The Mackey Bijection for Reductive Groups and Continuous Fields of Reduced Group C^* -algebras

Angel Román Joint Work with Nigel Higson

NYC Noncommutative Geometry Seminar April 7, 2021

• Let $G \subset GL(n, \mathbb{C})$ be a closed linear group stable under conjugate transpose. This is a *complex reductive group*.

- Let $G \subset GL(n,\mathbb{C})$ be a closed linear group stable under conjugate transpose. This is a *complex reductive group*.
- A group G is a real reductive group if $G = G_0 \cap GL(n, \mathbb{R})$ where G_0 is a complex reductive group.

- Let $G \subset GL(n,\mathbb{C})$ be a closed linear group stable under conjugate transpose. This is a *complex reductive group*.
- A group G is a real reductive group if $G = G_0 \cap GL(n, \mathbb{R})$ where G_0 is a complex reductive group.
- The Lie algebra $\mathfrak g$ of G decomposes as $\mathfrak k\oplus\mathfrak p$ (Cartan decomposition),

- Let $G \subset GL(n,\mathbb{C})$ be a closed linear group stable under conjugate transpose. This is a *complex reductive group*.
- A group G is a real reductive group if $G = G_0 \cap GL(n, \mathbb{R})$ where G_0 is a complex reductive group.
- The Lie algebra $\mathfrak g$ of G decomposes as $\mathfrak k \oplus \mathfrak p$ (Cartan decomposition),
- The subalgebra & consists of skew-Hermitian matrices and p consists of Hermitian matrices.

- Let $G \subset GL(n, \mathbb{C})$ be a closed linear group stable under conjugate transpose. This is a *complex reductive group*.
- A group G is a real reductive group if $G = G_0 \cap GL(n, \mathbb{R})$ where G_0 is a complex reductive group.
- The Lie algebra $\mathfrak g$ of G decomposes as $\mathfrak k \oplus \mathfrak p$ (Cartan decomposition),
- The subalgebra & consists of skew-Hermitian matrices and p consists of Hermitian matrices.
- The Lie group K, whose Lie algebra is $\mathfrak k$ is a maximal compact subgroup.

- Let $G \subset GL(n, \mathbb{C})$ be a closed linear group stable under conjugate transpose. This is a *complex reductive group*.
- A group G is a real reductive group if $G = G_0 \cap GL(n, \mathbb{R})$ where G_0 is a complex reductive group.
- The Lie algebra $\mathfrak g$ of G decomposes as $\mathfrak k \oplus \mathfrak p$ (Cartan decomposition),
- The subalgebra & consists of skew-Hermitian matrices and p consists of Hermitian matrices.
- The Lie group K, whose Lie algebra is \mathfrak{k} is a maximal compact subgroup.
- We can construct an *Iwasawa decomposition* to be seen later.

Cartan Motion Group

• The Cartan motion group of G is defined as $G_0 = K \ltimes (\mathfrak{g}/\mathfrak{k})$, with composition $(k, X) \cdot (k_0, X_0) = (kk_0, \operatorname{Ad}_{k_0^{-1}}(X) + X_0)$.

Cartan Motion Group

- The Cartan motion group of G is defined as $G_0 = K \ltimes (\mathfrak{g}/\mathfrak{k})$, with composition $(k, X) \cdot (k_0, X_0) = (kk_0, \operatorname{Ad}_{k_0^{-1}}(X) + X_0)$.
- Example: $G = SL(2, \mathbb{R})$ is a real reductive group. Its Cartan motion group is $G_0 = SO(2) \ltimes \mathfrak{sl}(2, \mathbb{R})/\mathfrak{so}(2)$.
- Here $\mathfrak{sl}(2,\mathbb{R})$ are the traceless matrices and matrices in $\mathfrak{so}(2)$ has the form $\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$.

• A unitary representation $\pi: G \to U(H)$ of G on a Hilbert space H is *unitary* if $\pi(g)$ is a unitary operator for every $g \in G$.

- A unitary representation $\pi: G \to U(H)$ of G on a Hilbert space H is *unitary* if $\pi(g)$ is a unitary operator for every $g \in G$.
- Two representations π an π' are (unitarily) equivalent if there is a (unitary) intertwining map $\mathcal{A}: \mathcal{H} \to \mathcal{H}'$ such that $\mathcal{A}\pi(g) = \pi(g)\mathcal{A}$.

- A unitary representation $\pi: G \to U(H)$ of G on a Hilbert space H is *unitary* if $\pi(g)$ is a unitary operator for every $g \in G$.
- Two representations π an π' are (unitarily) equivalent if there is a (unitary) intertwining map $\mathcal{A}: \mathcal{H} \to \mathcal{H}'$ such that $\mathcal{A}\pi(g) = \pi(g)\mathcal{A}$.
- A representation π is *irreducible* if the only invariant subspaces of H under $\pi(g)$ for all $g \in G$ is $\{0\}$ and H itself.

