Partial difference sets in nonabelian groups

Eric Swartz
(joint with Jim Davis, John Polhill, Ken Smith)

William & Mary

November 1, 2023



Definition

The groups, graphs, etc., considered in this talk will be finite.

Eric Swartz (W&M) November 1, 2023 2/18




Definition

The groups, graphs, etc., considered in this talk will be finite.

A subset S of elements of a group G is a (v, k, \, /1)-partial difference set
(PDS)

Eric Swartz (W&M) PDSs in nonabelian groups November 1, 2023 2/18




Definition

The groups, graphs, etc., considered in this talk will be finite.

A subset S of elements of a group G is a (v, k, \, /1)-partial difference set
(PDS) if
* |G| =v,
y




Definition

The groups, graphs, etc., considered in this talk will be finite.

A subset S of elements of a group G is a (v, k, \, /1)-partial difference set
(PDS) if
* |G| =v,
* |S|=k
y




Definition

The groups, graphs, etc., considered in this talk will be finite.

A subset S of elements of a group G is a (v, k, \, /1)-partial difference set
(PDS) if

* [G]=v,
* [S[=k

e ifl#£g¢€ Gandge€S, then g can be written as the product ab—1,
where a, b € S, exactly A different ways, and
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Definition

The groups, graphs, etc., considered in this talk will be finite.

A subset S of elements of a group G is a (v, k, \, /1)-partial difference set
(PDS) if

* |G| =v,

o |S| =k,

e ifl#£g¢€ Gandge€S, then g can be written as the product ab1,
where a, b € S, exactly \ different ways, and a—b&

o ifl£AgeGandg¢ S, then

a-6

y

Why partial difference set? Originally interest was in abelian groups, and
the operation was addition.
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Small example

Example
® G: 7Z/137, operation +
e S=1{1,3,4,9,10,12}
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Small example

Example
® G: 7Z/13Z, operation +
e S=1{1,3,4,9,10,12}

For elements in S:
e 1=4-3=10-09
e 3=4-1=12-9
e 4 =3-12=1-10
e 0=12-3=10—-1
e 10=1—-4=9-12
® 12=3-4=9-10
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Small example

Example
® G: 7Z/137, operation +
e S=1{1,3,4,9,10,12}

For nonidentity elements not in S:
e 2—=—3-1=12-10=1-12
e 5=0-4=1-9=4-12
e 6=0-3=10—-4=3-10
¢ 7=3-90=4—-10=10-13
e 8=4-9=0-1=12—-4
e 11=1-3=10—-12=12-1
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Small example

Example
® G: 7Z/137, operation +
e S =1{1,3,4,9,10,12}

For nonidentity elements not in S:
e 2=—3-1=12-10=1-12
e 5=0-4=1-9=4-12
e 6=0-3=10—-4=3-10
¢ 7=3-90=4—-10=10-3
e 8=4-9=90-1=12—-4
¢ 11=1-3=10—-12=12—-1

Sisa (13,6,2,3)-PDS.
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Small example, continued

Example Rowte— 113
. ; S . 51"“‘"") e 3

e G: Z/137, operation + _, =3
/ P / ‘:lz’ 3:“”,11/ =2 ) ! )

e $=¢1,3,4,9,10,12 ezt (2mtseSY

* Sisa(13,6,2,3)-PDSwith0¢ S, S = —S
® Cay(G,S): undirected (13,6, 2,3)-strongly regular Cayley graph.
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Paley's Theorem

In fact, the last example generalizes:

Theorem (Paley 1933)
® g: odd prime power
® g=1 (mod 4)
® G: the additive group of a finite field GF(q)

® S: set of all nonzero squares in GF(q)
Then, S is a (g, %5 1,q > 9 1) PDS in G.

Nl pr—e
6F () = 2/1,1
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Equivalent concepts

Definition

A (v, k,\, 11)-PDS is called regular if 1 ¢ S and S = S~ 1.
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Equivalent concepts

Definition

A (v, k,\, 1)-PDS is called regular if 1 ¢ S and S = S™1.

