-
� - -

lating .6..ALN in direction AB through distance AL = LB gives .6..LBM. 

This translation carries the circumscribed circle (and its center) of one 

triangle onto the circumscribed circle (and its center) of the other; sim

ilarly for the inscribed circles. Hence we not only have 0102 �AL� 

P1P2, etc., giving .6..010203 � .6..P1P2P3, but we also see that corre

sponding sides of these two triangles are parallel. 

c 

Figure 9.4 L, M, N are midpoints of the sides. 

- PROBLEM 4. Given an acute-angled triangle, find the inscribed 

triangle of minimum perimeter (Fagnano's problem). 

- SOLUTION. Consider .6..XYZ inscribed as in Figure 9.S(a). Reflect 
� � 

X across AB to point X1 and across AC to point X2. Then the perime-

ter of .6..XYZ is equal to the length of the polygonal path X1ZYX2. If we 

fix X, this length will be minimized when Z and Y are chosen to lie on 
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X1X2, and then X1X2 will equal the perimeter of 6.XYZ. We have that 

AX1 �AX� AX2 and <i:X1AX2 � 2-tA. If we now vary X, the summit 

angle of isosceles triangle 6.X1AX2 remains constant in measure and 
-- --

the base X1X2 varies in direct proportion to AX (in fact, trigonometry 
-- --

gives us X1X2 = 2AX sin <i:A). Hence the minimum perimeter is 

achieved when AX is a minimum, and that occurs when X is the foot 

of the altitude from A (Figure 9.S(b)). By the same argument, Y and Z 

must then also be the feet of the altitudes from B and C. Hence the 

unique inscribed triangle of minimum perimeter is the orthic or pedal 

triangle formed by the feet of the altitudes of 6.ABC. 

A A 

(a) (b) 

Figure 9.5 

- PROBLEM 5. Given three parallel lines, find an equilateral tri

angle whose vertices lie on them. 

- SOLUTION. Choose any point A on the first line l. Rotate the 

second line m about A through 60° to a new line m
'
. Let C be the in

tersection of m
' with the third line n and let B be the point on m ob

tained by rotating C about A through 60 ° in the opposite direction. 

Then 6.ABC is a solution. 

- PROBLEM 6. For any triangle 6.ABC, construct equilateral tri

angles on the sides of 6.ABC, exterior to it. Show that the centers of 

these triangles also form the vertices of an equilateral triangle 

(Napoleon's theorem). 

- SOLUTION. Call the centers 01, 02, and 03 and consider the ro

tations R1, R2, and R3 through 120° counterclockwise about 01, 02, and 

03, respectively; then R1(A) = B, R2(B) = C, and R3(C) =A. Now R2R1 

is the clockwise rotation through 120° about the point 03 of the 
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intersection of two lines, one through 01 and the other through 02, 
� 

each making an angle of 60° with 0102, so that �010203 is equilat-

eral. Since R3
1 

is also a clockwise rotation through 120° taking A into 

C, we must have R3
1 

= R2R1 and 03 = 03. 

- PROBLEM 7. Given a circle K and a point P on K. Find the lo

cus K
' of midpoints M of all chords PA of K through P. 

- SOLUTION. (See Figure 9.6.) Since K
' is obtained from K by di

lation of center P and ratio f, K
' is the circle with diameter OP, 0 be

ing the center of K. 

p 

Figure 9.6 

- PROBLEM 8. Given any triangle �ABC, consider its circumcenter 

0 (point of concurrence of the perpendicular bisectors of the sides), its 

centroid G (point of concurrence of the medians), and its orthncenter H 

(point of concurrence of the altitudes). You showed 0 exists in Exercise 

10, Chapter 6. You showed in Exercise K-20(d), Chapter 7, that G exists 

and lies two-thirds of the distance from each vertex to the midpoint of 

the opposite side; thus the dilation T of center G and ratio -t maps �ABC 

onto the medial triangle �A'B'C'. The problem we pose now is to show 

that H exists, that 0, G, and H lie on a line (called the Euler line of �ABC), 

and that G lies two-thirds of the distance from H to 0. 

- SOLUTION. Dilation y-1 maps �ABC onto �A1B1C1 having sides 

parallel to the respective sides of �ABC and twice as long (Figure 9. 7). 

�ABC is then the medial triangle of �A1B1Ci. and the altitudes of 

�ABC are the perpendicular bisectors of �A1B1Ci. hence are concur

rent in a point H. 
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Figure 9.7 The orthocenter H of .6..ABC is the circumcenter of .6..A1B1C1. 

The original dilation T, being a similarity, preserves perpendicular
ity, hence maps the orthocenter H of L'.}.ABC onto the orthocenter of the 
medial triangle L'.}.A'B'C', which is O; since G is the center of T and -+ 
the ratio, the conclusion follows from the definition of dilation. 

- PROBLEM 9. Let H be the orthocenter, 0 the circumcenter, L, 
M, N the midpoints of the sides, D, E, F the feet of the altitudes of 
L'.}.ABC. Show that L, M, N, D, E, F and the midpoints of segments HA, 
HB, HC all lie on a circle whose center U lies on the Euler line and is 
the midpoint of HO (the nine-point circle of L'.}.ABC). 

- SOLUTION. Consider the dilation T of center H and ratio 2. If 
we show that T maps all nine points onto the circumscribed circle K 

of L'.}.ABC, the conclusion will follow from Lemma 7 .2, Chapter 7, ap
plied to dilation T-1 of ratio t (T-1 maps K onto a circle of half the ra
dius and whose center is the midpoint of O H). Clearly T maps the mid
points of HA, HB, HC onto A, B, C on K. 

Let P be the point on K diametrically onposite to A (see Figure 9.8). 
� � � 

Since <}:'.ACP is inscribed in a semicircle, PC l_ AC, hence PC is parallel 
� � � 

to altitude BH. Similarly PB II CH. Thus DPCHB is a parallelogram, 
hence the midpoint of diagonal HP coincides with the midpoint L of 
BC. This shows T(L) = P on K (and similarly for T(M) and T(N). 

� 

Let ray HD meet K at D'. Since <}:'.AD'P is inscribed in a semicircle 
� �� �  �� 

of K, D'P l_ AD' = AD l_ DL; i.e., D'P II DL , which implies that D is 
the midpoint of HD' (since L is the midpoint of HP). Thus T(D) = D' 
on K (and similarly for T(E) and T(F)). 
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Figure 9.8 Nine-point circle. 

Motions and Similarities 

Henceforth the word "automorphism" will be used only for an auto

morphism of a neutral geometry, i.e., for a transformation that pre

serves incidence, betweenness, and congruence. 

DEFINITION. A transformation T of the entire plane onto itself is called 

a motion5 or an isometry if length is invariant under T, i.e., if for every 
- --

segment AB, AB = A'B', or equivalently, AB� A'B'. 

PROPOSITION 9.1. (a) Every motion is an automorphism. (b) The mo

tions form a subgroup of the group of automorphisms. 

PROOF: 

(a) Let T be a motion. If AB � CD, then 

A'B' =AB= CD= C'D', 

5 Some authors call these transformations rigid motions. The term "motion" as we use 
it here does not mean continuous movement of a physical body as in common usage, 
although it is suggested by the latter. 
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so that A'B' - C'D'. That T also preserves betweenness follows from 

Theorem 4.3 (9), which says that A * B * C if and only if we have 
- - -

AC= AB+ BC. 

(b) You must verify properties 1 through 3 in the definition of a 

group, which is an easy exercise. <11111 

PROPOSITION 9 .2. If T is an automorphism of an Archimedean Hilbert 

plane, then <r:..A - <r:..A' for every angle. Thus T preserves angle measure. 

PROOF: 

Given an automorphism T, define a possibly new measure of <r:..A 

to be the measure ( <r:..A') 0 of its image under T. You will show in 

Exercise 3 that this new measure satisfies all the basic properties 1 

through 6 in Theorem 4.3 (the plane must be Archimedean for mea

sure by real numbers to exist). But that theorem says there is a 

unique degree measure with these properties. Hence ( <r:..A) 0 = 

(<r:..A')o. <11111 

WARNING If the Hilbert plane is non-Archimedean, we have not con

structed any numerical measure of angles and there are examples of auto

morphisms T for which 1:'.A is not congruent to 1:'.A' (see Exercise 69). Such 

automorphisms are not of interest geometrically (e.g., Lemma 9.2 below 

and its consequences are false for them). So in what follows, whenever we 

speak of au.toHWrphisms of a Hilbert plane, we will assume that we are work

ing in an Archimedean plane. 

COROLLARY 1. If 6.A'B'C' is the image of 6.ABC under an automor

phism, then 6.A'B'C' is similar to 6.ABC. 

PROOF: 

Corresponding angles are congruent. <11111 

COROLLARY 2. Every automorphism of an Archimedean plane satis

fying the acute angle hypothesis is a motion. 

PROOF: 

Proposition 6.2 says 6.ABC - 6.A'B'C', hence AB= A'B'. <11111 

Also, as we have already observed using the Klein model (Exercise 

K-21, Chapter 7), every collineation of a hyperbolic plane onto itself is 

a motion. 
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Because of Corollary 1, an automorphism of a Euclidean plane is 
called a similarity; by definition, it is a collineation that preserves an
gle measure. An example of a similarity that is not a motion is the di
lation6 with center 0 and ratio k -=!=- 0: If k > 0 (respectively, k < O), this 
transformation T fixes 0 and maps any other point P onto the unique 

� � 
point P' on ray OP (respectively, on the ray opposite to OP) such that 

OP'= lklOP. 

If we introduce Cartesian coordinates with origin 0, this transforma
tion is represented by 

(x, y) � (kx, ky). 

Hence, if A, B have coordinates (a1, a2), (b1, b2), we have 

(A'B')2 = (ka1 - kb1)2 + (ka2 - kb2)2 = k2(AB)2; 

i.e., A'B' = lklAB. From this you can show that T preserves between
ness and congruence (Exercise 4), which is the "if" part of the next 
proposition. 

PROPOSITION 9.3. A transformation T of a Euclidean plane is a sim
ilarity if and only if there is a positive constant k such that 

A'B' = kAB 

for all segments AB. 

PROOF: 

Given similarity T and segment AB, choose any point C not collinear 
with A, B and consider .6..A'B'C' similar to .6..ABC. By the fundamen
tal theorem on similar triangles (Exercise 10, Chapter S), there is a 
positive constant k such that the ratio of corresponding sides of these 
triangles is equal to k. If D is any other point, the same argument ap-

-- --

plied to .6..ACD (or .6..BCD if A, C, D are collinear) gives C'D' = kCD. 
� 

And if D, E lie on AB, the same argument applied to .6..CDE gives 
-- --

D'E' = kDE. Thus k is the proportionality constant for all segments. <11111 

The proof just given, together with Exercise 4, shows the following. 

6 This notion of dilation is more general than the one on p. 321, where only the case 
k > 0 was considered. A dilation is also called a lwmothety or central similarity. Note 
that similarities are characterized as collineations that preserve circles (see Theorem 
9.3, p. 447). 
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COROLLARY. A one-to-one transformation T of a Euclidean plane onto 

itself is an automorphism if and only if for every triangle .6..ABC, we 

have .6..ABC � .6..A'B'C'. 

We can conclude from these results that hyperbolic planes have 

invariant distance functions AB� AB, whereas Euclidean planes do 

not. According to Klein's viewpoint, any function or relation that is 

not invariant under the group of automorphisms of a structure is 

not an intrinsic part of the theory of that structure; it is only part 

of the theory of the new structure described by those transforma

tions that do leave it invariant. So if we want distance to be a part 

of Euclidean geometry, we would have to redefine Euclidean geom

etry as the study of invariants of the group of Euclidean motions 
only. Klein suggested the name parabolic geometry for the study of 

invariants of the full group of Euclidean similarities. We will not 

adopt this terminology. 

NOTE. The existence of similarities which are not motions proves that 

there cannot be any "absolute" (geometrically defined) unit of length in 
Euclidean geometry because any possible such length would have to be 

invariant under all automorphisms. This is one difference with hyper

bolic geometry that intrigued Lambert and Gauss. 

Reflections 
The most fundamental type of motion from which we will generate all oth

ers is the reflection Rm across line m, its axis (see Major Exercise 2, Chap

ter 3). We will denote the image of a point A under Rm by Am. Reflecting 

across m twice sends every point back where it came from, so RmRm = I 

or Rm = (Rm)-1. A transformation that is equal to its own inverse and that 

is not the identity is called an involution. The 180° rotation about a point 

is another example of an involution. (You will show in Exercise 9 that 

there are no other involutions.) 

A fixed point of a transformation T is a point A such that A' = A. 

The fixed points of a reflection Rm are the points lying on m. We will 

use fixed points to classify motions. 

LEMMA 9 .1. If an automorphism T fixes two points A, B, then it is 
� 

a motion and it fixes every point on line AB. 
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PROOF: 

Since AB= A'B', the constant kin Proposition 9.3 in the Euclidean 
� 

case is equal to 1. Let C be a third point on AB. Consider the case 
A * B * C (the other two cases are treated similarly). Then A * B * 

- -

C' and AC= AC'. By Axiom C-1, C = C'. <11111 

LEMMA 9.2. If an automorphism fixes three noncollinear points, then 
it is the identity. 

PROOF: 

If A, B, C are fixed, then by Lemma 9 .1 so is every point on the 
lines joining these three points. If D is not on those three lines, 

� 

choose any E between A and B. By Pasch's theorem, line DE meets 
another side of 6-ABC in a point F. Since E and F are fixed, Lemma 
9 .1 tells us D is fixed. <11111 

PROPOSITION 9.4. If an automorphism fixes two points A, B and is 
� 

not the identity, then it is the reflection across line AB. 

PROOF: 
� 

Lemma 9.1 ensures that every point of AB is fixed. Let C be any 

�int off AB and let F be the foot of the perpendicular from C to 
AB. Since automorphisms preserve an�e measure, they preserve per
pendicularity, so C' must lie on CF . Lemma 9.2 ensures that 

- - � 

C' -=f=. C, and since CF = C'F, C' is the reflection of C across AB. <11111 

The next result shows that "motion" is the precise concept that jus
tifies Euclid's idea of superimposing one triangle on another. 

PROPOSITION 9.5. 6-ABC � 6-A'B'C' if and only if there is a motion 
sending A, B, C, respectively, onto A', B', C' and that motion is unique. 

PROOF: 

Uniqueness follows from Lemma 9.2, for if T and T' had the same ef
fect on A, B, C, then 11T' would fix these points, hence 11T' =I 
and T = T'. It's clear that a motion maps 6-ABC onto a congruent tri
angle (SSS). So we will assume conversely that 6-ABC � 6-A'B'C' and 
construct the motion. We may assume, say, A -=f=. A' and let t be the 
perpendicular bisector of AA'. Then reflection across t sends A to A' 
and B, C to points Bt, ct. If the latter are B', C', we're done, so as
sume that B' -=f=. Bt. We have 

A'B' � AB � A'Bt. 
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u 

Figure 9.9 

Let u be the perpendicular bisector of B'Bt, so that Ru sends Bt to 
B' (Figure 9.9). This reflection fixes A' because if A', Bt, B' are 
collinear, A' is the midpoint of B'Bt and lies on u, whereas if they 
are not collinear, u is the perpendicular bisector of the base of 
isosceles triangle .6.B' A'Bt and u passes through the vertex A'. 

Thus, the composite RuRt sends the pair (A, B) to the pair 
(A', B'). If it also sends C to C', we're done; otherwise let C" be its 
effect on C. Then 

A'C' �AC� A'C" 

B'C' �BC� B'C", 

so that .6.A'B'C' � .6.A'B'C". An easy argument with congruent tri
angl�s \see Figure 9.10) shows that C' is the reflection of C" across 
v = A'B'. Thus RvRuRt is the motion we seek. <Ill 

C' 

C" 

Figure 9.10 

COROLLARY. Every motion is a product of at most three reflections. 
This was shown in the course of the proof (where we consider the 

identity a "product of zero reflections" and a reflection a "product of 
one reflection"). 
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We are next going to examine products of two reflections T = RlRm. 

If l meets m at a point A, T is called a rotation about A. If l and m 

have a common perpendicular t, T is called a translation along t. 

Finally, in the hyperbolic plane only, if l and m are asymptotically 

parallel in the direction of an ideal point n, T is called a parallel 

displacement or limit rotation about n. These cases are mutually ex

clusive, but by convention the identity motion will be considered to 

be a rotation, translation, and parallel displacement (this is the case 

l = m). 

Proposition 9.4 showed the importance of fixed points in describ

ing motions. Another important tool is invariant lines: We say that line 

l is invariant under T if l' = l. This does not imply that all the points 

on l are fixed; it only implies that if a point on l is moved by T, it is 

moved to another point on l. For example, the only lines besides m 

that are invariant under a reflection Rm are the lines perpendicular to 

m (Exercise 7) . 

Rotations 

PROPOSITION 9.6. Let l 1- m, let A be the point of intersection of l 

and m, and let T = RlRm. Then for any point B -=!=- A, A is the midpoint 

of BB'. 

PROOF: 

The assertion is clear if B lies on either l or m, so assume it does 

not (Figure 9.11). 

Let C be the foot of the perpendicular from B to m. Then B' is 

on the opposite side of both l and m from B, and C' is on the op

posite side of l from C. From the congruence �BAC � �B' AC' we 

deduce that these must be vertical angles, hence A, B, B' are 

collinear. Since AB � AB', A is the midpoint. <11111 

The motion T in Proposition 9.6 can be described as the 180° ro

tation about A; we will call it the half-tum about A and denote it HA. 

The image of a point P under HA will be denoted pA. 

COROLLARY. HA is an involution, and its invariant lines are the lines 

through A. 
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Figure 9.11 

m 

Figure 9.12 

PROPOSITION 9. 7. A motion T if=. I is a rotation if and only if T has 

exactly one fixed point. 

PROOF: 

Suppose T has only one fixed point, A, and choose B if=. A. Let l be 

the perpendicular bisector of BB'. Since AB � AB', A lies on l, and 

the motion RlT fixes both A and B. If RlT =I, then T = Rl, which 

contradicts the hypothesis that T has only one fixed point. Hence 
� 

if m =AB, Proposition 9.4 implies RlT =Rm, so that T = RlRm and 

T is a rotation about A (see Figure 9 .12). 

Conversely, given rotation T = RlRm about A, assume on the 

contrary that point B if=. A is fixed. Then B
l 

= B
m

, so that joining 

this point to B gives a line perpendicular to both l and m, which is 

impossible. <11111 
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NOTE ON ELLIPTIC GEOMETRY. This last argument breaks down in 

an elliptic plane because there it is possible for intersecting lines to 

have a common perpendicular. In fact, each point P has a line l called 

its polar such that l is perpendicular to every line through P (see 

Figure 9.13). 

In the elliptic plane, the half-turn Hp about P is the same as the re

flection Ri across l. (Lemmas 9.1 and 9.2 are also false in the elliptic 

plane.) It can be shown that rotations are the only motions of an el

liptic plane (see Ewald, 1971, p. SO). In the sphere model, with an

tipodal points identified, the motions are represented by Euclidean 

rotations about lines through the center of the sphere (Artzy, 1965, 

p. 181). 

Figure 9.13 

\ \ I \ \ I \ \ I \ \ I ', ' \ ' '\ '' \ 
..... �, ,.._ 

If you reread the first part of the proof of Proposition 9. 7 and refer 

to Figure 9.12, you will see that we have also proved the following 

proposition, which is the first case of the fundamental theorem on three 

reflections (p. 428). 

PROPOSITION 9.8. If Tis a rotation about A and m is any line through 

A, then there is a unique line l through A such that T = RiRm. If l is 

not perpendicular to m, then for any point B -=!= A, 

(<}:'.BAB') 0 = 2d 0 , 

where d is the number of degrees in the acute angle made by inter

secting lines l and m. (So, for example, to express a 90° rotation about 

A in the form RiRm, you must choose lines l and m through A that 

make a 45° angle.) 
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WARNING The rotation RzRm is not the same as the rotation RmRz un

less l _l_ m. Intuitively, one of these rotations is the "clockwise rotation'' 

through 2d0 about A, while the other is the "counterclockwise rotation" 

through 2d0• For a more rigorous argument, note that 

(RmRtJ (RiRm) = Rm(Ry)Rm = RmIRm = R� = I, 

so that RmRz is the inverse of RzRm. In Exercise 9, you will show that the 

only rotation equal to its inverse is a half-tum. 

PROPOSITION 9.9. Given a point A, the set of rotations about A is a 

commutative group. 

PROOF: 

The identity is a rotation about A by definition, and we have just 

shown that the inverse of a rotation about A is a rotation about A. 

We must show that the product IT' of rotations about A is a rota

tion about A. Let T' = RiRm. By Proposition 9.8, there is a unique 

line k through A such that T = RkRi. Then 

TT' = (RkRi) (RiRm) = Rk(R�)Rm = RkIRm = RkRm. 

which is a rotation about A. To prove commutativity, apply Propo

sition 9.8 again to get a unique line n such that T-1 = RnRm. Then 

T = RmRn and T'T = (RiRml(RmRJ = Ri(R:nJRn = RiRn. Since TT'= 
RkRm. Rk(TT')Rm = RYcR:n_ =I. But we also have Rk(T'DRm = 
Rk(RiRn)Rm = (RkRi)(RnRm) = TT-1 =I. Hence TT' = T'T by can

celing on the right and the left. .,.. 

WARNING Rotations about different points never commute (unless at 

least one rotation is the identity). For if Tis a rotation about A and T' is a 

rotation about B, T'T sends A to A", whereas TT' sends A to (A")'. Fur

thermore, the product of such rotations may or may not be a rotation 

(Exercise 10). 

Translations 

We turn next to translations T = RiRm. where land m have a common 

perpendicular t. The geometric properties of translations in hyperbolic 

planes are different from those in Euclidean planes (unlike rotations, 

which behave the same in both geometries). 
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Figure 9.14 

PROPOSITION 9.10. Let l 1-t at A, m 1-t at B, T = RlRm. If 0 lies on 

t, then 00' = 2(AB). If P does not lie on t, then P' lies on the same 
- - - -

side oft as P, and PP' = 2(AB) if the plane is Euclidean, PP' > 2(AB) 

if the plane is hyperbolic. 

PROOF: 

(See Figure 9.14.) We will prove the assertion about 00' when 
- -

A* B * 0, leaving the other cases as an exercise. If BO< AB, then 

A*Om*B and 

00' = 0' A + AB + BO 

= OmA + AB + BOm 

= 2AB. 

If BO= AB, then 0' =A and 00' = 2(AB). If BO> AB, then we 

have om* A* B and OmA = OmB - AB= BO - AB. Hence we have 

om * A * 0' * 0, which results in 

2BO = OOm = 00' + 20'A 

= 00' + 2(B0 - AB), 

which gives 00' = 2AB. 

If P does not lie on t, then P and pm lie on a line perpendi

cular to m, hence parallel to t, and thus are on the same side of 

t; similarly, pm and P' are on the same side of t; so, by Axiom 

B-4, P and P' are on the same side of t. Let O be the foot of the 

perpendicular from P to t. Since T preserves perpendicularity, O' 

is the foot of the perpendicular from P' to t, and since Tis a mo

tion, P'O' � PO. Thus, DPOO'P' is a Saccheri quadrilateral. In 

Euclidean geometry, it's a rectangle and its opposite sides are 
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congruent, so PP' = QQ' = 2(AB); in hyperbolic geometry, the 
summit is larger than the base (Theorem 6.1, Chapter 6), so we 

--- --- --

have PP'> QQ' = 2(AB) . .... 

COROLLARY. If a translation has a fixed point, then it is the identity 
motion. 

PROPOSITION 9 .11. If Tis a translation along t and m is any line per
pendicular to t, then there is a unique line l 1- t such that T = RlRm. 

PROOF: 

Let m cut t at Q and let l be the perpendicular bisector of QQ'. 

Then RlT fixes Q. Let P be any other point on m, so that as be
fore, DPQQ'P' is a Saccheri quadrilateral. Since l is perpendicu
lar to the base QQ' at its midpoint, l is also perpendicular to the 

summit PP' at its midpoint (Proposition 4.12(b)), so that P is the 
reflection of P' across l. Thus RlT fixes every point on m, whence 
RlT =Rm, and 

T = ( Rz)2T = RlRm. 

As for uniqueness, if T = RkRm, then 

Rl = TRm = Rk 

and l = k . .,.. 

PROPOSITION 9.12. Given a line t, the set of translations along t is a 
commutative group. 

The proof is the same as the proof of Proposition 9. 9, using Propo
sition 9.11 in place of Proposition 9.8 . .,.. 

PROPOSITION 9.13. Let T-=!=- I be a translation along t. If the plane is 
Euclidean, the invariant lines of Tare t and all lines parallel to t. If the 
plane is hyperbolic, t is the only invariant line. 

PROOF: 

It's clear that t is invariant. In the Euclidean case, if u II t, then Tis 
also a translation along u (Proposition 4.9), so u is invariant. In 

both cases, if u meets t at A, then A' lies on t and A' -=!=- A, so A' 
does not lie on u and u is not invariant. Suppose that in the hy
perbolic case u is invariant and parallel to t. Choose any P on u; 

� 
then u = PP'. But we have already seen that P and P' are equidis-
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tant from t, whence u and t have a common perpendicular m (Propo

sition 6.4). We've shown that m is not invariant, and since T 

preserves perpendicularity, m
' is also perpendicular to t = t' and 

u = u
'
. This contradicts the uniqueness of the common perpendi

cular in hyperbolic geometry (Proposition 6.5). <11111 

PROPOSITION 9.14. Given a motion T, a line t, and a point B on t. 

Then T is a translation along t if and only if there is a unique point A 

on t such that T is the product of half-turns HAHB. 

PROOF: 

Let m be the perpendicular to t through B. If T is a translation along 

t, then by Proposition 9 .11 there is a unique line l 1- t such that 

T = RlRm. If l meets t at A, then HAHB = (RlRt) (RtRm) = Rl(Rf)Rm = 

RlRm = T. Reverse the argument to obtain the converse. <11111 

Half-Turns 
Having shown that the product of two half-turns is a translation, we now 

naturally ask: What is the product of three half-turns? Once again, the 

answer depends on whether the geometry is Euclidean or hyperbolic. 

PROPOSITION 9.15. In a Euclidean plane, the product HAHBHc 

of three half-turns is a half-turn. In a hyperbolic plane, the product 

is a half-turn only when A, B, C are collinear; if they are not, the 

product can be a rotation, a translation, or a parallel displacement. 

PROOF: 

Suppose that A, B, C are collinear, lying on t, and that l, m, n are 

the respective perpendiculars to t through these points. Then 

HAHBHc = (RlRt) (RtRm) (RnRt) 

= Rl(Rf)RmRnRt 

= (RlRmRJRt 

= RkRt, 

where the line k 1- t such that RkRn = RlRm is furnished by Propo

sition 9.11. If k meets t at D, we have shown HAHBHc = H0. 
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� 
Suppose that A, B, C are not collinear, that t = AB, that l 1- t at 

A, and that m 1- tat B. We may assume C lies on m (otherwise re

place B by the foot of the perpendicular from C to t and replace A 

by the point furnished by Proposition 9 .14) . Let u be the perpendic

ular to m through C (Figure 9 .1 S). Then 

HAHBHc = (RlRt) (RtRmJ (RmRu) = Rl(Rf) (R�)Ru = RlRu. 

m m 

D c c ---+µ-,-------,L-+---- u 
----...,...+---..+- u 

__ -+n_._ ___ �,-+----t ---+-'-------"-+----t 
A B A B 

Euclidean Hyperbolic 

Figure 9.15 

In the Euclidean case, l meets u at a point D and l 1- u (Proposi

tions 4.7 and 4.9) , so HAHBHc = H0. In the hyperbolic case, land 

u may meet, be divergently parallel, or be asymptotically parallel; 

if they do meet at point D, then HAHBHc is a rotation about D, but 

it is not a half-turn because <tD is the fourth angle of a Lambert 

quadrilateral. <11111 

COROLLARY. In a Euclidean plane, the product of two translations 

along different lines is again a translation, and the set of all transla

tions along all lines is a commutative group (proof left for Exercise 13) . 

NOTE. In the hyperbolic case, Proposition 9.15 can be strengthened. 

Suppose A, B, C are not collinear. Then HAHBHc is (1) a rotation that 

is not a half-turn iff A, B, C lie on a circle, (2) a translation iff A, B, C 

lie on an equidistant curve, or (3) a parallel displacement iff A, B, C 

lie on a horocycle. Another way of expressing these three possibilities 

is that the perpendicular bisectors of .6..ABC (1) are concurrent, (2) have 

a common perpendicular, or (3) are asymptotically parallel in the same 

direction (see Exercise 70) . 
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Ideal Points in the Hyperbolic Plane 
We next study the effect of motions in the hyperbolic plane on ideal 

points. An ideal point n is by definition an equivalence class of rays, 

where rays are in the same class if one is contained in the other or if 

they are limiting parallel to each other (Major Exercises 2 and 3 of Chap

ter 6 ensure that this situation does define an equivalence relation). 

Now limiting parallelism is defined in terms of incidence and be

tweenness, hence motions preserve the relation of limiting parallelism. 

Thus it makes sense to choose any ray r from the class n, consider its 

image r' under T, and define the image il' to be the class of r'. If we 

haven= il' (which means that either r' is limiting parallel to r or one 

ray contains the other), we say n is an ideal fixed point of T. 

Given a line t containing a ray r, the class of r and the class of the 

opposite ray are called the two ends oft and are said to lie on t. Two 

ideal points il, � lie on a unique line il� (namely, if rays r E il, 

s E � emanate from the same point and are not opposite, then n� is 

the line of enclosure of the angle formed by r ands-see Major Exer

cise 8, Chapter 6). We say that n and � are on the same side of line t 

if neither of them is an end oft and if linen� is parallel to t. This de

fines a transitive relation on the set of ideal points off t. 

PROPOSITION 9 .16 

(a) The ends of m are the only ideal fixed points of the reflection 

Rm and any translation (if=. I) along m. 

(b) If a rotation has an ideal fixed point, then it is the identity. 

(c) If (il, �' A) and (il', �,, A') are any triples of ideal points, then 

there is a unique motion sending one triple onto the other. 

PROOF: 

(a) It is clear that Rm and any translation T if=. I along m fix the 

ends �' n of m. If any other ideal point A were fixed, then the line 

�A would be invariant; but T has no invariant lines other than m 

(Proposition 9.13), and the only other invariant lines of Rm are the 

perpendiculars to m, whose ends are interchanged by Rm. 

(b) If a rotation about A fixes n, then ray Ail will be invariant; 

but Propositions 9.6 and 9.8 imply that only the identity rotation 

has an invariant ray emanating from A. 

(c) There is a unique point B on �n such that <i:ABil is a right 

angle (Major Exercise 10, Chapter 6). Let B' be the point on �'il' 
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such that <i:A'B'il' is a right angle. Let A be any point =FB on BA 
and let C be any point =FB on Bil. By Axiom C-1, there are unique 
points A' on B'A', and C' on B'il', such that 

AB� A'B' and CB� C'B'. 

Then .6..ABC � .6..A'B'C' (SAS), so by Proposition 9.5, a unique 
motion T effects this congruence. Clearly T sends (il, �' A) to 
(il', �,, A'). Conversely, any such motion must send (A, B, C) onto 
(A', B', C'), so by Proposition 9.5, Tis unique. <11111 

Figure 9.16 

NOTE. Part (c) of this proposition can be visualized nicely in terms 
of the Klein model. Ideal points are represented by points on the ab
solute (the unit circle). There is a unique motion T mapping any triple 
of points (�, n, A) on the absolute onto any other. The effect of T on 

the other points can be described as follows (see Figure 9 .16). 
If P is the pole of chord il�, then line PA is Klein-perpendicular to 

n� at some point A. Then the image A' of A must be the intersection 
of il'�' with A'P', where P' is the pole of il'�'. Take any other point 
B on il�, say, il * B *A. By Theorem 7.4, the image B' of B is the 
unique point between il' and A' such that cross-ratios are preserved:7 

(AB, il�) = (A'B', il'�'). 

7 The mapping of ilk onto fi'k' given by this equality of cross-ratios is called a projec
tivity. It can be described more geometrically by a sequence of at most three perspec

tivities (see Figure 7 .44); this is essentially the "fundamental theorem of projective 

geometry" (Ewald, 1971, Theorem 5.9.5, p. 226). 
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Let f be the other intersection of PA with the absolute-its image 
f' is the other intersection of P' A' with the absolute. As previously, 
we can use cross-ratios to determine the image of any point on r A. Fi

nally, given any other point X (ideal or ordinary), represent it as the 
intersection of two lines, one being XP, which cuts n� at some point 
Y, and the other being Xil (or�), which cuts f A at some point Z. 
Then X' is the intersection of P'Y' and Z'il'(or Z'�'). 

This construction describes the motion Tin terms of incidence alone. 
It suggests the conjecture that every collineation of the hyperbolic plane 

is a motion; this conjecture was demonstrated by Karl Menger and his 
students.8 In the Euclidean plane, there are lots of collineations that are 
not motions or similarities (see Exercise 34 on affine transformations). 

Parallel Displacements 
We next study parallel displacements about an ideal point�. 

PROPOSITION 9 . 1 7 . Given a parallel displacement T = RlRm, where l 

and mare asymptotically parallel in the direction of ideal point�. Then 
(a) T has no ordinary fixed points. 
(b) Let k be any line through� and A any point on k; then� lies 

on the perpendicular bisector h of AA' and T = RhRk. 
(c) T has no invariant lines. 
(d) The only ideal fixed point of T is �. 
(e) The set of parallel displacements about � is a commutative 

group. 
(f ) A motion with exactly one ideal fixed point is a parallel 

displacement. 

PROOF: 

(a) Assume A is fixed. Then the line joining A to Am= Al is per
pendicular to both land m, contradicting the hypothesis. 

(b) � lies on two perpendicular bisectors l and m of 6.AAmA', 
so by Major Exercise 7, Chapter 6, � also lies on the third perpen
dicular bisector h. Then RhT fixes A and�. By Proposition 9.16(b), 

8 See L. Blumenthal and K. Menger (1970, p. 220). See also K. Menger, "The New Foun

dation of Hyperbolic Geometry," in J. C. Butcher (ed.), A Spectrum of Mathematics (Ox
ford: Auckland and Oxford University Presses, 1971), p. 86. The idea of the proof is 

given in Exercise K-21, Chapter 7. You can add this result to your list for Exercise l, 

Chapter 6. 
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RhT cannot be a rotation about A. By Proposition 9.4, it must be a 

reflection, and by Proposition 9.16(a), it has to be the reflection 

across the line k joining A to� (see Figure 9.17). 

(c) Suppose line t were invariant under T. Choose any point A 
� 

lying on t and let h, k be as in part (b). Then h 1- T =AA', so t is 

invariant under Rh too. Hence tis invariant under Rk = RhT, which 

means either t 1- k or t = k. But the asymptotically parallel lines h 

and k cannot have a common perpendicular or be perpendicular to 

each other. 

m....,__ 
--

Am 
h.,. ____ _ 

z----

Figure 9.17 

(d) If T had another ideal fixed point n, then line �n would be 

invariant, contradicting part (c). 

(e) The proof is the same as the proof of Proposition 9.9, using 

part (b) instead of Proposition 9.8. 

(f) This follows from the classification of motions (Theorem 9.1, 

later in this chapter), and is inserted here for convenience. <11111 

DEFINITION. If A is ordinary and � is ideal, the set of all points TA 

as T runs through the group of parallel displacements about � is the 

horocycle through A centered at �. (This is the analogue of the circle 

through A centered at an ordinary point 0, which consists of all points 

TA as T runs through the group of rotations about 0.) 

One circle can be mapped onto another by a motion iff the two cir

cles have the same radius. We can say that the congruence class of a 

circle is determined by its radius, where in general two figures are called 

congruent if there is a motion mapping one onto the other. In that sense, 

all horocycles are congruent to one another (Exercise 44). 
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Glides 
We come now to our final type of motion, a glide along a line t, de

fined as a product T' = RtT of a non-identity translation T along t fol

lowed by reflection across t. (If you walk straight through the snow, 

your consecutive footprints are related by a glide.) 

PROPOSITION 9.18. (See Figure 9.18.) Given l J_ t at A, m J_ t at B, 

T = RtRm, T' = RtT. Then 

(a) TRt = T'. 
(b) HARm = T' = RtHB. 
(c) T' maps each side oft onto the opposite side. 

(d) T' has no fixed points. 

(e) The only invariant line of T' is t. 

(f) Conversely, given point B and line l, let t be the perpendicular 

to l through B. Then RtHB is a glide along t if B does not lie on 

l, and is Rt if B does lie on l. 

Figure 9.18 

PROOF: 

p 

m 

pm P' 

Parts (a) and (b) follow from the formulas HA= RtRt = RtRt and 

HB = RtRm = RmRt. Part (c) is clear, and part (d) follows from it. 

Part (e) follows from parts (c) and (d). As for part (f), if B lies on 

l, then HB = RtRt, so RtHB = Rt(RtRt) = (Rf)Rt =Rt. If B does not lie 

on l, let m if=. l be the perpendicular to t through B; then we have 

T = RtRm if=. I and RtHB = TRt. <11111 

NOTE. Glides are characterized in Euclidean geometry by having only 

one invariant line. In hyperbolic geometry, this characteristic does not 

distinguish them from translations, so we must add the condition that 

the two sides of the invariant line are interchanged. The invariant line 

is called the axis of the glide. 
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HJELMSLEV'S LEMMA. Let G be a glide, l a line not invariant under 

G, and l' the image of l under G. As point P varies on l and its im

age P' varies on l', the midpoints of the segments PP' all lie on the 

axis t of G. Furthermore, those midpoints are all distinct, except in 

the case of G = HMRt. where the midpoints all coincide with M; that 

case occurs if and only if the axis t of G is perpendicular to both 

land l'. 

The proof will be left for Exercise 21. The lemma gives a method 

of locating the axis of a glide. 

Classification of Motions 
Our next objective is to show that every motion is a reflection, a rota

tion, a translation, a parallel displacement, or a glide. The first step is 

to describe products of three reflections. Toward that end, we intro

duce three types of pencils of lines: 

1. The pencil of all lines through a given point P. 

2. The pencil of all lines perpendicular to a given line t. 

3. The pencil of all lines through a given ideal point I (hyperbolic 

plane only). 

Clearly, two lines l and m determine a unique pencil (if l and m 

are divergently parallel in the hyperbolic plane, they have a common 

perpendicular t by Theorem 6.3, Chapter 6). Moreover, if A is any point, 

there is a line n in that pencil through A. For the three types of pen

cils, n is: 

� 
1. The line AP if Ai= P. 

2. The perpendicular to t through A. 

3. The line containing AI. 

- THE THEOREM ON THREE REFLECTIONS The first part of the 

next proposition is called the "theorem on three reflections." F. Bach

mann takes it as an axiom for his development of geometry without 

continuity or betweenness axioms. 9 

9 Bachmann introduces ultra-ideal and ideal points as pencils of the second and third 

types; using a technique developed by Danish geometer J. Hjelmslev, he is able to 

prove that the plane so extended is a projective plane coordinatized by a commutative 
field. See Appendix B. 
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PROPOSITION 9.19. Let T = RlRmRn. (1) If l, m, and n belong to a 

pencil, then Tis a reflection in a unique line of that pencil. (2) If l, m, 

and n do not belong to a pencil, then Tis a glide. 

This proposition is wonderful. It leads to the complete classification 

of motions. You may wonder how the axis of glide Tis related to the 

three given lines; Exercises 55-57 answer this question in the Euclid

ean case. 

PROOF: 

Part (1) of Proposition 9.19 follows from Propositions 9.8, 9.11, 

and 9 .17 (b), so assume the lines do not belong to a pencil. Choose 

any point A on l. Let m
' be the line through A belonging to the 

pencil determined by m and n (Figure 9 .19) . Then line n' exists 

such that 

Rm' RmRn = Rn" 

Let B be the foot of the perpendicular k from A to n'. Since l, m
'

, 

and k pass through A, line h exists such that 

RlRm· Rk = Rh. 

Then B does not lie on h (by assumption on l, m, n), so by Propo

sition 9.18(f), RhHB is a glide along the perpendicular to h through 

B. But 

A 

Figure 9.19 

COROLLARY. Every product RlRmHA equals a product RhRk. 

PROOF: 

Let n be a line through A in the pencil determined by l and m. Let 

h be the line such that 
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and let k be the perpendicular to n through A. Then 

RlRmHA = RlRmRnRk = RhRk. <11111 

429 

DEFINITION. A motion is called direct (or proper or orientation

preserving) if it is a product of two reflections or else is the identity. It 

is called opposite (or improper or orientation-reversing) if it is a reflec

tion or a glide. 

THEOREM 9 .1. Every motion is either direct or opposite and not both. 

The set of direct motions is a group. The product of two opposite mo

tions is direct, whereas the product of a direct motion and an opposite 

motion is opposite. 

PROOF: 

We know that every motion is a product of at most three reflec

tions (corollary to Proposition 9.5), so by Proposition 9.19, every 

motion is either direct or opposite. The opposite motions are char

acterized by having an invariant line whose sides are interchanged. 

Given a product (RkRz) (RmRn) of direct motions. If l, m, n be

long to a pencil, RlRmRn = Rh and the product reduces to RkRh, which 

is direct. Otherwise RlRmRn = RhHB (Propositions 9.19 and 9.18(b)), 

and the corollary tells us that Rk(RhHB) is direct. It follows that the 

direct motions form a group. 

The product of a reflection and a direct motion is opposite by Propo

sition 9 .19. The product of a glide and a direct motion is a product of 

five reflections, which reduces to a product of three reflections by the 

previous paragraph, hence is opposite by Proposition 9.19. Similarly, 

a product of four to six reflections reduces to a product of two. <11111 

A 

B 

c 

Figure 9.20 
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NOTE. The intuitive idea behind our classification of motions is that 

the plane can be given two distinct "orientations," so that, for exam

ple, the vertices of �ABC can be ordered in a "clockwise direction" 

(Figure 9 .20). When the triangle is moved by a rotation, translation, or 

parallel displacement, the orientation of �A'B'C', remains clockwise, 

whereas under a reflection or a glide, the orientation becomes coun

terclockwise. (See Exercise 23 for further discussion of orientation.) 

NOTE ON ELLIPTIC GEOMETRY. In the elliptic plane, no such invariant 

exists that is preserved by rotations and reversed by reflections since every 

reflection is a 180° rotation; there is no distinction between direct and 

opposite motions in the elliptic plane. The only motions are rotations. 

TABLE 9.1 

TABLE OF MOTIONS 

Ideal 

fixed points 

Orien- Fixed Invariant (hyperbolic 

ta ti on points lines plane) 

Identity Direct All All All 

Reflection R1 Opposite Points land all The two ends 
on l m 1- l of l 

Half-tum HA Direct A All lines None 
through A 

Rotation about Direct A None None 
A that is not 

involutory 

Euclidean Direct None t and 
translation ai1 u 11 t 
along t 

Hyperbolic Direct None Only t The two ends 
translation oft 
along t 

Parallel Direct None None 
displacement 
about n 

Glide along t Opposite None t The two ends 
oft 
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Exercise 71 asks you to construct another column for this table listing 

invariant cycles. 

Automorphisms of the Cartesian Model 
Our next objective is to rapidly describe the groups of motions explic

itly in terms of coordinates in models of our geometries. We begin with 

the Cartesian model of the Euclidean plane, and we assume in both 

this section and the next that the reader has some familiarity with vec

tors, matrices, and complex numbers. 

The easiest transformations to describe are translati.ons. A s  the proof 

of Proposition 9 .10 showed, a translation moves each point a fixed dis

tance and in a fixed direction (in Figure 9.8, it moves the distance 2AB 
� -

in the direction BA) . This can be represented by a vector of length 2AB 

emanating from the origin of our coordinate system and pointing in the 

given direction. If the endpoint coordinates of this vector are (e, n, then, 

by the definition of vector addition, the translation is given by 

T(x, y) = (x, y) + (e, f) = (x + e, y + f) 

(Figure 9.21) or 

x' = x + e 

y' = y + f. 

If we apply a second translation T' corresponding to the vector with end

point (e', f'), then the image (x", y") of (x, y) under T'T is given by 

(x", y") = (x', y') + (e', f') = (x + e + e', y + f + f'). 

Thus T'T is the translation by the sum of the vectors determining 

T and T'. This proves the next proposition. 

(x+e,y+f) 

(0,0) 

Figure 9.21 



432 GEOMETRIC TRANSFORMATIONS 

PROPOSITION 9.20. In the Cartesian model of the Euclidean plane, 

the translations form a commutative group isomorphic to the group of 

vectors under addition. 

(According to our general definition of isomorphic models, two 

groups are isomorphic if there is a one-to-one correspondence between 

them and that correspondence preserves the group laws; here the two 

groups are considered models of the system of axioms 1 through 4 for 

a group at the beginning of this chapter.) 

We say that the translations form a two-parameter group since they 

depend on two real variables (e, f) .10 

PROPOSITION 9 .21. In the Cartesian model of the Euclidean plane, 

the translations along a fixed line form a one-parameter group iso

morphic to the group of real numbers under addition. 

PROOF: 

Let (e0, fo) be a unit vector parallel to the fixed line l (Figure 9.22). 
Then the vector corresponding to a translation T along l has the 

form t(eo, fo) = (teo, tfo), where ltl is the distance translated and t 
is positive or negative according to whether the direction of trans

lation is the same as (e0, fo) or opposite. If T '  corresponds to vec

tor t' (eo, fo), then T'T corresponds to vector t(eo, fo) + t' (eo, fo) = 

0 

Figure 9.22 

10 The theory of groups of transformations that depend continuously on real parameters 
was first developed by the great Norwegian mathematician Sophus Lie in the late nine
teenth century and has become one of the most fruitful ideas in twentieth-century 

mathematics and physics. (For example, this theory was used to predict the existence 
of certain subatomic particles-see F. S. Dyson, "Mathematics in the Physical Sci
ences," Scientific American, September 1964.) 
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(t + t') (e0, fo). Thus assigning the parameter t to T gives the 

isomorphism. <11111 

We next discuss rotations about a fixed point A. Our first step is to 

reduce to the case where A is the origin 0: If not, let T be the trans
� 

lation along AO taking A to 0. Then (by Proposition 9.11) 

T = RmRl = Rl*Rm, 

where m is the perpendicular bisector of AO and l, l* are the perpen
� 

diculars to AO through A, 0. The given rotation R about A can be writ-

ten (by Proposition 9.8) as 

R = RlRk> 

where k passes through A. Let k* be the reflection of k across m (see 

Figure 9.23). Then R* = Rk*Rl* is a rotation about 0 and 

T-1 R* T = (RlRm) (Rk*Rl*) (Rl*Rm) 

= RlRmRk*(Rl*)2Rm 

= Rl(RmRk*Rm) 

= RlRk 

= R. 

This shows that the rotation R about A is uniquely determined by 

the rotation R* about 0. Moreover, the mapping R* � T-1R*T is 

an isomorphism of the group of rotations about 0 onto the group of 

rotations about A, as you can easily verify. Thus we may assume 

A= 0. 

k m z* k* 

Figure 9.23 
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By Proposition 9.8, the given rotation about 0 can be written as 
R = RtRm, where m is the x-axis. If l 1- m, then R is represented in com
plex coordinates as 

z� -z 

(Proposition 9.6). Otherwise, if the acute angle from m to l has radian 
measure 0/2, 0 < 0/2 < 7r/2, then R is represented in complex coordi
nates11 as 

(if l has positive slope) 

(if l has negative slope) 

(see Figure 9.6 and Proposition 9.8). Combining these cases, we see 
that rotations about 0 are uniquely represented by the transformations 

(-1r < fJ<1r) . 

Since ei"'(ei9z) = (ei"'ei9)z, the product of two rotations about 0 corre
sponds to the product ef"'ei9 of complex numbers of absolute value 1. 
This proves the following proposition. 

PROPOSITION 9 .22. In the Cartesian model of the Euclidean plane, 
the group of rotations about a fixed point is isomorphic to the one
parameter multiplicative group S1 of complex numbers ei9 of absolute 
value 1 (O is the real parameter). 

Let us combine our results, using complex coordinates. If a point 
has complex coordinate z, translating it by a vector (e0, fo) is the same 
as adding to z the complex number z0 = e0 + ifo since addition of com
plex numbers is the same as vector addition. Now if Tis any direct 
motion and T moves the origin 0 to the point O' with complex coor
dinate z0, follow T by the translation by -z0 to obtain a direct motion 
fixing 0. This motion is a rotation about 0 by our previous results, 
hence has the form z � ei9z. Therefore our original motion is equal to 
this rotation followed by translation by z0. We have proved the fol
lowing proposition. 