- A unitary representation $\pi: G \to U(H)$ of G on a Hilbert space H is *unitary* if $\pi(g)$ is a unitary operator for every $g \in G$.
- Two representations π an π' are (unitarily) equivalent if there is a (unitary) intertwining map $\mathcal{A}: \mathcal{H} \to \mathcal{H}'$ such that $\mathcal{A}\pi(g) = \pi(g)\mathcal{A}$.
- A representation π is *irreducible* if the only invariant subspaces of H under $\pi(g)$ for all $g \in G$ is $\{0\}$ and H itself.
- Let \hat{G}_0 be the space of equivalence classes of irreducible unitary representations of G_0 .
- Let \hat{G} be the space of equivalence classes of irreducible unitary representations of G.

Mackey Bijection

George Mackey made an observation based on physical interpretation that there is perhaps some kind of one-to-one correspondence between irreducible unitary representations of G_0 and ireducible unitary representations of G.

Mackey Bijection

George Mackey made an observation based on physical interpretation that there is perhaps some kind of one-to-one correspondence between irreducible unitary representations of G_0 and ireducible unitary representations of G.

- Let's make this more precise.
- Let \hat{G}_r be the space of equivalence classes of irreducible *tempered* representations.
- Tempered representations are those representations whose matrix coefficients are in $L^{2+\epsilon}(G)$ for each $\epsilon>0$.

Mackey Bijection

George Mackey made an observation based on physical interpretation that there is perhaps some kind of one-to-one correspondence between irreducible unitary representations of G_0 and ireducible unitary representations of G.

- Let's make this more precise.
- Let \hat{G}_r be the space of equivalence classes of irreducible tempered representations.
- Tempered representations are those representations whose matrix coefficients are in $L^{2+\epsilon}(G)$ for each $\epsilon > 0$.

The Mackey Bijection

There is a one-to-one correspondence between \hat{G}_0 and \hat{G}_r .

Example

Irreducible Tempered Dual of $SL(2,\mathbb{R})$

•

 $\begin{array}{ll} & \quad \text{Unitary Dual of} \\ \cong & SO(2) \ltimes \big(\mathfrak{sl}(2,\mathbb{R})/\mathfrak{so}(2)\big) \end{array}$

Iwasawa DecompostionThe complex reductive group G
decomposes as KAN, where K is maximal compact subgroup,
A is abelian group, and N is unipotent.

- Iwasawa DecompostionThe complex reductive group G
 decomposes as KAN, where K is maximal compact subgroup,
 A is abelian group, and N is unipotent.
- Let $M = Z_K(\mathfrak{a})$. Then the minimal parabolic subgroup decomposes as P = MAN.

- Iwasawa DecompostionThe complex reductive group G
 decomposes as KAN, where K is maximal compact subgroup,
 A is abelian group, and N is unipotent.
- Let $M = Z_K(\mathfrak{a})$. Then the minimal parabolic subgroup decomposes as P = MAN.
- Let $\sigma \in \hat{M}$ with representation space H_{σ} and let $\nu \in \mathfrak{a}^*$, a real linear functional on \mathfrak{a} .

- Iwasawa DecompostionThe complex reductive group G
 decomposes as KAN, where K is maximal compact subgroup,
 A is abelian group, and N is unipotent.
- Let $M = Z_K(\mathfrak{a})$. Then the minimal parabolic subgroup decomposes as P = MAN.
- Let $\sigma \in \hat{M}$ with representation space H_{σ} and let $\nu \in \mathfrak{a}^*$, a real linear functional on \mathfrak{a} .
- A *principal series representation* of *G* is a unitary induced representation

$$\pi_{\sigma,\nu} = \operatorname{Ind}_P^G(\sigma \otimes \exp(i\nu) \otimes 1).$$

 The principal series of complex reductive Lie groups are irreducible and unitary.

- The principal series of complex reductive Lie groups are irreducible and unitary.
- For a complex reductive group, the principal series are the *only* irreducible tempered representation.

- The principal series of complex reductive Lie groups are irreducible and unitary.
- For a complex reductive group, the principal series are the only irreducible tempered representation.
- Two principal series $\pi_{\sigma,\nu}$ and π_{σ_0,ν_0} are unitarily equivalent if and only if there is a $w \in N_K(\mathfrak{a})$ such that $\sigma \cong w\sigma$ and $\nu_0 = w\nu$.

The Weyl group is defined as $W = N_K(\mathfrak{a})/Z_K(\mathfrak{a})$.

