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Reductive Groups

Let G ⊂ GL(n,C) be a closed linear group stable under
conjugate transpose. This is a complex reductive group.

A group G is a real reductive group if G = G0 ∩ GL(n,R)
where G0 is a complex reductive group.

The Lie algebra g of G decomposes as k⊕ p (Cartan
decomposition),

The subalgebra k consists of skew-Hermitian matrices and p
consists of Hermitian matrices.

The Lie group K , whose Lie algebra is k is a maximal compact
subgroup.

We can construct an Iwasawa decomposition to be seen later.
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Cartan Motion Group

The Cartan motion group of G is defined as G0 = K n (g/k),
with composition (k ,X ) · (k0,X0) = (kk0,Adk−1

0
(X ) + X0).

Example: G = SL(2,R) is a real reductive group. Its Cartan
motion group is G0 = SO(2) n sl(2,R)/so(2).

Here sl(2,R) are the traceless matrices and matrices in so(2)

has the form

[
0 b
−b 0

]
.
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Irreducible Unitary Representations

A unitary representation π : G → U(H) of G on a Hilbert
space H is unitary if π(g) is a unitary operator for every
g ∈ G .

Two representations π an π′ are (unitarily) equivalent if there
is a (unitary) intertwining map A : H → H ′ such that
Aπ(g) = π(g)A.

A representation π is irreducible if the only invariant
subspaces of H under π(g) for all g ∈ G is {0} and H itself.

Let Ĝ0 be the space of equivalence classes of irreducible
unitary representations of G0.

Let Ĝ be the space of equivalence classes of irreducible
unitary representations of G .
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Mackey Bijection

George Mackey made an observation based on physical
interpretation that there is perhaps some kind of one-to-one
correspondence between irreducible unitary representations of G0

and ireducible unitary representations of G .

Let’s make this more precise.

Let Ĝr be the space of equivalence classes of irreducible
tempered representations.

Tempered representations are those representations whose
matrix coefficients are in L2+ε(G ) for each ε > 0.

The Mackey Bijection

There is a one-to-one correspondence between Ĝ0 and Ĝr .
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Let Ĝr be the space of equivalence classes of irreducible
tempered representations.

Tempered representations are those representations whose
matrix coefficients are in L2+ε(G ) for each ε > 0.

The Mackey Bijection

There is a one-to-one correspondence between Ĝ0 and Ĝr .
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Example

Irreducible Tempered Dual of Unitary Dual of

SL(2,R) ∼= SO(2) n
(
sl(2,R)/so(2)

)

•
•
•

•
•
•

•
◦••

•
•
•
•
•
•
•

◦
◦
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Principal Series of Complex Reductive Groups

Iwasawa DecompostionThe complex reductive group G
decomposes as KAN, where K is maximal compact subgroup,
A is abelian group, and N is unipotent.

Let M = ZK (a). Then the minimal parabolic subgroup
decomposes as P = MAN.

Let σ ∈ M̂ with representation space Hσ and let ν ∈ a∗, a real
linear functional on a.

A principal series representation of G is a unitary induced
representation

πσ,ν = IndGP
(
σ ⊗ exp(iν)⊗ 1

)
.
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Principal Series of Complex Reductive Lie Groups

The principal series of complex reductive Lie groups are
irreducible and unitary.

For a complex reductive group, the principal series are the
only irreducible tempered representation.

Two principal series πσ,ν and πσ0,ν0 are unitarily equivalent if
and only if there is a w ∈ NK (a) such that σ ∼= wσ and
ν0 = wν.

The Weyl group is defined as W = NK (a)/ZK (a). Then the space
of equivalence classes of irreducible tempered representations is

Ĝr
∼= (M̂ × Â)/W .
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Irreducible Unitary Representations of Cartan Motion
Group

Let g/k ∼= p. Let χ ∈ p̂, unitary character of p.

Let Kχ be the isotropy subgroup of K . That is, the subgroup
consisting of k such that χ(Adk(X )) = χ(X ) for all X ∈ p.

All irreducible unitary representation of G0 is given by

φχ,τχ = IndG0
Kχnp τχ ⊗ χ,

The following irreducible representations φχ,τχ and φχ0,τχ0
are

unitarily equivalent if and only if there is a k ∈ K such that

χ0(X ) = χ(Adk(X )) and τχ0
∼= τχ ◦ Adk .

Ĝ0
∼= {(τχ, χ)|χ ∈ p̂, τχ ∈ K̂χ}/K .
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Completing the Mackey Bijection

Let a be maximal abelian Lie algebra in p. Let a⊥. Every
χ ∈ p is conjugate by some k ∈ K to χ0 ∈ p such that χ0

vanishes on a⊥.