PROPOSITION 9.23. The group of direct motions of the Cartesian 
model of the Euclidean plane is isomorphic to the three-parameter group 
given in complex coordinates by 

11 Recall that ei9 = cos 8 + i sin 8. 

z� ei9z + zo. 
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Let us be more explicit on the multiplication law for this group. Let 

T have complex parameters (ei9, z0) and let T' have complex parame

ters (ei9', z0). Then the image of z under T'T is 

eie' (eiBz + zo) + zo = eiCe+e')z + (eiB'zo + z&)' 

so the complex parameters are (eiCB+e'), eiB'z0 + z0). In other words, 

the rotation parameters multiply, but the translation parameters do 

not add-there is a "twist" involved in multiplying z0 by eiB'. This 

accounts for the noncommutativity of the group (which technically 

is a "semidirect product" of 51 with the additive group C of complex 

numbers). 

Put another way, let T = T1R1 and T' = T2R2, where the Ti are trans

lations and the Ri are rotations about 0, i = 1, 2. Then 

In this last expression, the factor on the right is the product R2R1 of 

the two rotations about 0, and the factor T2 on the left is the second 

translation. The middle factor reveals the twist because R2T1R21 is the 

translation by ei9'z0: 

= eiB' (e-iB'z + zo) 

= z + ei9'zo. 

COROLLARY. Opposite motions of the Cartesian plane have a unique 

representation in the form 

PROOF: 

By Theorem 9.1, all opposite motions are obtained by following all 

the direct motions with one particular opposite motion, which we 

can choose to be reflection across the x-axis z � z. Since em = e-ie, 
the complex conjugate of ei9z + z0 is e-iez + z0, and relabeling -() 

for (), z0 for z0 gives the result. <11111 

These results can easily be generalized to similarities. 
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PROPOSITION 9 .24. In the Cartesian model of the Euclidean plane, a 

similarity is represented in complex coordinates either in the form. 

z� Woz + zo Wo i= 0 

(in which case it is called direct) or in the form 

z� Wo.Z + zo Wo i= 0 

(in which case it is called opposite). The direct similarities form a four

parameter group. 

Here w0 ranges through the multiplicative group C* of nonzero 

complex numbers, while z0 ranges through the additive group C 

of all complex numbers; the group of direct similarities is the "semi

direct product" of C* with C. The modulus k = lwol is the constant 

of proportionality for the similarity. Geometrically, this representa

tion means that a direct similarity is equal to a dilation centered 

at the origin followed by a rotation about the origin followed by 

a translation; an opposite similarity is equal to the reflection in 

the x-axis followed by a direct similarity. The proof is left for Exer

cise 24. 

Motions in the Poincare Model 

We turn next to the coordinate description of hyperbolic motions, and 

for this purpose the most convenient representation is the Poincare up

per half-plane model. Recall that the Poincare lines are either vertical 

rays emanating from points on the x-axis or semicircles with center on 

the x-axis. The ideal points are represented in this model by the points 

on the x-axis and a point at infinity oo which is the other end of every 

vertical ray (Figure 9.24). 

00 

Figure 9.24 
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We have seen (in the note after Proposition 7.11, p. 326) that hy

perbolic reflections are represented in the Poincare disk model either 

by Euclidean reflections in diameters of the absolute circle y or by in

versions in circles 8 orthogonal toy. Let us show that in the upper half

plane model, hyperbolic reflections are represented either by Euclidean 

reflections in the vertical lines or by inversions in circles 8 orthogonal 

to the x-axis, i.e., circles 8 with center on the x-axis. 

In Exercise 38, you will show that the mapping 

E 
. i +z 

:z�i-.-
i- z 

sends the unit disk one-to-one onto the upper half-plane, sends i to oo, 

and all other points of the unit circle onto the x-axis. 

The Poincare lines of the disk model are mapped onto the 

Poincare lines of the upper half-plane model-in fact, all Euclidean 

circles and lines are mapped into either Euclidean circles or lines 

by E, and orthogonality is preserved (E is conformal); see Figure 

9.25. So we can use E as the isomorphism that defines congruence 

in the upper half-plane interpretation (just as we previously estab

lished congruence in the Klein model via the isomorphism F-see 

Chapter 7). 

For simplicity, let us agree to also call the Euclidean reflection in a 

Euclidean line "inversion"; this will enable us to avoid discussing this 

special case separately. Figure 9.26 shows a hyperbolic reflection Rl in 

the disk model represented as inversion. For any point A, drop hyper

bolic perpendicular t from A to l and let M be the foot on l of this per

pendicular. Let a be the hyperbolic circle through A with hyperbolic 

center M. 

oo =E(i) 

E i=E(O) 

-i -1 =E(-1) O=E(-i) I =E(l) 

Figure 9.25 Isomorphism E of the disk model to the upper half-plane model. 
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t 

Figure 9.26 Reflection is inversion in the Poincare models. 

Proposition 7.12 showed that a is also a Euclidean circle (with a 

different Euclidean center). The reflection Al of A across l is then the 

other intersection of a with t. Now a is orthogonal to l since l is the 

extension of a hyperbolic diameter of a. Hence a is mapped onto itself 

by inversion in l, and so is t (corollary to Proposition 7.6), so Al must 

be the inverse of A in l. 

If we apply the mapping E, this entire figure is transformed onto 

an isomorphic figure in the upper half-plane. Thus, the argument just 

given shows that Rl is also represented in the upper half-plane model 

by inversion. 

We next calculate the formulas for these inversions. For a vertical 

line x = k, the inversion is given by 

(x, y) � (2k - x, y). 

In terms of the single complex coordinate z = x + iy, this becomes 

z� 2k -z. 

For consistent notation later on, set b = 2k and write this as 

z� -z+ b. 

For a circle centered at (k, O) of radius r, make a change of coor

dinates x' = x - k, y' = y (i.e., translate the center to the origin); the 

complex coordinate change is z' = z - k. Then, by the definition of in

version, the image w' of z' is determined by the two equations 

lz'llw'I = r2 

z' w' 
lz'I lw'I' 
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whose solution is 

z' r2 z' r2 
w' = lw'I 

� 
= 

� lz'I 
= 

z' 

439 

since lz'l2 = z'z'. So in the original coordinate system where we have 

w = w' + k, we get 

r2 kZ + r2 -k2 
w- -- + k- ------

z-k z-k 
· 

For convenience, we set c = l/r, a = kc, and b = r(l - a2). The inver

sion then takes the form 

aZ + b 
z� 

cz- a 

which includes the previous case when we set c = 0 and a = -1. We 

have shown the following. 

PROPOSITION 9.25. In the Poincare upper half-plane model of the hy

perbolic plane, reflections are represented in complex coordinates by 

z� 
aZ + b 

a2 +be= 1 
cz- a 

(where a, b, c are real numbers). 

We can next determine the representation of all the direct hyper

bolic motions since they are products of two reflections. The calcula

tion is simplified by the following general observations. 

For any coefficient field K (such as the field � of all real numbers 

or the field C of all complex numbers), we define the projective line 
W>1(K) over K to be KU {oo}, where "oo" just means another point not 

in K. Each point on this "line" will be assigned homogeneous coordi

nates [x1, x2], where x1, x2 EK and are not both zero. These coordi

nates will be determined only up to multiplication by a nonzero scalar 

A; that is, 

[X1, X2] = [AX1, AX2] ,\ i= 0. 

Specifically, the point x EK is assigned the homogeneous coordinates 

[x, 1] = [Ax, A] A i= 0, 

while the point oo is assigned the homogeneous coordinates 

[1, O] = [A, O] A i= 0. 
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We will operate on the points of QJ>1 (K) with nonsingular 2 x 2 matri

ces with coefficients in K in the usual way that matrices operate on 

vectors: 

where the brackets around the matrix again mean that its entries are 

determined only up to multiplication by a nonzero scalar. These oper

ators are called projective transformations, and they form a group un

der matrix multiplication denoted PGL(2, K). Now a linear fractional 

transformation 

ax+ b 
x� 

ex+ d 

defined on K can be obtained by operating on the homogeneous coor

dinates [x, 1] of x with the projective transformation [ � �} obtain

ing [ax+ b, ex+ d], and then dehomogenizing the coordinates to get 

[(ax+ b)/(ex + d), 1]. Viewed thusly it becomes clear that the com

posite of two such linear fractional transformations can be calculated 

by multiplying the two matrices, so the composite is again a linear frac

tional transformation. 

Returning to our representation of reflections, we have the added 

complication of the complex conjugate z occurring in the formula of 

Proposition 9.25; but it is clear that for a product of two reflections, 

the two conjugations cancel each other out, with the coefficients being 

unaffected because they are real numbers. Furthermore, the condition 

a2 + be= 1 in Proposition 9.25 means that the matrix 

[� -�] 
of the transformation has determinant -1. By the formula 

det(AB) = (det A) (det B) 

for the determinant of a product of matrices, we see that the product 

will have determinant + 1. 

We claim that, conversely, every linear fractional transformation 

with real coefficients and determinant + 1 is a product of two hyper

bolic reflections; i.e., the matrix equation 

[a' 

c' 

b'][a b] [x y] 
-a' c -a 

-
u v 
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can be solved for the eight unknowns on the left, given the four real 
numbers on the right. 

-CASE 1. u -=f=. 0. Then a solution is c' = 0, a' = -1, c = u, 

a= -v, b' = (x - v)/u, b = vb' - y. 

-CASE 2. u = 0 and y = 0. We may assume x > 0. Then a solu
tion is a= 0 = a', c = Vx = b', c-1 = b = c'. 

- CASE 3. u = 0 and x = v = 1. Then a solution is c = 0 = c', 

a = -1 = a', b' = 0, and b = -y. 

- CASE 4. u = 0. This follows from the preceding cases because 

[x y J = 
[x 0 J[l y/x] 

0 x-1 0 x-1 0 1 

and we know that a product of four reflections reduces to a product of 
two (Theorem 9 .1). 

We have proved the next proposition. 

PROPOSITION 9.26. In the Poincare upper half-plane model of the hy
perbolic plane, the direct hyperbolic motions are represented by all the 
linear fractional transformations 

(a, b, c, d, real). 

z � 
az + b 

ad - be = 1 
CZ+ d 

This group is denoted PSL(2, IR) and is called the projective special 
linear group over the real field. It is a three-parameter group (one of 
the four parameters being eliminated by the condition that the deter
minant be + 1) .12 

We can next obtain all opposite hyperbolic motions by multiplying 
all the direct motions by one fixed opposite motion. For the latter, let's 
use the reflection in the y-axis, z � -z. The result is 

-di+ b 
z� ----

-cz + d' 

which after relabeling gives the next proposition. 

12 SL(2, IR} is the group of all 2 x 2 real matrices of determinant + 1. It is extremely im

portant in analytic number theory-see the book by S. Lang devoted entirely to this 

group (Reading, Mass.: Addison Wesley, 1975}. 
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PROPOSITION 9.27. In the Poincare upper half-plane model of the hy
perbolic plane, the opposite hyperbolic motions are represented by all 
the mappings 

(a, b, c, d real). 

aZ + b 
z� - d CZ+ 

ad- be= -1 

We can combine the direct and opposite motions and represent them 
by all real projective transformations of the real projective line C!f 1 (�), 

with the matrices representing direct or opposite motions according to 
whether the determinant Dis positive or negative, since 

[a b
] = 

[aNiDI b;v'iDi
] c d c;v'iDi dfv'iDi 

and the matrix on the right has determinant ± 1. 

COROLLARY (POINCARE, 1882). The group of all hyperbolic motions 
is isomorphic to PGL(2, �). 

This isomorphism suggests analogies between one-dimensional real 
projective geometry and two-dimensional hyperbolic geometry.13 For 
example, Proposition 9.16(c) corresponds to the theorem in projective 
geometry that for any two triples of points on the projective line, there 
is a unique projective transformation mapping one triple onto the other 
(see Exercise 65). Also, projective transformations are classified by their 
fixed points. The equation for a fixed point is 

ax+ b 
x= ---

cx + d 

or 

cx2 + (d - a)x - b = 0, 

showing that the number of finite fixed points is 0, 1, or 2. Since 

13 Klein's Erlanger Programme pointed out many other analogies between geometries 

whose groups are isomorphic, e.g., the analogies among the inversive plane (Exercise 
P-17, Chapter 7), the one-dimensional complex projective geometry \lJ>1(1C) (which from 

the real point of view is a geometry on a sphere), and three-dimensional hyperbolic 

geometry. See the "dictionary" on p. 266 of Coxeter (1998). 
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we see that oo is a fixed point if and only if c = O; in that case, the 

quadratic equation above becomes linear, and if the transformation is 

not the identity, it has a finite fixed point only when a i=- d. 

Our classification of hyperbolic motions (p. 430) showed that the 

number of ideal fixed points is 0 for rotations, 1 for parallel displace

ments, and 2 for reflections, translations, and glides. 

- EXAMPLE 3. Let us determine the group of all parallel dis

placements about oo. We just showed that these are represented by ma

trices with c = 0 and a = d; they form the group of mappings 

z�z + b, 

which is isomorphic to the one-parameter additive group of all real 

numbers (these are Euclidean translations along the x-axis). 

- EXAMPLE 4. Consider next the two ideal fixed points 0 and oo 

and the group of hyperbolic translations along the Poincare line join

ing them (the upper half of the y-axis). They are represented by ma

trices with c = b = 0 and ad = 1; they form the group of mappings 

and since a2 can be any positive number, this group is isomorphic to the 

multiplicative group of all positive real numbers. By taking the logarithm, 

this group in turn is isomorphic to the additive group of all real numbers, 

just as in the Euclidean case of translations along a fixed line-Proposi

tion 9.21. (The mappings are Euclidean dilations centered at 0.) 

- EXAMPLE 5. Finally, let us determine the group of all hyper

bolic rotations about the point i in the upper half-plane. They are the 

direct motions that fix i: 

. ai + b 
i= --

ci + d' 

so a= d and b = -c, with 1 =ad - be= a2 + b2• If we set a= cos (), 

b = - (sin O), rotations about i are represented by 

But the matrix 

(cos O)z - sin () 
z� . . 

(sm O)z + cos () 

[cos () -sin OJ sin () cos() 
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is just the matrix of Euclidean rotation through () about the origin in 
the Cartesian model of the Euclidean plane. Thus these two groups are 
isomorphic to each other and to the multiplicative group S1 of all com
plex numbers of modulus 1. 

NOTE. In the representation of hyperbolic rotations in Example 5, 

when () = 'TT, z is mapped to z and we get the identity rotation, whereas 
the Euclidean rotation through 1T is a half-turn. So in order to have a 
one-to-one (instead of a two-to-one) mapping of the group of hyper
bolic rotations about i onto the group of Euclidean rotations about 0, 

we must represent the hyperbolic rotation through () by 

( ()) . () 
cos Z z - sm Z 

z� ( . ()) ()
. 

sm Z z +cos 2 

Congruence Described by Motions 
In neutral geometry, motions can be used to define congruence of ar
bitrary figures, namely, S is congruent to S' if there is a motion T map
ping S onto S'. By Proposition 9.5, this definition gives the same con
gruence relation for triangles as before (hence the same congruence 
relation for segments and for angles). 

A particularly important figure is a flag, which is defined to consist 
� � 

of a point A, a ray AB emanating from A, and a side S of line AB (Fig-
ure 9.27). 

A 

Figure 9.27 

LEMMA 9.3. Any two flags are congruent by a unique motion. 

PROOF: 

Choose B' on the second ray so that AB� A'B'. Choose any point 
� 

CE S and let C' be the unique point in side S' of A'B' such that 
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.6..ABC � .6..A'B'C' (corollary to SAS, Chapter 3). By Proposition 9.5, 
there is a unique motion T taking A, B, C, respectively, into A', B', 

� � 
C', and this maps flag AB U S onto A'B' U S'. <11111 

We say that the group of motions operates simply transitively on 
the flags. This property expresses the homogeneity of the plane and 
corresponds to our physical intuition of performing measurements by 
moving a rigid ruler around. This property is crucial in our next theo
rem, which answers the converse question: Given a model .M for our 
incidence and betweenness axioms and given a group C§ of betweenness
preserving collineations of .M, define congruence by the action of C§. 

For example, define AB� A'B' to mean that some transformation T in 
C§ maps segment AB onto segment A'B' (similarly for angles). What ad
ditional assumptions on C§ guarantee that with this definition, our Con
gruence Axioms C-1 through C-6 hold in .M? 

THEOREM 9.2. Assume the group C§ of betweenness-preserving 
collineations satisfies the following conditions: 

(i) C§ operates simply transitively on the flags. 
(ii) For any two points A, B, there is at least one transformation 

T E C§ that interchanges A and B. 
(iii) For any two rays r, s emanating from the same vertex, there is 

at least one transformation T E C§ that interchanges r and s. 

Then, with congruence defined in terms of the action of C§, Axioms 
C-1 through C-6 hold, and C§ is the group of motions. 

We know that these conditions are necessary for the group of 
motions-condition (i) by our lemma, condition (ii) using the reflec
tion across the perpendicular bisector of AB, and condition (iii) using 
the reflection across the bisector of the angle r U s. 

PROOF: 

The proof that the conditions are sufficient proceeds in 10 steps. 

- STEP 1. Congruence is reflexive, symmetric, and transitive (in 
particular, Axioms C-2 and C-5 hold). C§ is a group of automorphisms. 

For any figure S, if T maps S onto S', then T-1 maps S' onto S; and 
if T' maps S' onto S", then T'T maps S onto S". Obviously, I maps S 
onto S. (We use here the condition that C§ is a group.) If S � S', i.e. , 
S' = TS, and U EC§, then US' = (UTU-1)US, so US� US'; this shows 
that U is an automorphism. 
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- STEP 2. Existence of reflections. 

Let point P lie on line l. Let S1, S2 be the two sides of l and let r1, 

r2 be the two rays of l emanating from P. By condition (i), there is a 

unique TE C§ that interchanges S1 and S2 and leaves r1 invariant. Since 

T2 leaves r1 and S1 invariant, T2 = I (by condition (i)). We claim T fixes 

every point of l: By definition of T, P is fixed. Since T is betweenness

preserving, r2 is also invariant under T. Suppose point A on l is moved 

to A' and, say, P * A * A'. Then (A')' = A since T2 = I, so P' * (A')' * A' 

contradicts the assumption that T preserves betweenness. Since the re

flection Rz is the involutory automorphism that leaves each point of l 

fixed, we may write T = Rz. 

- STEP 3. Let r be a ray of line l and let r' be any ray. Then there 

are exactly two transformations in C§ that map r onto r', and they both 

have the same effect on the points of l. 

For by condition (i), given a side S of l, the two transformations are 

uniquely determined by which side of l' (r' cl') S is mapped onto. If T 

is one such transformation, the other is TRz, and they both agree on l. 

- STEP 4. If AB � CD, then there are exactly two transformations 
� 

in C§ sending A to C and B to D, and they agree on AB. 

By the definition of �, there is a transformation T in C§, mapping 

segment AB onto segment CD. If T sends A to D and B to C, follow T 

by a transformation in C§ that interchanges C and D (condition (ii)). We 

can therefore assume A goes to C and B to D. Since betweenness is 
� � 

preserved, ray AB is mapped onto ray CD. Hence, step 3 applies. 

- STEP 5. Congruence Axiom C-1 holds. (This follows from steps 

3 and 4.) 

- STEP 6. Congruence Axiom C-3 holds. 
� 

Let T send A to A' and B to B'. If A* B * C, then T maps ray BC 
� 

onto ray B'C', where A' * B' * C'. If BC� B'C', then there is a motion 

T' sending B to B' and C to C'. By step 3, T and T' agree at every 

point on the line through A, B, C. Hence they both send A to A' and 

C to C', so AC� A'C'. 

- STEP 7. Congruence Axiom C-4 holds. 
� � � 

Given <t:BAC, ray A'C', and side S' of A'C'. Let S be the side of AC 

on which B lies. Let T in C§ be the unique transformation which, ac-
� � 

cording to condition (i), maps (AC, S) onto (A'C', S'). If B' is the im-

age of B under T, then <t:BAC � <t:B' A'C'. Conversely, if this congru-
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ence is effected by a transformation T', where B' lies in S', then T' 
� � 

maps (AC, S) onto (A'C', S'), so by the uniqueness part of condition 
� 

(i) , T = T', and ray A'B' in S' is uniquely determined. 

- STEP 8. If <t:BAC � <t:B' A'C', there is a unique transformation in 
� � � � 

C§ sending AB to A'B', and AC to A'C'. 
By the definition of congruence, there is a T E  C§ mapping <t:BAC onto 

� � � 
<t:B' A'C'. If T maps AC onto A'B' and AB onto A'C', then condition 
(iii) allows us to follow T with a transformation in C§ interchanging the 

� � � 
two sides of <t:B' A'C'; so we can assume T sends AC to A'C' and AB 

� 
to A'B'. Then uniqueness was shown in the proof of step 7. 

- STEP 9. Congruence Axiom C-6 (SAS) holds. 
Given AB � A'B', <t:BAC � <t:B' A'C', and AC � A'C'. Let these con

gruences be effected by transformations T1, T2, T3 E C§, where by steps 
� 

4 and 8 we may assume T1 sends A to A' and B to B', T2 sends AB to 
� � � 

A'B' and AC to A'C', and T3 sends A to A' and C to C'. By step 3, T2 
� � 

agrees with T1 on AB, and T2 agrees with T3 on AC. Hence, T2 sends 
B to B' and C to C', so that via T2 we have BC� B'C', <t:ABC � <t:A'B'C', 
and <t:ACB � <t:A'C'B'. 

- STEP 10. C§ is the group of all motions. 
Choose a flag F. A motion T transforms F into F', and by condition 

(i), an automorphism T' EC§ has the same effect; by Lemma 9.2, we 
have T = T', so every motion belongs to C§. By Lemma 9.3 and the 
same argument, every member C§ is a motion. <Ill 

Theorem 9.2 is one step in Klein's program to describe the geome
try in terms of action of a group. F. Bachmann (1973) carries the pro
gram further by describing points, lines, and incidence in terms of in
volutions in the group-see Exercise SO and Ewald (1971). 

NOTE ON SIMILARITIES. A pointed flag is a figure consisting of an 
ordered pair of distinct points A, B together with a specific side S of 

� 

line AB. Every flag with vertex A supports infinitely many pointed flags 
corresponding to the various choices of point B on the ray of the flag. 
It is easy to show that for any two pointed flags in the Euclidean plane, 
there is a unique similarity mapping one onto the other (namely, fol
low the motion given by Lemma 9 .3 with a dilation centered at the ver
tex). This leads to the following nice characterization. 

THEOREM 9.3. In the real Euclidean plane, a transformation is a sim
ilarity if and only if it is a collineation mapping circles onto circles. 
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PROOF: 

Let T be such a collineation. In Major Exercise 7, Chapter 5, you 

showed that given any line l, two points off l are on the same side 

S of l if and only if they lie on a circle contained in S. Hence T maps 

S onto a side S' of l'. Also, if T maps circle y onto circle y', then 

T maps the interior of y onto the interior of y' -because a point P 

not on y lies in the interior of y if and only if every line through P 

intersects y. Next we claim that T maps perpendicular lines onto 

perpendicular lines. This is because a collineation maps parallelo

grams onto parallelograms, a parallelogram in the Euclidean plane 

has a circumscribed circle iff it is a rectangle (Exercise K-20(a), 

Chapter 7), and since T preserves circles, it must map rectangles 

onto rectangles. Moreover, since a square is characterized as a rec

tangle with perpendicular diagonals, T maps squares onto squares. 

T also maps the center of a square onto the center of the image 

square (since it is the intersection of the diagonals) and the mid

points of the sides onto the midpoints of the sides (since they form 

squares with the center and a vertex). 

Now let us work with Cartesian coordinates. Consider the ba

sic pointed flag F consisting of the origin (0, O), the unit point 

(1, O) on the x-axis, and the side S of the x-axis containing the 

unit point (0, 1) of the y-axis. Our transformation T maps F onto 

some flag F'; let U be the unique similarity that maps F' back 

onto F. We will show that UT is the identity, so that T is equal 

to the similarity inverse to U: Namely, UT fixes (0, O) and (1, O) 

and maps each side of the x-axis onto itself. By the remark above 

about squares, the points (0, 1), (1, 1), (0, -1), and (1, -1) must 

also be fixed, as must the midpoints and centers of these squares. 

We can infer successively that all points whose coordinates are 

integers, half-integers, or dyadic rationals are fixed by UT. Since 

each point in the plane is interior to an arbitrarily small circle 

through three fixed points, it must be fixed. (This neat proof is 

from Werner Fenchel, 1989). <11111 

Symmetry 
We conclude this chapter with a brief discussion of symmetry, which 

is one of the main applications of the transformation approach to 

geometry. 
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Given a plane figure S, the motions that leave S invariant (i.e., that 
map S onto itself) are called symmetries of S; clearly the symmetries of 
S form a group. Intuitively, the larger this group, the more symmetric 
the figure. 

For example, a circle y is highly symmetric. Its symmetry group 
consists of all rotations about the center 0 of y and all reflections across 
lines through O; this group has the cardinality of the continuum. 

A square seems to be fairly symmetric, yet we will show that it has 
only eight symmetries (see Example 6 later in this section). 

The frieze pattern shown in Figure 9.28 has a countably infinite 
group of symmetries: It consists of all integer powers Tn of a fixed 
translation T that shifts the pattern one unit to the right. 

The first problem is to find a minimal set of generators of the group 
of symmetries. This means finding as small a collection of symmetries 
as possible with the property that all other symmetries can be expressed 
as products of the symmetries in this collection and their inverses. For 
the frieze pattern in Figure 9.28, there is a single generator T (or T-1). 

A second problem is to describe the basic relations among the gen
erators. For the generator T above, there is no relation: All the powers 
of Tare distinct. Consider, however, Figure 9.29. 

The only symmetries of these figures are the identity I, the rotation 
R about the center 0 through 120° clockwise, and the rotation R2 about 
0 through 240° clockwise. R is a generator of this group and satisfies 
the relation R3 = I. We say this group is cyclic of order 3. 

More generally, a group is called cyclic of order n if it has a single 
generator and n elements; it is called infinite cyclic if it has a single 
generator and infinitely many elements (the group of symmetries of the 
frieze pattern in Figure 9.28 is infinite cyclic). Let us denote by Cn any 
cyclic group of order n generated by a rotation through (360/n) 0 about 
some point. The constructions in Figure 9.29 can be generalized from 
3 to n to obtain a figure having Cn as its symmetry group. The graph 
in Figure 9.29(b) is called a triquetrum; its generalization to n = 4 is a 
swastika. The 2n-sided convex polygons obtained from generalizing Fig
ure 9.29(c) are called ratchet polygons . 

• • • 

Figure 9.28 Infinite cyclic group of symmetries. 
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0 

(a) (b) (c) 

Figure 9.29 

A third basic problem is to describe the structure of the symmetry 

group, showing if possible that it is isomorphic to some familiar group. 

- EXAMPLE 6. We will solve these problems for the group of sym

metries of a square. 

Any symmetry must leave the center 0 fixed (since, for example, 

0 is the intersection of the diagonals, and each diagonal must be 

mapped onto itself or the other diagonal). Hence, the symmetries must 

either be rotations about 0 or reflections across lines through 0. The 

only rotations about 0 that are symmetries are I, R, R2, R3, where R 
can be taken to be the counterclockwise rotation through 90°; these 

form a cyclic subgroup of order 4. There are also four reflections that 

are symmetries: the two reflections across diagonals c, d and the two 

reflections across the perpendicular bisectors a, b of the sides (see Fig

ure 9.30). Let T be any one of these reflections-e.g., T = Re. Then 

{R, T} is a minimal set of generators of the group. 

For R can be written in four ways as a product of reflections, 

so that 

R = RbRd = Rc Rb = RaRc = RdRa, 

TR = Rc(RcRb) = (Rc)2Rb = Rb 

TR2 = (TR)R = Rb(RbRdJ = Rd 

TR3 = (TR2)R = Rd(RdRa) = Ra. 

The basic relations between these generators are 

R4 = I 
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a 
c 

Figure 9.30 Symmetries of a square. 

(the last because RT= (RaRc)Rc = Ra = TR3). This last relation shows 

that the group is non-commutative. It is denoted D4 and is called the 

dihedral group of order 8. 

More generally, if n > 3, Dn denotes the group of symmetries of a 

regular n-gon. It has 2n symmetries and is generated by two elements 

{R, T}, where R is rotation about the center of the n-gon through 

(360/n) 0, and Tis reflection across a line joining a vertex to the cen

ter. For n = 2, D2 denotes the group generated by a half-turn Hp and 

a reflection across a line through P, while for n = 1, D1 denotes a cyclic 

group of order 2 generated by a reflection. 

The following remarkable theorem has been attributed to Leonardo 

da Vinci. 

LEONARDO'S THEOREM. In both the Euclidean and hyperbolic planes, 

the only finite groups of motions are the groups Cn and Dn (n > 1). 

The proof will be based on Lemmas 9.4-9.9. 

LEMMA 9.4. A finite group of motions cannot contain non-identity 

translations, parallel displacements, or glides. 

PROOF: 

The point is to show that if T is any of these three types of mo

tions, no power Tn, n i=- 0, of T is equal to the identity I. We will 

show this for the case where T = RlRm, l II m, leaving the case of a 
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glide for Exercise 18. By Exercise 7, we can also write T = RkRz. 

where k is the reflection of m across l, so that 

T2 = (RkRl) (RlRm) = RkRm. 

Repeating this argument, we can show by induction that for any 
positive integer n, we can write 

where h lies in the half-plane bounded by m and containing l-in 
particular, h II m, so Tn i= I. Applying this result to T-1, we have 
that Tn i= I for negative n as well. 

Now if T belonged to a finite group, we would have Tn = Tm 

for distinct integers n, m; hence �-m = I, a contradiction. <11111 

LEMMA 9.S. If a finite group of motions contains rotations, all those 
rotations have the same center. 

PROOF: 

Let T be a rotation about A and U a rotation about B i= A and let 
� 

l =AB. By Proposition 9.8, there is a unique line m through A (re-
spectively, n through B) such that T = RlRm (respectively, U = RlRJ. 

Then u-1T-1UT, which belongs to the finite group, is equal to 
(RnRlRm)2, which is a translation (see Exercise 15). This contradicts 
Lemma 9.4 unless the translation is the identity, but in that case 
UT= TU, which can happen only when at least one of U, T is the 
identity (see warning after Proposition 9.9). <11111 

LEMMA 9.6. If a finite group of motions contains reflections, the axes 
of those reflections are concurrent. 

PROOF: 

Otherwise we would obtain a contradiction of the previous lemmas 
since the group must contain the products RlRm. <11111 

LEMMA 9.7. If a finite group of motions contains a rotation and 
a reflection, then the center of the rotation lies on the axis of the 
reflection. 

PROOF: 

Otherwise the product of the rotation and the reflection would be 
a glide (Proposition 9.19), contradicting Lemma 9.4. <11111 
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COROLLARY. A finite group of motions of order >2 has a unique fixed 
point. 

PROOF: 

Since the order is >2, the group must contain a non-identity rota
tion (by Lemmas 9.4 and 9.6), and every symmetry in the group 
fixes the center of that rotation, which is uniquely determined (by 
Lemmas 9.4, 9.5, and 9.7) . .,.. 

LEMMA 9.8. If a finite group of motions of order n contains only ro
tations, then it is cyclic or order n. 

PROOF: 

The cases n = 1 or 2 are trivial, so assume n > 2. Let 0 be the cen
ter of all the rotations (Lemma 9.5). Choose any point P1 i=- 0. The 
images P1, . . .  , Pn of P1 under the rotations in our group are all 
distinct since the rotations are distinct (Exercise 19). We assume 
these images numbered so that ( <i:P10P2) 0 is the minimum of all 
the degrees ( <i:PiOPj) 0• Let R be the rotation taking P1 to P2. We 
claim that R generates the group. 

Let Qi be the image of P1 under Ri
- l, i = 1, 2, . . .  (so that we 

get 01 = P1, 02 = P2). Then 

( <i:QiOQi+i) 0 = ( <i:P10P2) 0 

� 
for each i. If some Pj were not among the Q/s, ray OPj would lie 

� � 
between some OQi and 0Qi+1, hence ( <i:P10Qa 0 would be smaller 
than ( <i:P10P2) 0, contradicting our choice of P2. Therefore, every 
rotation in our group is equal to a power of R . .,.. 

LEMMA 9.9. If a finite group of motions contains a reflection, then it 
is a dihedral group Dn. 

PROOF: 

Partition the group cg into its set QlJ of direct motions and its set )g 
of opposite motions. Let n be the number of elements in Qll. By 
Lemma 9.8, QlJ is a cyclic subgroup of order n generated by a rota
tion R. Let T be any reflection. Then the opposite motions in )g are 
also reflections and since the product of two of them is a direct mo
tion, they can be written uniquely in the form 

TRi, i = 0, 1, . . .  , n. 

This is the group Dn . .,.. 
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Thus, Leonardo's theorem is proved. <11111 

Much is known about particular types of infinite groups of motions. 
For instance, a frieze group is a group of motions that has an invari
ant line t and whose translations form an infinite cyclic group (T) gen
erated by one particular translation T along t. It is not difficult to prove 
that there are exactly seven frieze groups in Euclidean or hyperbolic 

planes: 

1. (T). 
2. The group (T, Rt) generated by T and the reflection across t. 

3. The group (T, Ru) generated by T and a reflection across a perpen

dicular u to t. 
4. The infinite cyclic group (G) generated by the unique glide G such 

that G2 = T. 
5. The group (T, HA) generated by T and a half-turn about a point A 

on t. 
6. The group (T, HA , Rt>· 

7. The group (G, HA>· 

(For the proof, see Martin, 1982, and Exercise 60.) 
Another type of infinite group is called a wallpaper group, whose 

subgroup of translations is generated by two translations along distinct 
intersecting lines. In the Euclidean plane, there are exactly 17 wallpa
per groups. The ornamental patterns designed on the walls of the Al

hambra in Spain by the Moors illustrate these 17 groups. 
The classic treatise on symmetry is Hermann Weyl's Symmetry.14 

You will find therein a discussion of the 17 wallpaper groups, plus 
an analysis of three-dimensional symmetry, including the general
ization of Leonardo's theorem to three dimensions. Most important, 

you will find a fascinating treatment in words and pictures of how 
these purely mathematical abstractions relate to the physical universe 

in the form of crystals, biological specimens, and works of art 
throughout the ages.15 

14 Hermann Weyl, Symmetry (Princeton, N.J.: Princeton University Press, 1952). 
15 Other excellent references on this subject are: J. N. Kapur, Transformation Geometry 

(Affiliated East-West Press, 1976); Joe Rosen, Symmetry Discovered (Cambridge: Cam
bridge University Press, 1975); E. H. Lockwood and R. H. Macmillan, Geometric Sym

metry (Cambridge: Cambridge University Press, 1978); and I. Stewart and M. Golu
bitsky, Fearful Symmetry: Is God a Geometer? (Oxford: Blackwell, 1992). Ian Stewart, 
Why Beauty is Truth: A History of Symmetry (New York: Perseus, 2007). You can find 
pictures of the Alhambra designs on the web. 
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Review Exercise 

Which of the following statements are correct? 

(1) In the Cartesian model, the equations for reflection across the 

y-axis are y' = y and x' = -x. 

(2) In the Cartesian model, the equations for the 90° clockwise ro

tation about the origin are y' = x and x' = -y. 

(3) In the Euclidean plane, a similarity that is not a motion must 

be a dilation. 

( 4) In the Cartesian model, the equations for the translation mov

ing the origin to (1, 1) are y' = y + 1 and x' = x + 1. 

(5) An involution is a transformation equal to its own inverse but 

not equal to the identity. 

(6) If a motion leaves a circle invariant, it must be a rotation about 

the center of the circle. 

(7) In the Cartesian model, if k is the x-axis, l the line y = x, m 

the y-axis, and n the line y = -x, then RkRtRm =Rn. 

(8) In the Cartesian model, the equations for the half-turn about 

the point (1, O) are x' = -x + 2 and y' = -y. 

(9) In the Cartesian model, the glide along the x-axis mapping of 

(O, 1) to (1, -1) is given by the equations x' = x + 1 and y' = -y. 

(10) If A, A' are distinct points in the Euclidean plane, there is a 

unique translation T such that T(A) = A'; i.e., the group of 

translations operates simply transitively on the points. 

(11) If A, A' are distinct points in the hyperbolic plane, there are 

infinitely many translations T such that T(A) = A'. 

(12) In neutral geometry, if A, A' are distinct points and 0 is any 

point on the perpendicular bisector of AA', then there is a 

unique rotation T with center 0 such that T(A) = A'. 

(13) In neutral geometry, the set of all translations is a group. 

(14) In neutral geometry, if the product of two rotations is a non

identity translation, then the rotations are half-turns about dis

tinct points. 

(15) In hyperbolic geometry, for any two distinct points A, A', there 

are exactly two parallel displacements T such that T(A) = A'. 

(16) In Euclidean geometry, the product of a non-identity rotation 

and a translation is a rotation. 

(17) Reflections in distinct lines never commute. 
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(18) In hyperbolic geometry, the product of two rotations about the 

same point could be any of the three types of direct motion. 

(19) In Euclidean geometry, the set of all half-turns and all transla

tions is a group. 

(20) If RiRmRn is a glide, then lines l, m, and n do not lie in a pencil. 

(21) In the Cartesian model, the equations for a direct similarity 

have the form x' = ax - by + e, y' = bx + ay + f, where we have 

a2 + b2-=/= 0, and all lengths are multiplied by k = Va2 + b2 
under this transformation. 

(22) A rotation through angle 0 can be written as a product of re

flections in two lines that meet and form an angle 0. 

(23) The group of motions operates simply transitively on the set 

of all equilateral triangles whose sides have length 1. 

(24) In hyperbolic geometry, the group of motions operates simply 

transitively on the set of all ordered triples of distinct ideal 

points. 

(25) A finite group of motions cannot contain more than one half

turn. 

(26) In the Poincare upper half-plane model, the linear fractional 

transformation 

3z+ 4 
z�--

z+l 

represents a direct hyperbolic motion. 

(27) In the Poincare upper half-plane model, the transformation 

z � z - 1 represents a parallel displacement about oo. 

(28) In the Cartesian model, the product of a translation along the 

x-axis with the reflection across the y-axis is a reflection. 

(29) The group of symmetries of a regular pentagon is cyclic of or

der 5. 

(30) No opposite motion commutes with a non-identity direct motion. 

(31) In Euclidean geometry, two figures are congruent if and only 

if there is an automorphism mapping one onto the other. 

(32) If there exists a reflection leaving a triangle invariant, then that 

triangle is isosceles. 

(33) If A and A' are any two points on opposite sides of line t, then 

there exists a glide T along t such that T(A) = A'. 
(34) In the Cartesian model, the equations for rotation through an

gle 0 about the origin are x' = x cos 0 + y sin 0 and, equiva

lently, y' = x sin 0 - y cos 0. 
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(35) In neutral geometry, if a motion has a unique invariant line, 

then it is a glide. 

(36) A motion that is a product of an odd number of reflections is 

opposite. 

(3 7) In the Cartesian model, the equations for reflection across the 

line y = x are y' 
= x and x' = y. 

(38) In Euclidean geometry, the group of symmetries of a quadri

lateral has order >4 if and only if the quadrilateral is a 

rectangle. 

(39) In hyperbolic geometry, the group of symmetries of a quadri

lateral must have order <4. 

(40) In Euclidean geometry, if the group of symmetries of a convex 

quadrilateral has order 2, then the quadrilateral must be an 

isosceles trapezoid. 

(41) In Euclidean geometry, the group of symmetries of every tri

angle has order > 3. 

(42) In neutral geometry, if there exists an automorphism that is not 

a motion, then the geometry is Euclidean. 

(43) In neutral geometry, the product of reflections in two parallel 

lines is a translation. 

(44) In neutral geometry, an automorphism with exactly one fixed 

point must be a rotation. 

( 45) In the Cartesian model, an opposite similarity that fixes the 

origin 0 is equal to a product DR, where D is a dilation cen

tered at 0, R is a reflection in a line through 0, and D and R 

commute. 

(46) In the Poincare upper half-plane model, the transformation 

6z- 4 
z� --

8:Z- 6 

represents a reflection. 

(47) In the Cartesian model, for any complex number z0, the trans

formation z � z + z0 represents a reflection. 

(48) In Euclidean geometry, a betweenness-preserving transforma

tion that doubles the length of every segment must be a simi

larity. 

(49) In hyperbolic geometry, there is no collineation that doubles 

the length of every segment. 

(SO) In neutral geometry, every motion has an invariant line or a 

fixed point or both. 
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Exercises 

Outline: Exercises 2-22 consist of supplementary results and proofs left 

to the reader on the classification of motions; Exercise 23 is an essay ques

tion on orientation; Exercises 24-33 give more information on similari

ties; Exercises 34-35 are about linear and affine transformations; Exer

cises 36-38 discuss Mobius transformations; Exercises 39-49 deal with 

orbits of groups of transformations (particularly with horocycles and equi

distant curves in the Poincare model); Exercise SO exhibits algebraic equa

tions in the group of motions and their geometric meaning; Exercise 51 

refers to invariant sets of transformations; Exercise 52 presents another 

attempt to prove the parallel postulate using rotations, and Exercise 53 

shows what happens when translations are used (parallel transport); Ex

ercises 54-57 determine the axis of a glide in the Euclidean plane; Exer

cise 58 presents a natural hyperbolic transformation that is not a 

collineation; Exercises 59-61 are about symmetry; Exercises 62-63 give 

some unusual models; Exercise 64 raises the question of two-dimension

ality in incidence planes; Exercises 65-68 are fundamental for one

dimensional projective geometry; Exercise 69 furnishes an example of an 

automorphism of a non-Archimedean Pythagorean plane that is not a sim

ilarity; Exercises 70-71 augment the classification of motions; Exercise 72 

treats the circular points at infinity; Exercises 73-77 are about the nine

point circle and other topics in higher Euclidean plane geometry. 

1. Show that there are 168 collineations of the seven-point projective 

plane (Figure 9.1). (Hint: A collineation is uniquely determined by 

its effect on four points, no three of which are collinear.) 

2. Prove that the set of all automorphisms of a model of neutral geom

etry is a group, and that the set of motions is a subgroup. 

3. Finish the proof of Proposition 9.2. 

4. Prove that a transformation of the plane that multiplies all lengths by 

a constant k > 0 preserves betweenness and congruence of segments. 

5. Prove that a reflection is a motion. 

6. In a Euclidean plane, prove that 6.ABC � 6.A'B'C' if and only if 

there is a similarity sending A, B, C, respectively, onto A', B', C' 

and that similarity is unique. (Hint: Use Lemma 9.2, Proposition 

9.5, and Exercise 12 of Chapter 5.) 

7. Prove that the invariant lines of a reflection Rm are m and all lines 

perpendicular tom. Prove also that RmRkRm = Rk*, where k* is the 

reflection of k across m. 
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8. Prove the corollary to Proposition 9.6. 

9. Prove that if an automorphism is an involution, then it is either a 

reflection or a half-turn. (Hint: If A and A' are interchanged, show 

that the midpoint of AA' is fixed and apply Propositions 9.4 and 

9.6.) 

10. Show that the product T'T of rotations about distinct points can be 

any of the three types of direct motions. (Hint: Apply Proposition 

9.8 to the line joining the centers of rotation.) 

11. Prove that a non-identity rotation that is not a half-turn has no in

variant lines. (Hint: Apply Proposition 9.8.) 

12. Let T be a translation along t, l a  line that is not invariant under T. 

If l meets t (automatic in the case where the plane is Euclidean, by 

Proposition 9.13), prove that Z II l'. Suppose now the plane is hy

perbolic. If l is asymptotically parallel to t in direction n, prove that 

l' is also (in particular, l 11 Z'). If l is divergently parallel to t, show 

by diagrams from a Poincare model that l' could meet l, be diver

gently parallel to l, or be asymptotically parallel to l. 

13. Prove the corollary to Proposition 9.15. 

14. Show that in the hyperbolic plane, the product of translations along 

distinct lines could be any of the three types of direct motions and 

that two such translations do not commute unless at least one of 

them is the identity. (Hint: Apply the warning after Proposition 9. 9 

to the invariant lines.) 

15. If R1, R2, R3 are reflections, prove that (R1R2R3)
2 is a translation. 

(Hint: Use Propositions 9.18 and 9.19.) 

16. Let T, T' be glides along perpendicular lines. Prove that TT ' is a 

half-turn if and only if the plane is Euclidean. (Hint: Use Proposi

tions 9.15 and 9.18.) 

17. In the hyperbolic plane, prove that every direct motion can be ex

pressed as a product of three half-turns. (Hint: Refer back to Figure 

9.9. Show that for any two lines l, u, there is a perpendicular m to 

u that is divergently parallel to l.) 

18. If T is a glide and n i= 0, prove that Tn i= I. (Hint: This has already 

been proved for translations.) 

19. If rotations T, T '  about 0 have the same effect on a point P i= 0, 

prove that T = T'. 

20. If T is any motion, A any point, and l any line, prove that THAT-1 

is a half-turn and that TRlT-1 is a reflection. 

21. Prove Hjelmslev's lemma. (Hint: See Figure 9.31 on the next page.) 

22. (Hjelmslev's theorem) Let l and l' be distinct lines and let T be a 

motion transforming l onto l'. As point P varies on l and its image 
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(a) (b) 

Figure 9.31 Hjelmslev's lemma. 

P' under T varies on l', the midpoints of the segments PP' either 

are distinct and collinear or else they all coincide. (Hint: Show that 

you can assume that T is an opposite motion and apply Exercise 21 

if T is a glide.) 

23. How would you go about precisely defining the notion of an "ori

entation" of the (neutral ) plane? The requirements are that you must 

show that there are exactly two "orientations," which are inter

changed by opposite motions and preserved by direct motions. (If 

your definition uses words such as "clockwise" and "counterclock

wise," you must define them precisely.) Making this notion precise 

is surprisingly tricky. It can be done in several ways, all of which 

appear artificial-see Ewald ( 1971 ), p. 6 5, for one. Perhaps the rea

son for the artificiality is, as Hermann Weyl says, that "to the sci

entific mind there is no difference, no polarity between left and 

right. . . . It requires an arbitrary act of choice to determine what 

is left and what is right; ... in all physics nothing has shown up 

indicating an intrinsic difference of left and right." (See Weyl's Sym

metry, pp. 16- 38, for a fascinating discussion of this problem, il

lustrated with examples from physics, biology, and art. The Nobel 

Prize-winning work of C. N. Yang and T. D. Lee, done after Weyl's 

death, does indicate a physical difference between left and right at 

the subatomic level.) 

24. Prove Proposition 9.24. (Hint: Follow the given similarity by a trans

lation, a rotation about 0, and a dilation centered at 0-if neces

sary-to obtain a similarity fixing 0 and 1; then apply Lemma 9.1.) 

25. Prove that every similarity that is not a motion has a unique fixed 

point. (Hint: Use Proposition 9.24. For a synthetic proof of this, see 

Coxeter, 20 0 1, Section 5.4.) 
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26. Prove that the reflections in the Cartesian model are characterized 

among all opposite motions z � f!l1z + z0 by the equation 

ei-0zo + zo = o 

and that the axis of such a reflection is the line 

2(yyo + XXo) = x� +Vo 

if z0 = x0 + iy0 -=!=- 0, whereas if z0 = 0, it is the line 

y cos(0/2) - x sin(0/2) = 0. 

(Hint: If z0-=!=- 0, the axis must pass through z0/2 and be perpendic

ular to the line joining 0 to z0; if z0 = 0, the axis passes through 
£!-C912) .) Conversely, given a line ax + by = c, find z0 and 0 for the 

reflection aross this line. 

27. What is the representation in complex coordinates of a dilation of 

ratio k whose center has complex coordinate z1? 

28. The definition of direct and opposite similarities given in Proposi

tion 9.24 depended on the representation in complex coordinates. 

Prove that a coordinate-free description is given as follows: A sim

ilarity is direct (respectively, opposite) if and only if it is the prod

uct of a dilation with a direct (respectively, opposite) motion. Prove 

also that if AB and A'B' are any two segments, there is a unique 

direct similarity taking A to A', and B to B'. 

29. Let y1 and y2 be circles in the Euclidean plane with distinct cen

ters 01, 02 and distinct radii r1, r2. Prove that there are two di

lations D1, D2 which transform y1 onto y2. (Hint: Choose any point 

A on y1 and let A1, A2 be the ends of the diameter of y2 that is 
� 

parallel to 01A; then 02A1 (respectively, 02A2) will be the image 

of 01A under D1 (respectively, D2) .) The centers of D1 and D2 are 

called the centers of similitude of the two circles. (See Coxeter, 

2001, Section 5.3, for an application to the famous nine-point 

circle.) 

30. Given any 6.ABC in the Euclidean plane, let A', B', C' be the mid

points of its sides, labeled so that the medians are AA', BB', CC'. 

Show that there is a unique dilation of ratio -f taking 6.ABC onto 

6.A'B'C'. (Hint: See Problem 8, and Coxeter, 2001, Section 1.4.) 

31. Show that the set of all dilations (with all possible centers and ra

tios) is not a group, whereas the set of all translations and dilations 

(of a Euclidean plane) is a group and that this group is non

commutative. 
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32. Prove that dilations are geometrically characterized among all sim

ilarities by the two properties of (i) mapping each line l onto a line 

equal to or parallel to l; and (ii) having a fixed point. 