- The principal series of complex reductive Lie groups are irreducible and unitary.
- For a complex reductive group, the principal series are the only irreducible tempered representation.
- Two principal series $\pi_{\sigma,\nu}$ and π_{σ_0,ν_0} are unitarily equivalent if and only if there is a $w \in N_K(\mathfrak{a})$ such that $\sigma \cong w\sigma$ and $\nu_0 = w\nu$.

The Weyl group is defined as $W = N_K(\mathfrak{a})/Z_K(\mathfrak{a})$. Then the space of equivalence classes of irreducible tempered representations is

$$\hat{G}_r \cong (\hat{M} \times \hat{A})/W$$
.

• Let $\mathfrak{g}/\mathfrak{k} \cong \mathfrak{p}$. Let $\chi \in \hat{\mathfrak{p}}$, unitary character of \mathfrak{p} .

- Let $\mathfrak{g}/\mathfrak{k} \cong \mathfrak{p}$. Let $\chi \in \hat{\mathfrak{p}}$, unitary character of \mathfrak{p} .
- Let K_{χ} be the isotropy subgroup of K. That is, the subgroup consisting of k such that $\chi(Ad_k(X)) = \chi(X)$ for all $X \in \mathfrak{p}$.

- Let $\mathfrak{g}/\mathfrak{k} \cong \mathfrak{p}$. Let $\chi \in \hat{\mathfrak{p}}$, unitary character of \mathfrak{p} .
- Let K_{χ} be the isotropy subgroup of K. That is, the subgroup consisting of k such that $\chi(Ad_k(X)) = \chi(X)$ for all $X \in \mathfrak{p}$.
- All irreducible unitary representation of G_0 is given by

$$\phi_{\chi,\tau_{\chi}} = \operatorname{Ind}_{K_{\chi} \ltimes \mathfrak{p}}^{G_0} \tau_{\chi} \otimes \chi,$$

- Let $\mathfrak{g}/\mathfrak{k} \cong \mathfrak{p}$. Let $\chi \in \hat{\mathfrak{p}}$, unitary character of \mathfrak{p} .
- Let K_{χ} be the isotropy subgroup of K. That is, the subgroup consisting of k such that $\chi(Ad_k(X)) = \chi(X)$ for all $X \in \mathfrak{p}$.
- All irreducible unitary representation of G_0 is given by

$$\phi_{\chi,\tau_{\chi}} = \operatorname{Ind}_{K_{\chi} \ltimes \mathfrak{p}}^{\mathsf{G}_{0}} \tau_{\chi} \otimes \chi,$$

• The following irreducible representations $\phi_{\chi,\tau_{\chi}}$ and $\phi_{\chi_{0},\tau_{\chi_{0}}}$ are unitarily equivalent if and only if there is a $k \in K$ such that

$$\chi_0(X) = \chi(\operatorname{Ad}_k(X))$$
 and $\tau_{\chi_0} \cong \tau_{\chi} \circ \operatorname{Ad}_k$.

- Let $\mathfrak{g}/\mathfrak{k} \cong \mathfrak{p}$. Let $\chi \in \hat{\mathfrak{p}}$, unitary character of \mathfrak{p} .
- Let K_{χ} be the isotropy subgroup of K. That is, the subgroup consisting of k such that $\chi(Ad_k(X)) = \chi(X)$ for all $X \in \mathfrak{p}$.
- All irreducible unitary representation of G_0 is given by

$$\phi_{\chi,\tau_{\chi}} = \operatorname{Ind}_{K_{\chi} \ltimes \mathfrak{p}}^{G_0} \tau_{\chi} \otimes \chi,$$

• The following irreducible representations $\phi_{\chi,\tau_{\chi}}$ and $\phi_{\chi_{0},\tau_{\chi_{0}}}$ are unitarily equivalent if and only if there is a $k \in K$ such that

$$\chi_0(X) = \chi(\operatorname{Ad}_k(X))$$
 and $\tau_{\chi_0} \cong \tau_{\chi} \circ \operatorname{Ad}_k$.

$$\hat{G}_0 \cong \{(\tau_{\chi}, \chi) | \chi \in \hat{\mathfrak{p}}, \tau_{\chi} \in \hat{K}_{\chi}\}/K.$$

• Let $\mathfrak a$ be maximal abelian Lie algebra in $\mathfrak p$. Let $\mathfrak a^{\perp}$. Every $\chi \in \mathfrak p$ is conjugate by some $k \in \mathcal K$ to $\chi_0 \in \mathfrak p$ such that χ_0 vanishes on $\mathfrak a^{\perp}$.

- Let $\mathfrak a$ be maximal abelian Lie algebra in $\mathfrak p$. Let $\mathfrak a^\perp$. Every $\chi \in \mathfrak p$ is conjugate by some $k \in K$ to $\chi_0 \in \mathfrak p$ such that χ_0 vanishes on $\mathfrak a^\perp$.
- We may view χ_0 as a character of \mathfrak{a} , unique up to conjugacy by W. Then

$$\hat{\mathfrak{p}}/K \cong \hat{\mathfrak{a}}/W$$
.