We may view χ0 as a character of a, unique up to conjugacy
by W . Then

p̂/K ∼= â/W .

For all χ ∈ a, we have M contained in Kχ, and is a maximal
torus.

By highest weight theorem, we can parametrize K̂χ by weights
σ ∈ M̂.

Mackey Bijection for Complex Reductive Lie Group

Ĝ0
∼= (â× M̂)/W ∼= (Â× M̂)/W ∼= Ĝr .
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Reduced group C ∗-Algebra

The left regular representation λ of G is defined on L2(G ) by
λ(g)f (x) = f (g−1x).

Let f0 ∈ L1(G ). Then we can define

λ(f0)f (x) = f0 ∗ f (x) =

∫
G
f0(g)λ(g)f (x) dg .

λ(f0) is a bounded operator on L2(G ), so define a norm
‖f0‖ = ‖λ(f0)‖B(L2(G)).

The reduced group C ∗-algebra C ∗r (G ) is the completion of L1(G )
under this norm.

There is a one-to-one correspondence between tempered
representations of G and non-trivial representations of C ∗r (G ).
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Deformation Space

Let NGK = TG |K/TK be the normal bundle to K .

Define
NGK := (NGK×{0}) t G×R×.

There is a unique smooth manifold structure such that the
mapping NGK → G ×R defined by

(k exp(X ), t) 7→ (k exp(t−1X ), t) if t 6= 0

(k ,X , 0) 7→ (k exp(X ), 0) if t = 0

is a diffeomorphism.

The normal bundle has a group structure.

Definition

We call the set NKG together with its smooth structure and group
structure, the deformation space.
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Continuous Field Associated to the Deformation Space

Let Gt be the fiber over t of NGK → R.

Put a Haar measure on Gt : dgt := |t|− dim(p) dg for t 6= 0,
and dg0 = dk dX for t = 0.

Let {C ∗r (Gt)} be a family of C ∗-algebras associated to the
deformation space.

Let f ∈ C∞c (NGK ). Define ft : Gt → C by
ft(g) = f (g , t) if t 6= 0 and
f0(k,X ) = f (k,X , 0) if t = 0,
so that {ft} is a section of {C ∗r (Gt)}.

The sections {ft} defined from f ∈ C∞c (NGK ) generates the
continuous sections of {C ∗r (Gt)}, making it a continuous field of
C ∗-algebras associated to the deformation space.
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Main Result for Complex Reductive Groups

Let {ft} be a continuous section of the continuous field of
C ∗-algebras associated to the deformation space {C ∗r (Gt)}.

Theorem

There is a one-parameter group of rescaling automorphisms
{αt}t 6=0 such that

lim
t→0

αt(ft)

exists and defines an embedding of C ∗-algebras

α : C ∗r (G0) ↪→ C ∗r (G ).
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Fourier Structure Theorem

Recall
Ĝr
∼= (M̂ × Â)/W ,

where W = NK (a)/ZK (a).

Define
πσ : C ∗r (G )→ C0(a∗,K(L2(K )σ))

by πσ(f )(ν) = πσ,ν(f ), where πσ,ν ∈ Ĝr . Here, σ ∈ M̂ and ν ∈ Â.

Theorem

The principal series representations induce a C ∗-algebra
isomorphism

π =
⊕
σ∈M̂

πσ : C ∗r (G )
∼=−→

⊕
σ∈M̂

C0

(
a∗,K(L2(K )σ)

)W

.
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Intertwining Operators

There are (normalized) intertwining operators

A(w , σ, ν) : IndG
P Hσ → IndG

P Hwσ

such that πwσ,wνA(w , σ, ν) = A(w , σ, ν)πσ,ν .

Define
Wσ = {w ∈W |wσ ∼= σ}. Then

C ∗r (G ) ∼=
⊕

σ∈M̂/W

C0(a∗,K(L2(K )σ))Wσ .

Now for each w ∈Wσ, there are (normalized) intertwining
operators A(w , σ, ν) such that
A(w , σ, ν)πσ(f )(ν) = πσ(f )(wν)A(w , σ, ν).
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Rescaling Automorphisms

Now, we define a∗σ,+ to be the fundamental domain of the action
of Wσ.

C ∗r (G ) ∼=
⊕

σ∈M̂/W

C0(a∗σ,+,K(L2(K )σ)).

Define, for t > 0 and σ ∈ M̂/W , an automorphsim

ασ,t : C0

(
a∗σ,+,K(L2(K )σ)

)
−→ C0

(
a∗σ,+,K(L2(K )σ)

)
by ασ,t(f )(ν) = f (t−1ν).