33. A point at infinity for the Cartesian plane is an equivalence class 

of all lines equal to or parallel to some given line, and the line at 

infinity is the set of all points at infinity (compare Chapter 2). Since 

automorphisms (in fact, collineations) of the Cartesian plane pre

serve parallelism, they induce transformations of the line at infin

ity onto itself, and we can investigate the fixed points at infinity of 

these transformations. Show that an automorphism which (i) fixes 

every point at infinity is either a dilation or a translation; (ii) fixes 

two points at infinity is an opposite similarity (if l, m determine the 

two fixed points, then l 1- m); (iii) has no fixed points at infinity is 

either a rotation that is not the identity and not a half-turn, or the 

product of such a rotation with a dilation. 

(Hint: In the representation Proposition 9.24 gives for similari

ties, let w0 = a + {3i; if the similarity is direct, it takes lines of slope 

m onto lines of slope (/3 + am)/(a - {3m), whereas if the simi

larity is opposite, it takes lines of slope m onto lines of slope 

(/3 - am)/(a + {3m) .) 

34. A linear transformation of the Cartesian plane is a transformation 

T given in coordinates by 

where the matrix 

x' = aux + a12y 

y' = a21x + a22Y, 

has a nonzero determinant. In vector notation, the transformation 

has the form 

z' = Az. 

An affine transformation is a linear transformation followed by a 

translation: 

z�Az + zo. 

Prove that an affine transformation is a collineation and that the set 

of all affine transformations is a group (called the affine group). It 

can be shown that, conversely, every collineation of the real Carte

sian plane is an affine transformation-see Artzy (1965), p. 155. 
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35. If F is a field, we have shown (in Example 8, Chapter 2) how to ex
tend the structure of an affine plane on F2 by adding points and a 
line at infinity to obtain the projective plane P2(F) coordinatized 
by F. Show that a collineation T of F2 transforms parallel lines into 
parallel lines, hence it can be extended naturally to a collineation 

T* of P2(F), leaving the line at infinity loo invariant by defining 
T* ([l]) = [l'], where as usual l' = T(l ) and [l] is the point at infin
ity at the end of l (defined to be the equivalence class of l, con
sisting of l and all lines parallel to l-see Chapter 2). Conversely, 
every collineation of P2(F) that leaves loo invariant induces a 
collineation of F2 by restricting it to the points not at infinity. 

A projective transformation of P2(F) is determined by a 3 x 3 ma
trix B of elements of F whose determinant is =FO. If [x, y, z] is any 
point of P2(F), writing its homogeneous coordinates as a column 
vector and multiplying on the left by B is the way the projective 
transformation operates on points. If [a, b, c] is any line of P2(F), 

multiplying this row vector on the right by the inverse matrix B-1 

is the way the projective transformation operates on lines. Show 
that with these definitions the projective transformation preserves 
incidence, hence is a collineation. Recall that loo is the line [O, 0, 1] 
(i.e., the line whose equation is z = O). Determine which matrices 
B determine transformations that leave loo invariant and for such a 
transformation determine the 2 x 2 matrix A and the 2-vector z0 of 
the affine transformation T of which the projective transformation 
is the extension T*. 

36. Linear fractional transformations 

az + b 
T:z�--

cz + d 

with complex coefficients and a nonzero determinant 

8 =ad- be 

are called Mobius transformations or homographies. Show that such 
a transformation with c =F 0 can be factored into a composite 

T = T4T3T
2T1, 

where T1 is the translation z � z + (a/c), T2 is the similarity z � 

(-8/c2)z, T3 is the mapping z � z-1, and T4 is the translation z � 

z+ (d/c). 

3 7. Show that a Mo bi us transformation maps the set of all circles and 
lines in the Cartesian model onto itself, preserving orthogonality. 
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(Hint: In the case where c -=f=. 0, use the factorization in the previ

ous exercise, observing that T3 is the composite of inversion in the 

unit circle with reflection across the x-axis and using Exercise P-17, 

Chapter 7. In the case where c = 0, use the fact that Tis an auto

morphism of the Cartesian model.) 

38. Show that the mapping 

E 
. i +z 

:z�i-. -
i - z 

maps the open unit disk one-to-one onto the upper half-plane, sends 

i to oo, and maps all the other points of the unit circle onto the 

x-axis. (Hint: Calculate the real and imaginary parts of E(z) and 

use the previous exercise.) 

39. Let C§ be a subgroup of the group of motions. For any point P, the 

orbit C§P of P under C§ is defined to be the set of all images of P un

der motions in C§. For example, if C§ is the entire group of motions, 

then C§P is the entire plane. Let C§ be the group of all rotations about 

a point O; if P -=f=. 0, show that the orbit C§P is the circle through P 

centered at 0. 

40. Let C§ be the group of all translations along a line t. If P lies on t, 
prove that C§P = t. Supose P doesn't lie on t. Show that C§P is the 

unique parallel to t through P in the case where the plane is Eu

clidean and show that C§P is the equidistant curve to t through P if 

the plane is hyperbolic. 

41. Let n be an ideal point and let A be an ordinary point in the hy

perbolic plane. We defined the hnrocycle through A about n to be 

the orbit of A under the group C§ of parallel displacements about n. 

Show that an equivalent description is that it consists of A and all 

points A' such that the perpendicular bisector of AA' has n as an 

end. (Hint: Use Proposition 9.17.) 

42. Let l I m, "meeting" at ideal point il, let A I l, and let B be the foot 

of the perpendicular from A tom. By the method of Major Exercise 

11, Chapter 6, there is a unique point P on m such that PQ �AB, 

where Q is the foot of the perpendicular from P to l. Let t be the 

perpendicular bisector of AP. Prove that t is the symmetry axis of l 
and m-i.e., that Rt(l) = m-and hence, if we fix A and n and let 

m vary through all lines through n, the locus of such corresponding 
points P (as Gauss called them) fills out the horocycle through A 

centered at n. (Hint: Show that AB meets PQ in a point C and use 

Major Exercise 5, Chapter 6, and AAA to show that .6.CPB � .6.CAQ 

and hence C 1 t and <tPAQ � <tAPB. Deduce that t lies between l 
and m and so passes through n. See Figure 9.32.) 
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Figure 9.32 Corresponding point P on the horocycle through A. 

43. Prove that the symmetry axes t, u, v of the pairs of sides of a tre

bly asymptotic triangle are concurrent in a point G that has the prop

erties described in Exercise K-13 of Chapter 7 (see Figure 7 .48). 

(Hint: Show first that t meets u at some point G and then that 

Rt(u) = v, so that G = Rt(G) lies on v also.) Show that RvRuRt = Ru. 

(Hint: Use the theorem on three reflections.) We have succeeded in 

proving the result of Exercise K-13 without resorting to Euclidean 

geometry. 

44. Prove that all horocycles are congruent to one another. (Hint: Use 

the fact that all rays are congruent to one another-Lemma 9.3.) 

45. In the Poincare upper half-plane model, let t be the upper half of the 

y-axis. Show that the equidistant curves of t are the nonvertical rays 

in the upper half-plane emanating from 0. (Hint: See Example 4.) 

46. In the Poincare upper half-plane model, show that the horocycles 

about oo are the horizontal lines in the upper half-plane. (Hint: See 

Example 3.) Show that the horocycles about x0 are the circles in the 

upper half-plane tangent to the x-axis at x0• (Hint: Use the inver

sion z � :z-1 in the unit circle to map oo to 0 and the horocycles 

about oo to the horocycles about O; then use the parallel displace

ment z� z + Xo.) 

47. In the Poincare upper half-plane model, prove that the equidistant 

curves are either (1) nonvertical rays emanating from a point on 

the x-axis or (2) intersections with the upper half-plane of circles 

cutting the x-axis in two points with the centers of the circles not 

lying on the x-axis. (Hint: Use a real linear fractional transforma

tion to map the upper half of the y-axis onto any other Poincare 

line and apply Exercises 37 and 45.) 

48. Find the Euclidean radius and Euclidean center of the hyperbolic cir

cle of hyperbolic center i passing through 2i. (Hint: Apply Proposi

tion 7.5 to the unit circle.) 
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49. Use the Poincare upper half-plane model to demonstrate that in the 

hyperbolic plane, three points lie on a line, a circle, an equidistant 

curve, or a horocycle. 

SO. Verify the following translation of geometric statements into alge

braic equations in the group of motions (which leads to new proofs 

of geometric theorems-see Bachmann, 1973): 
(1) P lies on l <=> (HpR�2 = I. 

(2) l 1- m <=> (RlRm)2 = I. 

(3) l, m, n belong to a pencil <=> (RlRmRnJ2 = I. 

(4) l is the perpendicular bisector of AB <=> RlHBRlHA =I. 

(5) Let m and n be intersecting lines. Then l is a bisector of one 

of the angles formed by m and n <=> RlRmRlRn = I. (Describe l 
geometrically for the case where this equation holds and m II n.) 

(6) Mis the midpoint of AB <=> HMHBHMHA =I. 
� 

(7) l 1- AB ¢:::> (RlHAHB)2 = I. 

(8) (HARlRm)2 =I <=> A lies on a common perpendicular to l and 

m. 
(9) Given A if=. B. In Euclidean geometry, HARlHA = H�lHB <=> 

� � 

l =AB or Z 11 AB. In hyperbolic geometry, the equation holds <=> 
� 

l =AB. 

(10) In hyperbolic geometry, A, B, C are collinear <=> (HAH�c)2 = 

I. 

(11) Assume A, B, C not collinear and that G is the centroid of .6:.ABC 

(the point of intersection of the medians). Then in Euclidean 

geometry, HpHcHpHBHPHA = I ¢:::> p = G. (Hint: Recall that 

HpHQ is the translation by a vector of length 2PQ in the direc-
� 

tion of ray QP .) 

(12) Given DABCD in the Euclidean plane. Then HAHBHcHo =I <=> 

DABCD is a parallelogram. 

51. A set g of transformations is called invariant under a group C§ of 

transformations if for every SE g and T E  C§, TsT-1 belongs to g, 

(In the case where g is a subgroup of C§ and is invariant under C§, 

then g is called a normal subgroup.) For instance, you showed in 

Exercise 20 that the sets of half-turns and reflections are each in

variant under the group of motions. Determine whether each of the 

following sets is invariant under the indicated groups: 

(i) g = all rotations about one given point, C§ = all motions. 

(ii) g = all rotations about all points, C§ = all motions. 

(iii) g = all translations along one given line, C§ = all motions. 

(iv) g = all translations along all lines, C§ = all motions. 

(v) (Euclidean geometry) g = all motions, C§ = all similarities. 
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(vi) (Euclidean geometry) El = all dilations, C§ = all similarities. 

(vii) (Hyperbolic geometry) El = all parallel displacements, C§ = all 

motions. 

(viii) El = all glides, C§ = all motions. 

(ix) (Euclidean geometry) El= all direct motions, C§ = all similarities. 

(x) (Euclidean geometry) El = all rotations about 0, C§ = all sim

ilarities having 0 as a fixed point. 

(xi) (Euclidean geometry) El = all translations along t, C§ = all sim

ilarities having t as an invariant line. 

52. In 1809, B. F. Thibaut attempted to prove Euclid's parallel postu

late with the following argument using rotation; find the flaw. Given 

any triangle .6..ABC. Let D * A * B, A * C * E, C * B * F (see Figure 
� � 

9.33). Rotate AB about A through <tDAC to AC; then at C, rotate 
� � � � 

AC to BC through <tECB; finally, at B, rotate BC to AB through 
� 

<tFBA. After these three rotations, AB has returned to itself and has 

thus been rotated through 360°. Adding up the individual angles of 

rotation gives 

[180° = ( <tA) 0] + [180° = ( <tC) 0] + [180° -
( <tB) 0] = 360°, 

so that the angle sum of .6..ABC is 180° and Euclid's parallel pos

tulate follows (assuming Archimedes' axiom) . 

F 

Figure 9.33 

53. Given .6..ABC in the hyperbolic plane, let Ti be the translation along 
� � 

AB taking A to B, T2 the translation along BC taking B to C, and T3 
� 

the translation along AC taking C to A. Show that T3 T2 Ti is a ro-

tation about A through d0, where d0 is the defect of .6..ABC. 
� � 

54. Given .6..ABC that is not a right triangle. Let a= BC, b =AC, c = 
� 

AB and let D, E, F be the feet of the perpendiculars from A, B, C 

to a, b, c. We know from Proposition 9.19 that the product 
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A A 

B &.....--...1....1-----� C 
D 

B &.....-.....1......._.....__ ____ � C D 

(a) (b) 

Figure 9.34 Axis of a Euclidean glide around a triangle. 

G = RaRbRc of the reflections in the sides of .6..ABC is a glide. As

sume the geometry is Euclidean. Prove that the axis of G is the line 
� 

t = DF. (Hint: Show that right triangles .6..ABE and .6..ACF are sim-

ilar and then that .6..AEF � .6..ABC; hence <tAEF � <tB, <tAFE � <tC. 

Applying the same argument to .6..BFD and .6..CED, deduce that 

<tAFE � <tBFD, <tAEF � <tCED, <tBDF � <tCDE. From these con

gruences deduce that line t is invariant under G. See Figure 9.34.) 
SS. With the same notation as in the previous exercise, assume that .6..ABC 

is acute-angled and let G = TRt, where Tis a translation along t. Show 
� 

that this translation is in the direction FD through a distance equal to 

the perimeter of .6..DEF. (Hint: Determine the image of F under G.) 
S6. With the same notation as above, determine the axis of G in the 

case where .6..ABC is a right triangle. (Hint: It depends on whether 

or not <tB is a right triangle; use Hjelmslev's lemma applied to line 
� 
AB.) 

S7. Given three lines a, b, c in the Euclidean plane such that a II c, b 

meets c at A, and b meets a at C (see Figure 9.3S). 
(i) If b is perpendicular to both a and c, prove that b is the axis 

of the glide RaRbRc and RaRbRc = RaRcRb = RbRaRc. 
(ii) If b is not perpendicular to a and c, let D, F be the feet of the 

� 
perpendiculars from A, C to a, c. Prove that DF is the axis of 

glide RaRbRc. (Hint: Use Hjelmslev's lemma to show that F 

and D lie on the axis.) Prove that the axis of glide RaRcRb (re

spectively, RcRaRb) is the line through D (respectively, F) par

allel to b. (Hint: Find the midpoint of C and its image and the 

midpoint of A and its image.) 

SB. Given ideal point il in the hyperbolic plane and distance d, define 

a transformation T that sends point P onto the unique point P' on 
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Figure 9.35 Axis of a Euclidean glide when one vertex is at infinity. 

ray Pil such that PP' = d. (The analogous transformation in a Eu
clidean plane would be a translation through distance d.) Describe 
T explicitly in the Poincare upper half-plane model when n = oo. 

(Hint: The Poincare distance from x + iy to x + iy' is llog y/y'I.) 
Show that T is not a collineation by showing that the image under 
T of a line not through oo is not a line. 

59. Instead of generating the dihedral group Dn by one reflection and 
one rotation, show that it can be generated by two reflections and 
give the three basic relations for these generators (n > 1). 

60. Find the symmetry group of each of the following infinite patterns 
(describe the group by generators and relations): 

(i) ... LLLLL ... 

(ii) . . . LfLf L . . . 
(iii) . . . vvvvv . . . 
(iv) ... NNNNN .. . 
(v) ... VAVAV .. . 

(vi) ... DDDDD .. . 
(vii) . . . HHHHH . . . 

61. Which pairs of groups in the previous exercise are isomorphic? (Hint: 
See Coxeter, 2001, Section 3.7.) 

62. Refer to the model in Exercise 35, Chapter 3, in which length has 
been changed along the x-axis, causing the SAS criterion to fail. 
Show that the only similarities that are automorphisms of this model 
are the ones that leave the x-axis invariant. 

63. Suppose the model in the previous exercise is modified so that length 
along three non-concurrent lines is converted to three different units 
of measurement from the unit on all other lines. Show that the iden
tity is the only automorphism of this model (hence "nothing can be 
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moved" in this model, everything is invariant, and Klein's Erlanger 

Programme gives no insight into the "geometry"). 

64. Define an incidence plane to be a model of incidence geometry that 

is two-dimensional in the following sense: If l, m, n are three lines 

forming a triangle and P any point, then there exists a line t through 

P such that t meets l U m U n in at least two points (see Figure 

9.36). Show that a model of both the incidence and betweenness 

axioms is automatically two-dimensional. Let T be a one-to-one map

ping of the set of points of an incidence plane onto itself such that 

if 0, P, Q are collinear, then their images O', P', Q' are collinear. 

Prove that, conversely, if O', P', Q' are collinear, then so are 0, P, 

Q. Is there a model of incidence geometry that is not two-dimen

sional in which this converse fails? (I don't know the answer.) 

Figure 9.36 

65. Prove the following analogue of Proposition 9.16(c) in one

dimensional projective geometry over an arbitrary field K: For any two 

triples of points on the projective line C!f 1 (K), there is a unique pro

jective transformation mapping one triple onto the other. (Hint: This 

is an exercise in two-dimensional linear algebra based on the fact that 

there is a unique non-singular 2 x 2 matrix mapping one pair of lin

early independent vectors onto another-see Ewald, 1971, p. 215.) 

66. Given four points P1, P2, P3, P 4 on the projective line CJP1 (K), let the 

homogeneous coordinates of Pi be [si, ti] for i = 1, 2, 3, 4. Define 

the cross-ratio (P1P2, P3P4) by 
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where the four terms in this ratio are 2 x 2 determinants (which 
are not zero because the points are distinct). If a projective trans
formation maps point Pi onto Pi, i = 1, 2, 3, 4, prove that the cross
ratio is preserved: (P1P2, P3P4) = (P].P2, P3P4). (Hint: If Mis a ma
trix of the projective transformation, each determinant occurring in 
the formula for (P'1P2, P3P4) is the product of det M with the cor
responding determinant in the formula for (P1P2, P3P4) .) 

67. Since the determinants in the formula for the cross-ratio of Exercise 
66 may be negative (when K is an ordered field), this cross-ratio is 
not the same as the positive cross-ratio defined on p. 319. Show 
that for points -=f=oo, this cross-ratio is the same as the signed cross
ratio defined in Exercises H-4 and H-7, Chapter 7. (Hint: Use inho
mogeneous coordinates [si, 1] .) 

68. Deduce from Exercises 65 and 66 that if (P1, P2, P3) and (PJ., P2, P3) 
are any two triplets of points on C!/'1 (K), if Tis the unique projective 
transformation carrying the first triple onto the second, and if P 4 is 
any fourth point, then the image P4 of P 4 under T is uniquely de
termined by the equation 

(P1P2, P3P4) = (PJ.,P2, P3P4). 

This shows that the cross-ratio is the fundamental invariant of the 
one-dimensional projective group. 

69. Here is an example of an automorphism T of a non-Archimedean 
Pythagorean plane such that Tis not a similarity. Let F = IR((t)) be 
the ordered Pythagorean field of formal Laurent series with real co
efficients (see Project 2, Chapter 4) and consider the Cartesian plane 
F2. The field F has nontrivial order-preserving automorphisms such 
as the u that fixes IR and sends the indeterminate t to t + 1. Show 
that T(x, y) = (ux, uy) defines an automorphism of the Pythagorean 
plane F2 and that if A= (O, O), B = (1, O), and C = (1, t), then 
<tCAB is not mapped onto a congruent angle by T. 

70. Justify the assertions made about HAHBHc in the note after the corol
lary to Proposition 9.15. 

71. Add another column to Table 9.1 listing the invariant cycles (if any) 
for the different types of motion. A cycle in a hyperbolic plane is a 
circle, an equidistant curve, or a horocycle. For example, the only 
invariant cycles for a rotation about A are the circles with center A. 

72. The real projective plane can be extended to the projective plane 
coordinatized by the complex numbers. Within the latter are two 
special points at infinity, sometimes referred to as Isaac and Jacob: 

I= [1, i, O] and J = [1, -i, O] . They are the two points at infinity 
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that satisfy the equation x2 + y2 = 0. Show that every circle in IR.2 

passes through I and J (first explain what that means). It can be 
shown that, conversely, if a conic in IR.2 passes through I and J, then 
it is a circle, hence I and J are called the circular points at infinity. 
Show that an affine transformation of IR.2 is a similarity if and only 
if, when extended to the complex projective plane in the natural 
way, it leaves the set {I, J} invariant. (Hint: Theorem 9.3.) 

Note: The remaining exercises are in Euclidean geometry. 

73. Show that the center U of the nine-point circle is the harmonic con
jugate of the circumcenter 0 with respect to the orthocenter H and 
the centroid G (see Problem 9, p. 407). 

74. Show that the dilation T' with the centroid G as center and ratio 
-2 also maps the nine-point circle onto the circumcircle (hence, in 
the terminology of Exercise 29, G and H are the two centers of simil

itude of these circles) . 
75. Show that the distance from the circumcenter 0 of a triangle to a 

side is half the distance from the orthocenter H to the opposite ver
tex. (Hint: See Problem 8, p. 406.) 

76. Justify all the assertions in the solutions to Problems 1-9 that have 
not been justified there. 

77. Report on Feuerbach's theorem, which states that the nine-point cir
cle is tangent to the inscribed circle and the three escribed circles 
(see H. Eves, 1972, or Coxeter and Greitzer, 1967). 

78. Let �ABC be any triangle whose largest angle is <120°. For any - - -
point P, let d(P) = PA + PB + PC. Prove that there is a unique point 
Po at which the function d(P) achieves its minimum value, that Po 
lies in the interior of �ABC, that it can be constructed with straight
edge and compass, that 

120° = ( <}:'.AP0B) 0 = ( <}:'.BP0C) 0 = ( <}:'.CP0A) 0, 

and that 

d(P0)2 = a2 + b2 - 2ab cos ( C + ;). 
where a = BC, b = AC. (Hint: Rotate �ABC about each of its ver
tices through 60 °. See Kay (1969), p. 2 71, where Po is called the 
Fermat point, or H. Rademacher and 0. Toeplitz, The Enjoyment of 

Mathematics, Princeton, N.J.: Princeton University Press, 1957, p. 33.) 
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Advanced Project on Klein's Erlanger Programme 
The Erlanger Programme of Klein was not stated precisely. We know 

that it focuses on the group of automorphisms of a geometry. It gives 

us much useful information and a new point of view-e.g., we under

stand the undefined notion of congruence of figures in terms of trans

formations. We also have a precise approach to symmetry by way of 

transformations. We appreciate the importance of invariants. We saw 

that certain geometries can be organized in a hierarchy of groups of 

their automorphisms (see p. 401). 

But this description presumes that we have geometries to begin with. 

Later on, the process was reversed: One started with a group operat

ing on a set, and with certain restrictions, a "geometry" was said to be 

given. For a precise definition of these Klein geometries, see http:/ /en. 

wikipedia.org/wiki/Klein_geometry. It is the study of certain homoge

neous spaces: http://en.wikipedia.org/wiki/Homogeneous_space. Rie

mannian and certain other geometries are not in general homogeneous. 

There is an interesting discussion of the many ramifications of 

Klein's ideas at http://lists.meer.net/pipermail/junk-l/2005-0ctober/ 

000253 .html. You will have to learn much advanced material in order 

to understand it fully, but you can get the flavor. A good survey arti

cle is "What Is Geometry?" by S-s. Chern (American Mathematical 

Monthly, 97 (8) (1990): 6 79-686). 

Read these and other relevant sources that you can find and write 

a report. 
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Further Results in 
Real Hyperbolic 

Geometry 

The theorems of this geometry appear to be paradoxical and, to the 

uninitiated, absurd; but calm, steady reflection reveals that they 

contain nothing at all impossible. 

C. F. Gauss 

In this chapter, we will penetrate further into real plane hyperbolic 
geometry, using the ability to measure with real numbers to calculate 
basic formulas for length, area, and trigonometry. We will reason from 
the axioms when that is not overly burdensome; otherwise we will 
work within the (isomorphic) real Klein or Poincare models. For cer
tain results, we will refer elsewhere for proofs that are too lengthy to 
include.1 

1 The logical development of real hyperbolic geometry strictly from its axioms is carried 
out in full detail in Borsuk and Szmielew (1960). Hartshorne develops an algebraic ana
logue of hyperbolic trigonometry, using Hilbert's arithmetic of ends, which is valid in 
hyperbolic planes over any Euclidean field; a real hyperbolic plane is isomorphic to the 
real Klein or Poincare models, so whatever we prove in those models also has a proof 
from the axioms (see Appendix B, Part I). 

475 
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Throughout this chapter, we will measure angles in radians because 

experience has shown that formulas come out simpler using radians. 

The measure of a right angle is then Tr/2, and the number of radians 

in any angle is Tr/180 times the number of degrees. As we stated in 

Chapter 1, the number Tr= 3.14159 ... must be defined analytically 

by some infinite series or infinite product. In a real hyperbolic plane, 

it is not the ratio of circumference to diameter for any circle in the hy

perbolic plane, as is proved in Theorem 10.5. 

Area and Defect 
In 1799, in answer to a letter from Farkas Bolyai in which Bolyai claimed 

to have proved Euclid's fifth postulate, Gauss wrote: 

. . . the way in which I have proceeded does not lead to the desired 

goal, the goal that you declare you have reached, but instead to a doubt 

of the validity of [Euclidean] geometry. I have certainly achieved re

sults which most people would look upon as proof, but which in my 

eyes prove almost nothing; if, for example, one can prove that there 

exists a right triangle whose area is greater than any given number, 

then I am able to establish the entire system of [Euclidean] geometry 

with complete rigor. Most people would certainly set forth this theo

rem as an axiom; I do not do so, though certainly it may be possible 

that, no matter how far apart one chooses the vertices of a triangle, the 

triangle's area still stays within a finite bound. I am in possession of 

several theorems of this sort, but none of them satisfy me.2 

One of the most surprising facts in hyperbolic geometry is that there 

is an upper limit to the possible area a triangle can have, even though 

there is not an upper limit to the lengths of the sides of the triangle. 

To see how this can be, we have to review the way in which area 

is calculated in Euclidean geometry. The simplest figure is a rectangle, 

whose area we calculate as the length of the base times the length of 

the side (Figure 10.1). This formula is arrived at by noticing that ex

actly bh unit squares fill up the interior of the rectangle, where a unit 

square is a square whose side has length 1. Keep in mind that the unit 

of length is arbitrary, so that if we measure area in square inches, we 

2 R. Bonola (1955}. Charles Dodgson, on p. 14 of his Curiosa Mathematica (1890}, re
jected hyperbolic geometry because he found it unthinkable that a triangle could re
tain a finite area when its sides were indefinitely lengthened. An in-depth study of ar
eas of surfaces using calculus shows that area is a rather subtle notion. 
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Figure 10.1 Area = bh. 

get a different number than if we measure in square feet (but the lat

ter number is always proportional to the former, the proportionality 

factor being 144 = 12 
2) . 

From the area of a rectangle we can calculate the area of a right trian

gle. A diagonal of a rectangle divides it into two congruent right triangles, 

and since we want congruent triangles to have the same area, the area of 

the right triangle must be half the area of the rectangle (see Figure 10.2). 

·r:=;J 
b 

Figure 10.2 Area = ±bh. 

We can decompose the interior of an arbitrary triangle into the union 

of the interiors of two right triangles by dropping an appropriate alti

tude. Since we want the area of the whole to be the sum of the areas 

of its parts, we find the area of the triangle to be fb1h + fb2h, and since 

b = b1 + b2, we again get half the base times the height for the area of 

a general triangle (Figure 10.3). 

Figure 10.3 Area = ±bh where b = b1 + b2• 

You can see that by taking b and h to be sufficiently large, the area 

fbh can be made as large as you like. 

So why doesn't this work equally well in hyperbolic geometry? Be

cause the whole system of measuring area is based on square units, 
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and as we have seen (Theorem 6.1), rectangles (in particular, squares) 
do not exist in hyperbolic geometry. 

What, then, does "area" mean in hyperbolic geometry? We can cer
tainly say intuitively that it is a way of assigning to every triangle a 
certain positive number called its area, and we want this area function 
to have the following properties: 

1. Invariance under congruence. Congruent triangles have the same 
area. 

2. Additivity. If a triangle Tis split into two triangles Ti and T2 by a 
segment joining a vertex to a point of the opposite side, then the 
area of Tis the sum of the areas of Ti and T2 (Figure 10.4). 

� 
\ T 

10: 
Figure 10.4 Area T = area T1 + area T2• 

Having described area, we then ask how it is calculated. Here we 
find one of the most beautiful aspects of mathematics, a direct rela
tionship between two concepts that at first seem totally unrelated. You 
may have recognized this relationship in reading area properties 1 and 
2, for in Proposition 6.1, we proved that the defect also has these prop
erties. Recall that in hyperbolic geometry the angle sum of any trian
gle is always less than 1T (Theorem 6.1) so that if we define the de
fect to be 1T minus the angle sum, we get a positive number. When a 
mathematician sees two functions with the same properties, he sus
pects they are related. Gauss discovered this relationship as early as 
1794 (he was only 17 years old) and called it the first theorem on the 
subject.3 

3 Theorem 10.1 seems to imply that Euclidean and hyperbolic area theories have little in 

common. Yet F. Bolyai, P. Gerwien, and W. Wallace discovered a wonderful theorem 

on area that is valid in both geometries. Define the area of a polygon to be the sum of 

the areas of the triangles used to triangulate the polygon. (It is not difficult to show 

that this definition does not depend on the choice of triangulation.) The theorem states 

that two polygons S and S' have the same area if and only if for some n, polygon S 
(respectively, S') has a triangulation {T1, ... , Tn} (respectively, {T' 1 • . . .  , T' n}) such 

that 1j � TJ for all j = l, . . .  , n. (For a proof, see E. E. Moise (1990, pp. 394-410). 
To appreciate the depth of this theorem, try to prove it for two rectangles in the Eu

clidean plane.) Archimedes' axiom is needed for this theorem. 
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THEOREM 10.1. In hyperbolic geometry, there is a positive constant 

k such that for any .6:.ABC, 

Area(.6:.ABC) = k2 X defect(.6:.ABC). 

For the proof, which is not difficult although it is somewhat lengthy, 

see Moise (1990, p. 413). The theorem says that the area of any trian

gle is proportional to its defect, with proportionality constant k2• This 

constant depends on the unit of measurement, i.e., on whichever tri

angle is taken to have area equal to 1. 

We can now see why there is an upper limit to the area of all tri

angles. Namely, the defect measures how much the angle sum is less 

than 'TT. Since the angle sum can never get below 0, the defect can never 

get above 'TT. Thus we have the following corollary. 

COROLLARY. In hyperbolic geometry, the area of any triangle is at 

most 1Tk2• 

Of course, there is no finite triangle whose area equals the maxi

mal value 1Tk2, although we can approach this area as closely as we 

wish (and achieve it with an infinite trebly asymptotic triangle). How

ever, J. Bolyai showed how to construct a circle of area 1Tk2 and a reg

ular four-sided polygon with a 45 ° angle that also has this area (see 

Exercise 29 and the last section of this chapter). 

If we were to use hyperbolic geometry to model the universe, as

tronomical measurement with a fixed star as one vertex of a triangle 

would give the parallax of the star as an upper bound for the defect 

(Figure 10.5). But cosmologists do not use such a simple hyperbolic 

model (see Weeks, 2002, The Shape of Space). 

C Star 

Figure 10.5 Defect(6.ACM)0 = 90° - (<tCAM)0 - (<tACM)0 < 90° -
( <tCAM) 0 = parallax in degrees. 



480 F U R T H E R R E S U L T S I N R E A L H Y P E R B 0 L I C G E 0 M E T R Y 

The Angle of Parallelism 
Recall that given any line l and any point P not on l, there exist limit-� � 
ing parallel rays PX and PY to l that are situated symmetrically about 

the perpendicular PQ from P to l (Figure 10.6; see Chapter 6). We 

proved that <tXPQ � <tYPQ (Proposition 6.6), so either of these angles 

can be called the angle of parallelism for P with respect to l. 
It is not difficult to show that the number a of radians in the angle 

of parallelism depends only on the distance d from P to Q, not on the 

particular line l or the particular point P (see Major Exercise 5, Chap

ter 6). Lobachevsky denoted a as II(d). 
The following formula relating a and d was discovered by J. Bolyai 

and Lobachevsky. 

THEOREM 10.2. Formula of Bolyai-Lobachevsky: 

tan 
n;d) = e-d/k. 

This is certainly one of the most remarkable formulas in all of math

ematics, and it is astonishing how few mathematicians know it. In this 

formula, the number e is the base for the natural logarithms (e is ap

proximately 2.718 ... ), and tan a/2 is the trigonometric tangent (de

fined analytically, not by opposite over adjacent in a hyperbolic right 

triangle) of half of a. 

J. Bolyai wondered about the meaning of the constant k; we say 

more about it in the section on curvature. In Theorem 7.2, Chapter 7, 

we proved this formula for the Poincare unit disk model and obtained 

k = 1. For a proof of the formula directly from the axioms for the real 

hyperbolic plane, using corresponding arcs of concentric horocycles, 

see Borsuk and Szmielew (1960), Chapter 6, Section 2 6. Hartshorne 

has a purely algebraic version in terms of the multiplicative length µ 

p 

Q 

Figure 10.6 
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of a segment and his algebraically defined tangent half-angle-see Ap

pendix B, Part I. 

Cycles 
The older proofs of the Bolyai-Lobachevsky formula (Theorem 10.2) 

all make use of a curve that is peculiar to hyperbolic geometry, called 

either a limiting curve or a horocycle in the literature. It is obtained as 

follows (see also Exercises 41-44, Chapter 9). 
� 

Start with a line l and a point Q on l and erect perpendicular PQ to 

l through Q. Then consider the circle 8 with center P and radius PQ, 

which is tangent to l at Q (see Figure 10.7). Now let P recede from l 

along the perpendicular. The circle 8 will increase in size, remaining 

tangent to l, and will approach a limiting position as P recedes arbi

trarily far from Q. In Euclidean geometry, the limiting position of 8 

would just be the line l, but in hyperbolic geometry the limiting posi

tion of 8 is a new curve h called a limiting curve or horocycle. 

We can visualize this in the Poincare model as follows. Let l be a 

diameter of the Euclidean circle y whose interior represents the hy

perbolic plane and let Q be the center of y. We proved in Chapter 7 

that the hyperbolic circle with hyperbolic center P is represented by a 

Euclidean circle whose Euclidean center R lies between P and Q (see 

Figure 10.8). 

As P recedes from Q toward the ideal point represented by S, R is 

pulled up to the Euclidean midpoint of SQ, so that the horocycle his 

a Euclidean circle tangent to y at S and tangent to l at Q. It can be 

shown in general that all horocycles are represented in the Poincare 

model by Euclidean circles inside y and tangent to y. Moreover, all the 

p 

Q 

Figure 10.7 
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s 

Q 

Figure 10. 8 Horocycle h in Poincare model. 

Poincare lines passing through the ideal point S are orthogonal to h; a 

hyperbolic ray from a point of h out to the ideal point S is called a di

ameter of h (see Exercises 41, 44, and 46, Chapter 9). 

In the Poincare model, two horocycles tangent to y at S are said to 

be concentric with center S (see Figure 10.9). There is an analogous 

construction in hyperbolic space called the horosphere. Instead of tak

ing the limit of circles to get the horocycle, one takes the limit of spheres 

to get the horosphere or limiting surface. 

Another important curve in hyperbolic geometry that has no Eu

clidean counterpart is the equidistant curve (Figure 10.10)-we dis

cussed it in Chapter 5. Start with a line l and a point P not on l. Con

sider the locus of all points on the same side of l as P and at the same 

perpendicular distance from l as P. In Euclidean geometry, this locus 

would just be the unique line through P parallel to l, but in hyperbolic 

geometry it is not a line-it is the hypercycle, or equidistant curve, 

through P. 

s 

Figure 10.9 Concentric horocycles. 
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A----�----B 
Q 

Figure 10.10 Equidistant curve. 

In the Poincare model, let A and B be the ideal endpoints of l. It 

turns out that the equidistant curve to l through P is represented by 

the arc of the Euclidean circle passing through A, B, and P (Exercises 

40, 45, and 47, Chapter 9). This curve is orthogonal to all Poincare 

lines perpendicular to the line l. 

In the Euclidean plane, three points lie either on a uniquely deter

mined line or on a uniquely determined circle. Not so in the hyperbolic 

plane-look at the Poincare model. A Euclidean circle represents: 

1. A hyperbolic circle if it is entirely inside y; 

2. A horocycle if it is inside y except for one point where it is tangent 

to y; 

3. An equidistant curve if it cuts y nonorthogonally in two points; 

4. A hyperbolic line if it cuts y orthogonally. 

It follows that in the hyperbolic plane, three noncollinear points lie on 

a circle, a horocycle, or a hypercycle accordingly as the perpendicular 

bisectors of the triangle are "concurrent" in an ordinary, ideal, or 

ultra-ideal point-see the penultimate section of this chapter. 

The Curvature of the Hyperbolic Plane 
One of the difficulties with the Poincare model is that, although it faith

fully represents angles of the hyperbolic plane (i.e., it is a conformal 

mode[), it distorts distances. So it is natural to ask whether another 

model exists that also represents hyperbolic lengths faithfully by Eu

clidean lengths. If there is such a model, it would be called isometric. 

An equally natural idea is to seek as a model some surface in Euclid

ean three-dimensional space. The lines of the hyperbolic plane would 
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Figure 10.11 Horocyclic sector in Poincare model. 

then be represented by geodesics on the surface, and we would expect 

the surface to be curved so as to mirror our expectation that hyper

bolic lines are "really curved." (See Appendix A for the definition of 

"geodesic." If a shortest path exists on a surface between two given 

points, it must be an arc of a geodesic; but conversely, an arc of a 

geodesic need not be the shortest path, for on a sphere, there are 

two arcs of one great circle joining two points, and if the points are 

not antipodal, one arc is shorter.) 

A difficult theorem of Hilbert (see Do Carma, 1976, p. 446) states 

that it is impossible to embed the entire hyperbolic plane isometrically 

as a surface in Euclidean three-space. On the contrary, it is possible to 

embed the Euclidean plane isometrically in hyperbolic space, as the 

surface of the horosphere. This result, proved by both J. Bolyai and 

Lobachevsky, was already recognized by Wachter in 1816.4 

But all is not lost. Consider a horocyclic sector, bounded by an arc 

of a horocycle and the two diameters cutting off this arc. Such a sec

tor in the Poincare model is shown in Figure 10.11. 

By identifying the bounding diameters of the sector, a surface in 

Euclidean three-space called the pseudosphere is obtained. Gauss called 

it the "opposite of a sphere." We have already described it and dis

cussed how Beltrami used it in the section about him in Chapter 7. The 

most beautiful surface of constant negative curvature in Euclidean three-

4 The smallest n for which it is known at this time that the hyperbolic plane can be iso
metrically C00-embedded in !Rn is n = 6 (D. Blanusa, 1955). For the elliptic plane, it is 
n = 4 (Do Carmo, 1976, pp. 436-438). For those who understand this language, 
strangely enough there does exist a continuously differentiable embedding of the hy
perbolic plane into Euclidean three-space. This was proved in 1955 by N. Kuiper, us
ing analytic methods (see Indagationes Mathematicae, 17: 683). T. Milnor proved in 
1972 that no "nice" (e.g., C2) embeddings exist. 
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Figure 10.12 Dini's surface. 

space is Dini' s surface, a twisted version of the pseudo sphere that opens 

like a flower growing up to infinity. You will find many pictures of it 

online; see Figure 10.12 for an example. 

F. Minding was the first to publish an article about the pseudo

sphere, in 1839, but Gauss had written an unpublished note about it 

around 1827. Curiously, neither of them recognized that it could be used 

to connect differential geometry to hyperbolic geometry, as Beltrami 

did in 1868. The pseudosphere is related to the hyperbolic plane as a 

cylinder is to the Euclidean plane. 

The representation on the pseudosphere enables us to give some 

geometric meaning to the fundamental constant k that appears in 

Theorems 10.1 and 10.2. The point is that there is a way (discov

ered by Gauss) of measuring the curvature of any surface. We can

not give the precise definition since it involves a knowledge of dif

ferential geometry (see Appendix A). In general, the curvature K 

varies from point to point, being close to zero at points where the 

surface is rather flat, and large at points where the surface bends 

sharply. For some surfaces the curvature is the same at all points, 

so naturally these are called surfaces of constant curvature K. An im

portant property of such surfaces is that figures can be moved around 

on them without changing size or shape. 

In 1827, Gauss proved (for constant K) a fundamental formula re

lating the curvature, area, and angular measure. He took a geodesic tri

angle .6..ABC with vertices A, B, and C and sides geodesic segments. By 
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integration, he calculated the area of the triangle. He determined that, 

if ( <tAY denotes the radian measure of angle A, then 

K x area �ABC = ( <tAY + ( <tBY + ( <tCY - 'Tr. 

He then showed what this meant by considering the three possible 

cases. 

- CASE 1. K is positive, hence both sides of the equation are 

positive. In this case, Gauss' formula shows that the angle sum 

in radians of a geodesic triangle is greater than Tr and that the area 

is proportional to the excess (the number on the right side of the 

equation), with a proportionality factor of 1/K. An example is the 

surface of a sphere of radius r whose curvature is K = 1/r2. The 

larger the radius, the smaller the curvature, and the more the sur

face resembles a plane. (Gauss' formula in the special case of a 

sphere had already been discovered by Girard in the seventeenth 

century-Appendix A.) According to a theorem of H. Liebmann, 

H. Hopf, and W. Rinow, spheres are the only complete surfaces of 

constant positive curvature in Euclidean three-space, so the elliptic 

plane cannot be embedded in Euclidean three-space either. 

- CASE 2. K = 0. In this case, Gauss' formula shows that the an

gle sum in radians is equal to Tr. An example is the Euclidean plane; 

another example is an infinitely long cylinder. 

- CASE 3. K is negative. In this case, Gauss' formula shows that 

the angle sum in radians is less than Tr and that the area is propor

tional to the defect. An example of such a surface is the pseudosphere. 

We can compare Gauss' formula with the formula in Theorem 10.1 re

lating area to defect. The comparison gives K = - l/k2• Thus -1/k2 is 

the curvature of a hyperbolic plane. 
Here we can recapture the analogy with case 1 by setting r = ik, 

where i = \!=I . Then K = 1/r2, so the hyperbolic plane can be de

scribed as a "sphere of imaginary radius r = ik," as Lambert speculated 

(see Chapter S). 

Notice that as k gets very large, the curvature K approaches zero, 

and the geometry of the surface resembles more and more the geom

etry of the Euclidean plane. It is in this sense that Euclidean geometry 

is a "limiting case" of hyperbolic geometry. 

We will also see in the next sections that the geometry of an "in

finitesimal region" in the hyperbolic plane is Euclidean. 
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Finally, here is the definition of a real hyperbolic plane from Rie

mann's viewpoint: It is a complete, simply connected, two-dimensional 

Riemannian manifold of constant negative curvature. (See Appendix A 

for an explanation of all these terms.) Two such manifolds are iso

morphic if and only if they have the same curvature. Similarly, the 

geometry on different-sized spheres is the same spherical geometry, but 

different-sized spheres have different curvatures and are not isomor

phic as Riemannian manifolds. Curvature explains the constant that 

puzzled J. Bolyai. No such constant appears in the purely synthetic ax

iomatic development because it depends on the measurement scale 

chosen. 

We see here the breakthrough Riemann made in expanding our un

derstanding of what is "real" in geometry. When, in 1865, Cayley de

manded "a real geometric interpretation of Lobachevsky's system of 

equations," Beltrami in 1868 provided a partial solution with his demon

stration that the geometry on a pseudosphere in IR3 is hyperbolic. But 

a pseudosphere is not a complete hyperbolic plane, and Hilbert proved 

in 1901 that it is impossible to isometrically embed the hyperbolic plane 

in IR3. So the hyperbolic plane just lives as an abstract surface in "con

ceptual space," and mathematicians certainly consider it to be "real." 

The Poincare and Klein models are distorted versions of it. 

Hyperbolic Trigonometry 
Trigonometry is the study of the relationships among the sides and an

gles of a triangle. We reviewed a few formulas of Euclidean trigonom

etry in Exercises 14 and 15 of Chapter 5. There, the theory of similar 

triangles, which is valid only in Euclidean geometry, was used to 

establish definitions. It defined, for example, the sine of an acute an

gle to be the ratio of the opposite side to the hypotenuse in any right 

triangle having that acute angle as one of its angles (similarly for the 

cosine, tangent, and other trigonometric functions). We will need to 

use these functions for hyperbolic trigonometry. What can this mean 

when these functions have been defined in Euclidean geometry? 

An evasive answer is to do hyperbolic trigonometry only in a con

formal Euclidean model such as a Poincare model; since angles are 

measured in the Euclidean way, the sine, cosine, and tangent of an an

gle have their usual Euclidean meanings. This answer will have to suf

fice for those readers who have not yet studied infinite series. 

The rigorous answer is to redefine these trigonometric functions 

purely analytically, without reference to geometry, and then apply them 



488 F U R T H E R R E S U L T S I N R E A L H Y P E R B 0 L I C G E 0 M E T R Y 

to the different geometries. The definition is in terms of the Taylor se

ries expansions: 

• 

00 

x2n+l 
sm x = L (-l)n 

----

n=o (2n + 1)! 

00 2n 
cos x = L (-l)n _x_ 

n=D (2n)! 

(and tan x = sin x/cos x, etc.). In good calculus texts, one can find 

proof that these series converge for all x (by the ratio test). Good cal

culus texts also show how to develop all the familiar formulas for these 

circular functions (so called because x = cos () and y = sin () are para

metric equations for the Cartesian unit circle x2 + y2 = 1; in particular, 

this equation and the Pythagorean theorem imply that a right triangle 

in the Euclidean plane with legs of length sin () and cos () has a hy

potenuse of length 1, so that sin () is indeed the ratio of opposite side 

to hypotenuse for the appropriate acute angle in that triangle). 

Hyperbolic trigonometry involves, in addition to the circular func

tions, the hyperbolic functions, defined analytically by 

( 1) 
. ex - e-x 

smh x = 2 
ex+ e-x 

cosh x = 2 

(and tanh x = sinh x/cosh x, etc.). These functions were studied by 

Lambert in 1770. (V. Riccati had written about these functions a few 

years earlier.) Their graphs are shown in Figure 10.13. The hyperbolic 

sine and cosine have the Taylor series expansions 

(2) 
00 

x2n+l 
sinh x =I -(2 -

1)1 n=D n + · 

00 2n 
cosh x = I (2

x 
-

) 
1 , 

n=D n · 

which are obtained from expansion of the circular sine and cosine by 

omitting the coefficients ( -l)n; this can be seen by recalling that the 

Taylor series for the exponential function is 

oo n 

eX= I�· 
n=D n. 

In fact, by introducing the imaginary number i = v=l, we see that 

(3) 

. h 
. . x 

sm x =ism-:-
l 

x 
cosh x = cos -:- . 

l 

The name "hyperbolic functions" stems from the identity 

e2x + 2 + e-2x 
cosh2 x - sinh2 x = -------

4 

e2x _ 2 + e-2x 
------- = 1, 

4 
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y=l 

x 

y=-1 

Figure 10.13 

from which the parametric equations x = cosh () and y = sinh () give 

one branch of the hyperbola x2 - y2 
= 1 in the Cartesian plane. (Here 

the number () has the geometric interpretation of twice the area bounded 

by the hyperbola, the x-axis, and the line joining the origin to the point 

(co sh (), sinh O). There is an analogous interpretation for () for the cir

cular functions when we replace the hyperbola with the circle.) 

(You may well wonder what this hyperbola in the Cartesian model 

for Euclidean geometry has to do with hyperbolic geometry! Nothing, 

so far as I know. Felix Klein coined the names "hyperbolic" and "el

liptic" geometries because lines in these geometries have two and zero 

ideal points at infinity, respectively; this is analogous to affine hyper

bolas and ellipses, which have two and zero points at infinity, respec

tively. A Euclidean line has only one ideal point, and this is analogous 

to an affine parabola, which has one point at infinity.) 

On the following page is a list of identities for hyperbolic and circu

lar functions that will be used in the sequel. 