- Let $\mathfrak a$ be maximal abelian Lie algebra in $\mathfrak p$. Let $\mathfrak a^\perp$. Every $\chi \in \mathfrak p$ is conjugate by some $k \in K$ to $\chi_0 \in \mathfrak p$ such that χ_0 vanishes on $\mathfrak a^\perp$.
- We may view χ_0 as a character of \mathfrak{a} , unique up to conjugacy by W. Then

$$\hat{\mathfrak{p}}/K \cong \hat{\mathfrak{a}}/W$$
.

• For all $\chi \in \mathfrak{a}$, we have M contained in K_{χ} , and is a maximal torus.

- Let $\mathfrak a$ be maximal abelian Lie algebra in $\mathfrak p$. Let $\mathfrak a^\perp$. Every $\chi \in \mathfrak p$ is conjugate by some $k \in K$ to $\chi_0 \in \mathfrak p$ such that χ_0 vanishes on $\mathfrak a^\perp$.
- We may view χ_0 as a character of \mathfrak{a} , unique up to conjugacy by W. Then

$$\hat{\mathfrak{p}}/K \cong \hat{\mathfrak{a}}/W$$
.

- For all $\chi \in \mathfrak{a}$, we have M contained in K_{χ} , and is a maximal torus.
- By highest weight theorem, we can parametrize $\hat{\mathcal{K}}_{\chi}$ by weights $\sigma \in \hat{\mathcal{M}}$.

- Let $\mathfrak a$ be maximal abelian Lie algebra in $\mathfrak p$. Let $\mathfrak a^\perp$. Every $\chi \in \mathfrak p$ is conjugate by some $k \in \mathcal K$ to $\chi_0 \in \mathfrak p$ such that χ_0 vanishes on $\mathfrak a^\perp$.
- We may view χ_0 as a character of \mathfrak{a} , unique up to conjugacy by W. Then

$$\hat{\mathfrak{p}}/K \cong \hat{\mathfrak{a}}/W$$
.

- For all $\chi \in \mathfrak{a}$, we have M contained in K_{χ} , and is a maximal torus.
- By highest weight theorem, we can parametrize \hat{K}_{χ} by weights $\sigma \in \hat{M}$.

Mackey Bijection for Complex Reductive Lie Group

$$\hat{G}_0 \cong (\hat{\mathfrak{a}} \times \hat{M})/W \cong (\hat{A} \times \hat{M})/W \cong \hat{G}_r.$$

Reduced group C*-Algebra

• The left regular representation λ of G is defined on $L^2(G)$ by $\lambda(g)f(x)=f(g^{-1}x)$.

Reduced group C*-Algebra

- The left regular representation λ of G is defined on $L^2(G)$ by $\lambda(g)f(x) = f(g^{-1}x)$.
- Let $f_0 \in L^1(G)$. Then we can define

$$\lambda(f_0)f(x) = f_0 * f(x) = \int_G f_0(g)\lambda(g)f(x) dg.$$

Reduced group C^* -Algebra

- The left regular representation λ of G is defined on $L^2(G)$ by $\lambda(g)f(x)=f(g^{-1}x)$.
- Let $f_0 \in L^1(G)$. Then we can define

$$\lambda(f_0)f(x) = f_0 * f(x) = \int_G f_0(g)\lambda(g)f(x) \ dg.$$

• $\lambda(f_0)$ is a bounded operator on $L^2(G)$, so define a norm $||f_0|| = ||\lambda(f_0)||_{B(L^2(G))}$.

Reduced group C*-Algebra

- The left regular representation λ of G is defined on $L^2(G)$ by $\lambda(g)f(x)=f(g^{-1}x)$.
- Let $f_0 \in L^1(G)$. Then we can define

$$\lambda(f_0)f(x) = f_0 * f(x) = \int_G f_0(g)\lambda(g)f(x) dg.$$

• $\lambda(f_0)$ is a bounded operator on $L^2(G)$, so define a norm $||f_0|| = ||\lambda(f_0)||_{B(L^2(G))}$.

The reduced group C^* -algebra $C^*_r(G)$ is the completion of $L^1(G)$ under this norm.

Reduced group C*-Algebra

- The left regular representation λ of G is defined on $L^2(G)$ by $\lambda(g)f(x)=f(g^{-1}x)$.
- Let $f_0 \in L^1(G)$. Then we can define

$$\lambda(f_0)f(x) = f_0 * f(x) = \int_G f_0(g)\lambda(g)f(x) dg.$$

• $\lambda(f_0)$ is a bounded operator on $L^2(G)$, so define a norm $||f_0|| = ||\lambda(f_0)||_{B(L^2(G))}$.