Define the automorphisms αt : C ∗r (G )→ C ∗r (G ) by

αt = π−1 ◦
(⊕

ασ,t

)
◦ π.
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Theorem about Limit

Define λt : C ∗r (Gt)
∼=−→ C ∗r (G ) by the formula

ft 7−→
[
g 7→ |t|−d ft(g)

]
,

for ft ∈ C∞c (Gt).

Theorem

If {ft} is a continuous section of the continuous field {C ∗r (Gt)},
then the limit

lim
t→0

αt(λt(ft))

exists in C ∗r (G ).
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Embedding Morphism

Let f ∈ C ∗r (G0). Extend f in any way to a continuous section {ft}
of {C ∗r (Gt)} and then form the limit

α(f ) = lim
t→0

αt(λt(ft))

in C ∗r (G ).

Theorem

The above formula defines an embedding of C ∗-algebras

α : C ∗r (G0) −→ C ∗r (G ).
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Characterization of Mackey Bijection

Theorem

There is a unique bijection

µ : Ĝr → Ĝ0

such that for every π ∈ Ĝr , the element µ(π) ∈ Ĝ0 may be realized
as a unitary subrepresentation of π ◦ α.

This is given by the Mackey bijection

πσ,ν 7→ φν,τν ,

already established.
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Considering Real Reductive Groups
From my 2019 dissertation:

Let G = SL(2,R). The tempered representations are:

the principal series πε,ν and π1,ν induced from the minimal
parabolic subgroup P = MAN. We can parametrize ν by R.

the discrete series Dn, where n is an integer and |n| ≥ 2. Then

C ∗r (G ) ∼=
⊕
K(Hn)⊕ C0(R,K(IndG

P Hε))Z/2Z

⊕ C0(R,K(IndG
P H1))Z/2Z.

On the discrete series component, define
αn,t : K(Hn)→ K(Hn) by αn,t(T ) = T for T ∈ K(Hn).
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The component C0(R,K(IndG
P H1))Z/2Z is equivalent to

C0([0,∞),K(IndG
P H1)).

define α1,t in the usual way: α1,t(F (t−1ν)).

The component C0(R,K(IndG
P Hε))Z/2Z is equivalent to

C0(R,K(IndG
P Hε)) with the condition that

A(w , ε, 0)F (0) = F (0)A(w , ε, 0).

But A(w , ε, 0) is not a scalar multiple of the identity map.

This correspond to the fact that πε,0 is reducible.

We can still define αε,t in the usual way since t > 0.

Using these rescaling map, we can induce an embedding of
C ∗-algebras

α : C ∗r (G0) ↪→ C ∗r (G ).
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Ongoing Work: Real Reductive Groups
joint work with Nigel Higson and Pierre Clare

Let G = SL(n,R) where n = 4.

There are three classes of cuspidal parabolic subalgebras of g

P0 = M0A0N0 P1 = M1A1N1 P2 = M2A2N2.

Here M0 = {diag(ε1, ε2, ε3, ε4) : ε = ±1 and ε1ε2ε3ε4 = 1}.
Here elements of M1 has the block-diagonal form
SL±(2,R)× diag(ε1, ε2) where ε = ±1 and the determinant is
1.

Here elements of M2 has the block-diagonal form
SL±(2,R)× SL±(2,R).

C ∗r (G ) ∼=
⊕
[P,σ]

C0(a∗P ,K(IndG
P HP,σ))WP,σ

where [P, σ] is the equivalent classes, P is a cuspidal parabolic
subgroup and σ is a discrete series of M.
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Consider only the minimal parabolic subgroup component
P0 = M0A0N0.

Goal: we would like to find a fundamental domain a∗P,σ,+
under the action of WP,σ.

The finite group WP,σ has order 8 and can be generated by 3
elements of order one: w1, w2, r . Not a Weyl group.

W ′
P,σ = 〈w1,w2〉 is a Weyl group and R = 〈r〉.
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Let a∗P,σ,+ be the fundamental domain under the action of
A′P,σ.

Then the component C0(a∗P ,K(IndG
P HP,σ))WP,σ becomes

C0(a∗P ,K(IndG
P HP,σ))R .

We would like to find a fundamental domain under R. See
figure.

Problem: there are ν ∈ a∗P,σ,+ such that
A(r , σ, ν)F (ν) = F (ν)A(r , σ, ν) and A is not a scalar
multiple of the identity. Under the naive scaling
automorphism, αt(F ) would not be invariant under R.
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Thank You!
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