We are going to state the formulas of hyperbolic trigonometry un

der the simplifying assumption that k = 1 (where k is the constant 

in the Bolyai-Lobachevsky formula); this can be shown to mean that 

we have chosen our unit of length so that the ratio of the length of 
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Hyperbolic 

cosh2 x -sinh2 x = 1 

1 -tanh2 x = sech2 x 

sinh(x ± y) = sinh x cosh y 

± cosh x sinh y 

cosh(x ± y) = cosh x cosh y 

± sinh x sinh y 

tanh(x + y) = tanh x + tanh y 
1 + tanh x tanh y 

. h2 x cosh x - 1 sin -= ----2 2 

cosh2 � = cosh x + 1 
2 2 

tanh2 � = cosh x - 1 
2 cosh x + 1 

tanh � = sinh...!_ 
2 cosh x + 1 

cosh x - 1 
sinh x 

sinh x = 2 sinh � cosh � 

sinh x ± sinh y 

= 2 sinh � (x ± y) cosh � (x + y) 

cosh x + cosh y 

1 1 = 2 cosh 2cx + y) cosh 2Cx -y) 

cosh x -cosh y 

= 2 sinh � (x + y) sinh � (x -y) 

Circular 

cos2 x + sin2 x = 1 

1 + tan2 x = sec2 x 

sin(x ± y) = sin x cos y 

± cos x sin y 

cos(x ± y) = cos x cos y 

+ sin x sin y 

tan(x + y) = tan x + tan y 
1-tanxtany 

• 2 x 1 -cos x sin-=----
2 2 

cos2 � = 1 + cos x 
2 2 

tan2 � = 1 -cos x 
2 1 +cos x 

tan�= �_£_ 
2 1 +cos x 

1 -cos x 
sin x 

. 2 . x x sm x = sm 2 cos 2 

sin x ±sin y 

= 2 sin � (x ± y) cos � (x + y) 

cos x +cosy 

1 1 = 2 cos 2cx + y) cos 2Cx -y) 

cos x -cosy 

= 2 sin � (x + y) sin � (x -y) 

corresponding arcs on concentric horocycles is equal to e when the 
distance between the horocycles is 1 (see Borsuk and Szmielew, 1960, 

Sections 18-25, Chapter VI). This choice is entirely analogous to the 
choice of unit of angle measure such that a right angle has (radian) 
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measure 7T/2-it makes the formulas come out nicely. Furthermore, 
the fundamental formula of Bolyai-Lobachevsky for the radian mea
sure of the angle of parallelism becomes 

(4) II(x) = 2 arctan e-x. 

Straightforward calculation using double angle formulas for the circu
lar functions then yields the following formulas: 

(S) 

(6) 

(7) 

sin II(x) = sech x = 1/cosh x, 

cos II(x) = tanh x, 

tan II(x) = csch x = 1/sinh x. 

Thus the function II provides a link between the hyperbolic and the 
circular functions. 

Given �ABC, we will use the standard notation a = BC, b = AC, 
c =AB for the lengths of the sides. We will write expressions such as 
"cos A" to abbreviate "cosine of the number of radians in <r:..A," and 
we repeat that this does not mean the ratio of adjacent side to hypotenuse 
in a hyperbolic triangle. We will develop the first formula (10) of hy
perbolic trigonometry from the Poincare model, i.e., using Euclidean 
trigonometry; after that we can deduce the remaining formulas with
out referring to the Poincare model. For segments that are part of di
ameters of the absolute circle K, there is ambiguity in the notation for 
length; as in Chapter 7, we will write AB for the Euclidean length and 
d(AB) for the Poincare length. We will take K to have radius 1. For a 
segment OB with one endpoint at the center 0 of K, the proof of Lemma 
7 .4 showed that 

d(OB) = l + � e 
1 - OB

. 

Writing, for brevity, x = d(OB) and t = OB in this formula, a little al
gebra gives the basic relations 

(8) 

so that 

(9) 

2t 
sinh x = 

2 1 - t 
cash x = 

2t 
tanh x = - F(t) 

1 + t2 - ' 

1 + t2 
1 - t2' 

where Fis the isomorphism of the Poincare model onto the Klein model 
defined in Chapter 7. 
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THEOREM 10.3. Given any right triangle �ABC, with <tC right, in the 

hyperbolic plane (with k = 1). Then 

(10) 

(11) 

(12) 

. 
A

_ sinh a 
sm - . 

h sm c 
A- tanhb 

cos -
h 

' 
tan c 

cosh c = cosh a cosh b =cot A cot B, 

cos A 
cosh a= . 

B
. 

sm 

PROOF: 

Before indicating a proof of this theorem, let us compare these for

mulas to the formulas for a Euclidean right triangle. The first equal

ity in formula (11) is the hyperbolic analogue of the Pythagorean 
theorem; for if we expand both sides in Taylor series using formula 

(2), the formula becomes 

1 1 1 + 2cl + . .  · = 1 + z-Cal + bl) + · . . .  

And if we neglect the higher-order terms (when �ABC is sufficiently 

small), this reduces to 

Similarly (when �ABC is sufficiently small), formula (10) becomes 

approximately 

. 
A 

a 
Sln =-

C 

b 
cos A=-. 

c 

Let us be more precise: Consider right triangles with fixed <tA and 

with c� 0. Then by Proposition 4.5, a �  0 (since a< c). By for

mula (2) and the geometric series formula, 

1 
= __ 

1 
__ = _!_ (1 - u + ul - u3 + ... ) 

sinh c c(l + u )  c 
' 

where lim u = 0. Thus 
c�o 

-- = - 1 + - + - + · · ·  (1 - u + ul - u3 + · · ·) sinh a a ( al a4 ) 
sinh c c 3 ! 5 ! 

' 

and we see that 

1. a 1. sinh a . 
A 1m-= 1m-- =s1n 

c�o c c�o sinh c 
. 
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A similar argument applies to cos A. So it is appropriate to say that 

the hyperbolic trigonometry of "infinitesimal" triangles is Euclidean. 

Formula (12) and the second equality in formula (11) have no 
counterparts in Euclidean geometry because in Euclidean geometry 
the angles do not determine the lengths of the sides. 

All the geometry of a right triangle is incorporated in formula 
(10), for all the other formulas follow from (10) by pure algebra 
and identities. Namely, the identity sin2 A+ cos2 A= 1 and (10) 

give 

1 = 
tanh2 b 

+ 
sinh2 a 

tanh2 c sinh2 c
' 

sinh2 c = cosh2 c tanh2 b + sinh2 a, 

1 + sinh2 c = cosh2 c ( ����: �) + 1 + sinh2 a, 

cosh2 c cosh2 b = cosh2 c sinh2 b + cosh2 a cosh2 b, 

cosh2 c(cosh2 b - sinh2 b) = cosh2 a cosh2 b, 

cosh2 c = cosh2 a cosh2 b, 

which gives the first equality in formula (11). Applying formula (10) 

to B instead of A gives 

. 
B 

_ sinh b 
sm - . 

h 
, 

sm c 

so that we get formula (12): 

cos A 
= 

tanh b sinh c 
= 

cosh c 
= cosh a 

sin B tanh c sinh b cosh b 
· 

Multiplying this by the analogous formula for cosh b yields the sec
ond equality in formula (11). 

Finally, to prove formula (10), we do the geometry under the 
assumption that vertex A of the right triangle coincides with the 
center 0 of the absolute (this can always be achieved by a suitable 
inversion as in the verification of SAS, Chapter 7). The points B', 
C' in Figure 10.14 are the images of B, C under the isomorphism F 

(see also Figure 7.35). From Euclidean right triangle 6.B'C'O and 
formula (9) we get 

OC' tanh b 
cos A= 

OB' 
= 

tanh c' 
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� 
Let B" be the other intersection of OB with the orthogonal cir

� 
de Ki containing Poincare line BC. By Proposition 7.5, B" is the in-

verse of B in K, so that 

2 

sinh x 

in the notation of formula (8). In the standard notation, 

BB"= 
2 

sinh c 
and Cc" - 2 

. h b' sm 

Let Bi be the foot of the perpendicular from the center Oi of 

Ki to BB", so that Bi is the midpoint of BB" (base of an isoceles tri-
� 

angle). Then <tBOiBi � <tB (=<tGBBi in Figure 10.14, where GB is 

the tangent to Ki at B), because both these angles are complements 

of <tBiBOi. Hence 

. BBi BB" BB" sinh b 
smB= = - - - - - ---

OiB 20iC CC" sinh c
. 

Since <tB is an arbitrary acute angle in a right triangle, we can 

relabel, interchanging A and B, to get the second formula in 

(10) . .... 

G 

Figure 10.14 Verification of formula (10) in Poincare model. 
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THEOREM 10.4. For any .6:.ABC in the hyperbolic plane (with k = 1 

and standard notation for the sides), 

(13) cosh c = cosh a cosh b - sinh a sinh b cos C 

(14) 

(15) 

sin A sin B sin C 
---= =--

sinh a sinh b sinh c' 

h 
_ cos A cos B + cos C 

cos c - . 
A 

. 
B sm sm 

Formula (13) is the hyperbolic law of cosines, and formula (14) is 

the hyperbolic law of sines; they are analogous to the Euclidean laws 

and reduce to the latter for "infinitesimal" triangles as before. Formula 

(15) has no Euclidean analogue. 

This theorem can be proved by dropping an altitude to create two 

right triangles and by applying the preceding theorem, some algebra, 

and identities such as 

cosh(x :±: y) = cosh x cosh y :±: sinh x sinh y. 

We leave the details as an exercise. 

NOTE ON ELLIPTIC GEOMETRY. Analogously, elliptic geometry with 

k = 1 can be developed from its model on a sphere of radius 1 with 

antipodal points identified (see Kay, 1969, Chapter 10). The elliptic law 

of cosines is 

cos c = cos a cos b + sin a sin b cos C, 

and the elliptic law of sines is 

sin A sin B sin C 
--= = 
sin a sin b sin c 

In a triangle with right angle at C, the elliptic analogue of formula 

(10) is 

. 
A 

sin a 
sin =--

sin c 
tan b 

cos A=--. 
tan c 

In each of these formulas, if we replace the ordinary trigonometric func

tions by the corresponding hyperbolic trigonometric functions when

ever the argument is the length of a side, we get the formulas above 

for hyperbolic geometry with k = 1. These replacements were first no

ticed by Lambert and Taurinus with regard to spherical trigonometry 

(see Chapter 5). 
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Circumference and Area of a Circle 
THEOREM 10.S (GAUSS). The circumference C of a circle of radius 
r is given by C = 21T sinh r. 

PROOF: 

Of course C is defined as the limit lim Pn of the perimeter Pn of the 
ll--+00 

regular n-gon inscribed in the circle (Figure 10 .1 S) . Recall first how 
the formula C = 21Tr is derived in Euclidean geometry. From Figure 
10.15 and Euclidean trigonometry, we see that 

. 1T [ 1T 1 ( 1T )3 1 ( 1T )5 ] 
Pn = r2n sm ;- = r2n ;- - 3! ;- + S! ;- - · · · 

= 21Tr - 2r7T2 [� 
- __!__ 7T3 + . .  ·

] n2 3! S! n2 
lim Pn = 21Tr. 
ll--+00 

Figure 10.15 

In the hyperbolic case, we use instead formula (10) of Theorem 
10.3 to get 

sinh (p/2n) = sinh r sin (7r/n), 

which when expanded in series becomes 

_I!._ [ 1 + __!__ 
(_l!._)2 + __!__ 

(_l!._)4 + . . .  ] 
2n 3! 2n S! 2n 

1T . [ 1 (7T)2 1 (7T)4 ] 
= ;- smh r 1 - 3! ;- + S! ;- - · · · 
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(where p = Pn for typographical simplicity). Multiplying both sides 
by 2n and taking lim gives the formula we seek. (Note once more 

n�oo 

that for a circle of "infinitesimal radius," the hyperbolic formula re-
duces to the Euclidean formula.) <111 

This theorem enables us to rewrite the law of sines (14) in a form 
that is valid in neutral geometry. 

COROLLARY (J. BOLYAI). The sines of the angles of a triangle are to 
one another as the circumference of the circles whose radii are equal 
to the opposite sides. 

Bolyai denoted the circumference of a circle of radius r by Or and 
wrote this result in the form 

Oa: Ob: Oc =sin A: sin B: sin C. 

Next, consider formulas for area. By Theorem 10.1 and our con
vention k = 1, the area K of a  triangle is equal to its defect in radians; 
i.e., 

K = 7r - A - B - C. 

Let us calculate this defect for a right triangle with right angle at C, so 
that K = 7r/2 - (A+ B). 

THEOREM 10.6. tan K/2 = tanh a/2 tanh b/2. (For Euclidean geom
etry, the formula for area K is K/2 = a/2 · b/2.) 

PROOF: 

Here are the main steps in the proof: 

tanh2 !!:._ tanh2 .!!._ = (
cash a) - 1 (cash b) - 1 

2 2 (cash a) + 1 (cash b) + 1 

1 - sin(A + B) cos (A - B) 
1 + sin(A + B) cos (A - B) 

1 - cos K 
1 +cos K 

K 
= tan2 -

2· 

Steps 1 and 4 are just identities for tanh2(x/2) and tan2(x/2), re
spectively. Step 2 follows from substituting formula (12) for cash a 
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and cosh b and doing a considerable amount of algebra using 
trigonometric identities.5 Step 3 just uses the identity cos(1T/2 - x) = 

sin x. <11111 

THEOREM 10.7. The area of a circle of radius r is 41T sinh2(r/2) = 

21T(cosh r - 1). 

PROOF: 

Here again we define the area A of a circle to be the limit lim Kn n�oo 
of the area Kn of the inscribed regular n-gon. Referring to Figure 
10.15 again, using the previous theorem, and writing a, K, p, for 
an, Kn, Pn, we have 

K p a 
tan - = tanh -- tanh -. 

4n 4n 2 

If we multiply both sides by 4n and pass to the limit as n � oo, we 
obtain 

(16) 
r 

A= C tanh z' 

using lim Pn = C, lim an = r, continuity of tan and tanh, and the 
n�oo n�oo 

series 

4n tan 
K 

= K + 
K ( K )2 

+ .. ., 
4n 3 4n 

4n tanh :n 
= p - � ( :n r + .... 

Then we substitute in formula (16) the formula for C from Theo
rem 10.5 and use the identities 

tanh !_ = 
sin!!J:_

, 
2 cosh r + 1 

sinh2 r = cosh2 r - 1, 

2 sinh2 !_ = cosh r - 1 
2 

' 

to obtain Theorem 10.7. <11111 

5 See Exercise 5. From now on, you will be offered the opportunity to exercise your al
gebraic technique to fill in such gaps. 
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By expanding this formula in a series, we can show how much 
larger the area of a hyperbolic circle is than that of a Euclidean circle 
with the same radius: 

A = 1T(r 2  + � + · · · ) 
12 

. 

- EXAMPLE 1. Consider any trebly asymptotic triangle. In Exer
cise K-13, Chapter 7, you showed (in the Klein model) that its altitudes 
are concurrent in a point G equidistant from its sides, and the distance 
r of G from the sides satisfies II(r) = 1T/3. Applying formulas (5)-(7) 
and Theorems 10.5 and 10.7, we get tanh r = f, and we calculate that 
the inscribed circle 8 of a trebly asymptotic triangle has circumference 
21T/v'3 and area f 1T(2v'3 - 3). 

- EXAMPLE 2. Consider the pedal triangle formed by the feet of 
the altitudes of a trebly asymptotic triangle. It is an equilateral triangle 
(by Proposition 9.16(c)), 8 is its circumscribed circle with center G, and 
by the hyperbolic law of cosines applied to the isosceles triangle formed 
by G and two of the vertices of the pedal triangle, its side c satisfies 
cosh c = f. Hence the circle with radius c has area 1T (like the Euclid
ean circle of radius 1) and circumference 1T\/S. 

- EXAMPLE 3. Let p be Schweikart's segment, determined by 
II(p) = 1T/4 (equivalently, by formula (7), sinh p = 1). Then cosh p = 

\/2, so the circle with radius p has circumference 21T (like the Euclid
ean circle of radius 1) and area 21T(Vz - 1). 

- EXAMPLE 4. Let q be the hypotenuse of the isosceles right tri
angle with legs p. By the hyperbolic Pythagorean theorem (formula (11) 
in Theorem 10.3), cosh q = 2. Then the circle with radius q has area 
21T. Since sinh q = v'3, the circumference is 21Tv'3. 

NOTE ON ELLIPTIC GEOMETRY. The formulas for circumference and 
area of a circle of radius r are 

C = 21T sin r, 

A = 41T sin2(r/2). 

Bolyai's formula is valid in elliptic geometry (so it is indeed a theorem 
in absolute geometry) . 
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Saccheri and Lambert Quadrilaterals 
We next consider a Saccheri quadrilateral with base b, legs of length 
a, and summit of length c. We saw in Basic Theorem 6.1 that c > b. 
We now make this more precise. 

THEOREM 10.8. For a Saccheri quadrilateral, 

. h
e 

h . h
b 

sm Z = cos a sm 2. 

(Since cosh2 a= 1 + sinh2 a> 1, we have sinh(c/2) > sinh(b/2), hence 
c > b.) 

PROOF: 

Theorem 10.8 is proved by letting d =AB' and () = (�A' AB'Y in 
Figure 10.16, applying formula (13) from Theorem 10.4 to get 

co sh c = co sh a cosh d - sinh a sinh d cos (), 

using formulas (10) and (11) from Theorem 10.3 to get 

cos () = sin(; - ()) = :�� �, 

cosh d = cosh a cosh b, 

and eliminating d to obtain 

cosh c = cosh2 a cosh b - sinh2 a 

= cosh2 a(cosh b - 1) + 1. 

Figure 10.16 
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Finally, the identity 

gives the result. <11111 

2 sinh2 � = cosh x - 1 
2 

501 

COROLLARY. Given a Lambert quadrilateral, if c is the length of a 
side adjacent to the acute angle and b is the length of the opposite side, 
then 

sinh c = cosh a sinh b, 

where a is the length of the other side adjacent to the acute angle (in 

particular, c > b). 

The corollary follows from representing the Lambert quadrilateral 
as half of a Saccheri quadrilateral (see Figure 10.17). There are addi
tional remarkable formulas for Lambert quadrilaterals that we will de

rive next. They are based on the concept of complementary segments: 
These are segments whose lengths x, x* are related by 

(17) 1T II(x) + II(x*) = 2. 

The geometric meaning of this equation is shown in Figure 10.18, where 

the "fourth vertex" of the Lambert quadrilateral is the ideal point il. 

If we apply our earlier formulas (4)-(7) for the angle of parallelism, 

we obtain 

(18) sinh x* = csch x, 
(19) cosh x* = coth x, 
(20) tanh x* = sech x, 
(21) x* 

tanh 2 = e-x. 

c 

L -, 
I 
I 
I 
I 
I 

a la I 
I 
I 
I 
I 

...d 
b 

Figure 10.17 Lambert quadrilateral is half a Saccheri quadrilateral. 
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x 

x* 

Figure 10.18 Complementary segments. 

For example: sinh x* =cot II(x*) =tan II(x) = csch x by formula (7); 

formula (21) follows from formulas (18), (19), and the identity 

tanh(t/2) = (sinh t)/(l + cosh t). 

THEOREM 10.9 (ENGEL'S THEOREM). There exists a right triangle 

with the parameters shown in Figure 10.19 if and only if there exists 

a Lambert quadrilateral with the parameters shown in Figure 10.20. 

Note that PQ is a complementary segment to the segment (not shown) 

whose angle of parallelism is <r:..A. 

The geometric meaning of Engel's theorem is shown in Figure 10.21. 

It includes J. Bolyai's parallel construction (Figure 6.11), for if B = X 

is the point between R and S such that PX� QR, Engel's theorem says 

( <r:..BACY = II(PQ*), and since ( <r:..QPXY = 'lT/2 - ( <r:..BACY, ( <r:..QPXY = 
- � � 

II(PQ); i.e., PX is limiting parallel to QR. 

Engel's theorem also says that the ray emanating from R limiting 
� � 

parallel to SP makes an angle with RS that is congruent to <r:..ABC, and 
� 

that the ray emanating from X limiting parallel to SP makes an angle 
� 

with XS that is congruent to the acute <r:..R of the Lambert quadrilateral. 

A 

Figure 10.19 
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R 

Q----

l* 

P ........ ______ ......... s 
b 

Figure 10.20 

PROOF: 

For the proof, start with a Lambert quadrilateral labeled as in Fig

ure 10.22. We've already shown that 

(i) 

(i') 

sinh w = cosh z sinh v, 

sinh z = cosh w sinh u. 

Let()= ( <tSPRY, d =PR. By Theorem 10.3, sinh w =sin() sinh d = 

cos('1T/2 - O) sinh d = tanh v cosh d = tanh v(cosh u cosh w), so 

that 

(ii) tanh w = tanh v cosh u, 

P=A S=C 

Figure 10.21 
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R 

Figure 10.22 

and by symmetry, 

(ii') 

----.....,.....Q 

v 

S ....._ ___ u __ ___._.p 

tanh z = tanh u co sh v. 

Let <P = ( <t:RY. By the law of sines and Theorem 10.3, 

tanh u sin <P 

sin QS 

sin( <t:QSRY 

sinh z 

cos( <t:PSQY 

sinh z tanh QS sinh z 
' 

so by formula (i') and Theorem 10.3 we have 

( 
... 

) 
. ,,.. tanh u cash QS tanh u(cosh u cash v) 

lll Sill 'P = = 
sinh z sinh u cash w 

and by symmetry, 

(iii') 
. ,,.. _ cash u 

sm 'P -

h 
. 

cos z 

cash v 

cash w
' 

Now let X be the point between R and S such that PX= z and con

sider right triangle �PSX (Figure 10 .21). By formulas (i '), (ii'), and 

(iii'), respectively, we get (using Theorem 10.3) 

so that 

. sinh u 
sm(<t:PXSY = -.-

h
-= sech w, 

sm z 

tanh u 
cos( <t:XPSY = = sech v = tanh v*, 

tanh z 

- cash z 
cash XS = 

h 
= csc </J, 

cos ll 

(<t:PXSY = II(w), 

( <t:XPSY = II(v*), 

II(XS) = </J, 
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by formulas (5), (6), and (5), respectively. Thus if we relabeled P 

as A, X as B, and S as C, we would obtain right triangle <¢:ABC cor

responding to our given Lambert quadrilateral as asserted. 

Conversely, given right triangle .6.PSX, we can recover DPQRS 
� -

by setting R equal to the unique point on SX such that II (RS) = 

( <tPXSY and setting Q equal to the foot of the perpendicular from 
� 

R to the line through P perpendicular to PS . <Ill 

The correspondence in Theorem 10.9 provides for a whole series of 

existence theorems. For example, it says that from the existence of a 

right triangle with parameters (a, II(m), c, II(l), b) we can deduce the 

existence of a Lambert quadrilateral with parameters (l*, c, II(a), m, 

b), as in Figure 10.20, ordering the parameters by a clockwise pro

gression in the figure. Now read the parameters backward! This gives 

Figure 10.23, from which we deduce the existence of a second right 

triangle in Figure 10.24 having parameters (a, II(c), m, II(b*), l*). 

t• 

Figure 10.23 

t• 

a 

Figure 10.24 

We can continue the process of reading these parameters backward, 

obtaining a second Lambert quadrilateral, etc. We then end up with 

the existence of five Lambert quadrilaterals and four other right trian

gles that are implied by the existence of the first right triangle. The re

sults are summarized in the following tabulation. 



506 FURTHER RESULTS IN REAL HYPERBOLIC GEOMETRY 

6.ABC, <tC right Lambert DSPQR, <tR acute 

BC <tB AB <tA AC PQ QR <tR RS SP 

a II(m) c II(l ) b l* c IT(a) m b 

a II(c) m IT(b*) l* c* m Il(l*) b* a 

l* II(m) b* IT(a*) c* m* b* II(c*) a* l* 

c* IT(b*) a* II(l ) m* b a* II(m*) c* 

m* IT(a*) II(c) b a IT(b) c m* 

Note also that since Theorem 10.3 gave us formulas showing how 

a right triangle is uniquely determined by any two of its five parame

ters, Theorem 10.9 gives us the same result for a Lambert quadrilat

eral (e.g., starting with u and v, w is given by formula (ii), z by for

mula (ii'), and <P by formula (iii) in the proof of Theorem 10.9). 

RIGHT TRIANGLE CONSTRUCTION THEOREM. Given positive numbers 

A, µ, such that µ, +A < 'lT/2. Then a right triangle can be constructed 

having A, µ, as the measures of its acute angles (that triangle is unique 

up to congruence by AAA). 

PROOF: 

We will use the same letters for the angles as for their angle mea

sures. Let µ, * be the complementary angle to µ, and construct the 

length m* such that II(m*) = µ,*. On one side of angle A, lay off a 

segment of length m*. Sinceµ,+ A < 'lT/2, we have A<µ,*. It follows 

from the definition of the angle of parallelism that the perpendicular 

ray from the end of that segment intersects the other side of angle A 

to form a right triangle. Let the other leg have length c* and the hy

potenuse length a*. Construct the angles II(c*) and II(a*), their com

plements y and a, and then the lengths c, a such that II(c) = y and 

II(a) =a. Now on the sides of angleµ,, lay off segments of lengths c, 

a. Join the endpoints of those segments. The result is a right triangle 

in which a is a leg, c is the hypotenuse, and the other acute angle is 

A: We have gone from the right triangle in line 4 of the table above 

to the right triangle in line 1 (A = II(l) and µ, = II(m)) . .,.. 

COROLLARY. If A < 'TT/3, an equilateral triangle can be constructed 

with angle measure A. For any segment, an equilateral triangle can be 

constructed having that segment as a side. 
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PROOF: 

Take µ = f ,\. Then the right triangle so constructed can be doubled 

to form an equilateral triangle with angle ,\. Given a segment a, use 

our trigonometric formulas for the right triangle with legs a, a/2 to 

determine the angle for its equilateral triangle. (Note that Euclid's 

proof of his 1.1 cannot be used until it is proved that circle-circle 

continuity holds in any hyperbolic plane-see Appendix B.) <11111 

Coordinates in the Real Hyperbolic Plane 
Choose perpendicular lines through an origin 0 and fix coordinate sys

tems on each of them so that they can be called the a-axis and v-axis. 

For any point P, let U and V be the perpendicular projections of P on 

these axes and let u and v be the respective coordinates of U and V. 

We then have a Lambert quadrilateral DUOVP. We label the remain

ing sides with coordinates w, z such that 

(22) tanh w = tanh v cosh u, 

tanh z = tanh u cosh v 

(see Figure 10.25). Formulas (ii) and (ii') in the proof of Theorem 10.9 

showed that if P is in the first quadrant (i.e., u > 0 and v > O), then 
- -

w =PU and z = PV. We also set 

(23) 

(24) 

Figure 10.25 

x = tanh u, 

T = cosh u cosh w, 

0 u 

y = tanh v, 

X= xT, Y=yT. 

p 

u 
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Then we call (u, v) the axial coordinates, (u, w) the Lobachevsky co

ordinates, (x, y) the Beltrami coordinates, and (T, X, Y) the Weierstrass 

coordinates of point P. Lobachevsky coordinates are the main tool for 

calculus in the real hyperbolic plane (see Martin, 1982, or Wolfe, 1945). 

Beltrami coordinates are used to prove that the abstract real hyperbolic 

plane is isomorphic to the Klein model (see Theorem 69, Chapter VI, 

of Borsuk-Szmielew, 1960). 

THEOREM 10.10 (still assuming k = I). Assigning to each point 

P its pair (x, y) of Beltrami coordinates gives an isomorphism of the 

hyperbolic plane onto the Beltrami-Klein model. In particular, we 

see that Ax + By + C = 0 is an equation of a line in Beltrami coor

dinates if and only if A2 + B2 > C 2 and every line has such an equa

tion. The distance P1P2 between two points is given in terms of Bel

trami coordinates by 

(25) 

where Pi = (1, Xi, YD, the inner product P1 · P2 is defined by 

PI • P2 = 1 - X1X2 - Y1Y2, 

and llPill = �. Similarly, if Aix + BiY + Ci = 0 are the equations 

of two lines li, i = 1, 2, intersecting in a nonobtuse angle of radian mea

sure (}, then 

(26) 

where now the inner product is defined by 

li · l2 = A1A2 + B1B2 - C1C2 

and llZJ = � (in particular, 0 = l1 · l2 is the necessary and suffi

cient condition for the lines to be perpendicular). 

Assigning to each point P its triple (T, X, Y) of Weierstrass coordi

nates maps the hyperbolic plane onto the locus 

T2 - x2 - y2 
= 1, T> 1, 

which is one of the two sheets of a hyperboloid in Cartesian three

space. The equation of a line in Weierstrass coordinates is linear ho

mogeneous (i.e., of the form AX+ BY+ CT = O). 

Before giving the proof, note that the Weierstrass representation 

gives one interpretation of the hyperbolic plane as a "sphere of imag-
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inary radius i." Namely, if we replace the usual positive definite quad
ratic form X2 + Y2 + T2 (that measures distance squared from the ori
gin) with the indefinite quadratic form X2 + Y2 - T2' then the sphere 
of radius i with respect to this "distance" has the equation 

x2 + y2 _ y2 = i2 = -l, 

which is the equation of a hyperboloid. This indefinite metric is the 
three-dimensional analogue of the metric determined by the form X2 + 
Y2 + Z2 - T2 in four-dimensional space-time, which is used for spe
cial relativity (see Taylor and Wheeler, 1992). Note that the "lines" in 
the Weierstrass model are intersections with the sheet of the hyper
boloid of Euclidean planes through the origin. To picture this model, 
just imagine one branch of the hyperbola T2 - X2 = 1 in the (T, X) 

plane rotated around the T-axis (see Figure 7.19, p. 312). 

PROOF: 

The proof of Theorem 10.10 is based on the trigonometry of Lam
bert quadrilaterals obtained in the preceding theorem. 

As the graph in Figure 10.13 showed, u � tanh u is a one
to-one mapping of the entire real line onto the open interval 
( -1, 1). That the pairs (x, y) of Beltrami coordinates satisfy the re
lation x + y2 < 1 follows from the fact that the perpendiculars to 
the axes at U and V intersect if and only if lul < lvl* (see Figure 
10.18); i.e., 

tanh2 u < tanh2 Iv I* = sech2 v = 1 - tanh2 v 

(using formula (20)). 
To derive the distance formula, introduce the polar coordinates 

(r, O) for point P in Figure 10.25 defined by 

r =OP, 

{ �(XOPY 
8 

= 
-�(XOPY 

if v > 0, 
if v < 0. 

The relations with axial coordinates are then 

(27) tanh r cos 0 = tanh u = x, 

tanh r sin 0 = tanh v = y, 

by formula (10) for the cosine of an angle in a right triangle and 
the identity sin 0 = cos(7T/2 - O). Hence 

tanh2 r = tanh2 u + tanh2 v = x 2 + y2. 
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From the identity sech2 r = 1 - tanh2 r, we get 

cosh r - (1 - x2 - y2)-1l2 
= llvll-1 

if p = (1, x, y), which is the distance formula when we have 
P1 = P and P2 = 0. For general P1 and P2, formula (27) gives 

cos (lh - Oi) = cos 01 cos 02 + sin 01 sin 02 

= 
X1X2 + Y1Y2 

tanh r1 tanh r2 · 

Suppose first that 0, P1, P2 are collinear, so we have cosh P1P2 = 

cosh (r1 ± r2). Since cos (02 - Oi) = ± 1, 

cosh P1P2 = cosh rl cosh r2 - sinh rl sinh r2 cos (02 - Oi) 

= cosh r1 cosh r2[1 - tanh r1 tanh r2 cos (02 - Oi)]. 

But this formula also holds when 0, P1, P2, are not collinear by the 
law of cosines (13). Substituting the two preceding formulas gives 
the desired formula (25). 

To show that the mapping P � (x, y) sends hyperbolic lengths 
onto Klein lengths means reconciling formula (25) with the formula 
in Exercise K-14, Chapter 7. This follows from a calculation based 
on the formula 

(28) 

and the identity 

(29) arctanh t = _!_ In 
1 + t . 

2 1 - t 

Formula (28) is obtained from formula (25) by means of the iden
tity tanh2 t = 1 - cosh-2 t. (The term in brackets on the right side 
of formula (28) could be written as (P1 · P2)2 - llP1ll2llP2ll2. Inci
dentally, the f occurring in formula (29) explains why the factor f 
appeared in the formula for Klein length in Theorem 7.4.) 

Because P � (x, y) is an isometry, it is a collineation; so lines 
in the hyperbolic plane are mapped onto chords of the absolute in 
the Klein model, which have linear equations as described in the 
theorem. 

The formula (26) for cos 0 is an assertion about angle measure in 
the Klein model once we pass to that model by means of the isomor
phism P � (x, y). Suppose the two lines meet at point Po with coordi-
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� 

nates (Xo, y 0) and suppose we write the ith line as PoPi, where Pi has 

coordinates (xi, yJ, i = 1 , 2. Then the coefficients in the equation for 

the ith line are given by Ai = Yi - Yo, Bi = Xo - Xi, Ci = XiYo - YiXo. Sup

pose Po= 0, the center of the absolute. Then formula (26) reduces to 

cos () = X1X2 + Y1Y2 
(xt + yt) l/2(x� + y�) 1;2' 

which is the Euclidean formula for the cosine of the angle <i:P10P2. 

But the Klein model is conformal at the special point 0, so we have 

verified formula (26) in this case. 

If Po i= 0, let us find a hyperbolic motion T such that T(O) = Po 
and let Qi = T-1 (P J. Since T preserves angle measure, all we then 

have to do is show that formula (26) is equal to the cosine of 

<i:Q10Q2. The natural candidate for T is the reflection across the 

perpendicular bisector of OP0. We need two lemmas (which are gen

eralized in Exercise 9). 

LEMMA 10.1 The coordinates of the Klein midpoint M of 0 and Pare 

( 
1 +

x
llvll' 1 ;llvll

)
. 

where llvll = Yl - x2 - y2 and P has coordinates (x, y) . 

PROOF: 

Let r = OP; we've seen that co sh r = llP 11-1, x = tanh r cos (), y = 
tanh r sin 0. The coordinates (x', y') of M are then given by x' = 
tanh(r/2) cos (), y' = tanh(r/2) sin 0, i.e., x' = x tanh(r/2)/tanh r, 

y' = y tanh(r/2)/tanh r. But 

tanh(r/2) sinh r cosh r ---- = ---- . --

tanh r cosh r + 1 sinh r 

= (i + 
1
h ) -1 = o + llvlD-1.,... cos r 

LEMMA 10.2. The perpendicular bisector of OPo has the equation 

xox + YoY + llPoll - 1 = 0, where llPoll = v' 1 - (x� + y�) and Po has co

ordinates (xo, Yo) .  

PROOF: 

The perpendicular bisector of OP0 passes through the midpoint 

and has slope -x0/y0 (since Klein perpendicularity is the same as 
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Euclidean perpendicularity when one chord is a diameter of the 

absolute) . .,.. 

If we now apply the general formula for reflection in the Klein model 

that you checked in Exercise K-16, Chapter 7, then Lemma 10.2 im

plies that reflection across the perpendicular bisector of OP0 is given 

by 

x '=�x�[ll�p_o�ll_
2

-�ll P�o.�lll_ -_ x_o_(x __ �_ +�yo_� y_+�ll�Po�l.l_ -_l_) _ 
llPoll

2 
- llPoll + (ilpoll - l] (XoX + YoY + llPoll - 1) ' 

y' = y[llpoll2 - llPolll - Yo(XoX + YoY + llPoll - 1) 

llPoll
2 

- llPoll + (ilpoll - l] (XoX + YoY + llPoll - 1) 
. 

Using these formulas, another long calculation shows that formula (26) 

is equal to the cosine of <tQ10Q2. 
As a check on the formula, note that cos () = 0 if and only if we 

have that A1A2 + B1B2 + C1(-C2) = 0, which equation says line li 

passes through the pole (A2, B2, -C2) of line l2• 

We leave the assertions about the Weierstrass coordinates as an 

exercise . .,.. 

Polar coordinates (r, O) of a point P with respect to an origin 0 
and the positive x-axis are defined in the same way as in Euclidean 

geometry: r is the hyperbolic distance of the point P from 0, and () 

is the radian measure of the angle between the positive x-axis and 
� 

the ray OP, taken to be positive in the first two quadrants and neg-

ative in the third and fourth quadrants, -'TT< () < 'TT. The equation 

of a ray emanating from 0 in polar coordinates is () = a constant. If 

we denote the constant by 00, then the equation of the opposite ray 

is () = 00 - 1T if 00 > 0, and () = 00 + 1T if 00 < 0. From the identity 

tan(x ± 'TT) = tan x, we see that the equation of a line l through 0 in 

polar coordinates is tan () = tan 00, where 00 (a slope angle for l) is 

the angle either one of the rays of l emanating from 0 makes with 

the positive x-axis. 

Let us use polar coordinates to determine the equation of an equi

distant curve K to a line l through 0 for some distance d. If point P 

varies on K, r is the hypotenuse of a right triangle whose side opposite 

angle () - 00 has length d (Figure 10.26). Equation (10) of Theorem 

10.3 for a right triangle yields 

(30-equidistant) 
. sinh d 

smhr= ---

sin(O - Oo) 
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Positive x-axis 

Figure 10.26 Polar coordinate equation for equidistant curve. 

for the polar coordinate equation of K, with the following proviso: For 
each distance d, there is an equidistant curve at that distance from l 

on each side of l. We can distinguish them by using signed distances, 
i.e., allowing d to have negative values (the sign being determined by 
an orientation of the plane). For the equidistant having d positive, then 
() - 00 will take on only positive values; for the other equidistant, where 
d is negative, () - 00 will take on only negative values. In the negative 
case, both the numerator and the denominator of the right side of (30-
equidistant) will be negative numbers, so their quotient can equal the 
number on the left, which is always positive. 

Next consider a line l not through 0. Let Q be the foot of the per
pendicular from 0 to l and let b be the signed distance from 0 to l 

(plus or minus the length of segment OQ). Let m be the perpendicular 
to OQ through 0 and let 00 be a slope angle for m. Then for a variable 
point Pi= Q on l, consideration of the right triangle .6:.0QP, use of 

formula (10), of Theorem 10.3, and of the trigonometric identity 
cos[(1T/2) - x] = sin x yields the polar equation for l, 

(30-h-line) tanh r = 
tanh_Q__ 

sin(() - Oo) · 

This equation is also valid for point Q because its polar coordinates are 

Clbl, (1T/2) + 00). From Figure 10.27 you can see that the second polar 
coordinate () of a point P on l varies strictly between (1T/2) - TI(lbD + 

Oo and (1T/2) + TI(lbD + Oo. 
The analogous formula in a Euclidean plane is 

(30-e-line) 
b 

r = 
sin(() - Oo) · 
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p 

Positive x-axis 

m 

Figure 10.27 Polar coordinate equation for line not through 0. 

- APPLICATION: A MODEL OF THE EUCLIDEAN PLANE WITHIN 

THE HYPERBOLIC PLANE. We gave an incomplete description of this 
model in Project 1, Chapter 7. Recall that the "points" of the model are 
all the points of the hyperbolic plane. The "lines" are all the hyperbolic 
lines through a fixed hyperbolic point 0 plus all the equidistant curves 
having those lines as axes. "Betweenness" is induced by the between
ness in the hyperbolic plane. 

With the polar coordinate description given above, we can now de
fine a continuous isomorphism cl> of this interpretation onto the Carte
sian model IR2. The origin 0 will be mapped to (O, O) E IR2, and the 
x- and y-axes will be mapped to the x- and y-axes in IR2. The equidis
tant curve for the x-axis with signed distance u has the equation 

(31) 
. 

h 
sinh u 

Sill r= --
sin (} ' 

while the equidistant curve for the y-axis with signed distance v has 
the equation 

(32) 
. 

h 
sinh(-v) sinh v 

Sill r = . 
sm(O - (7r/2)) cos (} ' 

using the trigonometric identities sin((} - (7r/2)) = -cos (} and 
sinh(-v) = -sinh v. The point P in the hyperbolic plane with polar co
ordinates (r, O) will then be mapped by cl> to the point c:I>(P) = (x, y), 
where x = sinh u and y = sinh v. The Euclidean distance of c:I>(P) from 
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the origin in IR2 is then sinh r-compute v' (x2 + y2) using equations 

(31) and (32). Hyperbolic distances from 0 are stretched out via the 

hyperbolic sine function to get the Euclidean distances from (O, O). Let 

p = sinh r. Equations (31) and (32) show that cos (} and sin (} are the 

same in both planes, so angles with a vertex at the origin correspond

ing to one another via cl> have the same radian measure (}. So from the 

definitions of x and y, we see that the polar coordinates of c:I>(P) in IR2 

are (p, O). The equidistant curve whose equation is (30-equidistant) is 

then mapped by cl> to the line in IR2 whose equation in polar coordi

nates is 

(30') 
d' 

p= ----

sin((} - Oo) ' 

where d' = sinh d is the Euclidean distance from the origin in IR2 to 

that line and 00 is a slope angle for the Euclidean parallel line through 

the origin. Since angles with a vertex at the origin are measured the 

same in both planes, the line through 0, tan (} =tan 00, in the hyper

bolic plane is mapped by cl> to the line through the origin in IR2 hav

ing that same equation, where for a point P having polar coordinates 

(r, 00) on such a line, c:I>(P) = (p cos 00, p sin 00). We leave it as an 

exercise to show that betweenness on the equidistant curves, induced 

in a natural way from betweenness in the hyperbolic plane, corresponds 

by cl> to the betweenness in IR2. 

If we then transport the congruence relations in IR2 back to our in

terpretation in the hyperbolic plane via c1>-1, in the same way that we 

transported congruence from the Poincare model to the Klein model 

via the isomorphism F in Chapter 7, we see that we do indeed have a 

model of the Euclidean plane within the hyperbolic plane. (See also 

Project 1.) 

The coordinates x = sinh u and y = sinh v for a point P in the hy

perbolic plane may be called Ramsay-Richtmyer coordinates, referring 

to their 1995 text, Section 7.10. This model shows that plane hyperbolic 

geometry and plane Euclidean geometry are equally consistent-we don't 

have to go to the horosphere in hyperbolic three-space to prove that. 

The Circumscribed Cycle of a Triangle 
You learned in Exercise 5, Chapter 5, that the existence of a circumscribed 

circle for every triangle is equivalent to the Euclidean parallel postulate. 

The circumscribed circle exists if and only if the perpendicular bisectors 
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of the sides are concurrent in an ordinary point (Exercise 10, Chapter 6). 
In Exercise 11, Chapter 6, and Major Exercise 7, Chapter 6, you showed 

that the perpendicular bisectors are always "concurrent" in an ideal or 

ultra-ideal point if the circumscribed circle does not exist. 

In the ultra-ideal case, you showed (see Figure 6.21) that the ver

tices A, B, C of the given triangle are all equidistant from the common 

perpendicular t to the perpendicular bisectors. This implies that they 

lie on an equidistant curve having t as an axis. According to our defi

nition of "equidistant curve," it is required that A, B, C all lie on the 

same side oft. 

Some authors (e.g., Coxeter, Sommerville) define "equidistant 

curve" differently; i.e., they define it to be the locus of all points at the 

same distance from an axis t, no matter which side of t. These authors 

would designate our "equidistant curve" one of the two "branches" of 

theirs. Let us call the equidistant curve of Coxeter and Sommerville a 

doubly equidistant curve, indicating the union of two equidistant curves 

having the same axis, each being the reflection of the other across the 

axis. In Exercise 2 (a), Chapter 6, you showed that every triangle is cir

cumscribed by three doubly equidistant curves whose axes are the me

dial lines that join pairs of midpoints of the sides (Figure 6 .1 S). 
Refer to the Poincare upper half-plane model: The Euclidean circle 

through A, B, and C is a hyperbolic circle if it lies entirely in the up

per half-plane (compare Proposition 7.12); it is a horocycle with an 

ideal center n if it is tangent to the x-axis at n (Exercise 46, Chapter 

9), and its arc in the upper half-plane is an equidistant curve other

wise (Exercise 47, Chapter 9). 
Figure 10.28 shows the three doubly equidistant curves and a hy

perbolic circle circumscribing .6.ABC in this model. 

The next theorem gives trigonometric criteria to decide which type 

of cycle circumscribes .6.ABC. 

THEOREM 10.11. With standard notation for .6.ABC, let a be the 

length of a longest side, so that <r..A is a largest angle. The cycle cir

cumscribing .6.ABC is a 

Circle] {<} 
b 

Horocycle ¢:::} sinh !!:._ = sinh - + sinh .£ 
E 'd' 

2 2 2 
qm 1stant curve > 
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Figure 10.28 Cycles circumscribing triangle ABC. 

PROOF: 

517 

Consider first the case where the perpendicular bisectors are 

asymptotically parallel through an ideal point 0. According to 

Lemma 6.1 in Major Exercise 7, Chapter 6, Figure 10.29 holds, where 

A', B', C' are the midpoints. This shows that ( <tAY = ( -tC' AOY + 

( -tB' AOY = II(c/2) + II(b/2). 

A 

n 

Figure 10.29 
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In the case where the perpendicular bisectors have a common 
perpendicular t, Figure 10.30 holds. 

Since <tC'Ail > <tC'AA and <tB'Ail > <tB'�, we see that 

(<tAY> (<tC'AAY+ (<tB'�Y= Il(e/2) + Il(b/2). 
In the case where the perpendicular bisectors meet, we must have 

( <tAY < Il(e/2) + Il(b/2) 
since this is the only other possibility. Thus the second criterion is 
established. 

Figure 10.30 

A 

A n l: 

The derivation of the first criterion in terms of hyperbolic sines 
from the second criterion involves a calculation using identities 
and our earlier formulas. First, by the hyperbolic law of cosines 
(13), 

cosh b cosh e- cosh a cos A = --- --------sinh b sinh e 

( 2 sinh2 % + 1 )( 2 sinh2 f + 1) - ( 2 sinh2 f + 1) 
4 . h b h b 

. h e h e sm Z cos Z sm 2 cos 2 

2 sinh2 !!_ sinh2 .E._ + sinh2 !!_ + sinh2 .E._ - sinh2 !!. 2 2 2 2 2 

2 . h b 
. h e h b h e sm Z sm Z cos Z cos 2 
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Second, by the identity for cos(x + y) and formulas (S) and (6), 

cos [ n( �) + n( �) J 
=cos n(�) cos n(�) - sin n(�)sin n(�) 

b c 1 
= tanh - tanh - - -------

2 2 b c 
cosh 2 cosh 2 

. h 
b 

"nh 
c 

1 sm - s1 - -

2 2 

b c 
. 

cosh 2 cosh 2 

The first criterion then follows from these equations after some 

straightforward algebra. <11111 

COROLLARY. An isosceles triangle whose base is not longer than its 

sides (in particular, an equilateral triangle) has a circumscribed circle. 

If the base is longer than the sides, then the circumscribed cycle is a 

. . 
Horo��::} ¢:::> co sh a{:} 4 co sh b - 3, 

Eqmd1stant curve > 

where a is the length of the base and b is the length of a side. We 

leave the proof for Exercise 10. 

Our final theorem gives a lovely formula relating the radius of the 

circumscribed circle to the area (which equals the defect) of a triangle. 

THEOREM 10.12. If 6.ABC has a circumscribed circle of radius R, 

then with standard notation, the area K of 6.ABC is given by 

(33) . K 

a b c 
tanh 2 tanh 2 tanh 2 

Sln - = --- ·--- ----

2 tanh R 

NOTE. If we look at only the leading terms in the power series ex

pansion of sin and tanh (i.e., we look at only an "infinitesimal" hy

perbolic triangle), this formula reduces to the Euclidean formula 

K= 
abc 

4R. 
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In Euclidean geometry, we could replace K by tbc sin A and solve for 
R; in hyperbolic geometry, Exercise 28 provides a formula for R purely 
in terms of the sides of the triangle. 

Here is a proof of the Euclidean formula. Choose B to be a vertex 
such that the diameter BD of the circumscribed circle K intersects side 
AC. Then <t:D of �BDC and <t:A subtend the same arc BC of K, so we 
have sin A = sin D = a/2R (since <t:BCD is right, being inscribed in a 
semicircle). Substitute for sin A in K = tbc sin A to get the formula. 

Note that in Euclidean geometry, the common ratio S = (sin X)/x 

in the law of sines is equal to 2R. See Exercise 20 for the hyperbolic 
case. 

The proof of Theorem 10.12 will be indicated in Exercises 20-28. 

Bolyai's Constructions in the Hyperbolic Plane 
Janos Bolyai is alleged (by otherwise reliable writers) to have "squared 
the circle" using only a straightedge and compass in the hyperbolic 
plane.6 Since squares do not exist in a hyperbolic plane, what is meant 
by "squaring" is to construct a regular 4-gon (a quadrilateral with all 
sides and angles congruent) having the same area as the circle. In the 
Euclidean plane, circle squaring was considered impossible with those 
tools, although a rigorous proof of that impossibility was not obtained 
until 1882, when Lindemann proved the much stronger result that 1T 

is transcendental. Even as early as 450 B.c., the Greek playwright Aristo
phanes poked fun at circle squarers in his comedy The Birds. So it was 
with some caution that Bolyai published his result as part of the ap
pendix to his father's Tentamen. He wrote, in Section 33, as his last 
point in a five-point summary: "V. Finally, to friendly readers it will 
not be unacceptable, that for the case wherein not � but S is reality, 
a rectilinear figure is constructed equivalent to a circle." Bolyai denoted 
Euclidean geometry by � and what we now call hyperbolic geometry 
by S. Point I of his summary stated: "Whether� or some one S is re
ality remains to be decided." (The words "some one" refer to the dif
ferent possible values of the distance scale k.) 