The reduced group C^* -algebra $C_r^*(G)$ is the completion of $L^1(G)$ under this norm.

There is a one-to-one correspondence between tempered representations of G and non-trivial representations of $C_r^*(G)$.

• Let $N_GK = TG|_K/TK$ be the normal bundle to K.

- Let $N_GK = TG|_K/TK$ be the normal bundle to K.
- Define

$$\mathbb{N}_G K := (N_G K \times \{0\}) \sqcup G \times \mathbb{R}^{\times}.$$

- Let $N_GK = TG|_K/TK$ be the normal bundle to K.
- Define

$$\mathbb{N}_G K := (N_G K \times \{0\}) \sqcup G \times \mathbb{R}^{\times}.$$

• There is a unique smooth manifold structure such that the mapping $\mathbb{N}_G K \to G \times \mathbb{R}$ defined by

$$(k \exp(X), t) \mapsto (k \exp(t^{-1}X), t)$$
 if $t \neq 0$
 $(k, X, 0) \mapsto (k \exp(X), 0)$ if $t = 0$

is a diffeomorphism.

- Let $N_GK = TG|_K/TK$ be the normal bundle to K.
- Define

$$\mathbb{N}_G K := (N_G K \times \{0\}) \sqcup G \times \mathbb{R}^{\times}.$$

• There is a unique smooth manifold structure such that the mapping $\mathbb{N}_G K \to G \times \mathbb{R}$ defined by

$$(k \exp(X), t) \mapsto (k \exp(t^{-1}X), t)$$
 if $t \neq 0$
 $(k, X, 0) \mapsto (k \exp(X), 0)$ if $t = 0$

is a diffeomorphism.

• The normal bundle has a group structure.

Definition

We call the set $\mathbb{N}_K G$ together with its smooth structure and group structure, the *deformation space*.

• Let G_t be the fiber over t of $\mathbb{N}_G K \to \mathbb{R}$.

- Let G_t be the fiber over t of $\mathbb{N}_G K \to \mathbb{R}$.
- Put a Haar measure on G_t : $dg_t := |t|^{-\dim(\mathfrak{p})} dg$ for $t \neq 0$, and $dg_0 = dk \ dX$ for t = 0.

- Let G_t be the fiber over t of $\mathbb{N}_G K \to \mathbb{R}$.
- Put a Haar measure on G_t : $dg_t := |t|^{-\dim(\mathfrak{p})} dg$ for $t \neq 0$, and $dg_0 = dk \ dX$ for t = 0.
- Let $\{C_r^*(G_t)\}$ be a family of C^* -algebras associated to the deformation space.

- Let G_t be the fiber over t of $\mathbb{N}_G K \to \mathbb{R}$.
- Put a Haar measure on G_t : $dg_t := |t|^{-\dim(\mathfrak{p})} dg$ for $t \neq 0$, and $dg_0 = dk \ dX$ for t = 0.
- Let $\{C_r^*(G_t)\}$ be a family of C^* -algebras associated to the deformation space.
- Let $f \in C_c^{\infty}(\mathbb{N}_G K)$. Define $f_t : G_t \to \mathbb{C}$ by $f_t(g) = f(g,t)$ if $t \neq 0$ and $f_0(k,X) = f(k,X,0)$ if t = 0, so that $\{f_t\}$ is a section of $\{C_r^*(G_t)\}$.

- Let G_t be the fiber over t of $\mathbb{N}_G K \to \mathbb{R}$.
- Put a Haar measure on G_t : $dg_t := |t|^{-\dim(\mathfrak{p})} dg$ for $t \neq 0$, and $dg_0 = dk \ dX$ for t = 0.
- Let $\{C_r^*(G_t)\}$ be a family of C^* -algebras associated to the deformation space.
- Let $f \in C_c^{\infty}(\mathbb{N}_G K)$. Define $f_t : G_t \to \mathbb{C}$ by $f_t(g) = f(g,t)$ if $t \neq 0$ and $f_0(k,X) = f(k,X,0)$ if t = 0, so that $\{f_t\}$ is a section of $\{C_r^*(G_t)\}$.

The sections $\{f_t\}$ defined from $f \in C_c^{\infty}(\mathbb{N}_G K)$ generates the continuous sections of $\{C_r^*(G_t)\}$, making it a continuous field of C^* -algebras associated to the deformation space.

Main Result for Complex Reductive Groups

Let $\{f_t\}$ be a continuous section of the continuous field of C^* -algebras associated to the deformation space $\{C_r^*(G_t)\}$.

$\mathsf{Theorem}$

There is a one-parameter group of rescaling automorphisms $\{\alpha_t\}_{t\neq 0}$ such that

$$\lim_{t\to 0}\alpha_t(f_t)$$

exists and defines an embedding of C*-algebras

$$\alpha: C_r^*(G_0) \hookrightarrow C_r^*(G).$$

Fourier Structure Theorem

Recall

$$\hat{G}_r \cong (\hat{M} \times \hat{A})/W$$
,

where $W = N_K(\mathfrak{a})/Z_K(\mathfrak{a})$.

Define

$$\pi_{\sigma}: C_r^*(G) \to C_0(\mathfrak{a}^*, \mathcal{K}(L^2(K)^{\sigma}))$$

by $\pi_{\sigma}(f)(\nu) = \pi_{\sigma,\nu}(f)$, where $\pi_{\sigma,\nu} \in \hat{G}_r$. Here, $\sigma \in \hat{M}$ and $\nu \in \hat{A}$.

Fourier Structure Theorem

Recall

$$\hat{G}_r \cong (\hat{M} \times \hat{A})/W$$
,

where $W = N_K(\mathfrak{a})/Z_K(\mathfrak{a})$.

Define

$$\pi_{\sigma}: C_r^*(G) \to C_0(\mathfrak{a}^*, \mathcal{K}(L^2(K)^{\sigma}))$$

by $\pi_{\sigma}(f)(\nu) = \pi_{\sigma,\nu}(f)$, where $\pi_{\sigma,\nu} \in \hat{G}_r$. Here, $\sigma \in \hat{M}$ and $\nu \in \hat{A}$.

Theorem

The principal series representations induce a C^* -algebra isomorphism

$$\pi = \bigoplus_{\sigma \in \hat{M}} \pi_{\sigma} : C_r^*(G) \stackrel{\cong}{\longrightarrow} \left[\bigoplus_{\sigma \in \hat{M}} C_0(\mathfrak{a}^*, \mathcal{K}(L^2(K)^{\sigma})) \right]^W.$$

There are (normalized) intertwining operators

$$\mathcal{A}(w,\sigma,\nu): \operatorname{Ind}_P^G H_{\sigma} o \operatorname{Ind}_P^G H_{w\sigma}$$

such that $\pi_{w\sigma,w\nu}\mathcal{A}(w,\sigma,\nu) = \mathcal{A}(w,\sigma,\nu)\pi_{\sigma,\nu}$.

There are (normalized) intertwining operators

$$\mathcal{A}(w,\sigma,\nu): \operatorname{Ind}_P^G H_{\sigma} o \operatorname{Ind}_P^G H_{w\sigma}$$

such that $\pi_{w\sigma,w\nu}\mathcal{A}(w,\sigma,\nu) = \mathcal{A}(w,\sigma,\nu)\pi_{\sigma,\nu}$. Define $W_{\sigma} = \{w \in W | w\sigma \cong \sigma\}$.

There are (normalized) intertwining operators

$$\mathcal{A}(w,\sigma,\nu): \operatorname{Ind}_P^G H_{\sigma} o \operatorname{Ind}_P^G H_{w\sigma}$$

such that $\pi_{w\sigma,w\nu}\mathcal{A}(w,\sigma,\nu) = \mathcal{A}(w,\sigma,\nu)\pi_{\sigma,\nu}$. Define $W_{\sigma} = \{w \in W | w\sigma \cong \sigma\}$. Then

$$C_r^*(G) \cong \bigoplus_{\sigma \in \hat{M}/W} C_0(\mathfrak{a}^*, \mathcal{K}(L^2(K)^{\sigma}))^{W_{\sigma}}.$$

There are (normalized) intertwining operators

$$\mathcal{A}(w,\sigma,\nu): \operatorname{Ind}_P^G H_{\sigma} o \operatorname{Ind}_P^G H_{w\sigma}$$

such that $\pi_{w\sigma,w\nu}\mathcal{A}(w,\sigma,\nu) = \mathcal{A}(w,\sigma,\nu)\pi_{\sigma,\nu}$. Define $W_{\sigma} = \{w \in W | w\sigma \cong \sigma\}$. Then

$$C_r^*(G) \cong \bigoplus_{\sigma \in \hat{M}/W} C_0(\mathfrak{a}^*, \mathcal{K}(L^2(K)^{\sigma}))^{W_{\sigma}}.$$

Now for each $w \in W_{\sigma}$, there are (normalized) intertwining operators $\mathcal{A}(w, \sigma, \nu)$ such that $\mathcal{A}(w, \sigma, \nu)\pi_{\sigma}(f)(\nu) = \pi_{\sigma}(f)(w\nu)\mathcal{A}(w, \sigma, \nu)$.

Now, we define $\mathfrak{a}_{\sigma,+}^*$ to be the fundamental domain of the action of W_{σ} .