Throughout this section, the word "construct" or "construction" 
refers only to "straightedge-and-compass construction," and k will still 
be taken to be 1. At the end of this section, we will discuss a new re-

6 For one example, see J. Gray (2004, pp. 67, 69). 
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lationship between constructions in the hyperbolic plane and con
structible real numbers. 

The problem of circle squaring, like the problem of angle trisection, 
is to find a general method of constructing the desired figure from the 
given figure. In the case of angle trisection, many particular angles can 
be constructively trisected, such as a 135° angle (bisect a right angle). 
But there is no general method of angle trisection as there is for bi
secting an arbitrary angle. Similarly, some Euclidean circles can be 
squared, for if you start with a circle whose radius is a/v;., where a 

is some constructible length, then that circle can obviously be Euclid
ean-squared. If the only radii considered are those whose length is a 
constructible real number, then no Euclidean circle can be squared be
cause v;., being transcendental, is not a constructible real number. 

Bolyai did not provide a general method for squaring circles in the 
hyperbolic plane because no such method exists-for one thing, because 
areas of circles are unbounded (by the formula in Theorem 10.7 for 
their area in terms of the radius), whereas areas (equal to their defects) 
of regular 4-gons are bounded by 27r. What he did was construct both 
a circle having area 1T and a regular 4-gon whose angles measure 7T/4; 
this regular 4-gon has area 1T as well. He also saw the general answer 
to when both such constructions are possible, as we shall describe 
below. 

Consider the latter construction first. The regular 4-gon with angles 
measuring 7T/4 is obtained by first constructing a right triangle with 
acute angles 7T/4 and 7T/8 and then reflecting it seven times (Figure 
10.31). Such a right triangle can be constructed by the method in the 
proof of the right triangle construction theorem (p. 506). 

The radius r of a circle of area 1T is the side of the equilateral pedal 
triangle of a trebly asymptotic triangle (example 2, p. 499); it satisfies 
co sh r = 3 /2. Thus there are constructions in the hyperbolic plane of 
both a circle and a regular 4-gon having an area equal to 'TT. That is 

another key difference between Euclidean and hyperbolic geometries. 

We know from Theorem 10.7 that the area of a circle of radius r 

is 47T sinh2(r/2). Bolyai showed that the key to construction of the ra
dius r of a desired circle is the following general theorem. 

BOLYAI'S CIRCLE-ANGLE THEOREM. Given either an acute angle of 
radian measure 0 or a segment of length r (distance scale k = 1), then 
there is a straightedge-and-compass construction of one from the other 
satisfying tan 0 = 2 sinh(r/2). 
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Figure 10.31 Regular 4-gon of area -rr. 

Figure 10.32 shows the geometric relationship between 0 and r. See 
Project 2 for indications of the proof (an excellent exercise). Since the 
angle 0 = 7T/4 is constructible, this construction also provides the ra
dius of a circle of area 'TT. 

COROLLARY. There is a constructive correspondence between circles 
of radius r and acute angles 0 such that the area of the circle is 
1T tan2 0. 

PROOF: 

Substitute in the formula of Theorem 10.7 for the area of a circle. <Ill 

Figure 10.32 Angle (} associated to radius r. 
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REMARK. If we let R =tan 0, the area of the circle is 7TR2• This cor

respondence associates with each circle in the hyperbolic plane of ra

dius r a circle in the Euclidean plane of radius R having the same area. 

But it is the angle 0 that is of interest now. 

As a key step in his proof of Bolyai's circle-angle theorem, George 

Martin exhibits a simple construction for the segment of parallelism. 

GEORGE MARTIN'S THEOREM. Given an acute angle <}:'.BAC labeled 
� 

so that C is the foot of the perpendicular from B to AC. Let en be 
� � 

the opposite ray to CB. On the opposite side of AC from B, construct 

the ray s emanating from A for which the angle formed by ray s and 
� 

AC is the angle of parallelism for segment AB (using Bolyai's parallel 

construction, Chapter 6). Then ray s intersects ray en at some point 

D, and AD is a segment of parallelism for <}:'.BAC (see Figure 10.33). 

PROOF: 

Since AB> AC (hypotenuse greater than leg), Il(AB) < Il(AC) (ex

terior angle theorem, Major Exercise 4, Chapter 6). Hence point D 

exists (by definition of a limiting parallel ray). By formulas (6) and 

(10) of hyperbolic trigonometry, 

tanh AC tanh AC 
cos <}:'.BAC = -

h
- =--

TI
-

( ) 
= tanh AD= cos Il(AD), 

tan AB cos AB 

so <}:'.BAC = Il(AD) . .... 

A 

s 

Figure 10.33 Construction of segment of parallelism AD. 



524 F U R T H E R RE S U L T S I N RE A L H Y P E R B 0 L I C G E 0 M E T R Y 

The general question of when it is possible to construct both a cir
cle and a regular 4-gon having the same area was answered by Bolyai, 
though he did not justify a crucial step. A justification was given in a 
1995 article by William Jagy.7 The answer is very surprising. It comes 
down to the famous theorem of Gauss and Wantzel determining for 
which n the regular n-gon can be constructed in a Euclidean plane. 

We sketch what Jagy did. He showed that it is generally impossi
ble, starting with an arbitrary circle of area <27T, to construct a regu
lar 4-gon having the same area (Theorem B); conversely, beginning 
with an arbitrary regular 4-gon, it is impossible in general to construct 
a circle having the same area (Theorem C). For Theorem B he gave 
N. M. Nestorovich's example of the circle with radius r-constructible 
by the Mordukhai-Boltovski (M-B) theorem below-such that 

sinh !... = 
Vz - V2. 

2 2 

The regular 4-gon having the same area has angle u = 7TVz/4, which 
is not constructible by Theorem A below. For Theorem C, Jagy used 
two theorems about irrational numbers8 to produce a whole family of 
counterexamples-a remarkable insight. So we will focus on the prob
lem of simultaneously constructing both a circle and a regular 4-gon 
having the same area. 

As Bolyai's circle-angle theorem showed, the problem comes down 
to constructing two angles-the auxiliary angle 0 for which the circle 
has area 1T tan2 0 and the acute angle u of the regular 4-gon. The equa
tion for equal areas is then 

1T tan2 0 = 21T - 4u. 

A key result needed to solve this problem is the following. 

7 W. C. Jagy, "Squaring Circles in the Hyperbolic Plane," Mathematical Intelligencer, 
1995, 17(2), 31-36. The result is also discussed in N. M. Nesterovich, "On the Quad
rature of the Circle and Circulature of a Square in Lobachevskl Space (Russian), Dok
lo.dy Academiya SSR (N.S.), 63 (1948), 613-614; see http://zakuski.math.utsa.edu/ 
�gokhman/ftp/translations/quadratic.pdf. Bolyai restricted the case to where the cosh 
of the radius is rational; Jagy proved that was not really a restriction. 

8 The Gelfond-Schneider theorem states that ab is transcendental if a is algebraic, i= 0, or 
1, and bis algebraic and irrational. Olmstead's theorem states that if Tis a rational mul
tiple of 'TT', the only possible values of tan T that are rational are 0, 1, and -1. Proofs 
of these theorems are in I. Niven's Irrational Numbers (Washington, DC: Mathemati
cal Association of America, 1956). 
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ANGLE CONSTRUCTION THEOREM (ACT). An angle can be con
structed in the hyperbolic plane if and only if it can be constructed in 
the Euclidean plane. 

PLAN FOR A PROOF: 

Use the theorem that the abstract hyperbolic plane is isomorphic to 
its conformal Poincare disk model (Hartshorne, Corollary 43.3). 

More details are given below. 

COROLLARY. There is no general construction for trisecting all angles 
in the hyperbolic plane. 

PROOF: 

By the theorem of Pierre Wantzel that there is no such construction 
in the Euclidean plane.9 <111 

Continuing with Jagy's argument: If 0 and u are both con
structible, then w = 21T - 4u is a constructible angle and we have 
x = tan2 0 as a constructible length. Using the theorem of Gelfond
Schneider on transcendental numbers, Jagy proves x must be ra

tional. Writing x = m/n in lowest terms, he shows that 27T /n is a 

constructible angle. Juxtaposing n copies of this angle, a circle cen
tered at their common vertex is cut by the rays of these angles to 
given points that can be joined by segments to form a constructible 
regular n-gon. Gauss determined all integers n for which the regu

lar n-gon in the Euclidean plane is constructible, and Wantzel com
pleted his argument. 

THEOREM OF GAUSS-W ANTZEL. A Euclidean regular n-gon is con
structible if and only if any odd primes in the prime factorization of n 

occur to the first power and are Fermat numbers, numbers of the form 

Fk = 22k + 1. 

For a proof, see Hartshorne, Theorem 29.4. Stated differently, the 
result applies to both the Euclidean and hyperbolic planes, by the ACT, 
because it's a criterion for constructing the angle 21T/n. For k = 0, 1, 

2, 3, 4, these Fermat numbers are 3, 5, 17, 257, and 65,537, all of which 

9 See Hartshorne, Section 28. Wantzel's 1837 proof has a gap that was filled by J. 
Petersen in 1871 in an article in Danish. See Hartshome's note, p. 490. 
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are prime. For 5 < k < 23 these Fermat numbers are not prime, and 

that is all that is presently known about Fermat numbers. 

Solving for u in terms of the common area w, which is an angle in 

the hyperbolic plane (it is a defect), we see that one of them is a ra

tional multiple of 'Tr, with the denominator n of the rational number 

being of the above form if and only if the other is; in that case, tan (), 

being the square root of a rational number, is constructible, whence () 

is easily constructible in the Euclidean plane. Hence () is constructible 

in the hyperbolic plane by the ACT. So the final result is as follows. 

BOLYAI's CONSTRUCTION THEOREM (JAGY's THEOREM A). Sup

pose that a regular 4-gon with acute angle u and a circle in the hy

perbolic plane have the same area w < 27r. Then both are constructible 

if and only if u is an integer multiple of 27r/n, where n is a number 

for which the angle 27r/n is constructible (there are infinitely many 

such n since the power of 2 in the factorization of n can be arbitrary, 

for example, when w = 'Tr, n = 8). 

On the final page of Bolyai's great appendix, he referred admiringly 

to "the theory of polygons of the illustrious Gauss (remarkable inven

tion of our, nay of every age)." We can applaud the invention/discov

ery /development of hyperbolic geometry by him and by Lobachevsky10 

as being at least as remarkable. 

Relation between Constructions and Constructible Real Numbers. 

In the Euclidean case, this topic has been treated carefully in many 

texts. Recall from Example 4, Chapter 3, that a constructible real num

ber is one that can be obtained from rational numbers by finitely many 

applications of addition, subtraction, multiplication, division, and 

square roots of positive numbers. 

If we ask, starting with the origin and the unit points, which other 

points (a, b) in IR2 can be constructed, the classical answer is exactly 

those points whose coordinates are constructible real numbers-

10 We have exhibited a deep result of J. Bolyai that Lobachevsky didn't consider. Gauss, 

in his infamous reply to F. Bolyai after receiving his Tentamen, posed to J. Bolyai the 

difficult problem of determining the volume V of a tetrahedron in hyperbolic space, 
saying "As the area of a triangle can be obtained so simply, one would expect a sim

ple expression for that volume also. This expectation appears to be treacherous." 

Lobachevsky solved it: See Coxeter (1998, p. 289). The answer is in terms of what 
has come to be called the Lobachevsky function: 

L(x) = r ln(sec 8) d8. 
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essentially because lines and circles have linear and quadratic equa

tions, respectively (see Hartshorne, Theorem 13.2, or Moise, Chapter 

19, for the lengthy details). From that result, the impossibility of in gen

eral trisecting an angle, of duplicating a cube, and of squaring a circle 

can be proved, and the values of n for which the regular n-gon can be 

constructed can be determined (see Hartshorne, Chapter 6). 

For the hyperbolic plane, the result quoted in some texts and arti

cles is the following. 

MORDUKHAI-BOLTOVSKI THEOREM (1927). In the real hyperbolic 

plane with distance scale k = 1, a segment of length r is constructible 

if and only if sinh r (equivalently, cosh r or tanh r or er) is a con

structible real number. 

The equivalence follows from algebraic relations among er, sinh r, 

cosh r, and tanh r. Note that according to this M-B theorem, for a dis

tance scale k = 1, the unit segment cannot be constructed because that 

would imply that the number e is constructible; but Hermite proved in 

1873 that e is transcendental. 

COROLLARY. A non-right angle () in the real hyperbolic plane is con

structible if and only if tan () (equivalently, sin () or cos O) is a con

structible real number. 

PROOF: 

We may restrict our attention to acute angles () (by bisecting an ob

tuse angle). Then we know that() = Il(x) for a uniquely determined 

length x and that () is constructible if and only if x is (Bolyai's con

struction in Chapter 6 of the limiting parallel ray provides () given 

x, and George Martin's construction provides x given O). The corol

lary now follows from formulas (S), (6), and (7) relating the trigono

metric functions of () to the hyperbolic trigonometric functions 

of x. <11111 

The corollary also holds in the Euclidean plane for a more elemen

tary reason: We can go back and forth between () and any of its trigono

metric values by constructing a suitable right triangle having () as one 

of its acute angles: If tan () is constructible, construct the right triangle 

having tan () as the length of one leg and 1 as the length of the other; 

then() is the angle opposite the leg of length tan 0. Conversely, if acute 
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angle () is constructible, lay off a segment of length 1 on one side of 

the angle. At the end of that segment, erect a perpendicular; it must 

intersect the other side of the angle (by Euclid V) to form a right tri

angle in which the side opposite () has length tan (). 

Thus the ACT also foUows from the M-B theorem. 

Knowing that the theory of constructions in Euclidean planes does 

not require the full power of the real numbers, I saw that for hyper

bolic planes, the discussion about distance scale k = 1 and the use of 

hyperbolic functions are not necessary for the characterization of con

structible segments in a hyperbolic plane. The key to avoiding them is 

Hartshorne's concept of the multiplicative lengthµ, of a segment (Chap

ter 7, p. 320), recovered in a real plane from the additive length by ex

ponentiating. That led me to conjecture this generalization of the M-B 

theorem to arbitrary (not necessarily real) hyperbolic planes. 

HYPERBOLIC CONSTRUCTIBLE SEGMENTS THEOREM. In a hyperbolic 

plane, given two perpendicular lines and a choice of one end labeled 

1 on one of those lines and a choice of ends labeled oo and 0 on 

the other. Then with respect to Hilbert's field of ends based on those 

data, a segment is constructible if and only if its multiplicative length 

µ, is a constructible number. For any constructible number a> 1, 

there exists a constructible segment having a as its multiplicative 

length. 

Since the additive length d in a real hyperbolic plane is given by 

d =logµ,, the M-B theorem follows from this theorem. In Appendix B, 

Part I, we will describe the field of ends and give Hartshorne's proof. 

Review Exercise 

All statements in this exercise refer to hyperbolic geometry (unless ex

plicit mention of other geometries is made). Which of the following 

statements are correct? 

(1) The area of a triangle is proportional to its defect. 

(2) The angle of parallelism II(x) in radians relates the circular and 

hyperbolic functions by means of an equation such as tanh x = 

cos II(x). 
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(3) In all right triangles having a fixed number of radians for <r..A 
(and standard notation, right angle at C) , the ratio ajc is the 
same and is called the sine of <r..A. 

( 4) J. Bolyai discovered a formulation of the law of sines that is 
valid in neutral geometry. 

(5) The segment length x* complementary to x is uniquely deter
mined by the formula II(x*) = 7r/2 - II(x). 

(6) The equations relating Beltrami coordinates to Lobachevsky co
ordinates are x = tanh u and y = tanh v. 

(7) With standard notation, if a is the largest side of �ABC, then 
the cycle circumscribing �ABC is a circle if and only if we have 
sinh (a/2) > sinh (b/2) + sinh (c/2). 

(8) The representation by Weierstrass coordinates helps make 
sense of Lambert's description of the hyperbolic plane as a 
"sphere of imaginary radius i." 

(9) The curvature of the hyperbolic plane is 1/k2, where k2 times 
the defect in radians equals the area of a triangle. 

(10) The analogue of the Pythagorean theorem is cosh c = 
cosh a cosh b (for a right triangle with right angle at C, stan
dard notation, k = 1). 

Exercises 

1. Verify all the identities for hyperbolic functions listed in the table 

on p. 490. 

2. Verify formulas (5), (6), (7) in which II provides a link between 
hyperbolic and circular functions. Graph the function II(x). 

3. The proof of Theorem 10.3 required a complicated argument using 
the Poincare model. Give a shorter proof using the Klein model. 
(Hint: According to the note at the end of Chapter 7, you can as-

- -

sume A = 0, the center of the absolute. Show that cos A = AC/ AB 
-- -

and sin A = BC/ AB (Euclidean lengths) , AB = tanh c (where c = 
d'(AB) is the Klein length) , AC= tanh b, and BC= (1 - AC2) 112 
tanh a= tanh a/cosh b (use Theorem 7.4) . Conclude by deducing 
the formula cosh c = cosh a cosh b from the Pythagorean theorem. 
See Figure 10.34). 

4. Prove Theorem 10.4. 

5. Verify step 2 in the proof of Theorem 10.6. 
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Figure 10.34 

B 

.; .Y1 tanh a sech b 

A=O�C 
,tanhb1 
\ I \ I \ I I\ I sechb 

\ I 
\ I 
\ I 
\I 

6. Verify formulas (18) through (21) for complementary lengths. Graph 

the function 

eX + 1 
f(x) = x* = In . 

eX - 1 
7. Prove the assertions about Weierstrass coordinates in Theorem 

10.10. (Hint: Derive the equation of a line in Weierstrass coordi

nates from the equation of a line in Beltrami coordinates.) 

8. Verify formulas (28) and (29) in the proof of Theorem 10.10 and 

use them to reconcile with the distance formula in Exercise K-14, 

Chapter 7. 

9. Generalize Lemmas 10.1 and 10.2 by showing that if (x1, yi) and 

(x2, y2) are distinct points in the Klein model, then the midpoint 

and perpendicular bisector of the segment they determine are given, 

respectively, by 

(X1S2 + X2S1
' 

Y1S2 + Y2S1 ) 
S1 + 82 S1 + 82 

where Si= v' 1 - xt- yf, i = 1, 2. (Hint: Use Lemma 10.2 to find 

the point Q in the Cartesian plane where the perpendicular bisec-
� 

tors of OP1 and OP2 meet. Then joining Q to the pole of P1P2 gives 

the perpendicular bisector of P1P2, and intersecting it with P1P2 gives 

the midpoint.) 

10. Prove the corollary to Theorem 10.11. 
11. In a right triangle with right angle at C, prove that the circumscribed 

cycle is a 
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(Hint: Apply the second criterion of Theorem 10. 1 1  with �C the 

largest angle, using the fact that II is a decreasing function. Or else 

argue directly from the definition of complementary lengths.) 

12. Verify A. P. Kotelnikov's rule for remembering the relations among 

the parts of a right triangle with the right angle at C, standard no

tation (x* denoting the complementary length to x): In Figure 10.35, 

the sine of each angle is equal to the product of the tangents of the 

two adjacent angles and is equal to the product of the cosines of the 

two opposite angles. For example, 

sin A= tan II(a*) tan II(c) = cos II(b*) cos B. 

(This rule is the hyperbolic analogue of the rule John Napier pub

lished in 1614 for the trigonometry of a right triangle on a unit 

sphere in Euclidean space. For Napier's rule, use a, b, A', c', B' in 

cyclic order, where A' denotes the complementary angle to �A and 

c' = 'TT/2 - c. J. Bolyai and Lobachevsky discovered that spherical 

trigonometry in hyperbolic space is the same as in Euclidean space.) 

Figure 10.35 Kotelnikov's rule. 

13. In Euclidean geometry, every circle can be inscribed in a triangle 

(the tangents at three appropriate points on the circle meet to form 

a triangle). Show that in hyperbolic geometry (with k = 1), an in

scribed circle of a triangle must have a diameter less than In 3. 

(Hint: In Figure 10.37, show that (�AIB'Y + (�BIC'Y + (�CIA'Y = 

'TT and that each of these three angles is less than II(r); then apply 

the Bolyai-Lobachevsky formula to find x such that II(x) = 'TT/3.) 
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14. (a) Show that (with k = 1) a trebly asymptotic triangle has an in

scribed circle of diameter In 3 (see Exercise K-13, Chapter 7). 

(b) Show that the ratio of the area to the circumference of a cir

cle of radius r is tanh r /2. 

15. Show that for any three positive numbers a, {3, y such that we have 

7r >a + {3 + y, there exists a triangle having these numbers as the 

radian measures of its angles. (Hint: Use Theorem 10.4.) 

16. In a singly asymptotic triangle ABO, if c =AB, then 

h 
_ cos A cos B + 1 

cos c -

. A . B 
. 

sm sm 

(Hint: Let C approach fi in formula (15), Theorem 10.4. For a proof 

without using continuity, note that when <r..A and <r..B are acute, 

c = rr-1(a) + rr-1({3), 

where a = ( <r..AY and {3 = ( <r..BY-see Figure 10.36.) Show that the 

generalization of the Bolyai-Lobachevsky formula to the case where 

{3 < 7r/2 is 

tan � = e-c cot � . 

A 

Figure 10.36 

17. Write down equations that show how the side and the angle of an 

equilateral triangle determine each other. 

18. (a) In a right triangle with standard notation and right angle at C, 

show that tan A= tanh a/sinh b. 

(b) Deduce that in an isosceles triangle with base b and side a, 

summit at B, and one base angle at A, 

tanh a cos � = tan A sinh �, 
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(Hint: Drop the altitude to the base.) 
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19. In a right triangle �ABC with right angle at C (and standard nota
tion), show that 

sinh a sinh b sin K = ---------

1 + cash a cash b ' 

where K = the area = the defect of �ABC. (Hint: Use Theorem 10.3 
and trigonometric identities.) 

20. Given �ABC, if h is the length of the altitude from vertex B, show 
that (in standard notation) the product sinh b sinh h is independ
ent of the choice of which vertex is labeled B; this is the hyperbolic 
analogue of the Euclidean theorem that bh is constant. (Hint: Show 
that sinh b sinh h = S sinh a sinh b sinh c, where Sis the constant 
ratio occurring in the law of sines.) The next exercises will shed 
light on the geometric significance of the constant f sinh b sinh h, 

which we will denote by H (for Heron); by the hint, we have 
2H = sin C sinh a sinh b = sin B sinh c sinh a = sin A sinh b sinh c. 

In Exercises 21-28, s will denote the semiperi.meter Ha+ b + c) of 
�ABC. 

21. Show that (in standard notation) 

. A sin-= 
2 

A cos-= 
2 

sinh(s - b) sinh(s - c) 

sinh b sinh c 

sinh s sinh(s - a) 
sinh b sinh c 

(Hint: Square both sides; use identities and Theorem 10.4.) 
22. Show that H = Vsinh s sinh(s - a) sinh(s - b) sinh(s - c). (Hint: 

Use the identity sin A = 2 sin(A/2) cos(A/2) .) 
�-------

23. "Infinitesimally," the Heron is equal to V s(s - a) (s - b) (s - c). 

Show that in Euclidean geometry, this quantity is equal to the area 
of �ABC. (Hint: See Coxeter, 2001, p. 12.) 

24. Suppose the inscribed circle of �ABC has radius rand touches BC 
at A', CA at B', and AB at C'. Show that in neutral geometry, AB' = 
s - a = AC', BC' = s - b = BA', CA' = s - c = CB' (see Figure 
10.37). (Hint: Review the construction of the inscribed circle in Ex
ercise 18, Chapter 4.) 

25. Deduce from Exercise 24 that in hyperbolic geometry, 

tanh r sinh s = H, 
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whereas in Euclidean geometry, rs= the area of .6..ABC. (Hint: In 
hyperbolic geometry, use Exercises 18, 21, 22, and 24 to compute 
tan (A/2) sinh (s - a); in Euclidean geometry, add up the areas of 
triangles IAB, IBC, and ICA in Figure 10.37.) 

c 

Figure 10.37 

26. Prove Gauss' equations: 

1 . 1 1 1 cosh 2 c sm 2(A + B) = cosh 2ca - b) cos 2 C, 

1 1 1 . 1 cosh 2 c cos 2(A + B) = cosh 2ca + b) sm 2 C, 

sinh � c sin � (A - B) = sinh � (a - b) cos � C, 

sinh � c cos � (A - B) = sinh � (a + b) sin � C. 

(Hint: Use identities such as 

sinh x + sinh y = 2 sinh � (x + y) cosh � (x - y) 

and analogous identities for the circular functions; then apply the 
half-angle formulas of Exercise 21.) 

27. Show that a hyperbolic analogue of Heron's Euclidean area formula 
in Exercise 23 is the formula 

. K H Sln - = ---· ---- ---2 a b c
' 

2 cosh 2 cosh 2 cosh 2 
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where K = area = defect of .6..ABC. (Hint: Use Gauss' equations, the 
identity sin K/2 = cos t (A + B + C), other trigonometric identities, 
and the formula H = t sin C sinh a sinh b.) 

28. If .6..ABC has a circumscribed circle of radius R, show that 

2 .h
a 

.h
b 

.h
e 

sm 2sm 2sm 2 
tanh R = _____ 

H 
_____ _ 

which by Exercise 27 is equivalent to formula (30) of Theorem 10.12. 
(Hint: In Figure 10.38, we have that sin A= sin(,B' + y') and 
H = t sin A sinh b sinh c; use Theorem 10.3 to determine cos y' 

and cos {3' and use Exercise 18 to determine sin y' and sin {3', ob
taining with the help of identities the formula 

H tanh R = [cos � sinh � + cos � sinh � J 2 sinh � sinh � . 

Show finally that the term in brackets equals sinh a/2 by using The
orem 10.3 to derive expressions for sinh a/2, sinh b/2, and sinh c/2 
and plugging in sin( y + {3)/2 = sin a/2.) 

Figure 10.38 

29. Let il�A be a trebly asymptotic triangle and .6..ABC its pedal trian

gle formed by the feet of the perpendiculars from each ideal vertex 
to the opposite side. Since all trebly asymptotic triangles are con
gruent to one another by Proposition 9.16(c), .6..ABC is equilateral. 
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Show that in the Poincare upper half-plane model, the radian mea
sure () of an angle of .6..ABC is given by the relation tan fO = f or 
tan() = t, sin() = f, cos () = % and that the length c of a side is given 
by cosh c = 1. Deduce that a circle whose radius is a side of .6..ABC 

has an area equal to 'TT. Show further that the Heron H, the cir
cumradius R, and the inradius r of .6..ABC are given by 

H=l_ 
2' 

1 
tanh R = z' 

1 
tanh r = 4. 

(Hint: There are many ways to obtain these results using the pre
vious exercises and the models. In the Poincare upper half-plane 
model, taking il = -1, � = oo, A = 1 gives A= i, B = 1 + 2i, 

� 

C = -1 + 2i. Show that BC is the upper semicircle of x2 + y2 = 5, 
� 

that AB is the upper semicircle of (x - 2)2 + y2 = 5, and that the 
tangents to these circles at B have slopes -f, f, respectively. 

This and the double angle formulas yield the assertions about 
0. Exercises 18(a), 20, 25, and 28 can then be applied. Or use the 
Klein model, choosing triangle il�A so that the origin is the incen
ter and circumcenter of .6..ABC.) 

30. In any Hilbert plane, if two altitudes of a triangle meet (which is 
automatic if no angle is obtuse), then the third altitude is concur
rent with them (Hartshorne, Theorem 43 .15). For .6..ABC with an 
obtuse angle at C in a hyperbolic plane, the lines containing the al
titudes are concurrent in a point H that may be ordinary, ideal, or 
ultra-ideal (see Exercise K-18, Chapter 7, for the Klein model). Us
ing hyperbolic trigonometry, this result can be made more precise. 
Leth be the length of the altitude dropped from vertex C. 
(a) Show that H is ordinary, ideal, or ultra-ideal according to 

whether -cos C tanh a tanh b is less than, equal to, or greater 
than tanh h, respectively. 

(b) Suppose the triangle is isosceles (a= b). Then H is ordinary, 
ideal, or ultra-ideal according to whether coth a is greater than, 
equal to, or less than sec fC - 2 cos fC. In particular, if we 
have ( <i:CY < 21T/3, then H must be ordinary. 

(c) This geometric argument shows that for any triangle with ob
tuse angle at C, if H is ideal, then() = ( <i:CY > 21T/3. Draw the 
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diagram to illustrate this argument and justify the assertions. 

Let F be the foot of the altitude from C to AB. Let (Ji, 02 mea

sure <i:FCA, <i:FCB, respectively, so that O = 01 + 02• Let n, A 
� � 

be the respective ends of rays CB, FC . By hypothesis, AA is 

perpendicular to the ray opposite to en at some point D, so 
� 

that 02 = II(CD). Since FB intersects en at B, CF< CD. Com-

pare right triangles ADC and AFC, which have the common 

hypotenuse AC. We see that 01 > 1T - 0 (e.g., by the second 
� 

formula in (10), Theorem 10.4). Since CA intersects the ray op-

posite to DA at A, we also see that 02 > 1T - 0. Hence we have 

0/2 > 1T - 0 as claimed. 

31. In a Euclidean plane, one method of trisecting right angles is to con

struct an equilateral triangle by the method of Euclid's proof of his 

Proposition 1 and then bisect its angle. This method does not work 

in the hyperbolic plane because it gives an angle with measure 

<1T/6. Yet the ACT asserts that an angle of measure 1T/6 can also 

be constructed in the hyperbolic plane. Find an explicit construc

tion. (Hint: See Exercise K-13, Chapter 7, for one method.) 

32. Show that in the hyperbolic plane, the maximum radius r of a cir

cle which can be inscribed in an ordinary or asymptotic triangle sat

isfies tanh r = 1/2. (Hint: See the examples on p. 499.) Prove that 

in a Euclidean plane, every circle can be inscribed in a triangle. This 

is another significant difference between Euclidean and hyperbolic 

geometry. 

33. An asymptotic quadrilateral has a symmetry point or center S ob

tained by intersecting its diagonal lines (see Figure 6.39, p. 285). 

Construct the regular asymptotic quadrilateral R in which S, by def

inition, is equidistant from the sides. Find the circumference and 

area of the inscribed circle 8 of R with center S. The feet of the per

pendiculars dropped from S to the sides of R form a regular 4-gon; 

find the length of its side and its area. 

Projects 
1. We described congruence in the hyperbolic plane model of the 

Euclidean plane indirectly using the isomorphism <1>-1 (p, O) = 

(arcsinh p, O) from �
2
. In Chapter 9, we saw that in any H-plane, 

congruence is determined by reflections, which generate the group 

of motions. If we pull back Euclidean reflections via <1>-1, we ob

tain new mappings of the hyperbolic plane that we can call 



538 F U RT H E R R E S U LT S I N R EA L H Y PE RB 0 LI C G E 0 M E TR Y 

e-reflections. Show that the e-reflection in a hyperbolic line l through 
our origin 0 is the same as the hyperbolic reflection in l (hence e
rotations about 0 are the same as hyperbolic rotations about O). 
But if K is an equidistant curve for l, can the e-reflection in K also 
be described geometrically within the hyperbolic plane? Think of 
the Poincare disk model, where h-reflections are described geomet
rically as inversions in circles orthogonal to the rim of the disk. Is 
there an analogous hyperbolic geometric theory of e-reflections in 
curves equidistant from lines through O? In suitable coordinates, ex
press the e-reflection in K of any point P in terms of data from P, K, 

and l. 

In the Poincare disk model, e-reflections are not inversions in the 
circles which cut out those equidistant curves in the disk. The confor

mal disk model, in which lines are diameters of the unit disk or arcs 
of circles cutting the rim at the ends of a diameter, is Klein's model of 

the elliptic plane with one line removed (the rim with antipodal points 
identified is the missing line)-see Coxeter (1998, Section 14.6 and Fig
ure 14.8A). This model is obtained from the lower hemisphere model 
in �3 of the elliptic plane, in which lines are great semicircles, by stereo
graphic projection from the north pole onto the equatorial disk. Al
though the interpretation of points and lines is the same, determine 
the different formulas for distance that distinguish the elliptic geome
try disk model from the Euclidean geometry disk model. 

2. From Figure 10.32, use hyperbolic trigonometry and the formula for 
sinh 2x to prove that tan () = 2 sinh(r/2). As for constructibility, 
it is easy to see from that figure how to construct () given r. The 
reverse construction is more subtle-see Martin (1982, Construction 
7, Chapter 34), or Gray (2004, pp. 69-74). It uses theorems that the 
three altitudes and the three angle bisectors of a singly asymptotic 
triangle-suitably interpreted-are each concurrent. Explain and re
port on those. 

3. The right triangle construction theorem is a special case of the fol
lowing more general theorem: In a hyperbolic plane, given any an
gles A, µ,, v such that A + µ, + v < 1T, a triangle can be constructed 
(unique up to congruence) having A, µ,, v as its angles. If you can
not figure out how to construct this triangle, report on the con
struction using a pentagon in Martin (1982), p. 486. 

4. Explain how Jagy shows that if() and u are constructible, then we 
see that x = tan2 () is a constructible length, and by the theorem of 
Gelfond-Schneider on transcendental numbers, x must be rational. 

Explain how Jagy gets the counterexamples for his Theorem C. 
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5. In the hyperbolic plane with k = 1, it is a theorem that Schweikart's 

segment p cannot be trisected with a straightedge and compass. This 
can be proved via the M-B theorem and the identity 

sinh 3t = 4 sinh3 t + 3 sinh t, 

provided you know that certain cubic equations have no solution 
in the field K of constructible numbers. Report on a proof of that 
impossibility (e.g., in Ramsay and Richtmyer, 1995, Section 11.3). 

Show how to trisect, with a straightedge and compass, an arbitrary 
segment in a Euclidean plane. This is another significant difference 

between Euclidean and hyperbolic geometry. 

6. It is a theorem that the tangent at one endpoint of a horocyclic arc 
is asymptotically parallel to the line extending the diameter of the 
horocycle from the other endpoint when the length of the arc is 1 

(distance scale k = 1). The tangent is defined to be the line that is 
perpendicular to the diameter at that point on the horocycle. Report 
on a proof of this theorem-e.g., disentangling it from Martin (1982), 

Theorem 32.2. 

7. If you know calculus, report on what calculus is like in the real hy
perbolic plane (see Martin, 1982, Section 34.2, or Wolfe, 1945). Men
tion the differential formulas for arc length and area, both in 
Lobachevsky coordinates and in polar coordinates, and apply those 
formulas to circles, equidistant curves, and horocycles. Alterna
tively, do this report for the Poincare upper half-plane model (there 

are many references, such as Stahl, 1993). 

8. In the Poincare upper half-plane model, the ideal points are the 
points on the x-axis together with a new point oo; geometrically, 
they form a circle, as can be seen from the isomorphism with the 
disk model. Analogously, in the upper half-space model of hyper
bolic three-space, the ideal points are the points in the (x, y)-plane 
II0 together with a new point oo; geometrically, they form a sphere, 
as can be seen by an analogous isomorphism with another model, 
the interior of a sphere. The geometry of hyperbolic three-space can 
be described in terms of the Euclidean geometry of circles on a 
sphere (inversive geometry). From the point of view of Klein's Er

langer Programme, these geometries are equivalent because they 
have the same group of direct automorphisms, the group of Mobius 

transformations PGL(2, C). Report on this (see Coxeter, 1998, Sec
tion 14.9; Stillwell, 1992, Section 4.9; and search the web for other 
references). Recall from Chapter 9 that the group of direct auto
morphisms of the real hyperbolic plane is PGL(2,IR), so going from 



540 F U R T H E R R E S U L T S I N R E A L H Y P E R B 0 L I C G E 0 M E T R Y 

two hyperbolic dimensions to three corresponds to going from IR to 

C in the group of Mobius transformations. 

9. Learn about three-dimensional hyperbolic geometry from the liter

ature and the web and write a report about it. Explain what a horo

sphere is and how, with "lines" interpreted as horocycles on the 

horosphere and with a suitable notion of congruence, a model of a 

Euclidean plane is obtained, as F. L. Wachter first observed in an 

1816 letter to Gauss. One reference is Ramsay and Richtmyer (1995, 

Sections 4.7-4.9, 9.4). This model shows that the Euclidean plane 

can be embedded as a surface in hyperbolic three-space, but Hilbert 

showed that the hyperbolic plane cannot be smoothly embedded as 

a surface in Euclidean three-space. Report on that result if you know 

differential geometry. 

10. A major project is to learn advanced Euclidean geometry and see 

how much of it carries over or has analogues in hyperbolic geom

etry. As some examples, is there an interesting theory of cyclic 

quadrilaterals? Is there an Euler line? What can be said about reg

ular pentagons and hexagons (including asymptotic ones) and their 

inscribed circles? About pentagons and hexagons in which all 

angles are right angles? In the Euclidean plane, every angle can be 

trisected using a marked straightedge and compass (Hartshorne, 

Chapter 6). Is that also the case in the hyperbolic plane? 

Once hyperbolic geometry was accepted toward the end of the 

nineteenth century and early twentieth century, there were many 

articles and books published about it. D. M. Y. Sommerville com

piled a bibliography of those articles in 1911, which has been re

published and somewhat updated to 1970. Some of this work may 

have been described in those articles. 



Elliptic and Other 
Riemannian 
Geometries 

The dissertation submitted by Herr Riemann offers convincing 

evidence . . . of a creative, active, truly mathematical mind, and of a 

gloriously fertile imagination. 

C. F. Gauss 

Elliptic Geometry 
In Euclidean geometry there is exactly one parallel to a line l through 

a point P not on l; in hyperbolic geometry there is more than one par

allel. A third geometry could be studied, one in which there is no par

allel to l through P, i.e., a geometry in which parallel lines do not exist. 

However, if we simply add the latter as a new parallel axiom to re

place the other parallel axioms, the system we get is inconsistent. In 

Corollary 2 to Theorem 4.1 we proved that parallel lines do exist in 

neutral geometry, so that we would get a contradiction by adding such 

a parallel axiom. 

To avoid this, we have to modify some of our other axioms. We 

can see what modifications need to be made by thinking of the surface 

of a sphere and interpreting "line" as "great circle." Then, indeed, there 

541 
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Figure A.1 (A, CI B, D). 

A 

B 

c 

are no parallel lines. But other things change as well. It is impossible 
to talk about one point B being "between" two other points A and C 
on a circle. So all the axioms of betweenness have to be scrapped. They 
are replaced instead by seven axioms of separation. In Figure A. l, A 

and C separate B and D on the circle since you can't get from B to D 
without crossing either A or C. 

Let us designate the undefined relation "A and C separate B and D" 
by the symbol (A, C I B, D). The separation axioms are then: 

SEPARATION AXIOM 1. If (A, BI C, D), then points A, B, C, and D 
are collinear and distinct. 

SEPARATION AXIOM 2. If (A, BI C, D), then we have (C, DI A, B) 
and (B, A IC, D). 

SEPARATION AXIOM 3. If (A, BI C, D), then not (A, CI B, D). 

SEPARATION AXIOM 4. If points A, B, C, and D are collinear and dis
tinct, then (A, B I C, D) or (A, C I B, D) or (A, D I B, C). 

SEPARATION AxIOM 5. If points A, B, and C are collinear and dis
tinct, then there exists a point D such that (A, B I C, D). 

SEPARATION AXIOM 6. For any five distinct collinear points A, B, C, 
D, and E, if (A, B I D, E), then either (A, B I C, D) or (A, B I C, E). 

To state the last axiom, we recall the notion of a perspectivity from one 
line onto another (from Chapter 7). Let l and m be any two lines and 
let 0 be a point not on either of them. For each point A on l, the line 
� 

OA intersects min a unique point A' (Figure A.2; remember the ellip-
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B 

Figure A.2 Perspectivity with center 0. 

tic parallel property); the one-to-one correspondence that assigns A' to 

A for each A on l is called the perspectivity from l to m with center 0. 

SEPARATION AXIOM 7. Perspectivities preserve separation; i.e., if 

(A, BI C, D), with l the line through A, B, C, and D, and if A', B', C', 
and D' are the corresponding points on line m under a perspectivity, 

then (A', B' IC', D'). 

Without the notion of betweenness we have to carefully reformu

late all the geometry using that relation. For example, the segment AB 
consists of the points A and B and all the points between them. Yet 

this doesn't make sense on a circle. We can only talk about the seg

ment ABC determined by three collinear points: It consists of the points 

A, B, and C and all the points not separated from B by A and C. 
Similarly, we have to redefine the notion of a triangle since its sides 

are no longer determined by the three vertices (see Figure A.3). 
Once these notions have been redefined, the axioms of congruence 

and continuity all make sense when rephrased and can be left intact. 

There is still a difficulty with Incidence Axiom 1, which asserts that 

two points do not lie on more than one line. This is false for great 

A 

Figure A.3 Two different "triangles" with the same vertices. 
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Figure A.4 A and A' are identified. 

circles on the sphere since antipodal points (such as the poles) lie on 
infinitely many lines. 

Klein saw that the way to remedy this is to identify antipodal points; 
i.e., just as we interpret "line" to mean "great circle" in this model, we 
interpret "point" to mean "pair of antipodal points" (Figure A.4). This 
means that in our imagination we have pasted together two antipodal 
points so that they coalesce into a single point. It can be proved, as 
you might guess, that such pasting cannot actually be carried out in 
Euclidean three-dimensional space. But we can still identify antipodal 
points in our minds-every time we move from one to the other, we 
think of ourselves as being back at the original point. 

In making these identifications, we discover another surprising prop
erty: A line no longer divides the plane into two sides, for you can 
"jump across" a great circle by passing from a given point to its now 
equal antipodal point that used to be on the other side. If we cut out 
a strip from this plane, it will look like a Mobius strip, which has only 
one side (see Figure A.5). The technical name for this property of 
"onesidedness" is non-orientability. 

To sum up, the axioms of plane elliptic geometry are the same as 
the incidence, congruence, and continuity axioms of neutral geometry 
(with the new definitions of segment, triangle, etc.). The betweenness 
axioms are replaced by separation axioms, and the parallel postulate is 
replaced by an axiom stating that no two lines are parallel. A model, 
which shows that elliptic geometry is just as consistent as Euclidean 
geometry, consists of the great circles on the sphere with antipodal 
points identified.1 

1 The geometry of the sphere itself is sometimes misleadingly called "double elliptic geom

etry." References for spherical geometry and trigonometry are Brannan, Esplen, and 

Gray (1999, Chapter 7) and McCleary (1994, Chapter 1). For more on the history of 

spherical geometry, consult Rosenfeld (1988, Chapter 1) and Katz (1998, Chapter 4). 
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Figure A.5 Mobius strip. 

As you might expect from this model, it is a theorem in elliptic 

geometry that lines have finite length. Moreover, all the lines perpen

dicular to a line l are not parallel to each other but are concurrent; i.e., 

all the perpendiculars to l have a point in common called the pole of 

l. In the model, for instance, the pole of the equator is the north (or, 

what is the same, the south) pole. 

Another model for plane elliptic geometry (due to Klein) is 

conformal-as in the Poincare model for hyperbolic geometry, angles 

are accurately represented by Euclidean angles. In this model, "points" 

are the Euclidean points inside the unit circle in the Euclidean plane 

as well as pairs of antipodal points on the circle; "lines" are either di

ameters of the unit circle or arcs of Euclidean circles that meet the unit 

circle at the ends of a diameter (see Coxeter, 1998, Section 14.6). This 

representation shows that the angle sum of a triangle is greater than 

180° in elliptic geometry (see Figure A.6 and the proof on p. 546). 

These two models of the elliptic plane are isomorphic by stereo

graphic projection, using as an intermediary model the lower hemi

sphere L, with great semicircles C as lines plus the equator, which is 

Figure A.6 Klein conformal elliptic model. 
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N 

Figure A. 7 Isomorphism of elliptic models. 

also a line after its antipodal points are identified: Just project L onto 

the equatorial disk D from the north pole N (see Figure A. 7). 

Here is an intuitive proof (Weeks, 2002, pp. 139-142) that for the 

unit sphere S and its associated model E of the elliptic plane, the an

gle sum of any triangle in Eis greater than 21T and the excess of that 

sum over 21T is equal to the area of the triangle. 

Given a triangle 6.. in E, its preimage on S consists of two disjoint 

congruent spherical triangles ABC and A'B'C', the points of one being 

the antipodes of the other. The angles of ABC have the same measure 

as the corresponding angles of 6... The area � of 6.. equals the area of 

ABC. Extend the sides of ABC into three great circles on S (Figure A.8). 

A lune is one of the regions bounded by two great circles meeting at 

two antipodal points, making, say, an angle() at their meeting points. We 

accept that the area of the lune depends linearly on (). Since the extreme 

case()= 1T gives a hemisphere, which has surface area 21T (Archimedes), 

the area of that lune is 20 by linearity. If a, {3, y are the angles of our tri

angle, the sphere is covered by three lunes having those angles and their 

three antipodal lunes (which have the same area). In adding up those 

lune areas to get the total area of the sphere, we see that the areas of our 

congruent triangles ABC and A'B'C' are counted three times. Hence 

4a + 4{3 + 4y = 41T + 4�, 

which gives the formula for � that we claimed. 
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Figure A.8 Excess of elliptic triangle equals its area. 

Elliptic geometry becomes even more interesting when you pass 

from two to three dimensions. In three dimensions, orientability is re

stored and a new kind of parallelism occurs. Two lines are called 

Clifford-parallel if they are equidistant from each other; the lines are 

joined to each other by a continuous family of common perpendicu

lar segments of the same length. Such lines cannot lie in a plane (in 

an elliptic plane, two lines must intersect), so they are skew lines. 

Moreover, in general, in elliptic space for any point P not on a line l 

there exist exactly two lines through P that are Clifford-parallel to l, 

called the right and left Clifford parallels to l through P. We say "in 

general" because there is a special line l*, called the absolute polar 

of l: If P lies on l*, there is only one Clifford parallel to l through P, 

which isl*. (Naturally, this is difficult to visualize! See Coxeter, 1998, 

Chapter 7.) 

Elliptic space is finite but unbounded-finite because all lines have 

finite length and look like circles, and unbounded because there is no 

boundary, just as on the surface of a sphere there is no boundary. In 

a universe having this geometry, with light rays traveling along ellip

tic lines, you could conceivably look through a very powerful telescope 

and see the back of your own head! (Although you might have to wait 

a few billion years for the light to travel all the way around.) 
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Riemannian Geometry 
It is impossible to rigorously explain the ideas of Riemannian geome
try without using the language and results of differential and integral 
calculus, as Gauss, Riemann, and their many successors did. So in this 
section, an attempt will be made to roughly describe the intuitive ideas, 
with a modicum of precision and a few calculus formulas for those in 
the know. The main references I recommend for follow-up study of this 
subject by novices are McCleary (1994), O'Neill (2006), and Weeks 
(2002). 

-CURVATURE 

As indicated in Chapter 10, the basic notion is curvature, and the ba
sic reason a real non-Euclidean plane differs from the real Euclidean 
plane is that it is somehow "curved," whereas the Euclidean plane is 
not curved or is "flat." Let us define this notion. 

Consider first dimension one. The two simplest one-dimensional fig
ures in a Euclidean plane are a line and a circle. We think of a line as 
not being curved, so we assign curvature k = 0 to a Euclidean line. A 
circle's curvature intuitively depends on its radius r. The larger r is, 
the more gradually the circle curves as we move around it, and in the 
limit as r approaches oo, if we fix one point P, the Euclidean circle ap
proaches its tangent line at P. As r approaches zero, the circle curves 
more and more sharply. So it is natural to define the curvature k of a 
circle of radius r by k = 1/r. In these definitions, the curvature is 
constant-it is the same at every point on the line or the circle. 

Now consider an arbitrary smooth curve y in IR2-i.e., a curve that 
has a continuously turning tangent line at every point P on y. The tan
gent line at P is the limiting position of a line joining P to a second 
point Q on y as Q approaches P along y (see Figure A.9) The limiting 
line must be the same whether you approach P from the left or from 
the right-e.g., the graph of y = lxl is not smooth at (O, O) because 
those limits are different, so there is a corner singularity at the origin. 
(For those who know calculus, a parametrized smooth plane curve is 
the image of an open interval in IR under a sufficiently differentiable 
mapping f(t) = (x(t), y(t)) into IR2 having a nowhere zero derivative 
f'(t) = (x' (t), y' (t)); this provides a nonzero tangent "velocity" vector 
at each point and its second derivative provides an "acceleration" vec
tor field along the curve.) 

Besides the fixed point P, we can also consider two other points P1 
and P2 on y. These three points generally determine a circle 8. Fix P 
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'Y 

Figure A.9 Tangent line is limit of secants. 

and let P1 and P2 both approach P along y. The limiting position of cir

cle 8 as P1 and P2 approach P is the circle that "best fits" the curve y 

at P and is called the osculating circle to y at P (from the Latin oscu

lare, "to kiss"); see Figure A.10. It is reasonable to define the curva

ture of y at P as the curvature of its osculating circle at P, i.e., the re

ciprocal k = 1/r of the radius r of the osculating circle (r is also called 

the radius of curvature of y at P). 

Figure A.10 Osculating circle. 

It is clear from Figure A.11 that the osculating circle will vary in 

size as we move along the curve y, so that the curvature k varies from 

point to point along y. Notice also that the tangent to y at a point P is 

also the tangent to the osculating circle at P. 

Notice further in Figure A.11 that the osculating circle may be on 

different sides of the curve y. It is convenient to redefine curvature so 

that it is positive on one side of y and negative on the other. Once this 

is done, it becomes clear that in Figure A.11 there must be a point I 



550 ELL IP TIC AND 0 THE R RIEMANN I AN GE 0 MET RIES 

Figure A.11 Varying osculating circles. 

between A and B on y at which the curvature is zero if we assume y 

is smooth enough for the curvature to vary continuously. This point I 

is called a point of inflection, and at such a point the osculating "cir

cle" degenerates into a line, the tangent line at I (see Figure A.12). 

What we have said about plane curves applies equally well to curves 

in Euclidean space, with the following modifications. The osculating 

circle lies in a unique plane through P called the osculating plane II of 

y at P (except in the degenerate case of a point P at which y has cur

vature zero). Since II varies with P if y is not a plane curve, we no 

longer have a smooth way to assign positive and negative values to the 

curvature. We assign a curvature vector k lying in the osculating plane, 

emanating from P and perpendicular to the tangent line toy at P (which 

also lies in the osculating plane), of length l/r and pointing toward the 

center of the osculating circle (called the center of curvature). If y has 

Figure A.12 Point of inflection k = 0. 
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Figure A.13 Curvature vector k. 

curvature zero at P, we take k to be the zero vector. If the curve is pa

rametrized by its arc length s starting from some initial point (or any 

other unit speed parameter), then its "velocity" tangent vector has 

length 1 at every point, and its acceleration vector equals the curvature 

vector at every point (Figure A.13). 
We next pass to a surface S in R3. Locally (i.e., in the neighbor

hood of each point on it), S looks like the graph of a sufficiently well

behaved function of two real variables. Again, we are interested in a 

smooth surface that has a continuously turning tangent plane T (de

fined analogously to the tangent line to a curve) at all of its points. Lo

cally, there are two continuous fields of unit normal vectors perpendic

ular to the tangent planes at points in that neighborhood, the vectors 

in one field being the negatives of the other. Choosing one of those 

vector fields orients that neighborhood, detennining a positive side of 

the surface-the side to which those normal vectors "point." If such a 

unit normal vector field exists globally on S, this is one criterion for S 

to be orientable, and the choice of a global unit normal vector field is 

called an orientation of S. For example, a Mobius strip (first presented 

in 1865) minus its edge is a smooth surface that is not orientable. 

Suppose S is oriented. If -y is a smooth curve on S, then at each 

point P on "I we can again define a signed curvature k that is positive 

or negative according to whether the center of curvature of "I at P lies 

on the positive or negative side of S. 
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Consider the line through P that is perpendicular to T, called the 

normal line at P. A plane that contains the normal line intersects the 

surface in a plane curve. We can imagine this plane rotating around 

the normal line, and as it does so, it cuts out different curves on the 

surface passing through P. We have already explained how to define 

the curvature at P for each of these normal sections. In general, these 

curvatures vary as we rotate around the normal line. (In the special 

case of a sphere, these curvatures are constant and equal to the recip

rocal of the radius of the sphere since the curves cut out are all great 

circles on the sphere.) Euler proved in 1760 that these curvatures 

achieve a maximum value k1 and a minimum value k2 as we rotate, 

and the corresponding normal sections (called principal curves) are per

pendicular to each other if distinct. The product K = k1k2 of these max

imum and minimum curvatures is now called the Gaussian curvature

after Gauss, who defined it differently (O'Neill, 2006, Theorem 8.4, 

Chapter 6)-or simply "the curvature" of the surface at the point P. 

Once again, Kin general changes as P varies over the surface; if K hap

pens to stay constant, we obtain as examples the three geometries dis

cussed in Chapter 10, according to whether Kis negative (pseudosphere, 

for example), zero (plane), or positive (sphere). 

In Figure A.14, the tangent plane, normal line, and principal curves 

for a saddle-shaped surface are shown. For point P on this surface, the 

Gaussian curvature will be a negative number, according to our con

vention, since the osculating circles for the two principal curves lie on 

Figure A.14 Point where curvature is negative. 
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N 

Figure A.15 Point where curvature is positive. 

different sides of the tangent plane. On the other hand, for the surface 

in Figure A.15, the two principal curves lie on the same side of the tan

gent plane, so the Gaussian curvature is positive. 

Refer back to the pseudosphere shown in Figure 7.2, which is ob

tained by revolving a tractrix around its asymptote. At any point on 

this surface, it can be shown that the two principal curves are the (hor

izontal) circle of revolution through that point and the (vertical) trac

trix through that point. Since these curves lie on opposite sides of the 

tangent plane, we see that the surface curvature is negative. As we 

move up the surface, the circle shrinks and its curvature increases in

definitely, while the tractrix flattens and its curvature decreases to zero 

(the curvature of its asymptote); this makes it plausible that the prod

uct K of the principal curvatures could stay constant (see O'Neill, 2006, 

Example 7 .6, Chapter 5 for the calculation). 

Similarly, in the case of a cylinder obtained, say, by rotating a ver

tical line around a parallel vertical line, the principal curves at any point 

are the horizontal circle and the vertical line, which has curvature k2 = 

O; hence, the Gaussian curvature K = k1k2 at any point on a cylinder 
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Figure A.16 Gaussian curvature of a cylinder is zero. 

will also be zero (see Figure A.16). We can better grasp this surpris

ing result if we think of a cylinder as a "rolled-up plane." Surely, in 

any sensible definition of surface curvature, a flat plane should be as

signed zero curvature. In the process of "rolling up" a rectangular plane 

strip, the local arc lengths and angles between curves on the strip are 

not changed, and in this sense the "intrinsic geometry" is not changed. 

Gauss was looking for a definition of surface curvature that de

pended only on the intrinsic geometry of the surface, not on the par

ticular way the surface was embedded in Euclidean three-space. He 

was able to prove that the curvature K does not change if the surface 

is subjected to a "bending" in which local arc lengths and angles of all 

curves on the surface are left invariant. Thus, K describes the intrinsic 

curvature of the surface independent of the way it is bent to fit into 

Euclidean three-space. This is all the more remarkable because the prin

cipal curvatures k1 and k2 and their average (the mean curvature) may 

change under such a "bending"; nevertheless, their product K = k1k2 
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stays the same.2 Gauss was so excited about this result that he named 
it the theorema egregium, "the extraordinary theorem." In a letter to 
the astronomer Hansen, he wrote, prophetically: "These investigations 
deeply affect many other things; I would go so far as to say they are 
involved in the metaphysics of the geometry of space." 

Gauss also solved the problem of determining this intrinsic curva
ture K without reference to the ambient three-space. Imagine a two
dimensional creature living on a surface and having no conception of 
a third dimension, being unable to conceive of the normal lines we 
used to define the curvature K. How could this creature calculate K? 

We will have to use the language of differential calculus to give Gauss' 
answer. 

In the Euclidean plane, a point is determined by its x- and 
y-coordinates. If these coordinates are subjected to infinitesimal changes 
denoted dx and dy, then the point moves an infinitesimal distance ds 
whose square is given by the Pythagorean formula ds2 = dx2 + dy2• 
Now on a smooth surface, a point will also be determined locally by 
two coordinates x and y. If these coordinates are subjected to infini
tesimal changes dx and dy, then the point moves a distance ds on the 
surface whose square is given by the more complicated expression 

ds2 = E dx2 + 2F dx dy + G dy2, 

where E, F, and G may vary as the point varies. The functions E, F, 

and G could in principle be determined by the two-dimensional crea
ture making measurements on this surface. In 1828, Gauss found a 
complicated formula for his curvature K in terms of E, F, and G (see 
McCleary, 1994, pp. 148-150, or O'Neill, 2006, Proposition 6.3, Chap
ter 6). Thus, the creature could also calculate K from this formula and 
discover that his world was curved, although he would have difficulty 
visualizing what that might mean. (The creature could also estimate 
the curvature of his world by measuring the circumference of a small 
polar circle-see O'Neill, 2006, Corollary 3.9, Chapter 8.) 

Although this talk about a two-dimensional creature may seem 
bizarre, it is not, as Riemann demonstrated. Riemann reasoned that we 
are in an entirely analogous situation, living in a three-dimensional 

2 Nowadays the vague term "bending" is replaced by the more precise notion of local 
isometry-a smooth mapping that maps a neighborhood of every point isometrically 

onto a neighborhood of the image point. We will soon explain what "isometrically" 
means in this context. Another interpretation of "bending" is a smooth isometric de
formation of one surface onto another, as for example the deformation of a catenoid 
to a helicoid and back-see the animation at http://mathmuse.sci.ibaraki.ac.jp/deform/ 

DeformationE.htrnl. 
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universe in which an infinitesimal change in distance ds is given by an 
analogous formula involving the three infinitesimals dx, dy, and dz: 

ds2 
= gll dx2 + g22 dy2 + g33 dz2 + 2g23 dy dz + 2g31 dz dx 

+ 2g12 dx dy. 

From this formula Riemann was able to define a "curvature tensor" 
analogous to the Gaussian curvature for a surface, only more compli
cated: Gauss' curvature involved only a single number K, whereas Rie
mann's depended on six different numbers. Riemann discovered this 
curvature almost accidentally in his research on heat transfer. In fact, 
he developed such a curvature tensor for abstract geometries of any di
mension n, and Einstein was able to apply Riemann's ideas to his four
dimensional space-time continuum. 

So we are in the same position as that two-dimensional creature. 
We can make measurements to determine the Riemannian curvature 
of our universe. Astronomers have been performing such mea
surements. If we find that the Riemannian curvature is not zero, we 
know that the geometry is not Euclidean. However, this does not mean 
that our space is embedded in some higher-dimensional physical space 
in which it is somehow "curved." When we say, loosely, that "space 
is curved," we mean only that its geometric properties differ from the 
properties of Euclidean space in a very specific way given by Riemann's 
formulas. 

RIEMANNIAN MANIFOLDS 

It was in his 1854 inaugural lecture, "Uber die Hypothesen welche der 
Geometrie zugrunde liegen" (On the hypotheses that form the founda
tion for geometry), that Riemann introduced the idea of an n-dimen
sional space whose intrinsic geometry is determined by a quadratic for
mula for the infinitesimal change in distance ds. Such a structure is 
now called a Riemannian manifold. Here is an idea of what that struc
ture is. 

On the first level, the structure is a topological space. This means 
that certain subsets, which together cover the whole set, are designated 
as open, and a neighborhood of a point is defined to be an open set 
containing that point. In IR.3, an open set is just a union of small open 
balls around each of its points. Finite intersections and all unions of 
open sets are open. This structure enables one to define a continuous 

mapping as one for which the inverse image of an open set is open. A 
one-to-one mapping of a topological space onto another that is contin-
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uous and whose inverse mapping is also continuous is called a homeo

morphism. Homeomorphic spaces are "topologically the same." 

The second level is that of a topolngical n-manifold. This means that 

everywhere locally the space looks like an open set in IR.n by means of 

given homeomorphisms (called charts or patches) from open sets in IR.n. 

Often other "niceness" conditions are assumed in the definition, such 

as the Hausdorff property that distinct points can be separated by dis

joint open sets, or the property that the family of open sets is gener

ated by a countable number of them. It is possible to define what an 

orientation of a topological manifold is using homology theory (see 

Greenberg and Harper, 1982). 

The third level is that of a differentiable n-manifold. This means 

that the patches can be chosen so that on the intersection of the im

ages of two patches, one patch followed by the inverse of the other 

patch is a differentiable or analytic function of n real variables, a dif

feomorphism of those open sets in IR.n. If these changes of coordinates 

can be chosen to have the property that they preserve a given orien

tation on IR.n, then the manifold is oriented. This level enables one to 

do calculus on the manifold M. Most importantly, it enables the defi

nition of an n-dimensional tangent space for each point (McCleary, 

1994, Definition 16.3); those tangent spaces bundled together form a 

2n-dimensional differentiable manifold, the tangent bundle of M, which 

projects down onto M. Sections of the tangent bundle (right inverses 

of the projection-smooth assignments of tangent vectors) over all or 

part of M are vector fields whose study (initiated by Heinz HopO is fun

damental in differential topology. 

The final level of a Riemannian structure is the imposition of a 

positive-definite quadratic form on each of the tangent spaces that varies 

smoothly. Called a Riemann metric, it is an n-dimensional dot product 

that enables the measurement of lengths of tangent vectors and the an

gles between them. The classical notation for the square of the length 

of a tangent vector is the ds2 mentioned above. By integrating ds along 

an arc of a curve, one calculates the arc length induced by the mani

fold's Riemannian structure. 

The theory becomes quite abstract, and you have to learn to think 

abstractly to understand it! 

We will mainly focus on two-dimensional Riemannian manifolds, 

called geometric surfaces. Smooth surfaces in IR.3 automatically inherit 

a Riemannian structure from IR.3• All the intrinsic geometric notions for 

surfaces in IR.3 have definitions for abstract geometric surfaces; in 
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particular, curvature can be defined (e.g., by using Elie Cartan's method 
of differential forms from moving frames-O'Neill, 2006, Theorem 2.1, 
Chapter 7). 

GEODESICS 
Let us return to a surface � in �3. For each point P on � and each 
curve y lying on � and passing through P, the curvature vector k de
composes naturally into a vector sum 

k=kn+kg 

of its projection kn on the normal line and its projection kg on the tan
gent plane T to � at P; these projections are called, respectively, the 
normal and tangential curvature vectors. If y is again parametrized with 
unit speed, then k is the acceleration vector for that parametrization, 
and its tangential component is considered the acceleration of y along 

the surface (Figure A.17). The length of kg is called the geodesic cur

vature kg of the curve y at P relative to �. We call y a geodesic if 
kg= 0. In that case, y has zero curvature relative to the surface �; it 
may have nonzero curvature relative to Euclidean three-space, but then 
its curvature vector points along the normal line to the surface at P. 
Another way to describe a geodesic y that has nonzero k =kn is that 
its osculating plane II at P is perpendicular to the tangent plane T (since 
II contains the normal line at P). From this description we see imme-

k 

t 

Figure A.17 Normal and tangential components of curvature vector. 
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diately that the geodesics on a sphere are its great circles (II l_ Tiff II 

passes through the center of the sphere). 
This description of geodesic curvature refers to the ambient Eu

clidean three-space. But F. Minding in 1830 showed that it too is an 
intrinsic quantity for �: It depends only on the functions E, F, and G 

and the curve y (McCleary, 1994, Theorem 11.3). Hence the notion of 
"geodesic" can be defined more generally on a Riemannian manifold. 
And it gives us the correct interpretation of the heretofore confusing 
term straight line on such a manifold. For a geometric surface, when 
y is parametrized with unit speed, we want to say that it is a geodesic 
when its acceleration along the surface is zero, as for surfaces in �3. 
Acceleration is defined as the derivative (rate of change) of velocity, 
but now that our surface is not necessarily embedded in �3, a new 
kind of derivative is needed; called the covariant derivative, it is de
fined in terms of intrinsic data on the surface (O'Neill, 2006, Section 
7.3, Chapter 7). The covariant derivative operation generalizes to Rie
mannian manifolds M of any dimension and operates on any vector 
field on a part or all of M. A curve on M whose velocity tangent vec
tor field has a covariant derivative equal to zero at every point is de
fined to be a geodesic (McCleary, 1994, Definition 16.21, or O'Neill, 
2006, Section 7.4, Chapter 7).3 

A proposed alternative interpretation of the term "straight line seg
ment" is "the shortest path on the surface joining two points on the 
surface." It can be proved that if such a shortest path exists, it must be 

an arc of a geodesic. But a shortest path may not exist: Let � be a punc
tured plane or a punctured sphere; two points on opposite sides of the 
puncture cannot be joined by a shortest path on �. On complete man
ifolds M (meaning that every geodesic segment can be extended in
definitely-Euclid's Postulate II for geodesics), it can be proved that 
shortest paths always exist when M is connected (theorem of Hopf
Rinow). However, an arc of a geodesic need not be the shortest path: 

3 The existence of a covariant differentiation operator with the required properties is 

equivalent to the existence of a parallel transport operation on tangent vectors along a 

curve in the manifold. The velocity tangent vectors to a geodesic are all "parallel" in 

this sense. This operation was first revealed by T. Levi-Civita in 1917; Einstein inde

pendently discovered this operation later. The structure underlying it is called the Levi
Civita connection on M; its existence and uniqueness is called the fundamental theo
rem of Riemannian geometry. S.-S. Chern, dubbed "the father of modern differential 

geometry" by S.-T. Yau, wrote that "most properties of Riemannian geometry derive 

from its Levi-Civita parallelism, an infinitesimal transport of the tangent spaces" (Chern, 

1990, p. 682). Parallel transport on a torus is discussed and illustrated at http://www. 

rdrop .com/� half/math/torus/torus.geodesics. pdf. 
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z 

Figure A.18 A helix is a geodesic on a cylinder. 

Consider the longer great-circular arc joining two non-antipodal points 

on a sphere, or consider the helical arc joining two points on a verti

cal line on the cylinder in Figure A.18. So the definition of "geodesic" 

(found in several books by nonmathematicians) as "the shortest path" 

is inadequate because it excludes such arcs. 

What is the case, even for incomplete manifolds, is that a geodesic 

arc is the shortest path between two sufficiently close points on it-a 

geodesic minimizes arc length locally, and conversely, a curve with this 

property must be a geodesic. At each point P on a Riemannian mani

fold M, there exists exactly one geodesic issuing in each direction, and 

the entire route of the geodesic is determined by its point P and its tan

gent vector at P. In fact, there is a fundamental smooth one-to-one map 

exp (the exponential map) from a neighborhood of the origin 0 in the 

tangent space T at P to a neighborhood of P in M that takes Euclidean 

line segments through 0 in that neighborhood to geodesic arcs through 

P on M; exp is defined on all of T for all P if and only if M is complete 

(O'Neill, 2006, Chapter 8). When M is the one-dimensional manifold 

of positive real numbers, exp is the usual exponential function. 

IMPORTANT PROPERTIES MANIFOLDS CAN HAVE 

A differentiable manifold is called connected if any two points can be 

joined by a piecewise smooth curve. On a connected manifold, the dis

tance between two points can be defined as the greatest lower bound 

of the lengths of such curves joining the points. All examples we dis-
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cuss are connected. On a complete connected manifold, any two points 

lie on a geodesic, and the distance between two points is realized as 

the arc length of a geodesic joining them (for dimension 2, see O'Neill, 

2006, Chapter 8). 

A smooth mapping of one connected manifold onto another is an 

isometry if it preserves the distance between any two points. Hence it 

is a one-to-one mapping. It also preserves the sizes of angles but may 

reverse the direction of oriented angles. The motions (reflections, ro

tations, translations, glides, and parallel displacements in the hyper

bolic plane) studied in Chapter 9 are the simplest examples of isome

tries, and we showed there how they can be used to define the 

congruence of figures in Euclidean and hyperbolic planes. If M has 

enough self-isometries to map any point onto any other point, it is 

called homogeneous. This is a very strong restriction on a geometric 

surface, for it guarantees that M has constant curvature and is com

plete (O'Neill, 2006, Theorem 5.5, Chapter 8). Only the hyperbolic plane 

is homogeneous among complete geometric surfaces of constant nega

tive curvature. 

A smooth mapping of one geometric surface onto another is a local 

isometry if it maps a neighborhood of each point isometrically onto a 

neighborhood of the image point. Such a mapping is locally one-to-one 

but not necessarily globally. For example, the natural mapping that 

wraps the plane around the cylinder is a local but not a global isome

try. A local isometry preserves the curvature at each point of a geo

metric surface since the curvature at a point is defined by local data. 

A theorem of Minding states that for any two points on surfaces of the 

same constant curvature, there exists an isometry of a neighborhood 

of one point onto a neighborhood of the other point (McCleary, 1994, 

Theorem 13.5). An important method of endowing smooth surfaces 

with a geometry is the following: Suppose Mis a geometric surface and 

F is a local diffeomorphism of M onto a smooth surface N; if M satis

fies the necessary compatibility condition with respect to F, then N can 

be given a unique geometric structure such that F becomes a local isom

etry (O'Neill, 2006, Proposition 2.6, Chapter 7). We will use this con

struction below. 

Compactness is an important topological finiteness notion. For sub

spaces of �n, it means "closed and bounded." For example, the sphere, 

the closed disk, and the torus are compact. Any continuous image of 

a compact space is also compact, so the elliptic plane, being a contin

uous image of the sphere, is compact. The Euclidean and hyperbolic 

planes and the pseudosphere are not compact. A compact Riemannian 
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manifold is always complete (O'Neill, 2006, Corollary 2.4, Chapter 8). 

A complete connected Riemannian manifold is compact if and only if 

the distance between any two of its points is bounded. For a compact 

surface S in �3, at a point of S of maximum distance from the origin, 

the curvature must be positive (O'Neill, 2006, Theorem 3.5, Chapter 

6). A theorem of 0. Bonnet states that a complete connected geomet

ric surface of positive curvature bounded away from zero must be com

pact (O'Neill, 2006, Theorem 7.2, Chapter 8). A compact geometric 

surface of constant negative curvature has only finitely many self

isometries (theorem of H. A. Schwarz). 

A manifold is simply connected if it is connected and every closed 

curve on it can be continuously shrunk to a point. For example, the 

plane, the disk, and the sphere are simply connected; the cylinder, the 

torus, the pseudosphere, and the elliptic plane (see Stillwell, 1992, 

p. 70) are not. When a connected manifold M is not simply connected, 

it can be "unwound" to a simply connected manifold U that "evenly 

covers it" by a local homeomorphism U � M, with the pre-image of 

any point of M being a discrete set; U is called the universal covering 
space of M. For example, the sphere is the universal cover of the el

liptic plane E by the two-to-one covering map that identifies antipodal 

points; that map conveys the local spherical geometric structure to E, 

the map becoming a local isometry. The plane is the universal cover

ing space of a torus (M = �2 /7L2); by means of that covering, the torus 

can be similarly endowed with a geometric structure having constant 

curvature zero-the flat torus. (For an illustration, see http://www. 

geom. uiuc.edu/ � banchoff/script/b3d/hypertorus.html.) 

The only complete, simply connected geometric surfaces of constant 
curvature are the sphere, the Euclidean plane, and the hyperbolic plane 

(O'Neill, 2006, Corollary 6.3, Chapter 8). If we drop only the hypoth

esis that the curvature is constant but require it to be everywhere <O, 

a theorem of Hadamard guarantees that there are no closed geodesics 

on the surface, that the geodesic joining two points is unique (which 

is our Axiom 1-1), and that such a surface is diffeomorphic to �2 
(O'Neill, 2006, Theorem 7.7, Chapter 8). 

For a geometric surface S, S is orientable if it does not contain a 

Mobius strip. If it is non-orientable, it has a canonical orientable sur

face which maps onto it by a two-to-one covering map, as we have seen 

for the elliptic plane E. For another example, the non-orientable Klein 
bottle has a two-to-one covering map from the torus. By means of that 

map, the Klein bottle can be endowed with a flat geometric structure; see 

http://www.geom.uiuc.edu/ � banchoff/Klein4D /Klein4D .html. In fact, 
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there are only five types of complete flat geometric surfaces: Euclidean 
plane, cylinder, twisted cylinder, torus, and Klein bottle (O'Neill, 2006, 
p. 420; Stillwell, 1992, Chapter 2). 

EMBEDDINGS AND IMMERSIONS IN !R3 

Although we have highlighted Riemann's generalization of Gauss' ideas 
from two dimensions to higher dimensions, Riemann's formulation gives 
new information about geometric surfaces that cannot be embedded in 
!R3. First, it enables us to define what a real hyperbolic plane is from 

the point of view of Riemannian geometry: It is a complete simply 

connected geometric surface of constant negative curvature. Second, a 

real elliptic plane is a complete connected geometric surface of con

stant positive curvature such that any two points lie on a unique 

geodesic. Neither of these geometric surfaces can be embedded in 

!R3-i.e., there is no isometry of either of them onto a surface in !R3. 
That the elliptic plane cannot be embedded in !R3 follows from two 

facts: (1) Every compact (n - 1)-dimensional topological manifold in 

!Rn is orientable (a consequence of Alexander duality-see Greenberg 
and Harper, 1982, Theorem 27.11; or, for differentiable manifolds, see 
H. Samelson, "Orientability of Hypersurfaces in !Rn," Proceedings of the 

American Mathematical Society, 22(1) (July 1969), 301-302)4; (2) the 
elliptic plane is compact and non-orientable. There is an even stronger 
theorem of H. Liebmann that a compact connected surface in !R3 of con

stant curvature must have positive curvature and must be a sphere (Mc
Cleary, 1994, Theorem 13.6, or O'Neill, 2006, Theorem 3.7, Chapter 6). 

We can find models of the elliptic plane E in !R3 if we relax the em
bedding requirement and instead just seek an immersion. There are 
three types of immersions: continuous, smooth, and isometric. They 
are all locally one-to-one. A smooth mapping is an immersion if, at 
every point, the linear mapping of the tangent plane it induces is one
to-one; the smooth immersion is isometric if that linear mapping pre
serves the Riemannian metric-hence the curvature. Three famous con
tinuous immersions of E in !R3 are the closed cross-cap, Steiner's Roman 
surface, and Boy's surface (Figure A.19). Only Boy's surface is a smooth 
immersion, without pinch points. (Interestingly, Hilbert conjectured that 
there was no smooth immersion of E in !R3 and assigned his student 
Werner Boy to prove that conjecture; instead, Boy proved Hilbert was 
wrong!) 

4 Tom Banchoff told me he has a simpler proof in dimension 2, using a parity lemma 
that states that a closed curve in IR3 transversely intersecting a compact surface inter
sects it an even number of times. 
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Figure A.19 Boy's surface. It has a continuous double-point curve, which 
meets itself in a triple point. 

There are marvelous computer drawings online of these immersed 

surfaces, which you can rotate to view from all angles at http://xahlee. 

org/surface/gallery_o.html. See also http://en.wikipedia.org/wiki/Cross

cap, where the term "cross-cap" is often used for the surface obtained 

by removing a small open disk from the closed cross-cap, the result be

ing homeomorphic to a Mo bi us strip. There is a detailed discussion of 

Boy's surface with excellent illustrations at http://en.wikipedia.org/ 

wiki/Boy's_surface. See also Gray et al., 2006, Chapter 11. 

As those models of E show, the image of a smooth surface under 

an immersion that is not an embedding can have self-intersections and 

other singularities-Le., not be a smooth surface. Going up one di

mension, there is a smooth (but not isometric) embedding of E in IR4 

induced by the Veronese map of the unit sphere: 

f(x, y, z) = (x2 - y2, xy, xz, yz) 

Similarly, the Klein bottle can be smoothly embedded in IR4 (Do Carma, 

1976, p. 437). 
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Pretty as those models of E are, they severely distort the geometry 
of E, which is homogeneous with positive constant curvature. There is 
no isometric immersion of E in IR3 or IR4. Current knowledge about iso
metric immersions is summarized at http://eom.springer.de /l/i052800. 
htm. 

We have to rely on the models studied in Chapter 7 to view the en
tire hyperbolic plane because Hilbert proved that no complete geometric 
surface of constant negative curvature can be isometrically immersed 
in IR3 (Do Carma, 1976, Section 5-11).5 The upper half-plane model has 
the simplest Riemann metric among those models, as follows: 

ds = v dx2 + dy2 
y 

Or, using the complex infinitesimal dz = dx + i dy, 

ds=�. 
y 

For the Poincare unit disk model, the Riemann metric is 

ds = ldzl 
1 - lzl2. 

(For the Riemann metric on the Beltrami-Klein disk model, see McCleary, 
1994, p. 221.) By contrast, the Riemann metric on Klein's conformal 
disk model of the elliptic plane is 

ds = 2ldzl 
lzl2 + 1 

(Coxeter, 1998, Section 14.64). By integrating ds along a smooth arc, 
one calculates its arc length in these models. 

From the quadratic expression for ds2 in terms of the functions E, 
F, and G in local coordinates given previously, the following formula 
for infinitesimal area dA holds: 

dA = VEG - F2 dx dy 

5 Hilbert's theorem was strengthened in 1954 by N. V. Efimov, who proved that a com
plete geometric surface of negative curvature bounded away from O cannot be iso

metrically immersed in IR3• For IR4, see I. Kh. Sabitov, "Isometric Immersions of the 

Lobachevsky Plane in E.4," translated in Siberian Mathematical Journal 30(5} (1989}, 
805-811. 

John Nash (see A Beautiful Mind by Sylvia Nasar} proved that every Riemannian 
manifold of dimension m can be embedded in !Rn for n sufficiently large compared to 
m. This is a much deeper result than the one for which he was awarded the Nobel 
Prize in economics! 
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(see Gray et al., 2006, Section 12.4). The (double) integral of this area 
form over a suitable region of the surface gives the area of that region. 
In the Poincare upper half-plane hyperbolic model, E = G = y-2, F = 

0, yielding the global area form 

dA = 

dx dy 

y2 

An abstract surface is orientable if and only if it has a global area form 
(O'Neill, 2006, Lemma 7.5, Chapter 6 and Exercises for Section 7.1, 
Chapter 7-but see his list of errata on his website).6 

GAUSS-BONNET THEOREM 

In the section on curvature in Chapter 10, the formula of Gauss relat
ing curvature K, area, and the angle sums of geodesic triangles was dis
cussed, but only for surfaces of constant K. Gauss and 0. Bonnet proved 
a much stronger theorem than that for any orientable geometric sur
face. Let's state it for the special case of an "embedded triangle" Ton 
the surface S. Using calculus notation, it says 

ff K dA = 21T - I ai - f Kg ds. 
T aT 

The double integral on the left is the total surface curvature of the tri
angular region. The single integral on the right is the total geodesic cur
vature of the boundary aT of the region. The summation on the right 
is the sum of the (radian measures of the) three "jump" angles formed 
at each of the vertices of the triangle by the two tangent vectors to the 
arcs meeting at those points. In the case where the arcs of the bound
ary are geodesics, their geodesic curvature is zero, so the single inte
gral vanishes. The jump angles are then exterior angles of the geodesic 
triangle, so replacing each a by 1T - {3, where f3 is the adjacent inte
rior angle, we find that the total surface curvature of the geodesic tri
angular region equals the angle sum of the triangle minus 1T. When the 
surface has constant curvature K, this reduces to the result stated in 

6 The arc length for a smooth arc in IR3 is the limit of the lengths of polygonal paths in

scribed in the arc. One may be tempted, analogously, to define the area of a smooth 

piece of surface in IR3 to be the limit of the surface areas of inscribed polyhedra. This 

method does not work, not even for a section of a cylinder-see Section 3 7 of Differ
ential Geometry by E. Kreyszig, Dover Publications, 1991, or "Surface Area and the 

Cylinder Area Paradox" by F. Zames, The Two Year College Mathematics Journal, 8(4), 
September 1977, pp. 207-211. There have been many different and unequal definitions 

of surface area given in the literature. The one via area forms is the natural one for 

abstract orientable geometric surfaces. 
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Chapter 10 that K times the area of the geodesic triangle equals the an
gle sum of the triangle minus 1r. 

When the orientable surface is compact, a theorem of T. Rado states 
that the surface has a triangulation with the edges of the triangles be

ing smooth arcs. Applying the Gauss-Bonnet formula and taking into 
account the cancellations that take place from the orientations of the 
triangles, one obtains the Gauss-Bonnet theorem: For compact ori

entable surfaces S, the total curvature of S equals 21T times a topolog
ical invariant called the Euler characteristic x(S) of S. In calculus nota

tion, the formula is 

fl K dA = 21Tx(S) 
s 

(see McCleary, 1994, pp. 175-178 or O'Neill, 2006, Section 7.6). 

The total curvature is the number on the left obtained by integrat
ing the Gaussian curvature function Kover the entire compact surface; 

when K is constant, the total curvature is just K times the area of the 
surface. The Euler characteristic of S is defined to be V - E + F, where 
for any triangulation of S, Vis the number of vertices, Ethe number 

of edges, and F the number of faces (so, in particular, V - E +F is a 
constant, independent of the triangulation, as Descartes first noticed for 

polyhedra). H. Hopf proved that the Euler characteristic is also equal 
to the sum of the indices of any global vector field on S. A fundamental 
theorem in topology states that two compact orientable topological sur

faces are homeomorphic if and only if they have the same Euler char
acteristic. More specifically, a compact orientable surface is homeo

morphic to a sphere with g > 0 handles attached, and 

x(S) = 2 - 2g. 

"Attaching" is in terms of the connected sum of two surfaces, obtained 
by removing a disk from each of them and "gluing" them along the 
boundary curves that result. A "handle" is a torus with a small disk 
removed (see Weeks, 2002, Chapter 5 and Appendix C). 

The Gauss-Bonnet theorem7 shows that the curvature determines the 
topology of a compact orientable geometric surface S, and conversely 

7 For proofs of Gauss-Bonnet, see O'Neill, 2006, Section 7.6, or McCleary, 1994, Chap
ter 12. It has been vastly generalized to higher dimensions-see "The Many Faces of 

the Gauss-Bonnet Theorem" by L. I. Nicolaescu, http://www.nd.edu/% 7Elnicolae/ 

GradStudSernFall2003.pdf, and "All the Way with Gauss-Bonnet," by D. H. Gottlieb, 

http://hopf.math.purdue.edu//Gottlieb/bonnet.pdf. It is certainly one of the greatest 

theorems in all of mathematics! 
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Figure A.20 Double torus constructed by identifying sides of a hyperbolic 

octagon having 45° angles. The figure is accurate topologically but is 
necessarily distorted geometrically because no hyperbolic compact surface, 

with its constant negative curvature, can be embedded in �3• 

the topology limits the possible curvature for geometric structures on 

S. For example, compact topological surfaces of genus g > 1 cannot have 

a geometric structure with curvature everywhere >O since their Euler 

characteristic is negative; they can be endowed with hyperbolic struc

tures-geometric structures of constant negative curvature (O'Neill, 

2006, Theorem 6.5, Chapter 8, or Stillwell, 1992, Chapters 5-8). For 
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given g, all those hyperbolic structures have the same area, by Gauss

Bonnet. For g = 2, a hyperbolic structure can be constructed, for ex

ample, by suitably identifying sides of a hyperbolic octagon having 45 ° 

angles (see Figure A.20) (Stillwell, 1992, Section 6.6). 

Consider a compact connected orientable surface S of positive cur

vature everywhere. Its total curvature must then be positive, so by 

Gauss-Bonnet, its Euler characteristic is positive. By the classification 

of compact surfaces, S must be diffeomorphic to a sphere. If in addi

tion the curvature is constant, then S must be isometric to a sphere. 

Consider an abstract elliptic plane E as we defined it above. Since it is 

complete with constant positive curvature, it is compact. Since two 

points lie on a unique geodesic, it can't be a sphere; if it were ori

entable, it would be a sphere by the classification, hence it can't be 

orientable. But its orientable double-covering S is compact with con

stant positive curvature, hence is a sphere. Thus E must be isometric 

to the model obtained from S by identifying antipodal points. 

By Gauss-Bonnet, for g = 1, the total curvature of any geometric 

structure on a torus is zero; if the curvature is constant, it must be 

zero, so a torus cannot have a hyperbolic structure. We've seen that it 

has a flat structure. This example illustrates the fact that a given smooth 

surface can be endowed with different geometric structures. IR.2 can be 

given the geometric structure of the hyperbolic plane since it is diffeo

morphic to the disk. IR.2 can also be given a geometric structure of con

stant positive curvature since it is diffeomorphic (by stereographic pro

jection) to a sphere minus a point. 

In higher dimensions, M. Kervaire discovered in 1960 that there ex

ist topological manifolds which have no differentiable structure. In 1956, 

John Milnor discovered exotic differentiable structures on the seven

sphere. Most bizarrely, with major implications for physics, Simon Don

aldson discovered in 1986 that IR.4 has uncountably many different dif

ferentiable structures, whereas IR.n for n-=!= 4 has only one! 

To carry out precisely all that has been mentioned about Riemann

ian geometry in this appendix, the tools of analysis (linear and multi

linear algebra, advanced calculus, differential equations, calculus of 

variations) and topology are needed. 

A complex manifold is an even-dimensional topological manifold 

whose charts are complex analytic (holomorphic) mappings. A Riemann 

surf ace is a complex manifold of complex dimension one. It is not the 

same as a geometric surface! But a connected orientable geometric sur

face can be given two structures of a Riemann surface, one for each of 
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its orientations. Gauss proved that result by showing the existence of 
local isothermal coordinates for which the Riemann metric takes the form 

ds2 = A (x, y) (dx2 + dy2). 

The mappings studied in Riemann surface theory are the conformal 
mappings (see G. Jones, and D. Singerman, 1987, Complex Functions: 
An Algebraic and Geometric Viewpoint, New York: Cambridge Univer
sity Press). Hurwitz's great theorem about a compact Riemann surface 
of genus g > 1 is that it has at most 84 (g - 1) automorphisms. As men
tioned in Chapter 8, the Klein quartic has genus 3 and has the maxi
mum 168 automorphisms. 

Some idea of Riemann's influence on modern mathematics can be 
gleaned from the following list of concepts, methods, and theorems that 
have been named after him: Riemannian curvature of Riemannian man
ifolds, Riemann integral, Riemann-Lebesgue lemma, Riemann surfaces, 
Riemann-Roch theorem, Riemann matrices, Riemann hypothesis about 
the Riemann zeta function, Riemann's method in the theory of trigono
metric series, Riemann's method for hyperbolic partial differential equa
tions, Riemann mapping theorem, and Cauchy-Riemann equations.8 

8 For the story of Riemann's difficult life, see Bell (1961}; the biography by Laugwitz 

(2004} goes more deeply into Riemann's mathematical work. For the study of geometric 

surfaces, O'Neill (2006} avoids the "debauch of indices" that plagues old-fashioned pre

sentations of the subject and provides excellent examples. McCleary (1994} is useful 
because it focuses on the history of hyperbolic geometry and its relationships to dif

ferential geometry. The two books by Do Carma are clear and classical. Gray et al. 
(2006} has excellent computer graphics. A comprehensive presentation of Riemannian 

geometry can be found in the five volumes of Spivak (1999}. The more general Cartan 

Geometry, which synthesizes the geometries of Klein and Riemann, is developed in 

Sharpe (1997} and is highly recommended to advanced students. 

Einstein used a modified version of Riemannian geometry for his geometry of space

time in general relativity. The modification replaces the Riemann metric with one that 

is not positive-definite, the Lorentz metric. Einstein used it to show that gravity can be 

explained by the curvature of space-time. Introductory explanations of his theory can 

be found in Lanczos (1970} and Taylor and Wheeler (1992}. A rigorous treatment is 

O'Neill (1983}, Semi-Riemannian Geometry with Applications to Relativity, New York: 

Academic Press. 

For the classic effort to explain the differential geometry and topology of curves 

and surfaces "in its visual and intuitive aspects," see Hilbert and Cohn-Vossen (1990, 

Chapters 4 and 6}. For a delightful and more elementary recent effort that includes the 

eight fundamental Riemannian geometries on three-dimensional manifolds, see Weeks 

(2002}. 

Gauss proved the existence of a local conformal mapping of a curved surface to 

the plane (isothermal coordinates} only in the case of a real analytic surface; for a gen
eral geometric surface, this was not proved until a century later-see Spivak (1999}. 

Isothermal coordinates are also used in the study of minimal surfaces (e.g., soap films

see Hildebrandt, S. and A. Tromba, 1986, Mathematics and Optimal Form, New York: 

W. H. Freeman}. 



Hilbert's Geometry 
Without 

Real Numbers 

With this approach there is no need for the real numbers, no appeal 

to continuity. In this way the true essence of geometry can develop 

most naturally and economically. 

Robin Hartshorne 

Hilbert's treatment of hyperbolic planes appeared as a journal article 

soon after the 1899 publication of his Grundlagen der Geometrie, and 

it was subsequently included as Appendix III in later editions. It be

gins with the following statement (italics were in the original): 

In the following investigation I replace the [Euclidean] axiom of paral

lels by a corresponding requirement of Bolyai-Lobachevskian geome

try, and then show that it is possible to develop Bolyai-Lobachevskian 

geometry in the plane exclusively with the plane axioms without the 

use of the continuity axioms. This new development of Bolyai

Lobachevskian geometry, as it appears to me, is superior, because of 

its simplicity, to the hitherto well-known development schemes, namely 

those of Bolyai and Lobachevsky, who both use the limiting sphere, 

and that of F. Klein by means of the projective method. Those devel

opments essentially use space as well as continuity. 

571 
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The "limiting sphere" (or horosphere) referred to by Hilbert is the limit 

of a sphere in real hyperbolic three-space held tangent to a plane as its 

radius increases indefinitely (in Euclidean three-space, that limit is the 

plane). When Klein used the projective method, he also needed three

dimensional projective space in order to apply the theorems of Desar

gues and Pappus (see Projects 1 and 3, Chapter 2). Instead, Hilbert as

sumed his hyperbolic axiom of parallelism (the existence of limiting 
parallel rays-see Chapter 6) for a purely two-dimensional development 

of plane hyperbolic geometry. He dispensed with Archimedes' axiom 

and with his completeness axiom equivalent to Dedekind's axiom and 

coordinatization by the real numbers. Hilbert's presentation is very con

cise, omitting many details, which have been carefully worked out and 

expanded upon by later authors (e.g., F. Enriques, H. Liebmann, J. Ger

retsen, P. Szasz). But it contains many of the key ideas of the subse

quent axiomatic treatment of plane hyperbolic geometry, which ren

ders the methods of J. Bolyai and Lobachevsky mainly of historic 

interest. Hartshorne's book meticulously carries out Hilbert's program. 

It was not only hyperbolic geometry whose development was 

worked out without real numbers. Geometers also developed as much 

Euclidean geometry as possible without even assuming the circle

circle or line-circle continuity principles. Neutral geometry without real 

numbers is the study of Hilbert planes (which we abbreviate as 

H-planes in this appendix). The H-planes satisfying the Euclidean par

allel postulate are isomorphic to Cartesian planes F2, where F is an or

dered Pythagorean field (Hartshorne, Theorem 21.1); I suggest they be 

called Pythagorean planes since the Pythagorean equation can be proved 

for them and F is Pythagorean. If the study of Euclidean planes 

(Pythagorean planes satisfying the circle-circle continuity principle) is 

the geometry of constructions with a straightedge and compass, the 

study of Pythagorean planes is the study of constructions with a straight

edge and dividers or gauge (a tool that permits the execution of Axiom 

C-1, transporting segments). You might expect that a tool permitting 
the execution of Axiom C-4, transporting angles, would also be needed, 

but that turns out to follow in Pythagorean planes (Hartshorne, Exer

cise 20.21). You will find more information about constructions with 

these Hilbert tools in Hartshorne's treatise. 

Where does the Pythagorean field F come from? You saw in Major 

Exercise 9, Chapter 4, that addition and order can be defined for seg

ment congruence classes in any H-plane so as to have the usual prop

erties. When the plane is Pythagorean, Hilbert showed how to also de

fine a multiplication for segment congruence classes with the usual 
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algebraic properties (once a unit segment is chosen); this is accom
plished by developing the theory of similar triangles in such a plane
again without using real numbers. That development is a major ac
complishment, for the theory of similar triangles presented in Euclid is 
based on Eudoxus' treatment of irrational proportions, and Hilbert com
pletely avoids those complications. Then the segment congruence 
classes form the set of positive elements of an ordered Pythagorean 
field F, the field of segment arithmetic. See Hartshorne, Chapter 4. (A 
key step in this development is his Proposition 5. 8 about cyclic quadri

laterals-quadrilaterals that have a circumscribed circle.) 
Returning to hyperbolic planes, Hilbert showed that they too have 

a field hidden in their geometry, the field of ends, which turns out to 
be a Euclidean field (see Part I below). The hyperbolic plane is then 
isomorphic to a Poincare or Klein model coordinatized by that field of 
ends F. One nice application of this theorem is a proof that the circle
circle continuity principle holds in a hyperbolic plane (because that 
principle holds in F2 when F is a Euclidean field-see Moise (1990, Sec
tion 16.5)-hence in the Poincare models over F, where circles are Eu
clidean circles). Another pretty application is a proof that a segment is 
constructible if and only if its multiplicative length is a constructible 
number (see Part I), which implies the M-B theorem of Chapter 10. 

Geometry without continuity assumptions was developed by Euro
pean researchers for many years after Hilbert; Victor Pambuccian is 
writing a history of that work. Some of the prominent contributors were 
F. Schur, M. Dehn, G. Hessenberg, and particularly the Danish geome
ter J. Hjelmslev. The work of the latter two mathematicians showed 
that every H-plane also has a field hidden in its geometry (see Part II 

below). Using that field and a projective embedding, W. Pejas was able 
to classify all H-planes. 

Part I. Hilbert's Field of Ends in a Hyperbolic Plane1 
Recall from Chapter 6, Note 2 after Major Exercise 4, that in a hyper
bolic plane, an end (ideal point) is an equivalence class of limiting par
allel rays. We arbitrarily choose one line as our "x-axis," and we arbi
trarily label its ends 0 and oo. We choose a perpendicular to this axis, 

1 We follow Hartshome's development, with some simplifications and clarifications. Our 
work in Chapter 9 plays a crucial role, particularly the theorem on three reflections 
and its constructive proof. 
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labeling the intersection point as 0, one end as 1, the other as -1. As 
a set, our field F consists of all ends except oo; those ends will be called 
"finite." 

We know from Major Exercise 8, Chapter 6, that any two distinct 
ends a, f3 are the ends of a unique constructed line in the hyperbolic 
plane, which we will now denote a /\. f3. If a is a finite end, we denote 
reflection in the line a /\. 00 by <Ta• 

DEFINITION OF ADDITION. If a, f3 are finite ends, their sum a + f3 is 
defined by the equation (in the group of motions) <Ta+f3 = <Tf3<To<Ta· 

How do we know the product is equal to the reflection in a unique line 
having oo as one end and another end which we have denoted a+ {3? 

This is the special case of the theorem on three reflections in Proposi
tion 9.17(b) when a i= {3, both i= 0. Namely, apply that result to the 
parallel displacement T = u13u0 and to the line k =a/\. oo. 

Here is another description of addition we need: Let A = u aO and 
B = u130. By the asymptotically parallel case of the perpendicular bi
sector theorem (Major Exercise 7, Chapter 6), the perpendicular bisec
tor of AB has oo as one end. We claim its other end is a + {3: Namely, 
<Ta + 13A = <T13<ToO = u130 = B, so the reflection <Ta+f3 must be the re
flection in the perpendicular bisector of AB (Figure B.1). Since AB and 
BA are the same segment, it follows that a + f3 = f3 +a, so the addi
tion we have defined is commutative. From the definition, + 0 =a= 

0 +a for any finite end a. 

Figure B.1 

When a = {3, let D = <Ta<To<TaO. Then (a +a)/\. oo is the perpendic
ular bisector of OD, which has oo as one end by Major Exercise 7, Chap
ter 6, applied to triangle DOC, with C = u -aO = u0A. We use here the 
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fact that if -a denotes the reflection of a in our x-axis 0 /\. oo, then -a 

so defined is the additive inverse of a: a + (-a) = 0. This is because, 

using the above description with f3 = -a, our x-axis is the perpendi

cular bisector of AB. 

For the associative law (a + {3) + y = a + (f3 + y), a calculation 

shows that the reflection determined by both sides of this equation is 

equal to <Ty<To<Tf3<To<Ta· In fact, the mapping a� <Ta<To is an isomorphism 

of the additive group of finite ends onto the multiplicative group of par

allel displacements about oo. 

To define order and multiplication of finite ends, consider our 

"y-axis" with one chosen end denoted 1. According to our description 

of additive inverses, the other end is -1; in general, the ends of any 

line perpendicular to the x-axis have the form a and -a. 

DEFINITION OF ORDER. An end on the same side of the x-axis as 1 

is called positive, and on the opposite side, negative. Then a< f3 means 

f3 + (-a) = f3 - a is positive. 

From the way we have drawn our diagrams, a < f3 , when a, f3 are 

positive, is shown by a drawn to the left of {3. For any finite a if=. 0, de

note reflection in the line whose ends are a and -a by Ta. 

DEFINITION OF MULTIPLICATION. If a, f3 are finite ends * 0, their 

product af3 is defined by the equation (in the group of motions) Taf3 = 

Tf3TITa plus the order condition below. Multiplication by 0 is defined to 

be 0. 

Once again the theorem on three reflections in the specific form of 

Proposition 9 .11 guarantees that Tf3TI Ta is a reflection in a line h per

pendicular to our x-axis (when a, {3, 1 are distinct). To specify which 

of the ends of his af3 and which is -a{3 is decided by the usual alge

braic rules: pos x pos = pos, pos x neg= neg, and neg x neg= pos. 