Now, we define $\mathfrak{a}_{\sigma,+}^*$ to be the fundamental domain of the action of W_{σ} .

$$C_r^*(G) \cong \bigoplus_{\sigma \in \hat{M}/W} C_0(\mathfrak{a}_{\sigma,+}^*, \mathcal{K}(L^2(K)^{\sigma})).$$

Now, we define $\mathfrak{a}_{\sigma,+}^*$ to be the fundamental domain of the action of W_{σ} .

$$C_r^*(G) \cong \bigoplus_{\sigma \in \hat{M}/W} C_0(\mathfrak{a}_{\sigma,+}^*, \mathcal{K}(L^2(K)^{\sigma})).$$

• Define, for t > 0 and $\sigma \in \hat{M}/W$, an automorphsim

$$\alpha_{\sigma,t}: C_0(\mathfrak{a}_{\sigma,+}^*, \mathcal{K}(L^2(K)^{\sigma})) \longrightarrow C_0(\mathfrak{a}_{\sigma,+}^*, \mathcal{K}(L^2(K)^{\sigma}))$$
 by $\alpha_{\sigma,t}(f)(\nu) = f(t^{-1}\nu)$.

Now, we define $\mathfrak{a}_{\sigma,+}^*$ to be the fundamental domain of the action of W_{σ} .

$$C_r^*(G) \cong \bigoplus_{\sigma \in \hat{M}/W} C_0(\mathfrak{a}_{\sigma,+}^*, \mathcal{K}(L^2(K)^{\sigma})).$$

• Define, for t > 0 and $\sigma \in \hat{M}/W$, an automorphsim

$$\alpha_{\sigma,t}: C_0(\mathfrak{a}_{\sigma,+}^*, \mathcal{K}(L^2(K)^{\sigma})) \longrightarrow C_0(\mathfrak{a}_{\sigma,+}^*, \mathcal{K}(L^2(K)^{\sigma}))$$

by
$$\alpha_{\sigma,t}(f)(\nu) = f(t^{-1}\nu)$$
.

• Define the automorphisms $\alpha_t: C^*_r(G) \to C^*_r(G)$ by

$$\alpha_t = \pi^{-1} \circ \left(\bigoplus \alpha_{\sigma,t} \right) \circ \pi.$$

Theorem about Limit

Define $\lambda_t: C^*_r(G_t) \stackrel{\cong}{\longrightarrow} C^*_r(G)$ by the formula

$$f_t \longmapsto \left[g \mapsto |t|^{-d} f_t(g)\right],$$

for $f_t \in C_c^{\infty}(G_t)$.

Theorem about Limit

Define $\lambda_t: C^*_r(G_t) \stackrel{\cong}{\longrightarrow} C^*_r(G)$ by the formula

$$f_t \longmapsto \left[g \mapsto |t|^{-d} f_t(g)\right],$$

for $f_t \in C_c^{\infty}(G_t)$.

Theorem

If $\{f_t\}$ is a continuous section of the continuous field $\{C_r^*(G_t)\}$, then the limit

$$\lim_{t\to 0}\alpha_t(\lambda_t(f_t))$$

exists in $C_r^*(G)$.

Embedding Morphism

Let $f \in C_r^*(G_0)$. Extend f in any way to a continuous section $\{f_t\}$ of $\{C_r^*(G_t)\}$ and then form the limit

$$\alpha(f) = \lim_{t \to 0} \alpha_t(\lambda_t(f_t))$$

in $C_r^*(G)$.

Embedding Morphism

Let $f \in C_r^*(G_0)$. Extend f in any way to a continuous section $\{f_t\}$ of $\{C_r^*(G_t)\}$ and then form the limit

$$\alpha(f) = \lim_{t \to 0} \alpha_t(\lambda_t(f_t))$$

in $C_r^*(G)$.

$\mathsf{Theorem}$

The above formula defines an embedding of C^* -algebras

$$\alpha \colon C_r^*(G_0) \longrightarrow C_r^*(G).$$

Characterization of Mackey Bijection

Theorem

There is a unique bijection

$$\mu: \hat{G}_r \rightarrow \hat{G}_0$$

such that for every $\pi \in \hat{G}_r$, the element $\mu(\pi) \in \hat{G}_0$ may be realized as a unitary subrepresentation of $\pi \circ \alpha$.

• This is given by the Mackey bijection

$$\pi_{\sigma,\nu} \mapsto \phi_{\nu,\tau_{\nu}},$$

already established.