Let A, B be the points on our x-axis that are the feet of the per

pendiculars from a, {3, respectively. Let C be the point on the x-axis 

such that OC = OA +OB, where 0 is the origin, addition of segments 

is the usual juxtaposition, and the underlining denotes signed segments 

as in Exercise H-4, Chapter 7, with the positive direction chosen to go 

from 0 to oo. We claim that the perpendicular to the x-axis through C 

has as its ends af3 and -a{3, so that multiplication of finite ends cor

responds to addition of signed segments: To verify this claim, just reread 
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the proof of Proposition 9.11, taking T = r13r1 and line m to be the per

pendicular from a to the x-axis, in the notation of that proof. 

Since addition of signed segments is commutative and associative 

and has "the zero segment" as its identity element, we see that multi

plication is commutative and associative and has 1 as its identity ele

ment. We also see that reflection in the y-axis sends a to a-1 (Figure 

B.2). 

1 

0 A 

-1 

Figure B.2 OC = OA + OB. 

-a; 

B c 

-a;p 
-P 

The correspondence above restricted to the multiplicative subgroup 

of positive ends is an isomorphism with the additive group of all signed 

segments on the directed x-axis. Equivalently, the correspondence 

a� Tar1 is an isomorphism with the multiplicative group of translations 

along the x-axis. That isomorphism also takes care of the definition of 

multiplication when a, {3, 1 are not distinct. 

Now we see why every positive end has a square root: It is because 

every segment constructively has a midpoint (Proposition 4.3, Chapter 

4), so that every signed segment can be halved. 

From our definitions and descriptions of addition and multiplica

tion, it is clear that sums and products of positive ends are positive. 

Here is another way to view multiplication of finite ends: Let y be 

nonzero. Let the perpendicular from y to the x-axis cut it at C. Multi

plication by y is an operation on the set of finite ends. If y is positive, 

this operation is the translation T along the x-axis which takes 0 to C; 

if y is negative, it is the inverse translation, except in the case where 

y = -1, when it is the reflection across the x-axis. From that observa-
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tion we can verify the distributive law of multiplication with respect to 

addition: y(a + {3) = ya + yf3. Namely, since T fixes 0 and oo and is a 

motion, it maps the lines used to describe a + f3 onto the lines used to 

describe ya + yf3. 

THEOREM. The set of finite ends, with the operations of addition, mul

tiplication, and order defined above (given ends 0, 1, and oo) is a Eu

clidean field F. 

NOTE. Our definitions of the structure on F depended on our initial 

choice of three ends, 0, 1, and oo. If we had chosen a different triple 

of ends, the resulting structure of the ordered field would be isomor

phic to the original one because of Proposition 9.16(c): There is a unique 

motion of the plane sending the first triple into the second, and that 

motion preserves all the geometry used in defining our structure. 

In Hartshorne's treatise, he develops an analytic geometry and a 

trigonometry for hyperbolic planes without using real numbers. We will 

review his main results-see his Sections 41 and 42. Of particular in

terest is his geometric definition of the multiplicative length µ(AB) of a 

segment AB as follows. 

DEFINITION. By Axiom C-1, there is a unique segment OC, starting 

from our origin 0, on the positive ray Ooo of our x-axis such that we 

have OC �AB. Let y be the positive end of the perpendicular to our 

x-axis through C. Then µ(AB) = y. 

PROPOSITION B-1. Multiplicative length has the following properties: 

(a) µ(AB) > 1. 

(b) AB� A'B' if and only if µ(AB) = µ,(A'B'). 

(c) AB< A'B' if and only if µ(AB) < µ,(A'B'). 

(d) µ(AB + A'B') =µ(AB) µ,(A'B'). 

PROOF: 

Easy exercise. <11111 

Thus the functionµ, determines segment congruence. The next func

tion determines angle congruence. 

DEFINITION. Given angle (), by Axiom C-4 there is a unique congru

ent angle having vertex at the origin 0, one side being the negative ray 
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00 of our x-axis and the other side lying on the positive side of our 

x-axis (Figure B.3). The end of that other side is denoted tan 0/2. 

1 

o��������-+-�������� 
0 

-1 

Figure B.3 a = tan (O /2). 

When we examine the Poincare half-plane model later, we will see 

that this function is the usual tangent of a half-angle function in 

trigonometry. 

PROPOSITION B-2. 

(a) tan 0/2 > 0. 

(b) () � If! if and only if tan () /2 = tan If! /2. 

(c) If()< If!, then tan 0/2 <tan l/J/2. 

(d) () is a right angle if and only if tan 0/2 = 1. 
(e) Addition formula: If the angle () + If! obtained by juxtaposition 

is defined, then 
() I/I tan -- +tan -
2 2 

tan (O + 1/1)/2 = () I/I 1 -tan - tan -
2 2 

The first four parts of this proposition are immediate from our definition. 

For the proof of the addition formula, see Hartshorne, Proposition 41.8. 
Here is the analytic geometry result we will need: Given any point 

P. It is uniquely the intersection of a line b /\ oo having oo as one end, 

and a "vertical" line with ends a and -a, where a> 0. Since b is on 

the opposite side of that vertical line from oo, it satisfies lbl < a (Figure 

B.4). Example: If P = 0, a = 1 and b = 0. 
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-1 

Figure B.4 Point P is determined by ends a, b. 

PROPOSITION B-3. With the above notation, a line with finite ends 

u, v passes through P if and only if its ends satisfy the equation 

uv - b(u + v) + a2 = 0, 

where lbl < a. 

For the proof, see Hartshorne, Section 41.6. Example: The lines through 

the origin 0 (other than our x-axis) are given by the equation uv = -1. 

(Hilbert introduced the field elements x, y given by y = uv, 2x = 

u + v; in terms of them, point P is determined by the linear equation 

y = 2bx - a2• Hilbert used linear equations for points to indicate how 

to prove Pappus' and Desargues' theorems algebraically for a hyper

bolic plane. In contrast to the analytic geometry for Euclidean planes, 

in hyperbolic planes directed lines are determined by ordered pairs of 

ends, and points are determined by certain linear equations in finite 

ends. Hartshorne, Proposition 41.5, also provides algebraic formulas for 

certain motions of the plane.) 

Here is our first main result. 

CHARACTERIZATION OF THE HYPERBOLIC PLANES THEOREM. 

(a) Two hyperbolic planes are isomorphic if and only if their fields 

of ends are isomorphic. 

(b) If II is a hyperbolic plane with a field of ends F, then II is iso

morphic to the Poincare upper half-plane model coordinatized 

by F. 
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SKETCH OF PROOF OF (a): 

Given an isomorphism of hyperbolic planes, since the algebraic op

erations and order on their fields of ends were defined geometri

cally, it is an easy exercise to show that the induced mapping of 

ends is an isomorphism of fields. 

Suppose, conversely, we are given an isomorphism f: F1 � F2 of 

the fields of finite ends of hyperbolic planes II1, II2. We extend f 

to the missing ends by setting f(ooi) = 002. We must construct from 

fan isomorphism 'P from II1 onto II2. By definition, 'Pis composed 

of a map of lines and another map of points (both of which will be 

denoted q;, par abus) which preserve incidence, betweenness, and 

congruence. Now a line is uniquely determined by its ends, so we 

naturally define q;(a /\. {3) to be the line f(a) /\. f(/3). In order to de

fine 'P on points, we use the fact that a point P is uniquely deter

mined by the family of all lines passing through it. We have given 

the equation of all lines through P in Proposition B-3 above, in terms 

of constants a, f3 in the field. So we define q;(P) to be the point de

termined by the constants f(a), f(/3). Since f is a field isomorphism, 

the equation for lines through P will be mapped to the equation 

for lines through q;(P), so the one-to-one mapping 'P preserves 

incidence. 

Betweenness of points can be expressed in terms of the order

ing of the field of ends, and since f preserves order, 'P preserves 

betweenness. 

That 'P preserves congruence follows from the facts that con

gruence of segments is determined by the multiplicative length func

tion and congruence of angles by the tangent function, both having 

values in the field of ends (Propositions B-1 and B-2). Explicitly, 

what must be checked is that µ,(q;(A)q;(B)) = f(µ,(AB)) for any seg

ment AB and for any angle 0, tan (q;(0)/2) = f(tan (0/2)) . .,.. 

PROOF OF (b): 

By the result for part (a) and the previous result that the field of 

ends is a Euclidean field, what this comes down to is the follow

ing : Let II be the Poincare upper half-plane model coordinatized by 

a Euclidean field F. Let F1 be the field of ends of II. Then F and F1 

are isorrwrphic ordered fields. 

The ordered field structure on F1 depended on the choice of three 

special ends. The most convenient choices for our purposes are to 

take oo to have its usual meaning in the Poincare upper half-plane 
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model (the second point at infinity on the upper imaginary axis), 
to take the end 0 to be the point (0, O), and to take the end 1 to 
be the point (1, O). (Here 0 and 1 are the elements of the field F; 
if we use "complex number" notation for points in the plane F2 co
ordinatized by F, then indeed these special ends are the "complex 
numbers" 0 and 1 in the field F(i) obtained from F by adjoining i = 

\/=I.) With these choices, what we previously called the "x-axis" 
is now the upper half 0 /\ oo of the imaginary axis, the "y-axis" is 
the upper semicircle of the unit circle centered at 0, the origin 0 is 
i = (0, 1), and the other end of the "y-axis" is -1 = (-1, 0). The 
remaining ends in the Poincare upper half-plane model are the points 
a = (a, O) of the horizontal axis in F2. Since the P-line from a = 

(a, O) perpendicular to 0 /\ oo is the upper semicircle of the circle 
centered at 0 of radius lal, we see that -a = (-a, O) is its other 
end. Since the positive ends are by definition the ones on the same 
side of P-line 0 /\ oo as 1, we see that a> 0 if and only if a> 0. 

The mapping 'P from F1 to F is defined very simply in this model 
by q;(a) = a, the first Cartesian coordinate of the end a as a point 
on the horizontal axis in F2. We must show that 'P is an isomor
phism of ordered fields. We just showed that 'P sends positive ends 
to positive elements of F. 

Recall that <Ta is the P-reflection in the P-line a/\ oo. In the up

per half-plane model, this P-line is just the open vertical ray whose 
vertex is (a, 0), and the P-reflection is the same as the Cartesian re
flection. Using "complex number" notation as in the Chapter 9 sec
tion on motions in this model, the explicit formula is 

<Ta(Z) = -z + 2a, 

where z as usual denotes the "complex conjugate." Addition of ends 
was defined by 

If f3 = (b, 0), we calculate <Ta+13(z) = -z + 2(a + b), which is re
flection in the open vertical ray whose vertex is (a + b, O). This 
shows that the mapping 'P preserves addition: 

q;(a + {3) = a + b = q;(a) + q;(f3). 

Consider next multiplication of finite ends, which for positive 
ends was defined by the formula 
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Recall that Ta is reflection in the P-line with ends a, -a, which is 

the upper semicircle of the circle centered at 0 of radius a. So r a is 

inversion in that circle, which is given in "complex number" polar 

notation by 

. aib2 
If f3 = (b, O), we calculate ra13(ret9) = -- ei9, which is inversion 

r 
in the circle centered at 0 of radius ab. This shows that the map

ping cp preserves multiplication of positives: 

cp(a/3) =ab= cp(a)cp(/3). 

Since the case of one or both negatives is an easy exercise, we have 

proved cp is an isomorphism of ordered fields. <11111 

NOTE. In Hartshorne's treatise, he proves part (b) for the Poincare 

disk model, but his direct proof of that is more cumbersome. We ob

tain that result as a corollary because we know the Poincare and Klein 

disk models are both isomorphic to the upper half-plane model by the 

isomorphisms given explicitly in Chapters 7 and 9. 

Let us examine the interpretation in this Poincare upper half-plane 

model of the mysterious function tan () /2 previously defined for ab

stract hyperbolic planes. Given any angle (), we laid off a congruent 

copy of the angle with vertex at the origin (which is i in the model), 

with one side being the ray from the origin to the end 0, and the pos

itive end a of the other side being, by definition, tan 0/2. Now apply 

our isomorphism cp. We claim 

cp(tan 0/2) = tan 0/2, 

where tan (without italics) is the usual tangent function in the Carte

sian plane. For example, we know that if () is a right angle, tan () /2 = 

1, and cp(l) = 1 = tan 0/2. 

Figure B.S illustrates the case where () is an acute angle; we leave 

the case of an obtuse angle as a similar exercise. 

In the model, the ray of() having a = (a, O) as end is the arc from 

i to a of a Cartesian semicircle r with center C = (-c, O) on the hori

zontal axis, for some c > 0. Since by definition cp(a) = a, we must show 

that a= tan 0/2. 
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t 

Figure B.5 

C=(-c,0) 0 (a,O)=a; D 
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Let t be the Cartesian tangent line to f at i and let t intersect the 
horizontal axis at D. By the definition of angle congruence in the con
formal Poincare upper half-plane model, () = <tDiO in the Cartesian 
plane. Since the angle sum of a triangle is 180° in the latter plane, and 
<tDiC is right, we have () = <tiCO. Since the Cartesian length of iO is 
1, we see from right triangle COi that c = cot () and the radius of r is 
�.The equation for f is then (x + c)2 + y2 = 1 + c2. Setting y = 

0 gives us the intersections of r with the horizontal axis, so we have 
a= -c + �.Now invoke the trigonometric identity 1 + cot2 () = 

csc2 (), so that 

1 - cos () () 
a = csc () - cot () = --. -- = tan -sm () 2 

by other trigonometric identities. <11111 

Now let us calculate the interpretation in the Poincare upper half
plane model of the multiplicative length function µ on segments. By 
definition, a segment iC congruent to the given segment is laid off on 
the ray ioo; then a perpendicular through C is constructed to that ray, 
and the positive end a of that perpendicular is the value of µ. Let 
C = (O, c) in Cartesian coordinates, with c > 1. The perpendicular 
through C is then the upper semicircle of the Cartesian circle centered 
at 0 passing through C, which is a circle of radius c, intersecting the 
positive ray of the horizontal axis at (c, O) =a. Applying our isomor
phism q;, we see that q;(a) = c is the interpretation of the multiplica
tive length. This is just the reciprocal of the cross-ratio (iC, Qoo) suit
ably understood, and that is the multiplicative length for the Poincare 
model (see p. 320, Important Remark). 
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MULTIPLICATIVE BOLYAI-LOBACHEVSKY FORMULA: 

II(AB) 
tan = µ(AB)-1 

2 
(This becomes the usual formula for a real hyperbolic plane with dis

tance scale k = 1 when we substitute µ = ed, using the calculations 

above which relate tan defined in terms of ends to the usual tan in the 

Cartesian plane, andµ defined in terms of ends to the cross-ratio.) 

PROOF: 

By definition, the left side of the formula is the positive end a of 

one side of the angle() = <tOOa congruent to II(AB), the other side 

being the negative ray of the x-axis. The line a/\. -a is perpendi

cular to the x-axis at a point C such that CO � AB. Now reflect 

across the y-axis (Figure B.6). The reflection of C is a point D on 

the positive ray Ooo, and the reflection of the perpendicular through 

C is the perpendicular to the x-axis through D. By definition of mul

tiplicative inverse and of µ, the positive end of that perpendicular 

is a-1 =µ(AB) . .,.. 

We previously proved the additive distance version of this formula 

for the Poincare disk model (Theorem 7.2) and the Klein model 

(p. 346). Note that for the Klein model, the cross-ratio (AB, PQ) is equal 

to the square of the reciprocal of µ(AB). 

One consequence of this formula is that Bolyai's parallel construc
tion works in any hyperbolic plane (not just the real one): Hartshorne, 

Figure B.6 
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Proposition 41.10, presents a proof by a lengthy calculation using his 

hyperbolic analytic geometry. We have justified that construction geo

metrically in the Klein model on pp. 344-345, Chapter 7, using a Eu

clidean perspectivity, and since we now know that the abstract hyper

bolic plane is isomorphic to the Klein model, that proof is generally 

valid . .,.. 

However, Bolyai's construction does not prove the existence of lim

iting parallel rays! By the definition of "hyperbolic plane," that exis

tence is Hilbert's axiom, and from the consequences of that axiom one 

can then prove that Bolyai's parallel construction works. 

Another vital consequence is that a version of hyperbolic trigonom

etry can be developed in any hyperbolic plane without using real num

bers. The key is the tangent half-angle function t = tan 0/2 defined 

above. We can use the familiar formulas in the Cartesian plane as 

definitions for the hyperbolic plane: 

• (J 2t 
sm = 

1 + t2' 
1 - t2 

cos 
(J 

= 
1 + t2 ' tan 

(J 
= 

sin 
(J 

• 

cos 
(J 

Then it is a straightforward exercise to verify that all the usual formu

las for these trigonometric functions hold. In particular, the definition 

of tan 0 is consistent with the definition of t. 
A generalized hyperbolic trigonometry is based on the multiplica

tive Bolyai-Lobachevsky formula above. Using it, we avoid the intro

duction of hyperbolic trigonometric functions (or we could, if we like, 

define them formally via formulas (5)-(7) of Chapter 10-e.g., define 

tanh x to be cos II(x)). For a right triangle .6:.ABC with right angle at 

C, here are analogues of formulas (10)-(12) from Chapter 10, using the 

standard notation (e.g., II(a) is the angle of parallelism for the segment 

a opposite vertex A). 

PROPOSITION B-4. With standard notation for .6:.ABC with right an

gle at C, 

(a) tan A= cos II(a) tan II(b) 
(b) cos II(b) = cos A cos II(c) 
(c) sin A= cos B sin II(b) 

with similar equations for B in place of A. 

(d) tan II(c) = sin A tan II(a) = sin B tan II(b) 
(e) sin II(c) =tan A tan B 

(f) sin II(c) = sin II(a) sin II(b) 
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PROOF: 

Routine algebra, or see Hartshorne, Propositions 42.2 and 42.3. For

mula (f) is the hyperbolic analogue of the Pythagorean theorem. <11111 

Using this trigonometry, we can verify, without real numbers, 

George Martin's construction of the segment of parallelism. Refer to 

Figure 10.33 and the statement of his construction on p. 523. Apply 

formula (b) first to <i:BAC and then to <i:DAC = II(AB); then deduce 

that cos <i:BAC = cos II(AD), as in Chapter 10. (Good exercise: Check 

this construction in the Klein model by taking A to be the center of the 

unit disk.) 

From Martin's construction we obtain a construction of the line of 

enclosure of any angle: First, bisect the angle. Then, starting from the 

vertex of the angle, construct the segment of parallelism on that bi

sector for half of the angle; then erect the perpendicular at the other 

end of that segment: Voila, the line of enclosure of the original angle! 

This is a much simpler construction than Hilbert's original one (Major 

Exercise 8, Chapter 6), but the existence of the line of enclosure was 

used in the development of the field of ends. 

Also, using this construction, one can give a simpler construction 

than Hilbert's original one (Theorem 6.3) of the common perpendicu

lar to two divergently parallel lines: Just use Major Exercise 12, Chap

ter 6, to locate the symmetry point S of those two lines and drop the 

perpendicular from S. Once again, Hilbert's construction was used to 

construct the line of enclosure, so we cannot dispense with it in the 

logical development until someone finds a better one from the axioms. 

Our final and main result is the following theorem and corollary 

about constructions with a straightedge and compass in a hyperbolic 

plane. Its proof uses some of the constructions already proved for 

Hilbert planes, plus the constructions special to hyperbolic planes such 

as the unique common perpendicular to two divergently parallel lines, 

the line of enclosure of any angle, the line joining two ends, and the 

perpendicular from an end to a line. 

HYPERBOLIC CONSTRUCTIBLE SEGMENTS THEOREM. In a hyperbolic 

plane, given two perpendicular lines (intersecting at a point 0), a choice 

of one end labeled 1 on one of those lines and a choice of ends labeled 

oo and 0 on the other, then with respect to Hilbert's field of ends based 

on those data, a segment is constructible if and only if its multiplicative 

length µ, is a constructible number. For any constructible number a > 1, 

a constructible segment exists having a as its multiplicative length. 
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PROOF (HARTSHORNE): 

Observe first of all that segment AB is constructible if and only if 

angle II(AB) is constructible, by the constructions of Bolyai and 

Martin. 

Next, since the finite ends are also the numbers in our field F, 

we distinguish two types of constructibility for them: We say a is 

geometrically constructible if line a/\. oo is constructible. We say a 

is algebraically constructible if it is obtained from 0 and 1 by finitely 

many operations of addition, subtraction, multiplication, division, 

and taking square roots of positive numbers. 

Let a= II(AB). Then µ,(AB) is algebraically constructible if and 

only if tan(a/2) is algebraically constructible, by the multiplicative 

Bolyai-Lobachevsky formula. 

Proof of "if" direction: If a is algebraically constructible, then a is 

geometrically constructible. That is because the ends oo, 0, and 1 are 

given, and the five arithmetic operations on ends are all constructed 

geometrically. (That is the beauty of Hilbert's end-arithmetic!) Sim

ilarly, -a is geometrically constructible. 

Suppose a > 1. Then the line of enclosure a /\. -a for angle 

aO(-a) is constructible, as is the point C where it intersects the 

positive ray of the x-axis 0 /\. oo, as is segment OC. By the definition 

of multiplicative length, µ,(OC) = a. If a= µ,(AB), then AB� OC, 

and AB can be constructed from OC by transport of segment. 

Proof of "only if" direction: Here we use the isomorphism of the 

given plane with the Poincare unit disk model over F. There, if 

P-segment AB is constructible with h-straightedge and h-compass, 

our work in Chapter 7 shows that it is also constructible with Eu

clidean straightedge and compass. By another Euclidean construc

tion, we perform an inversion sending A to 0 (the center of the 

disk) and B to some point C. If µ,(OC) =a and x is the Euclidean 

length OC, then a= (1 + x)/(l - x) (see Hartshorne's proof of 

Lemma 39.7). Since OC is Euclidean constructible, the classical the

orem for F2 tells us that x is a constructible number, hence a is. <11111 

COROLLARY TO THE PROOF (ACT THEOREM). An angle in a hyper

bolic plane is constructible if and only if one of the trigonometric func

tions of that angle is a constructible number (hence all trigonometric 

functions of that angle are constructible numbers). 

This result, together with the classical result on constructions in 

Euclidean planes, shows that for Euclidean and hyperbolic planes, if 
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"elementary geometry" is defined as the geometry of straightedge-and
compass constructions starting with the minimal possible data, the cor
rect field on which to coordinatize and do analytic geometry is the field 
K of constructible numbers. 

For a lovely tie-in of the multiplicative length to hyperbolic 
Pythagorean triples, to an old number theory problem of Euler, and to 
research in algebraic geometry on surfaces, see Hartshorne and Van 
Luijk (2006). 

Part II. Pejas' Classification of H-Planes 
The most comprehensive treatise on geometry without real numbers is 
F. Bachmann's (1973) Aufbau der Geometrie aus dem Spiegelungsbe

griff (Construction of Geometry Based on the Concept of Reflection), 
in which plane geometries based only on axioms of incidence, per
pendicularity, and reflections are studied.2 Bachmann is justified in call
ing this study plane absolute geometry since it includes elliptic, hyper
bolic, and Euclidean geometries as special cases (as well as other 
unusual geometries). Bachmann has succeeded in dispensing with be
tweenness axioms as well as continuity axioms. It is unfortunate that 
he calls models of his axioms "metric" planes-since "metric spaces" 
has a quite different meaning in which a "metric" measures distance 
by real numbers; I propose calling them absolute planes. 

The key ideas for this study are: 

1. Embed the absolute plane in a projective plane. 
2. Show that the points and lines in this projective plane have homo

geneous coordinates from some field K (as in Project 3, Chapter 2). 

3. Show that two lines are perpendicular if and only if their coordi
nates satisfy a particular homogeneous quadratic equation. 

4. Use algebra to get further information about the absolute plane. 

This program has been completely successful in classifying H-planes 
(the problem of determining all absolute planes remains unsolved). Let 
us describe the embedding briefly. The intuitive idea comes from our 
discussion of the Klein model, in which new "ideal" and "ultra-ideal" 

2 For a presentation of Bachmann's axioms in English, see Ewald (1971}. I. M. Yaglom, 

in the foreword to the Russian translation of Bachmann's book, calls it "indisputably 

the most significant development in the foundations of geometry in decades." You were 

introduced to Bachmann's methods in Proposition 9.19 and Exercise 50 of Chapter 9. 
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points are introduced so that lines that were previously parallel now 
meet when extended through these new points (see Major Exercise 13, 

Chapter 6). Abstractly, the new points are simply pencils of lines. The 
old points are in one-to-one correspondence with the pencils of the first 
kind; i.e., A corresponds to the pencil p(A) of all lines through A. 

An ultra-ideal point is a pencil of the second kind; it is a pole P(t), 
which for a fixed line t consists of all the perpendiculars to t. But the 
pencils of the third kind must be described carefully to avoid circular 
reasoning. We described such a pencil in Chapter 9 (p. 427) as con
sisting of all lines through a fixed ideal point, the ideal point being de
fined as an equivalence class of limiting parallel rays. Since we don't 
know that limiting parallel rays exist now, we instead use the theorem 
on three reflections (Proposition 9 .19) as our definition: The pencil 
p(lm) determined by parallel lines land m which do not have a com
mon perpendicular consists of all lines n such that the product 

RlRmRn 

is a reflection. Certain properties that were previously obvious now re
quire a considerable amount of ingenuity to prove-for example, if 
h, k E p(lm), then p(hk) = p(lm). Hjelmslev3 discovered how to prove 
that a pencil of the first kind p(D) and a pencil of the third kind p(a' c') 

have a unique line bin common (see Figure B.7). He dropped perpen
diculars a, c from D to a', c' at points A, C, then dropped perpendicular 

� 

d from D to AC. Then the line b is uniquely determined by the equation 

RaRbRc =Rd. 

D 

Figure B. 7 Hjelrnsler's construction of b. 

3 J. Hjelmslev, "Neue Begriindung der ebenen Geometrie," Mathematische Annalen, 64 

(1907):449-474. 
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Figure B.8 The polar of a point. 

We now know the new points of our projective plane. Our old lines 

a can be extended to new lines l(a) so that any pencil containing a is 

by definition incident with l(a). But we need more new lines to fill out 

our projective plane. For example, for any old point A, the polar l(A), 

consisting of all poles of lines through A, should be a new line; in the 

Klein model, this line lies entirely outside the absolute circle (in the 

Cartesian model, it's the line at infinity). See Figure B.8. 

But how are we to describe the lines in the Klein model that are 

tangent to the absolute circle, and how are we to verify the axioms for 

a projective plane? To accomplish this, Hjelmslev discovered a remark

able device: He fixed a point 0 and fixed a pair u, v of non-perpendicu

lar lines through 0-think of these lines as determining an acute angle 

0. He then defined a transformation that fixed 0 and sent any A if=. 0 

to the midpoint A* of the segment joining A to its image under rota

tion RuRv about 0 through 20 (Figure B.9); this transformation is called 

the half-rotati.on (or snail map) about 0 corresponding to u, v. 

Hjelmslev observed that in the Klein model, half-rotations extend 

to collineations of the projective plane, and that any projective line ex

cept l(O) could be mapped onto an extended Klein line l(a) by a suit-

A 

Figure B.9 A*= image of A under half-rotation through 0. 
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able half-rotation about 0. So he proposed to call a set of pencils a 
"line" if it is mapped onto some l(a) by some half-rotation about 0, or 
if it is l(O). With this definition, he was then able to verify the axioms 
for a projective plane. 

The execution of idea 2-construction of the field K of coordinates
requires even more technique. The key tool is a complicated theorem 
of Hessenberg, which generalizes the Euclidean theorem that tells when 
a quadrilateral can be circumscribed by a circle. The method of con
structing K is the standard method (due to Emil Artin) for any affine 
plane in which Pappus' theorem holds (Ewald, 1971, Chapter 3); here 
the affine plane is obtained by removing the polar l(O) of 0, and a spe
cial case of Pappus' theorem states: Let P, Q, R lie on a, and let P, Q, 
R lie on b, such that a does not meet b in any of these six points (Fig
ure B.10). If PQ II PQ and QR II QR, then PR II PR. Bachmann's approach 
is to verify Pappus' theorem by brute force; there is another approach 
due to Lingenberg that I believe gives more insight (see Lenz, 1967, 
p. 206ff., on the Euclidean "pseudoplane"). Pappus' theorem implies 
that the definition given for "lines" in our projective plane does not de
pend on the choice of 0. 

If we started with an H-plane, it is then possible to define an order 
on Kin terms of the betweenness relation in the H-plane. We need only 
specify the set P of positive scalars (since x < y ¢:::> y - x > O). 

Choose any two points A, B from the H-plane. For any third point 
X collinear with A, B, the ratio 

AX:BX 

is defined to be that unique scalar in K which, multiplying the vector 
from B to X, gives the vector from A to X. We then define P to consist 
of 1 and all ratios AX:BX as X runs over all third points on the affine 

� 
line AB that do not lie between A and B (this includes all ideal and 

� 
ultra-ideal points on AB). It can be shown from invariance of the ratio 

Figure B.10 A special case of Pappus' theorem. 



592 H I LB E RT 
' 

S G E 0 M E TR Y W I T H 0 U T R EA L N U M B E RS 

under parallel projection that this definition of P does not depend on 

the choice of A, B. 

Moreover, a theorem of Menelaus (compare Exercise H-5, Chapter 

7) can be proved for these ratios and can be used to demonstrate that 

P has all the properties required for a set of positive numbers that makes 

Kan ordered field (see Lenz, 1967, p. 223ff.). In turn, this enables us 

to extend the betweenness relation to all triples of collinear points in 

the affine plane and to show that the H-plane is embedded as a con

vex open subset of the affine plane, containing the origin 0. The em

bedding is locally Euclidean at 0 in that perpendicularity for lines 

through 0 has the familiar meaning from Cartesian analytic geometry. 

It can be proved (from free mobility-Lemma 9.3, p. 444) that the 

field K is Pythagorean (the sum of two squares is a square), but K is 

not Euclidean unless the line-circle continuity principle holds (a neat 

algebraic criterion for this geometric property). 

As for idea 3 on our list, further argument shows that there is a 

constant k EK such that lines having homogeneous coordinates 

[a1, a2, a3], [b1, b2, b3] are perpendicular if and only if 

Here "perpendicularity" has been extended to all pairs of lines in the 

projective plane, and there may exist certain lines (called isotropic) that 

are perpendicular to themselves (e.g., when k = -1, the line [O, 1, -1]; 

i.e., y = 1). To each line [a1, a2, a3] is associated its pole [a1, a2, ka3] 
(except for the line at infinity [O, 0, 1] when k = 0), and we see that 

the perpendiculars to this line are precisely the lines passing through 

its pole; isotropic lines pass through their own poles, and for k if=. 0, 

the locus of poles of isotropic lines is given by the affine equation 

x2 
+ y2 

= 

-k-1 

and may be called the absolute. The points (x, y) in the H-plane sat

isfy the inequality lkl (x2 
+ y2) < 1. They form a convex open neigh

borhood of the origin. 

The fourth angle of a Lambert quadrilateral is acute, right, or ob

tuse accordingly as k < 0, k = 0, or k > 0. The constant k is only de

termined up to multiplication by a nonzero square, but whether it is 

negative, zero, or positive is uniquely determined. Thus k is a purely 

algebraic indicator of the "curvature" of the H-plane. In 1900, Dehn 

gave an example of an H-plane with k = 1, an example he called non
Legendrean. 
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Hartshorne (note for Section 43) wrote: 

To understand the development of ideas leading to Pejas' theorem is 

tantamount to reviewing the entire history of the role of projective geom

etry in the foundations of elementary geometry. 

Pejas' classification of H-planes is used in my article "Aristotle's Ax

iom in the Foundations of Geometry," Journal of Geometry, 33 (1988), 

53-57. An important observation in this article is that if Aristotle's ax

iom holds, the H-plane is maximal; Bachmann showed earlier that if 

Archimedes' axiom holds, the H-plane is minimal (Hartshorne, Corol

lary 43.6), and conversely (using Pejas' classification). These sizings 

refer to the notion of one H-plane being isomorphic to a full subplane 

TI of another H-plane TI', meaning that the points of TI are a subset of 

the points of TI', the lines of TI are all the nonempty intersections of 

lines of TI' with the set of points of TI, and betweenness and congru

ence are induced from TI'. For example, the constructible Cartesian 

plane K2 is not a full subplane of the real Cartesian plane �2 because, 

for example, the line y = 1TX intersects K2 in just the origin, so if its in

tersection were a line of K2, Axiom 1-2 for K2 would be violated. 

Here is why Aristotle's axiom implies maximality: Assume TI is not 

maximal. Pejas tells us that TI can be taken to be a convex open neigh

borhood of an origin 0 inside TI'. If point C' is in TI' and not in TI, let 
� 

B be a point-=!=- 0 in TI on the perpendicular through 0 to OC'; B ex-

ists, and <tBC'O is congruent to an angle in TI because TI is a full sub-
� 

plane. But every point C of TI on ray OC' lies between 0 and C' by 

convexity, so by the exterior angle theorem, <tBCO > <tBC'O. This con

tradicts the important corollary to Aristotle's axiom in Chapter 3. 

Since Archimedes' axiom implies Aristotle's (Exercise 2, Chapter 5), 

a minimal H-plane must also be maximal. Dehn's non-Legendrean 

H-plane is maximal but does not satisfy Aristotle's axiom because it sat

isfies the obtuse angle hypothesis (non-obtuse-angle theorem, Chapter 4). 

Using those notions, we can describe Schur's model: Let F be a non

Archimedean Euclidean field (Project 2, Chapter 4) and let TI' be the 

Klein model inside F2, which is a hyperbolic plane. Since Aristotle's 

axiom holds in any hyperbolic plane (Exercise 13, Chapter 6), it holds 

in TI'. Define TI to be the full subplane whose points are the ones in 

TI' that have infinitesimal coordinates. Then TI is an H-plane in which 

the acute angle hypothesis is satisfied, but it is not maximal, so Hilbert's 

hyperbolic axiom of parallelism fails (that can easily be seen directly). 

Herek= -1. 
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Dehn's examples are similar. For his semi-Euclidean plane TI for 
which Hilbert's Euclidean axiom of parallelism fails, TI' = F2 with Fas 
above, and TI is the full subplane whose points are the ones in TI' that 
have infinitesimal coordinates (k = O). For his non-Legendrean plane, 
the points of TI are again the points of F2 with infinitesimal coordi
nates, but now TI is given the structure of H-plane for which k = 1 (it 
is not an H-subplane of F2). 

Another unusual class of H-planes are the ones in which any two 

parallel lines have exactly one common perpendicular-call them 
HE-planes (halb-elliptisch). They arise only over Pythagorean fields 
F that are not Euclidean fields (so line-circle continuity fails for them), 
and they can satisfy either the acute or the obtuse angle hypothesis. 
Schur's example is not an HE-plane since its lines, which are 
asymptotically parallel in the larger plane TI', do not have a com
mon perpendicular. 

If, in addition, Fis Archimedean (e.g., the smallest Pythagorean sub
field of IR), the HE-plane must satisfy the acute angle hypothesis (by 
the Saccheri-Legendre theorem). An example of an Archimedean 
HE-plane satisfying the acute angle hypothesis can be found in Pejas 
(1961); there TI is the interior of a virtual conic-the affine equation 
above for the absolute has no solutions in F. Pejas takes F to be the 
intersection of the real closures of Q(Vz) under two different order
ings. The constant k is positive in one ordering but negative in the 
other, which is why the absolute is empty. (For a similar example, see 
Hartshorne, Exercises 39.25-39.30. Of course, Aristotle's axiom holds 
in these Archimedean planes.) 

The main result in my article is the advanced theorem mentioned 
in Chapter 6: A non-Euclidean H-plane is hyperbolic if and only if it sat

isfies the line-circle continuity principle and Aristotle's axiom. Here is 
the argument: If the plane TI is hyperbolic, we showed in Part I that 
its field F of ends is Euclidean and TI is isomorphic to a Poincare model 
over F, in which the line-circle and circle-circle continuity principles 
hold. Exercise 13, Chapter 6, shows that Aristotle's axiom also holds. 
Conversely, line-circle continuity implies that the field F in Pejas' clas
sification is Euclidean, and since the plane TI is non-Euclidean, its met
ric constant k can be taken to be ± 1. Aristotle's axiom eliminates the 
case k = 1 (by the non-obtuse-angle theorem, Chapter 4, or by another 
argument in my article using the important corollary to Aristotle's ax
iom and the uniformity theorem of Chapter 4). Pejas' classification then 
tells us that TI is isomorphic to a full subplane of the Klein model over 
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F. But Aristotle's axiom ensures that TI is maximal, so it is isomorphic 

to that Klein model, which is hyperbolic . .,.. 

Conclusion 

We have come to the end of our long journey toward understanding 

the role of the parallel postulate in elementary geometry. Hilbert planes 
are our models for such geometry without a parallel postulate. They 

have all been determined by Pejas by means of an embedding in a pro

jective plane coordinatized by an ordered Pythagorean field F. 
In order to prove all the results in Euclid that are independent of 

his parallel postulate, one needs to assume the line-circle and circle

circle continuity principles as well. Line-circle continuity guarantees 
that the field F is Euclidean and eliminates the HE-planes (among oth

ers) from Pejas' list. But unusual H-planes such as Schur's and Dehn's 

remain on the list, including H-planes satisfying the obtuse angle hy
pothesis. They are eliminated by assuming Aristotle's axiom, which re

duces us to the classical Euclidean and hyperbolic planes coordinatized 

by F but which allows the non-Archimedean planes first studied by 
Veronese, since F might be a non-Archimedean Euclidean field.4 

Real numbers have been shown to be unnecessary for this study of 

elementary geometry. The methods needed to fully develop the subject 
without them are admittedly sophisticated. The counterexamples ex

hibited in that development revealed the impossibility of proving var

ious geometric statements. Here is what Hilbert had to say, in the con

clusion of his Gmndlagen, about such a study: 

The present treatment is a critical investigation of the principles of 

geometry. In this investigation, the ground rule was to discuss every 
question that arises in such a way as to find out at the same time 

whether it can be answered in a specified way with some limited means. 
This ground rule seems to me to contain a general and natural 

guide-line .... 

4 Philip Ehrlich has written a fascinating history called "The Rise of Non-Archimedean 
Mathematics and the Roots of a Misconception. I: The Emergence of Non-Archimedean 
Systems of Magnitudes" -see http://www.springerlink.com/content/bp78g22780212561/ 
full text. pdf or the printed version in Archives of the History of &act Sciences, 60 (2006), 
1-121. Cantor, whose infinite cardinal and ordinal numbers were so revolutionary, re
sisted the idea that infinitesimals could be mathematically acceptable. 
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The impossibility of certain solutions and problems thus plays a promi

nent role in modern mathematics and the drive to answer questions of 

this type was oftentimes the cause for the discovery of new and fruit

ful areas of investigation. Recall only Abel's proof of the impossibility 

of solving the fifth degree equation by radicals, the realization of the 

impossibility of proving the axiom of parallels, and Hermite and Lin

demann's theorems on the impossibility of constructing the numbers e 

and TT algebraically. 

The ground rule according to which the principles of the possibil

ity of a proof should be discussed at all is very intimately connected 

with the requirement for the "purity" of the methods of proof which 

has been championed by many mathematicians with great emphasis. 

This requirement is basically none other than a subjective form of the 

ground rule followed here. In fact, the present investigation seeks to 

uncover which axioms, hypotheses, or aids are necessary for a proof 

of a fact in elementary geometry. . . . 



Axioms 

Incidence Axioms 

AXIOM 1-1. For every point P and for every point Q not equal to P 

there exists a unique line l incident with P and Q. 

AXIOM 1-2. For every line l there exist at least two distinct points that 
are incident with l. 

AXIOM 1-3. There exist three distinct points with the property that 
no line is incident with all three of them. 

Betweenness Axioms 

AXIOM B-1. If A * B * C, then A, B, and C are three distinct points 
all lying on the same line, and C * B * A. 

AXIOM B-2. Given a� two distinct points B and D, there exist points 
A, C, and E lying on BD such that A* B * D, B * C * D, and B * D * E. 

AXIOM B-3. If A, B, and C are three distinct points lying on the same 
line, then one and only one of the points is between the other two. 

AXIOM B-4. For every line l and for any three points A, B, and C not 
lying on Z: 
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(i) If A and B are on the same side of l and if B and C are on the 

same side of l, then A and C are on the same side of l. 
(ii) If A and B are on opposite sides of l and if B and C are on op

posite sides of l, then A and C are on the same side of l. 

Congruence Axioms 
AXIOM C-1. If A and B are distinct points and if A' is any point, then 

for each ray r emanating from A' there is a unique point B' on r such 

that B' -=!= A' and AB � A'B'. 

AXIOM C-2. If AB� CD and AB� EF, then CD� EF. Moreover, every 

segment is congruent to itself. 

AXIOM C-3. If A* B * C, A'* B' * C', AB� A'B', and BC� B'C', then 

AC� A'C'. 

AXIOM C-4. Given any amde <}:'.BAC (where by the definition of "an-
� � � 

gle" AB is not opposite to AC), and given any ray A'B' emanating from 
� � 

a point A', then there is a unique ray A'C' on a given side of line A'B' 
such that <}:'.B'A'C' � <}:'.BAC. 

AXIOM C-S. If <}:A� <}:'.B and <}:A� <}:'.C, then <}:'.B � <}:'.C. Moreover, 

every angle is congruent to itself. 

AXIOM C-6 (SAS). If two sides and the included angle of one tri

angle are congruent, respectively, to two sides and the included angle 

of another triangle, then the two triangles are congruent. 

Hilbert Plane Axioms 
The incidence, betweenness, and congruence axioms above. 

Continuity Axioms 
DEDEKIND'S AXIOM. Suppose that the set { l} of all points on a line 

l is the disjoint union �1 U �2 of two non-empty subsets such that no 
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point of either subset is between two points of the other. Then there 

exists a unique point 0 on l such that one of the subsets is equal to a 

ray of l with vertex 0 and the other subset is equal to the complement. 

ARCHIMEDES' AXIOM. If CD is any segment, A any point, and r any 

ray with vertex A, then for every point B -=!= A on r there is a number 

n such that when CD is laid off n times on r starting at A, a point E is 

reached such that n · CD � AE and either B = E or B is between A 

and E. 

ARISTOTLE'S AXIOM. Given any side of an acute angle and any seg

ment AB, there exists a point Y on the given side of the angle such 

that if X is the foot of the perpendicular from Y to the other side of the 

angle, XY >AB. 

CIRCLE-CIRCLE OR CIRCULAR CONTINUITY PRINCIPLE. If a circle ')' 

has one point inside and one point outside another circle y', then the 

two circles intersect in two points. 

LINE-CIRCLE CONTINUITY PRINCIPLE. If a line passes through a point 

inside a circle, then the line intersects the circle in two points. 

Parallelism Axioms 

HILBERT'S EUCLIDEAN AXIOM OF PARALLELISM. For every line l 

and every point P not lying on l there is at most one line m through P 

such that m is parallel to l. 

EUCLID'S FIFTH POSTULATE. If two lines are intersected by a trans

versal in such a way that the sum of the degree measures of the two 

interior angles on one side of the transversal is less than 180°, then 

the two lines meet on that side of the transversal. 

HILBERT'S HYPERBOLIC AXIOM OF p ARALLELISM. For every line l 
� 

and every point P not on l, a limiting parallel ray PX emanating from 
� 

P exists and it does not make a right angle with PQ, where Q is the 

foot of the perpendicular from P to l. 
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Pythagorean Plane Axioms 
Hilbert plane axioms plus Hilbert's Euclidean axiom of parallelism. 

Euclidean Plane Axioms 
Pythagorean plane axioms plus circle-circle continuity principle (line

circle continuity principle follows and for Pythagorean planes implies 

the circle-circle continuity principle). 

Hyperbolic Plane Axioms 
Hilbert plane axioms plus Hilbert's hyperbolic axiom of parallelism 

(equivalently, by the advanced theorem, plus the line-circle principle, 

Aristotle's axiom, and the negation of Hilbert's Euclidean axiom of 

parallelism). 

Field Axioms/Definitions 
A field is a set with two binary operations-multiplication and 

addition-and two distinguished elements 1 and 0 satisfying the fol

lowing axioms: 

1 * 0 

V x (lx = x & 0 + x = x) 

V x V y (xy = yx & x + y = y + x) 

V x Vy V z (x(yz) = (xy)z & x + (y + z) = (x + y) + z) 

V x (x * 0 ::::} 3 !y(xy = 1)) 
V x 3 ! y (x + y = O) 
V x Vy V z (x(y + z) = xy + xz). 

The field is ordered if it is also provided with a binary relation< sat

isfying the axioms: 

V x V y (x < y V x = y Vy < x) and exactly one of these three rela

tions holds. 
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O<l 

'ti x 'ti y 'ti z (x < y � x + z < y + z) 

'ti x 'ti y 'ti z (x < y & 0 < z � xz < yz) 

An ordered field is Euclidean if it also satisfies the axiom 

't/ x (x > 0 � 3y(x = y2)). 

A field is Pythagorean if it also satisfies the axiom 

'ti x 3 y (y2 
= 1 + x2) • 

The constructible field K is the field generated from 0 and 1 by the op

erations of addition, subtraction, multiplication, division by a nonzero 

number, and taking the square root of a positive number. In terms of 

the field of real numbers IR, it is the smallest Euclidean subfield of IR. 

A field is Archimedean if for every x > 0, there is a natural number n 

such that n · 1 > x. 
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point B is between points A and C (p. 108) 
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AB<CD 
<}:ABC< <}:DEF 
n ·CD 
Rm 
IABI 
(<}:'.A)o 
�DEF� �ABC 
8ABC 
r l s 

II(PQ)0 

[ABCD 
A)(B 
P(l) 
(AB, CD) 
d(AB) 
d'(AB) 
p(A) 
I 

HA 

QJ>l (K) 
PGL(2, K) 
PSL(2, IR) 

Cn 
Dn 
(<}:'.A'AB'Y 
sinh x 
cosh x 
tanh x 
k=l 

II(x) 
x* 
(A, BIC, D) 
ds 

K 

X (S) 

g 

µ, (AB) 
tan (0/2) 
k 

SYMBOLS 

segment AB is smaller than segment CD (p. 124) 
angle ABC is smaller than angle DEF (p. 128) 
segment CD laid off n times (p. 132) 
reflection across line m (pp. 153, 337) 
length of segment AB (p. 155) 
number of degrees in angle A (p. 169) 
triangle ABC is similar to triangle DEF (p. 215) 
defect of triangle ABC (p. 252) 
ray r is limiting parallel to ray s (p. 257) 
number of degrees in angle of parallelism 

associated to PQ (p. 260) 
biangle ABCD (p. 276) 
open chord with endpoints A and B (p. 298) 
pole of the chord l (p. 308) 
cross-ratio of ordered tetrad ABCD (p. 319) 
Poincare length of Poincare segment AB (p. 320) 
Klein length of segment AB (p. 343) 
polar of the point A (p. 360) 
the identity transformation (p. 399) 
half-turn about A (p. 414) 
projective line over K (p. 439) 
projective group over K (p. 440) 
the real projective special linear group (p. 441) 
cyclic group of order n (p. 449) 
dihedral group of order 2n (p. 451) 
radian measure of <}:A' AB' (p. 486) 
hyperbolic sine of x (p. 488) 
hyperbolic cosine of x (p. 488) 
hyperbolic tangent of x (p. 488) 
normalization of the distance scale to be 1 (p. 489) 
angle of parallelism in radians (p. 491) 
complementary length to x (p. 501) 
A and C separate B and D in an elliptic plane (p. 542) 
infinitesimal change in distance (p. 555) 
Gaussian curvature of surface S (p. 56 7) 
Euler characteristic of surface S (p. 56 7) 
genus of a surface (p. 567) 
multiplicative length of a hyperbolic segment (p. 577) 
tangent half angle in hyperbolic plane (p. 578) 
"curvature" constant of an H-plane (p. 592) 
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Bending, SS4-SSS 

Betweenness, 1 S, 142 

line separation property and, 110, 

113-114 

for ordered fields, 117-118 

for ordered incidence plane, 
118-119 

Pasch's theorem and, 114 

plane separation property and, 
110-113 

rays and, 109-110 

segments and, 109 

Betweenness axioms, lOS-119, 142 

first, 108 

fourth, 110-113 

second, 108 

separation axioms and, 109 

third, 108-110 

Bezout's theorem, 89-90 

Bi-right quadrilaterals, 176-180 

Bisectors, 168, 3S4 

Bolyai-Lobachevskian geometry. See 

Hyperbolic geometry 
Bolyai-Lobachevsky formula, xxi, 

480, 491 

in Klein model, 346 

multiplicative, S84-S86 

Bolyai's circle-angle theorem, 
S21-S24 

Bolyai's construction theorem, 
S26-S27 

Bolyai's proof, 22S 

Boolean algebra, 67 

Boy's surface, S63, S64 

Brianchon's theorem, 3Sl 

Bruck-Ryser theorem, 102 

Calculus, S48-S70. See also 

Riemannian geometry 
differential, 3S 

predicate, 67 

Cantor's continuum hypothesis, 378, 

381 

Cantor's set theory, 378 

Cartesian plane, 139-140 

automorphisms of, 409, 431-436 

Dedekind's axiom for, 138-139 

Case assumptions, 66 

Categorical axioms, 306-307 

Categorical theory, 141 

Cayley numbers, 100 

C/d, as constant, 39-40 

Center 

of curvature, SSO-SSl 

definition of, 17 

of similitude, 461 

of symmetry, 403-404 

Ceva's theorem, 367-368 

Charts, SS7 

Chinese geometry, 2 

Chords, 17 

open, 298-299 

Circle(s) 
center of, 17, 18 
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centers of similitude in, 461 

circumscribed, of triangle, S1S-S20 

congruent, 42S 

definition of, 144 

diameter of, 17 

hyperbolic, 330-333, 483 

area of, 497-499 

circumference of, 496-497, 499 

interior of, 198 

inversions in, 313-319, 32S, 

330-333 

nine-point, 407 

osculating, S49-SSO 

Poincare, 330-333 

polar, SSS 

radius of, 17-18 

squaring of, S, 217 

in hyperbolic plane, S20 

symmetries of, 449 

Circle-angle theorem, S21-S24 

Circle-circle continuity principle, 130, 

137-138, 140 

equivalent to converse to triangle 
inequality, 1S6, 173 

in Poincare model, 330-331 

Circular functions, 488, 489, 490 

Circular points at infinity, 472 

Circular reasoning, 11 

Circumcenters, 404, 406 

Circumference 
in elliptic geometry, 499 

of hyperbolic circle, 496-497, 499 
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Circumscribed circle of triangle, 
515-520 

Clairaut's axiom, 219 

Classical two-valued logic, 68 

Clavius' axiom, 213-214, 254-257 

Clifford parallels, 547 

Collinear points, 70 

Collineation, 398, 424 

Common perpendicular at infinity, 
218, 266 

Commutative addition, 206 

Commutative transformations, 400 

Compass. See also Straightedge-and-
compass constructions 

collapsible, 47 

in compass-only constructions, 
50-51 

in straightedge-and-compass 
constructions, 29-34 

Complementary angles, 171 

Complementary segments, of Lambert 
quadrilateral, 501-502 

Complex manifolds, 569-570 

Concurrent lines, 70 

Conditional statements 
converse of, 64-65 

vs. theorems, 55-56 

Conformal mapping, 570 

Conformal models 
in elliptic geometry, 545 

in hyperbolic geometry, 483 

Congruence, 14-15, 19-20, 142, 

199-200 

angle addition and, 127 

angle ordering and, 128 

angle subtraction and, 127-128 

in Beltrami-Klein model, 301, 308, 

336 

of circles, 425 

of corresponding angles, 199-200 

definition of, 14 

distance and, 122 

of flags, 444-445 

of horocycles, 425 

motions and, 122, 444-448 

notation for, 16 

in Poincare models, 302-304, 

313-333 

of angles, 303-304 

SUBJECT INDEX 

of segments, 302-303 

of triangles, 327-328 

of right angles, 19-20, 143 

segment contraction and, 124 

segment ordering and, 125 

of segments, 139, 319-320 

as superposition, 122, 123, 328 

visualization of, 13, 14 

Congruence axioms, 119-129, 319 

for angles, 121 

for rays, 120 

for segments, 120, 121 

Congruence criterion 
ASA, 123, 127 

hypoteneuse-leg, 167 

SAA, 122, 123, 166 

SAS, 25, 121-124, 128, 142, 

326-329 

SSS, 123, 128 

Conics, 90, 99 

at infinity, 266 

Conjunctions, 60-61 

Consistency, 76-79 

of propositional logic, 77 

relative, 118 

Constant k 

in elliptic geometry, 495 

in hyperbolic geometry, 480, 

485-486, 495 

Constant K, in hyperbolic geometry, 
485-486 

Constant ratio, 11 

Constructible Euclidean plane, 140, 

141 

Constructible field, xv, 117, 141 

Constructible real numbers, xv, xviii, 
141-142, 526-527 

Constructible segments, 528 

Construction(s) 
compass-only, 50-51 

harmonic, 339-342 

standard, 164 

straightedge-and-compass, xiv, 
29-34. See also Straightedge
and-compass constructions 

Constructivism, 68 

Content, 29 

Continuity axioms, 129-138 

Archimedes', 132-133, 190 
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in angle/segment measurement, 
169-173 

Aristotle's axiom and, 188 
Aristotle's angle unboundedness, 

132-134 
Archimedes' axiom and, 188 
non-Euclidean Hilbert planes 

and, 250-251 
in Proclus' proof, 211, 221 

circle-circle continuity principle 
and, 130 

Dedekind's, 132-138, 260-262, 
266 

line-circle continuity principle and, 
130-131 

segment-circle continuity principle 
and, 131-132 

Continuum hypothesis, 378, 381 
Contradictions, 61 
Contrapositives, 65 

of parallel postulate, 212 
Conventionalist philosophy, 374 
Converse, of conditional statement, 

64-65 
Convex quadrilaterals, 187-188, 199 

defects of, 253 
Convex set, 149 
Coordinates 

in analytic geometry, 34-38 
axial, 508 
Beltrami, 508-512 
homogenous, 87 
infinitesimal, 189 
in Klein model, 508-512 
Lobachevsky, 508 
polar, 512-515 
Ramsay-Richtmyer coordinates, 

515 
in real hyperbolic plane, 507-515 
Weierstrass, 508-509 

Corollaries, 56. See also Theorem(s) 
Corresponding angles, congruence 

of, 199-200 
Cosines, 233, 248 

elliptic law of, 495 
hyperbolic law of, 495 

Coterminal rays, 19 
Covariant derivative, 559 
Crossbar theorem, 107, 116-117 

Cross-caps, 564 
Cross-ratio, 319-321, 325 

perspectivity and, 341-342 
Curvature 

bending and, 554-555 
calculus and, 548-556 
center of, 550-551 
constant, surfaces of, 562, 563 
Gauss-Bonnet theorem for, 

566-570 
Gaussian, 552-556 
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geodesic, 484, 485-486, 558-560 
of H-plane, 592 
of hyperbolic plane, 483-487 
mean, 554 
measurement of, 485-487 
radius of, 549 
Riemannian, 548-552, 555-556 
signed, 551 
total, 567-569 

Curvature vectors, 550, 558-559 
Curves 

doubly equidistant, 516 
equidistant, 482-483 
limiting. See Horocycles 
parametrized smooth plane, 548 
principal, 552 

Cycles. See also Horocycles 
hyperbolic, 481-483 

Cyclic groups, 449 
Cyclic quadrilaterals, 169n, 207, 540 
Cyclics, 449 
Cylinders 

as complete flat surfaces, 563 
Gaussian curvature of, 553-554 

Dedekind cut, 135 
Dedekind's continuity axiom, xviii, 

132-138, 260-262, 266 
deus ex machina, 261 

Deductive reasoning, 10 
Defect, 252 

additivity of, 252-253 
Hartshorne's definition of, 252n 
relation to area, 265, 478-479, 

497 
Defined vs. undefined terms, 11-15 
Desargues' theorem, 98, 101, 

355-356, 368 
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Desarguesian projective plane, 98, 
100, 101 

finite, 102 
Diagrams 

limitations of, 25-2 7 
power of, 27-29 
of Pythagorean theorem, 27-29 

Dialectics, 3 
Diameter, definition of, 17 
Diffeomorphism, 557 
Differentiable manifold, 557 
Differential calculus, 35 
Dihedral groups, 451 
Dilation, 321-322, 410 
Dini's surface, xxii, 485 
Direct motions, 429 
Directions for krwwing all dark 

things ( Ahmes), 1 
Discourse on Method (Descartes), 34 
Disjunctions, 60-61 
Disk model 

Klein, 297-301 
Poincare. See under Poincare 

Dissection, xviii, 27, 29 
Distance 

congruence and, 140 
definition of, 139 
signed, 139 

Divergently parallel lines, 264 
Division ring, 100, 101 
Double elliptic geometry, 544n 
Doubly equidistant curve, 516 
Drawings, 18 
Dual plane, 88, 99, 101 
Dual statement, 94, 98 
Duality principle, 88-89, 94, 101 
Dyadic numbers, 149 

Egyptian geometry, 1, 6 
Eleatics, 3 
Elementary continuity principle, 131 
Elementary geometry, xiv, 38 
Elementary logic, 53-55. See also 

Logic 
Elements (Euclid), 5, 8-9, 32 
Elements de Geometrie (Legendre), 

23 
Ellipse, 90 
Elliptic curves, 385 

SUBJECT INDEX 

Elliptic geometry, 126, 155-157, 166, 
383, 401, 489, 541-547 

area of circle in, 499 
circumference in, 499 
consistency of, 544 
definition of, 401 
double, 544n 
orientability in, 547 
rotations in, 416, 430 
Saccheri-Legendre theorem in, 188 
separation axioms in, 542-544 
in three dimensions, 547 

Elliptic law of cosines, 495 
Elliptic law of sines, 495 
Elliptic parallel property, 73, 81-86 

verification of, 83-84 
Elliptic plane, real, in Riemannian 

geometry, 563 
Elliptic space, 547 
Embeddings, 563-565 

Riemannian, 563 
Empty set, 144 
End(s) 

definition of, 573 
field of, in Hilbert planes, 573-588 
of hyperbolic lines, 301 

Endpoints, 16 
Equal content, 29 
Equal, definition of, 14 
Equality, 66 
Equidistance, 213-214 
Equidistant curve, 482-483 
Equilateral triangles 

angles of, 254 
sides of, 254 

Equivalence relations, 66, 82-83 
Erlanger Programme, 397-403, 473. 

See also Transformations 
Euclidean axiom of parallelism, 

138-142 
Euclidean fields, 141-142 

constructible, 141 
definition of, 141 

Euclidean geometry, 7-9 
algebra in, 27, 33 
analytic, 34-38 
applications of, 3 72 
consistency of, 77, 141-142, 

291-292, 371-372 
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definition of, 401 
diagrams in, 27-29 
flaws in, 103-105 
hyperbolic geometry and, 486-487 
hyperbolic geometry in, 265 
infinite in, 16 
physics applications of, 372-374 
postulates in, 10-11, 15-20 

fifth (parallel), 20-25. See also 

Parallel postulate 
first, 15-16, 63-61, 129-130 
fourth, 19-20, 143 
second, 16-17 
third, 17-19 

practical applications of, 9 
real, categorical nature of, 306-307 
straightedge-and-compass 

constructions, 29-34 
undefined terms in, 11-15 
vs. hyperbolic geometry, 521, 537, 

539 
Euclidean planes, xviii, 238, 572 

constructible, 140, 141 
definition of, 139 
within hyperbolic plane, 514-515 
real (Cartesian), 139 
Dedekind's axiom for, 138-139 

Euclidean space, 9 
Eudoxus' method of exhaustion, 39 
Euler characteristic, 56 7 
Euler line, 406 
Exactness, in Greek mathematics, 6 
Existential quantification, of 

variables, 61-62 
Exponential map, 560 
Exterior angle theorem, xxvii, 

133-134, 164-168, 189 
Exterior angles, 164 
External bisector, 3 54 

Fagano's problem, 404 
Fano plane, 96-97 
Fano's axiom, 97, 101 
Fermat numbers, xxii, 525 
Fermat primes, 32, 51 
Fermat's last theorem, 34-35, 

383-384 
Field(s), 86 

abstract, 86 
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constructible, xv, 117, 141 
Euclidean, 141-142, 206, 573, 577, 

580, 592, 595 
finite, 101 
ordered 

affine planes over, 117-118 
Archimedean, 188, 594 
betweenness for, 117-118 
non-Archimedean, 188, 206, 595 
Pythagorean, 158, 188, 206, 572, 

592, 595 
skew, 100 
surd, 141 
vector, 557 

Field of ends, Hilbert's, xxviii, 
573-588 

Finite groups, 451-454 
Finite incidence geometries, 79, 102 
First-order axioms, 67-68 
Flags 

congruent, 444-445 
definition of, 444 
pointed, 447 

Foot, of perpendicular, 163 
Foundations of Geometry (Hilbert), 

15 
Fourth angle, of Lambert 

quadrilateral, 180-182, 189, 
204 

Fractal geometry, 385 
Frieze groups, 449, 454 
Fuchsian groups, 385 
Function(s) 

circular, 488, 489, 490 
hyperbolic, 488-494 
Lobachevsky, 526n 

Fundamental groups, 308 
Fundamental theorem of similar 

triangles, 232-234, 238 

Gauss-Bonnet theorem, 566-570 
Gaussian curvature, 552-556 
Gauss-Wantzel theorem, 525-526 
Generalization, method of, in logic, 

64 
Generators, minimal set of, 449 
Geodesics, 484, 558-560 

in curvature measurement, 
485-486 
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Geometric condition, definition of, 144 

Geometry. See also Mathematics 
absolute, 138, 499, 588 

affine, 401 

algebraic, projective geometry and, 
89-90 

analytic, 34-38 

Arakelov, 385 

Babylonian, 2 

Bolyai-Lobachevskian. See 

Hyperbolic geometry 
Chinese, 2 

definition of, by Klein, 123 

Egyptian, 1, 6 

elementary, xiv-xvi, xxii, 38, 595 

elliptic. See Elliptic geometry 
Euclidean. See Euclidean geometry 
exactness in, 6 

finite incidence, 79 

fractal, 385 

Greek, 3-9 

higher, 36-37 

Hilbert's, without real numbers, 
571-596 

Hindu, 2 

historical perspective on, 1-9 

hyperbolic. See Hyperbolic geometry 
incidence, 69-88. See also 

Incidence geometry 
inversive, 313, 364 

Klein, 473 

measuring land, 1 

neutral, xxvii, 80-81, 138, 161-207 

non-Archimedean, 188-190, 595 

non-Euclidean, 239-288 

parabolic, 401, 411 

of physical space, 371-374, 386, 

555-556 

plane, 12 

projective, 81-91. See also 

Projective geometry 
Riemannian, 548-570. See also 

Riemannian geometry 
of space-time, 371-374, 386, 547, 

570 

spherical, 224, 383, 544 

without real numbers, 571-596 

George Martin's theorem, 523 

SUBJECT INDEX 

Gergonne point, 368 

Gergonne's theorem, 351 

Glide reflections, 287 

Glides, 426-427 

Godel's incompleteness theorems, 
68, 378-380 

Godel's paradoxical time structures, 
227 

Golden ratio, 48 

Golden rectangle, 48 

Greek mathematics 
exactness in, 6 

history of, 3-9 

logic and, 67 

Platonic theory and, 6-7 

Pythagorean, 3-5 

Groups 
affine, 462 

cyclic, 449 

dihedral, 451 

finite, 451-454 

frieze, 449, 454 

Fuchsian, 385 

fundamental, 308 

invariants in, 400-401, 402, 411 

isomorphic, 81 

Klein, 297, 385 

Lorentz, 402 

minimal set of generators of, 449 

normal subgroups and, 466 

projective special linear, 441 

of symmetries, 449 

of transformations, 399-402 

wallpaper, 454 

Grundlagen der Geometrie (Hilbert), 
15, 27 

Half-plane bounded by line, 111-112 

Half-turns, 414, 430 

definition of, 414 

Euclidean, 420-421 

hyperbolic, 421 

in rotations, 414, 416 

in translations, 420 

Harmonic conjugates, 339-340, 355 

Harmonic construction, 339-342, 355 

Harmonic homology, 341 

Harmonic tetrad, 339-340 
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Heptagon, regular, xviii, 76 
Hidden quantifiers, 63 

Higher geometry, 36-37 
Hilbert planes, xviii, 129, 161-162, 

169, 173, 175, 182-191, 200, 
213, 220, 571-596 

alternate interior angle (AIA) 

theorem for, 162-164 

automorphisms of, 408-409 
field of ends in, xxii, 573-588 
in neutral geometry, 161-162, 

162n, 185. See also Neutral 
geometry 

non-Euclidean, 249-252 
defect in, 252-253 

limiting parallel rays in, 257-259 
parallels with common 

perpendicular in, 254-257 
similar triangles in, 253-254 
universal non-Euclidean theorem 

and, 251 
Pejas' classification of, 588-595 
Pythagorean planes and, 572-573 
semi-Euclidean, 182 

Hilbert tools, 572 
Hilbert's axioms, 103-159 

of betweenness, 105-119, 142. See 

also Betweenness axioms 
of congruence, 119-129, 142 
of continuity, 129-138 
hyperbolic of parallels, 259-262 

vs. hyperbolic parallel property, 
262 

overview of, 103-105 
of parallelism, Euclidean, 138-142 

equivalence to Euclid's fifth 
postulate, 173-176 

Hilbert's Euclidean parallel postulate, 
negation of, 250-252 

Hilbert's geometry, without real 
numbers, xvi, xxii, 571-596 

Hindu geometry, 2 
Homeomorphism, 557 
Homogeneous manifolds, 561 
Homogeneous coordinates, 87, 588 
Homographies, 463 
Horocycles, 295-296, 481-483 

congruent, 425 

Horocyclic sector, 484 
Horosphere, 482 
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Hyperbola, 90, 210n, 312, 489 
Hyperbolic analogue of Pythagorean 

theorem, 49 2 
Hyperbolic axiom of parallels, 

259-262 

vs. hyperbolic parallel property, 
262 

Hyperbolic circles, 330-333, 483 
area of, 497-499 
circumference of, 496-497, 499 

Hyperbolic constructible segments 
theorem, 528, 586-587 

Hyperbolic functions, 488-494 
Hyperbolic geometry, 249 

angle of parallelism in, 480-481 
applications of, 382-389 

Fermat's last theorem, 383-384 
Fuchsian groups, 385 
hyperbolic tesselations, 386-389 
Kleinian groups, 385 
modular forms, 383-384 
Shimura-Taniyama theorem, 

383-384 
space-time geometry, 386 
Thurston's geometrization 

conjecture for 3-D manifolds, 
383-384 

uniformization of compact 
orientable surfaces, 383 

area in, 265, 476-479 
axiomatic, 266-267 
categorical nature of real, 306-307 
circumscribed circle of triangle in, 

515-520 
consistency of, 289-293, 371-372 
constant k in, 480 
coordinates in, 507-515 
cycles in, 481-483 
defect in, 252-253, 478, 479, 497 
definition of, 401 
as part of Euclidean geometry, 265 
Euclidean models for, 292-346 

formulas of, 489-495 
Hilbert's hyperbolic axiom of 

parallels in, 259-262 

horocycles in, 295-296, 425, 481-483 
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Hyperbolic geometry (continued) 

limiting parallel rays in, 257-259, 

262-264 

Minkowski metric in, 311-313 

models in, 292-346 

Beltrami's, 293-297. See also 

Beltrami-Klein model 
isomorphic, 306-307, 334-336 

Poincare, 302-308, 313-333 

motions in, 436-444 

parallel lines with common 
perpendicular in, 254 

perpendicular bisectors in, 266 

physics applications of, 372-374 

real, 262, 475-540 

similar triangles in, 253-254 

universal non-Euclidean theorem 
in, 251-252 

visualization of, 292 

vs. Euclidean geometry, 521, 537, 

539 

Hyperbolic law of cosines, 495 

Hyperbolic law of sines, 495 

Hyperbolic lines, 292, 483 

ends of, 301 

in Poincare model, 307 

Hyperbolic parallel property, 75, 262 

of ordered incidence plane, 118-119 

vs. Hilbert's hyperbolic axiom of 
parallels, 75, 262 

Hyperbolic plane(s) 
area in, 265 

of triangle, 265 

conformal model of, 483 

constructions in, 520-528 

curvature of, 483-487 

definition of, 260 

Euclidean plane within, 514-515 

isometric model of, 483-484 

projective completion of, 265, 285-287 

real, 262, 487 

coordinates in, 507-515 

in Riemannian geometry, 563 

squaring circle in, 520 

Hyperbolic planes characterization 
theorem, 579-584 

Hyperbolic reflections, 325, 326-329, 

435-441. See also Reflections 

SUBJECT INDEX 

Hyperbolic structures, 568-569 

Hyperbolic surfaces, 383 

Hyperbolic tesselations, 386-389 

Hyperbolic trigonometry, 487-495 

Hyperboloid, 312 

Hypercycles, 482-483 

Hyperreal numbers, 79 

Hypoteneuse-leg criterion, 167 

Ideal points, 301 

hyperbolic, 422-424 

in Klein model, 301 

in Poincare model, 307 

in tesselations, 387 

Identity transformation, 399, 412, 430 

Imaginary objects, 13 

Immersions, Riemannian, 563-566 

Implications, 64-65 

Incenter, 404 

Incidence geometry, 69-91 

axioms in, 69-71 

consistency of, 76-79 

definitions for, 70 

finite, 79 

models in, 72-88. See also Models 
Incidence planes, 470 

ordered, 118-119 

Incompleteness theorems, 78-79 

Inconsistent theories, 76-77 

Indirect proof (reductio ad 
absurdum), 4, 6, 58-61, 76 

Infinite cyclics, 449 

Infinite, in Euclidean geometry, 16 

Infinite lines, 16 

Infinite models, 78 

Infinite sets, 78, 79 

Infinitely large elements, 188 

Infinitesimal coordinates, xv, Sn, 
189, 593-594 

Infinitesimal elements, 188, 595 

Infinitesimal triangles, hyperbolic 
trigonometry of, 492-493, 

495 

Inflection point, 550 

Interior angles, 162-164 

alternate, 162-164 

remote, 164 

Interpretations, 72-76 
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Intersection, of sets, 45 
Intuitions formal logic, 68 
Invariance, invariant(s), 400-402, 

411, 414, 419, 424-427, 430, 
471-473 

in physics, 402 
Inverse transformations, 399 
Inversions, 325 

applications of, 333 
in circles, 313-319, 325, 330-333 

Inversive geometry, 313 
Inversive plane, 364-365 
Involution, 411 
Irrational lengths and numbers, 4-6, 

49, 59-60, 236, 524n, 573 
Isometric model, of hyperbolic 

length, 483 
Isometry. See also Motions 

local, 561 
in manifold mapping, 561 

Isomorphic groups, 81 
Isomorphisms, 79-81, 305-306, 

334-336 
automorphisms and, 398, 

408-413 
in Poincare model, 442-444 
symmetry and, 450-451 

Jagy's theorem, 526-527 
Jiuzhang suanshu, 2 
Justifications, 56-57 

K (constant), the Gauss curvature, 
485-486 

k (constant) 
distance, scale in hyperbolic 

geometry, 480, 485-486, 489, 
520, 527-528 

in Pejas' classification, 592-594 
Klein bottle, 297 

embedded, 564 
Klein geometries, 473 
Klein groups, 297, 385 
Klein lengths, 342-345 
Klein model. See Beltrami-Klein 

model 
Klein quartic, 297-298, 570 
Kotelnikov's rule, 531 
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Lambert quadrilaterals, 180-185, 
199, 202-204, 220, 223, 229, 
250, 305, 501-507 

complementary segments of, 
501-502 

Engel's theorem and, 502 
existence theorems for, 505-507 
fourth angle of, 181, 592 
table of associated right triangles, 

505-506 
Law of excluded middle, 65-66 
Legendre's axiom, 223 
Legendre's lemma, 195 
Legendre's theorem, 23-25, 221-223 
Lemmas, 56. See also Theorem(s) 

Legendre's, 195 
Length(s), 132 

assignment of, 170 
congruence and, 139-140 
definition of, 155 
invariance of, 411 
irrational 

in Platonic geometry, 6 
in Pythagorean geometry, 4-5 

Klein, 342-345 
multiplicative, 320, 528, 577 
Poincare, 319-326 
segment, 132. See also Length(s) 

definition of, 139 
in Klein model, 336, 342-345 
in Poincare model, 319-320 

Leonardo's theorem, 451-454 
Levi-Civita connection, 559n 
"lie on," 12 
Limit rotations, 414 
Limiting curve. See Horocycles 
Limiting parallel rays, 257-259, 

262-264 

in Klein model, 344-345 
in Poincare model, 304-305 

Limiting surface. See Horosphere 
Line(s), 12-13 

absolute polar of, 547 
concurrent, 70 
Euler, 406 
hyperbolic, 292, 483 

ends of, 301 
in Poincare model, 307 
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Line(s) (continued) 

in incidence geometry, 69-71 
infinite, 16 
at infinity, 83, 462 
invariant, 414 
normal, 552 
parallel. See Parallel lines 
pencils of, 427 
perpendicular, 42 

foot of, 163 
in Klein model, 308-311, 336-337 

Poincare, 302-306 
construction of, 315-318 

pole of, 545 
projective, 439-440 
reflections in. See Reflections 
secant, 202 
side of, 111-112 
skew, 21 
tangent, 202 
ultra-ideal, 286 

Line of enclosure, 282-283, 301, 586 
in Poincare model, 315-317 

Line separation property, 110 
proof of, 113-114 

Linear fractional transformation, 440 
Mobius, 463 

Linear transformations, 462 
Line-circle continuity principle, 

130-131 
Lobachevskian geometry. See 

Hyperbolic geometry 
Lobachevsky coordinates, 508 
Lobachevsky function, 526n 
Local isometry, 555n, 561 
Logic 

axioms in. See Axiom(s) 
classical two-valued, 68 
elementary, 53-55 
history of, 66-68 
intuitionist formal, 68 
model theory in, 72-79 
notation in, 67 
proofs in, 56-66. See also Proofs 
propositional, 77 
semantics in, 90-91 
syllogisms in, 66 
syntax in, 90-91 
theorems in, 53-56 

SUBJECT INDEX 

Lorentz group, 402 
Lorentz metric, 570 
Lune, 5, 546 

Magnitude, 29 
Manifolds, Riemannian, 556-563. See 

also Riemannian manifolds 
Map/mapping 

conformal, 570 
of connected manifolds, 560-561, 

570 
exponential, 560 
of topological space, 556-557 

Mathematical induction, 67-68 
Mathematics. See also Geometry 

applications of, 378 
conventionalist view of, 374 
formalist view of, 376-377, 380 
foundations of, 376-380 
fundamental illusion about, 

381-382 
fundamentalist view of, 377-378 
linguistic aspects of, 381-382 
philosophy of, 5-6, 374-382 
truth of, 375-382 

Mean curvature, 554 
Medial triangle, 405 
Menelaus' theorem, 366-367 
Metamathematical theorems, 68, 88 

in hyperbolic geometry, 291-293 
Metamathematics, definition of, 

290 
Method of exhaustion, 39 
Metric 

Bachmann, 588 
Lorentz, 570 
Minkowski, 311-313 
Riemann, 557 

on Klein model, 565 
on Poincare model, 565 

Midpoints, 167-168, 170-171 
Minimal set of generators, 449 
Minkowski metric, 311-313 
Mobius transformations, 463 
Models 

conformal, 483 
in incidence geometry, 72-88 

consistency and, 76-79 
definition of, 72, 73, 90 



SUBJECT INDEX 

infinite, 7 8 
isomorphic, 79-81 
parallel postulate and, 73-74 
significance of, 72-76 

isometric, 483 
isomorphic, 79-81, 305-306, 

334-336 
in neutral geometry, 80-81 
new, of Euclidean plane with 

hyperbolic plane, xxii, 369, 514 
Modular forms, 383-384 
Modular groups, 387 
Modus ponens, 64-65 
Mordukhai-Boltovski theorem, 527 
Motions, 122, 154 

automorphisms as, 408-409. See 

also Automorphisms 
in Cartesian model, 410, 431-436 
classification of, 42 7-431 
collineations, 424 
congruence described by, 122, 

444-448 
definition of, 122, 401 
direct, 429 
in elliptic plane, 416, 430 
glides, 426-427, 430 
groups of. See Groups 
half-turns, 414, 430 
hyperbolic, 436-444 
identity, 399, 412, 430 
in Klein model, 345-346 
opposite, 429 

in Cartesian plane, 435, 436 
hyperbolic, 442 

parallel displacement, 414, 
424-425, 430 

in Poincare model, 345-346, 
436-444 

reflections, 153-154, 326-329, 
411-414, 430, 435-439. See 

also Reflections 
in Riemannian geometry, 561 
rotations, 414-417, 430, 434-435, 

443-444 
translations, 417-420, 430 

Multiplicative length, xxi, 320, 528, 
577 

Music, mathematics of, 4 
Mystic hexagram theorem, 89 

Negations, 60-61 
Negative quantifiers, 63 
Neighborhood, 556 
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Neusis constructions, xviii, 33, 51-52 
Neutral geometry, xvi, 138, 161-207 

alternate interior angle (AIA) 
theorem in, 162-164 

angle and segment measurement 
in, 169-173 

angle sum of triangle in, 183-190 
definition of, 162n 
exterior angle theorem in, 164-168 
Lambert quadrilaterals in, 176-183 
models in, 80-81 
overview of, 161-162 
real, 265 
Saccheri quadrilaterals in, 176-183 

Neutral law of sines, 497 
Nine Chapters on the Mathematical 

Art, 2 
Nine-point circle, 407 
Non-Euclidean geometry, 239-288 

discovery of, 239-247 
further development of, 248-249 
Hilbert planes in, 249-252 
hyperbolic, 249-267. See also 

Hyperbolic geometry 
Non-obtuse angle theorem, 185-186 
Non-orientability, 544 

of Klein bottle, 562-563 
Nonstandard analysis, 79 
Normal line, 552 
Normal subgroups, 466 
Normal vector, 550 
Number(s) 

Cayley, 100 
constructible, xv, xviii, 141-142, 

526-527 
dyadic, 149 
Fermat, 525 
hyperreal, 79 
rational, 59 

positive, 4 
real 

in angle/ segment measurement, 
169-173 

constructible, 526-527 
Number theory, 34-35 

Pythagorean, 4 
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Obtuse angle, 129 
fourth, 189 

Octonions, 100 
Open chords, 298-299 
Open sets, 556 
Opposite motions, 429 

in Cartesian plane, 435, 436 
hyperbolic, 442 

Opposite rays, 18, 109-110 
Opticks (Newton), 37 
Ordered fields 

affine planes over, 117-118 
Archimedean, 188 
betweenness for, 117-118 
Pythagorean, 158 

Ordered incidence plane, 118-119 
Ordinary points, 83 

in Klein model, 310-311 
Orientable planes, 142, 460 
Orientable surfaces, 562-563, 566 
Orientation, surface, 551 
Orthic triangle, 405 
Orthocenters, 406 
Osculating circle, 549-550 
Osculating plane, 550 

Pappus' theorem, xxi, 99-101, 369 
Parabolic geometry, 401, 411 
Parallel displacement, 414, 424-425, 

430, 443 
Parallel lines, 20-21, 70. See also 

Parallelism 
asymptotic, 262-263, 264 
classification of, 262-264 
Clifford, 547 
with common perpendicular, 254, 

262-264 
divergently, 264 
elliptical property of, 73 
Euclidean postulate for. See 

Parallel postulate 
Hilbert's hyperbolic axiom of, 

259-262 
hyperbolic property of, 75 
with limiting rays, 257-259, 

262-264 
in Poincare model, 302-303 
terminology for, 264 

SUBJECT INDEX 

Parallel postulate, 20-25, 40 
attempted proofs of, 23-25, 73-76 

by Bolyai, 225-227 
by Clairaut, 219-220 
by Clavius, 213-214 
failure of, 291-292. See also 

Parallel postulate, 
independence of 

by Lambert, 223-224 
by Legendre, 23-25, 221-223 
models and, 73-76 
by Proclus, 210-213, 220-221 
by Ptolemy, 212 
by Saccheri, 218-219 
by Wallis, 214 

contrapositive of, 212 
equidistance and, 213-214 
equivalence to transitivity of 

parallelism, 175n 
Hilbert's Euclidean, 138-142 

equivalence to Euclid's fifth 
postulate, 173-176 

negation of, 250-252 
history of, 209-238 
independence of, 291-346 

Beltrami-Klein model for, 
293-297, 308-311 

metamathematical theorem for, 
291-293 

Minkowski metric and, 311-313 
Poincare models for, 302-308 
special relativity theory and, 

311-313 
neutral geometry and, 161-162. 

See also Neutral geometry 
statement of, 21 

Parallel projection theorem, 232 
Parallel rays, limiting, 257-259 
Parallel transport, 559n 
Parallelism. See also Parallel lines 

angle of, 265 
Bolyai-Lobachevsky formula for, 

332-333, 346 
axiom of, 138-142 
segment of, 523 
transitivity of, 93 

equivalence to parallel postulate, 
175n 
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Parallelogram, symmetric, 356-357 
Parametrized smooth plane curve, 548 
Pascal's theorem, xxi, 100, 101, 369 
Pasch's theorem, 114 
Patches, 557 
P-center, 330-333 
P-circles, 330-333 
Peano arithmetic, 68 

consistency of, 78-79 
infinite sets in, 78-79 

Pedal triangle, 405, 499, 521 
Pejas' classification, of Hilbert 

planes, 588-595 
Pencils of lines, 427 
Perpendicular bisector theorem, 266 
Perpendicular lines, 42 

foot of, 163 
in Klein model, 308-311, 336-337 

Perspectivity, 94, 341-342, 542-543 
Philosophy of mathematics, 5-6, 

374-382 
Physics applications 

physical space, 371-373 
to special relativity, 311-313 
of invariance, 402 
of transformations, 402 

1T, definition of, 38-40, 476 
Plane(s) 

absolute, 588-591 
affine, 82 

algebraic models of, 86-87 
definition of, 82 
over ordered fields, 117-118 
real, 84 

Archimedean, automorphisms and, 
398, 408 

Cartesian, 138-140 
automorphisms of, 409, 431-436 
Dedekind's axiom for, 138-139 

Euclidean 
automorphisms of, 409, 431-436 
constructible, 140, 141 
definition of, 139 
model within hyperbolic plane, 

369-370, 514-515, 537-538 
real, 138-140, 409, 431-436 

Fano, 96 
Hilbert. See Hilbert planes 

homogeneous, 182n 
hyperbolic. See Hyperbolic 

plane(s) 
incidence, 470 
inversive, 364-365 
ordered incidence, 118-119 
orientable, 142, 460 
osculating, 550 
projective, 81-88. See also 

Projective planes 
Desarguesian, 98, 100, 102 
non-Desarguesian, 98, 101 

Pythagorean, 572-573 
real Euclidean, 138-140, 409, 

431-436 
real hyperbolic, 262, 475-540 
taxicab, 156-157 
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Plane separation property, 110-114 
Platonic theory, 6-7, 380-382 
Playfair's postulate, 20-25 
Poincare circle, 330-333 
Poincare conjecture, xxi, 105 
Poincare length, 319-326 
Poincare lines (P-lines), 302-306 

construction of, 315-318 
Poincare models, 302-308 

Bolyai-Lobachevsky formula and, 
332-333 

circle inversions in, 313-319 
congruence in, 302-304, 313-333. 

See also Congruence 
of angles, 303-304 
of segments, 302-303 
of triangles, 327-328 

motions in, 345-346, 436-444 
rigid, 328-329 

Riemann metric on, 565 
Poincare reflections, 326-329 
Point(s), 12 

antipodal, 74, 544 
in elliptic geometry, 126 

circular, at infinity, 472 
collinear, 70 
Gergonne, 368 
ideal, 301 

hyperbolic, 422-424 
in Poincare model, 307 
in tesselations, 387 
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Point(s) (continued) 

in incidence geometry, 69-71 
at infinity, 83, 462 
of inflection, SSO 
ordinary, 83 

in Klein model, 310-311 
ultra-ideal, 286 

in Klein model, 310-311 
Pointed flags, 447 
Polar, 362, 416 

absolute, S47 
Polar circle, SSS 
Polarity, 89 
Poles, lSS 

of line, S4S 
Polygon, regular, Sl, 76, S24-S26, 

S40 
Polynomial equations, geometric 

techniques for, 36-37 
Pons asinorum, 106 
Positive rational numbers, 4, S9 
Postulates 

definition of, 10 
in Euclidean geometry, 10-11, 

lS-20 
P-reflections, 326-329 
P-rigid-motion, 328-329 
Prime numbers, Fermat, 32, S2S 
Primitive terms, 11-lS 
Principal curve, SS2 
Principia Mathematica (Newton), 10 
Principle of duality, 88-89, 94, 101 
Principles, vs. axioms and theorems, 

131 
Proclus' theorem, 211, 220-221 
Projections, stereographic, 9S, 96, 

S4S-S46, S69 
Projective completion 

of absolute plane, S88-S91 
of affine plane, 82-86, 94-9S 
of Hilbert plane, S88-S92 
of hyperbolic plane, 26S-266, 

28S-287 
Klein model in, 333-346 

Projective geometry, 81-91 
algebraic geometry and, 89-90 
duality in, 88 
fundamental theorem of, 423n 

SUBJECT INDEX 

history of, 89-90 
Klein model and, 297-301 
role of, in foundations of 

elementary geometry, S93 
Projective line, 439-440 
Projective planes, 81-88 

algebraic models of, 87 
coordinatized, 87 
definition of, 82 
Desarguesian, 98, 100, 102 

finite, 102 
dual interpretation of, 88 
non-Desarguesian, 98, 101 
real, 84 
smallest, 84 

Projective special linear group, 441 
Projective transformations, 440-444, 

463 
Projectivity, 423n 
Proofs, 9-10 

by cases, 66 
conjunctions in, 60-61 
construction of, S7-S8 
contradictions in, 61 
contrapositives in, 6S 
definition of, S6-61 
disjunctions in, 60-61 
Godel's, 68, 78-79, 378 
Hilbert on purity of methods of, S96 
implication in, 64-6S 
indirect, 4, 6, S8-61 
justifications in, S6-S7 
law of excluded middle and, 6S-66 
negations in, 60-61 
quantifiers in, 61-64 

hidden, 63 
negative, 63 
specification of, 64 

RAA, 4, 6, S8-61 
requirements for, 10-11 
Stolzenberg on, 381 
synthetic, 3 7 
undefined terms in, 11-lS 
verification of, S7 

Propositional logic, 77 
Pseudosphere, 293-296, 484-486 
Pure mathematics, 9 
Pythagorean equation, 27-29, 270 
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Pythagorean ordered fields, 158 

Pythagorean planes, Hilbert planes 
and, 572-573 

Pythagorean proof, 175-176 

Pythagorean theorem, xviii, 27-29, 

233 

in antiquity, 2 

diagrams of, 27-29 

hyperbolic analogue of, 492 

Pythagorean triples, 2, SO 

Pythagoreans, 3-5 

Quadrangles, 94, 97 

Quadrilaterals, 44, 94 

bi-right, 176-180 

convex, 187-188, 199 

defects of, 253 

cyclic, 207 

Lambert, 180-183, 223, 501-507 

complementary segments of, 
501-502 

Engel's theorem and, 502 

existence theorems for, 505-507 

fourth angle of, 181 

right triangle construction 
theorem for, 506-507 

Saccheri, 176-183, 500-501 

definition of, 177 

fourth angle of, 181 

summit angles of, 177 

sides of, 44, 199 

vertices of, 44, 199 

Quantification, of variables, 61-64 

Quantifiers, 61-64 

generalization of, 64 

hidden, 63 

negating, 63 

specification of, 64 

Quaternions, 100 

RAA conclusion, 58-60 

RAA hypothesis, 58-60 

RAA proofs, 58-61, 76 

Rachet polygon, 449 

Radians, 332, 476 

Radius, 17-18 

of curvature, 549 

definition of, 17 
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Ramsay-Richtrnyer coordinates, 515 

Rational numbers, 4, 59 

Rays, 109-110 

betweenness for, 115-117 

coterminal, 19 

definition of, 18, 109 

limiting parallel, 257-259, 262-264 

in Klein model, 344-345 

in Poincare model, 304-305 

opposite, 18, 109-110 

Real affine plane, 84 

Real hyperbolic geometry, 262, 

475-540. See also under 

Hyperbolic 
Real hyperbolic plane, 262, 266, 

487 

Real neutral geometry, 265, 269 

Real numbers. See also Number(s) 
in angle/segment measurement, 

169-173 

constructible, 526-527 

geometry without, xvi, xxii, xxviii, 
169, 172, 266, 571-576 

Real plane, 139-140. See also 

Plane(s) 
Dedekind's axiom for, 138-139, 

260-262, 266 

Real projective plane, 84 

Rectangle 
definition of, 45 

existence/nonexistence of, 182, 

197, 219, 250-252, 255-256, 

269 

golden, 48 

Reductio ad absurdum, 4, 6, 58-61, 

76. See also under RAA 

Reflections, 153-154, 411-414, 430 

in finite groups, 452-454 

glide, 287 

hyperbolic, 325, 326-329, 435-441 

in Klein model, 337-342 

Poincare, 325, 326-329, 435-439 

products of, 413-414. See also 

Motions 
as symmetries, 450 

in theorem of three reflections, 
427-431 

Reflexive equality, 66 
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Reflexive relation, 82 
Regular polygon, 51, 76, 524-526, 

540 
Relative consistency, 118, 140-141, 

292 
Remote interior angle, 164 
Riemann hypothesis, 105 
Riemann metric, 557 

on Klein model, 565 
on Poincare model, 565 

Riemann surface, 569-570 
Riemannian geometry, xxvi, 548-570 

curvature in, 548-552, 555-556 
embeddings in, 563, 564-565 
fundamental theorem of, 559n 
Gauss-Bonnet theorem in, 

566-570 
geodesics in, 558-560 
immersions in, 563-566 
manifolds in, 556-563 
motions in, 561 
real elliptic plane in, 563 
real hyperbolic plane in, 563 

Riemannian manifolds, 556-563 
compact, 561-562 
complex, 569-570 
connected, 560-561, 562 
embedded, 563, 565-566 
geodesics and, 556-558 
homogeneous, 561 

Riemannian surfaces, 557-558 
Right angles, 19 

congruence of, 19-20, 143 
Right triangle construction theorem, 

506-507 
Rigid motions, 408n 
Rotations, 414-417, 430 

in Cartesian model, 434-435 
in finite groups, 452-454 
hyperbolic, 443-444 
as symmetries, 450 

Rule of detachment, 64-65 

SAA congruence criterion, 122, 166 
Saccheri quadrilaterals, 176-183, 

190-191, 198-199, 202-204, 
218, 250, 305, 500-501 

associated with any triangle, 
269-270 

SUBJECT INDEX 

definition of, 177 
summit angles of, 177 

Saccheri-Legendre theorem, 186, 
195-196, 221, 228, 594 

Saccheri's angle theorem, 183-186 
Saccheri's Euclid.as vindicatus, 

218-219 
SAS congruence criterion, 25, 

121-124, 128, 142, 327-328 
Schweikart's constant, 359 
Schweikart's segment, 265, 359, 499 
Secant, 202 
Segment(s), 16 

complementary, of Lambert 
quadrilateral, 501-502 

congruence of, 139-140 
in Poincare model, 302-303 

constructible in hyperbolic plane, 
v' 528, 586-587 

definition of, 109 
measurement of, 169-173 
midpoints of, 167-168, 170-171 
of parallelism, 523 
unit, 170 

Segment length, 132. See also 

Length(s) 
definition of, 139 
in Klein model, 336, 342-345, 352 
in Poincare model, 319-320 

Segment-circle continuity principle, 
131-132 

Semantics, 90-91 
Semi-Euclidean Hilbert plane, 182, 

189, 197, 213-214, 220, 594 
Separation axioms, 109, 542-544 
Set(s), 14 

convex, 149 
elements of, 14 
empty, 144 
infinite, 78, 79 
intersection of, 45 
open, 556 
union of, 45 

Set theory, 143-144, 378 
Cantor's, 378 
Zermelo-Fraenkel, 79, 378 

Shimura-Taniyama conjecture, 35 
Shimura-Taniyama theorem, 

383-384 
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Side(s) 
of angle, 18 

of line, 111-112 

of quadrilateral, 44, 199 

bi-right, 177 

Side-angle-angle (SAA) congruence 
criterion, 123, 166-167 

Side-angle-side (SAS) congruence 
criterion, 25, 121-122, 142 

Side-side-side (SSS) congruence 
criterion, 123, 128 

Signed curvature, 551 

Signed distances, 513 

Similar triangles, xx, 253-254, 573 

fundamental theorem of, 232-234, 

238 

Similarities, 410 

in Cartesian model, 436 

in Poincare model, 447 

transformations as, 447-448 

Sines 
Bolyai's absolute law of, 497, 499 

definition of, 233, 488 

elliptic law of, 495 

hyperbolic law of, 495 

Skew fields, 100 

Skew lines, 21 

Space 
compact, 561-562 

elliptic, 547 

topological, 556-557 

Space-time geometry, 371-374, 386, 

547 

Special point, new, in hyperbolic 
geometry, xxi, 356 

Special relativity theory, 311-313 

Specification, of quantifiers, 64 

Spherical geometry, 383, 544-547 

Squares, symmetries of, 449, 

450-451 

Squaring the circle, 5, 217 

in hyperbolic plane, 520, 526 

SSS congruence criterion, 123, 128, 

139 

Standard configuration, 164 

Standard construction, 164 

Stereographic projections, 95-96, 

545-546, 569 

Stoics, 67 

Straightedge-and-compass 
constructions, 29-34 

algebra and, 29-33 

with collapsible compass, 47 

compass-only, 50-51 

constructible real numbers and, 
526-527 

in hyperbolic plane, 520-528, 

586-587 
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of inverse point in circle, 314-315 

of limiting parallel ray, 258-259 

neusis, 33, 51-52 

of Poincare line, 315-318 

straightedge-only, 51 

with unruled vs. ruled 
straightedge, 47-48 

Viete's axiom in, 33-34, 36 

Sulbasutra, 2 

Summit angles, 177 

Superposition, 122, 123, 328 

Supplementary angles, 19 

Surd fields, 141 

Surface(s) 
Boy's, 563, 564 

complete, 559, 561-563 

curvature (Gaussian) K, 485, 

552-556, 561-569 

Dini's, 485 

embedded, 563, 564-565 

geometric, 557 

hyperbolic, 383 

immersed, 563-566 

limiting, 482 

non-orientable, 544 

orientable, 562-563, 566 

orientation of, 551 

Riemannian, 557-558, 569-570 

Syllogisms, 66, 67 

Symmetric parallelogram, 356-357 

Symmetric relation, 82 

Symmetry, 398, 449-454 

center of, 403-404 

of limiting parallelism, 276 

Symmetry groups, 449 

Syntax, 90-91 

Synthetic proofs, 3 7 

Tangent, 202 

Tangent bundle, 557 
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Tarski's theory, 144n 
Taurinus' formulas for "log-spherical 

geometry," 224-22S 
Tautologies, 6S, 77 
Taxicab plane, xviii, 1S6-1S7 
Taylor series expansions, 488 
Tesselations, hyperbolic, 386-389 
Thales' theorem, 19 7 
Theorem(s), SS-S8. See also specific 

theorems 

definition of, SS, S6 
dual, 89 
metamathematical, 68 
proofs for, S6-66. See also Proofs 
vs. conditional statements, SS-S6 
vs. principles, 131 

Theorem on three reflections, 427-431 
Theorema Egregium, 29S, SSS 
Theory of special relativity, 311 
Three musketeers theorem, 182n 
Thurston's geometrization conjecture 

for 3-D manifolds, 383-384 
Tiling, 386-389 
Topological manifold, SS7 
Topological space, SS6-SS7 
Total curvature, S67-S69 
Tractrix, 29S 
Transformations 

Abelian group of, 400 
affine, 401, 462-463 
applications of 

to geometric problems, 403-407 
to physics, 402 

automorphisms and, 398, 408-411 
commutative, 400 
fixed point of, 411 
groups of, 399-402. See also 

Groups 
identity, 399, 412, 430 
inverse, 399 
linear, 462 
linear fractional, 440 
Mobius, 463 
motions and, 408-409, 413 
multiplication of, 399 
projective, 440-444, 463 
as similarities, 447-448 

Transitive equality, 66 

SUBJECT INDEX 

Transitive relation, 82 
Transitivity 

of implications, 6S 
of limiting parallelism, 2 77 
of parallelism, 93 

equivalence to parallel postulate, 
17Sn 

Translations, 414, 417-421, 430 
in Cartesian model, 431-434 

in Poincare model, 443 
Transversal, 22 
Trebly (or triply) asymptotic triangle, 

279, 422, 499, S3S 
Triangle(s) 

acute, altitudes of, 3SS 
angle sum of, 183-190 
area of 

defect of hyperbolic. See Defect 
in hyperbolic plane, 26S, 476-479 
limit on, 476-479 
scalene, 199 

asymptotic, 3S8 
circumscribed circle of, S1S-S20 
congruence of. See Congruence 
definition of, 98 
equilateral 

angles of, in hyperbolic plane, 
2S4 

circumscribed circle in 
hyperbolic plane, S19 

construction of, in hyperbolic 
plane, S06 

Euclid's proof of existence of, 
129-130 

existence of, in Pythagorean 
plane, 238 

incenter of, 197 
infinitesimal, hyperbolic 

trigonometry of, 492-493, 49S 
interior of, 117 
medial, 40S 
orthic, 40S 
pedal, 40S, 499 
Poincare, congruence of, 327-328 
sides of, in incidence geometry, 98 
similar, 21S, 238, 2S3-2S4, S73 

fundamental theorem of, 
232-234, 238 
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