Considering Real Reductive Groups

From my 2019 dissertation:

Let $G = SL(2, \mathbb{R})$. The tempered representations are:

- the principal series $\pi_{\epsilon,\nu}$ and $\pi_{1,\nu}$ induced from the minimal parabolic subgroup P=MAN. We can parametrize ν by \mathbb{R} .
- the discrete series D_n , where n is an integer and $|n| \geq 2$. Then

$$C_r^*(G) \cong \bigoplus \mathcal{K}(H_n) \oplus C_0(\mathbb{R}, \mathcal{K}(\operatorname{Ind}_P^G H_{\epsilon}))^{\mathbb{Z}/2\mathbb{Z}}$$
$$\oplus C_0(\mathbb{R}, \mathcal{K}(\operatorname{Ind}_P^G H_1))^{\mathbb{Z}/2\mathbb{Z}}.$$

• On the discrete series component, define $\alpha_{n,t}: \mathcal{K}(H_n) \to \mathcal{K}(H_n)$ by $\alpha_{n,t}(T) = T$ for $T \in \mathcal{K}(H_n)$.

- The component $C_0(\mathbb{R}, \mathcal{K}(\operatorname{Ind}_P^G H_1))^{\mathbb{Z}/2\mathbb{Z}}$ is equivalent to $C_0([0,\infty), \mathcal{K}(\operatorname{Ind}_P^G H_1))$.
- define $\alpha_{1,t}$ in the usual way: $\alpha_{1,t}(F(t^{-1}\nu))$.
- The component $C_0(\mathbb{R}, \mathcal{K}(\operatorname{Ind}_P^G H_{\epsilon}))^{\mathbb{Z}/2\mathbb{Z}}$ is equivalent to $C_0(\mathbb{R}, \mathcal{K}(\operatorname{Ind}_P^G H_{\epsilon}))$ with the condition that $\mathcal{A}(w, \epsilon, 0)F(0) = F(0)\mathcal{A}(w, \epsilon, 0)$.
- But $A(w, \epsilon, 0)$ is not a scalar multiple of the identity map.
- This correspond to the fact that $\pi_{\epsilon,0}$ is reducible.
- We can still define $\alpha_{\epsilon,t}$ in the usual way since t > 0.
- Using these rescaling map, we can induce an embedding of C*-algebras

$$\alpha: C_r^*(G_0) \hookrightarrow C_r^*(G).$$

Ongoing Work: Real Reductive Groups

joint work with Nigel Higson and Pierre Clare

Let $G = SL(n, \mathbb{R})$ where n = 4.

ullet There are three classes of *cuspidal* parabolic subalgebras of ${\mathfrak g}$

$$P_0 = M_0 A_0 N_0$$
 $P_1 = M_1 A_1 N_1$ $P_2 = M_2 A_2 N_2$.

- Here $M_0 = \{ \operatorname{diag}(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4) : \epsilon = \pm 1 \text{ and } \epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4 = 1 \}.$
- Here elements of M_1 has the block-diagonal form $SL_{\pm}(2,\mathbb{R}) \times \mathrm{diag}(\epsilon_1,\epsilon_2)$ where $\epsilon=\pm 1$ and the determinant is 1.
- Here elements of M_2 has the block-diagonal form $SL_{\pm}(2,\mathbb{R}) \times SL_{\pm}(2,\mathbb{R})$.

$$C_r^*(G) \cong \bigoplus_{[P,\sigma]} C_0(\mathfrak{a}_P^*, \mathcal{K}(\operatorname{Ind}_P^G H_{P,\sigma}))^{W_{P,\sigma}}$$

where $[P, \sigma]$ is the equivalent classes, P is a cuspidal parabolic subgroup and σ is a discrete series of M.

Consider only the minimal parabolic subgroup component $P_0 = M_0 A_0 N_0$.

- Goal: we would like to find a fundamental domain $\mathfrak{a}_{P,\sigma,+}^*$ under the action of $W_{P,\sigma}$.
- The finite group $W_{P,\sigma}$ has order 8 and can be generated by 3 elements of order one: w_1 , w_2 , r. Not a Weyl group.
- $W'_{P,\sigma} = \langle w_1, w_2 \rangle$ is a Weyl group and $R = \langle r \rangle$.

- Let $\mathfrak{a}_{P,\sigma,+}^*$ be the fundamental domain under the action of $A_{P,\sigma}'$
- Then the component $C_0(\mathfrak{a}_P^*, \mathcal{K}(\operatorname{Ind}_P^G H_{P,\sigma}))^{W_{P,\sigma}}$ becomes $C_0(\mathfrak{a}_P^*, \mathcal{K}(\operatorname{Ind}_P^G H_{P,\sigma}))^R$.
- We would like to find a fundamental domain under R. See figure.
- Problem: there are $\nu \in \mathfrak{a}_{P,\sigma,+}^*$ such that $\mathcal{A}(r,\sigma,\nu)F(\nu) = F(\nu)\mathcal{A}(r,\sigma,\nu)$ and \mathcal{A} is not a scalar multiple of the identity. Under the naive scaling automorphism, $\alpha_t(F)$ would not be invariant under R.

Thank You!