G: finite group
S: regular (v, k, \, u)-PDS < Cay(G,S): (v, k, A\, 1)-SRG.
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Equivalent concepts

Definition
A (v, k,\, 11)-PDS is called regular if 1 ¢ S and S = S~ 1.

G: finite group
S: regular (v, k, \, u)-PDS < Cay(G,S): (v, k, A\, 1)-SRG.

v

SO: regular (v, k, A\, u)-PDS in G <+ G acts transitively, fixed-point-freely
on vertices of (v, k, A, 4)-SRG
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What's known?

® Extensive knowledge for abelian groups (see Ma's survey (1994))

® \ery few known for nonabelian groups!
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What's known?

® Extensive knowledge for abelian groups (see Ma's survey (1994))

® Very few known for nonabelian groups!

e Smith (1995): regular (4t2,2t°> — t, t*> — t, t*> — t)-PDSs in certain
nonabelian groups

e Kantor (1986), Ghinelli (2012): regular
(¢3,9° +q— 2,9 —2,q+ 2)-PDS in Heisenberg group of order q> (g
odd prime power)

e S. (2015): regular (p>,p> +p—2,p—2,p + 2)-PDS S of
extraspecial group of order p3, exponent p? (p odd)

®* Feng, He, Chen (2020): PDSs of exponent 4, 8, and 16 and of
nilpotency class 2, 3, 4, and 6

® Feng, Li (2021): same graphs as Kantor/Ghinelli considered, but
many groups!
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Example: Set up

® V = 7Z/3Z*, the 4-dimensional vector space over Z/3Z
e V| =381
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Example: Set up

® V = 7Z/3Z*, the 4-dimensional vector space over Z/3Z
e V| =381

® For x = (x1,x2,Xx3,X3) € V, define

Q(x) = x1x2 + x3x4
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Example: Set up

e VV = 7Z/3Z*, the 4-dimensional vector space over Z/3Z
e V| =281

® For x = (x1,x2,x3,X3) € V, define

Q(x) = x1x2 + x3x4

For any x,y € V/, there are three options:

(1) Qx—y)=0

(2) Q(x — y) is a nonzero square: Q(x —y) =1
(3) Q(x — y) is a nonsquare: Q(x —y) =2
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hree graphs

For each graph: vertices are V = Z/37Z*

* g x~y <= Q(x—y)=0
® [(isan (81,32,13,12)-SRG
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hree graphs

For each graph: vertices are V = Z/37Z*

* g x~y <= Q(x—y)=0
® [(isan (81,32,13,12)-SRG

® [1: x~y < Q(x—y)=1 (nonzero square)
® [;isan (81,24,9,6)-SRG
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hree graphs 64%«& P lon QV%S)

For each graph: vertices are V = Z/37Z*

* g x~y <= Q(x—y)=0
® [(isan (81,32,13,12)-SRG

® [1: x~y < Q(x—y)=1 (nonzero square)
® [;isan (81,24,9,6)-SRG

°* [: x~y <= Q(x—y) =2 (nonsquare)
® [, is an (81,24,9,6)-SRG
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Automorphisms

50‘) 6(7)

E/ n automorphism g is a bijection of vertices such that

'Nyg = X~y

® Here, this amounts to ensuring Q(x& — y&) = Q(x — y)
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Automorphisms

e RECALL: an automorphism g is a bijection of vertices such that
X6 ~yE &= X~y

® Here, this amounts to ensuring Q(x8 — y&) = Q(x — y)

® Translations!
® Forve V,define T, by T, : x—x+v
e Qix—y")=Q((x+Vv)—(y+ V)= Q(x—y)

Ty :={T,:v € V}: transitive, fixed-point-free... but very abelian!

[ {
‘TVT“ = Tv+u - —r“-‘;
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Other automorphisms

® Matrices!

® Suppose M € GL(4,3), Q(vM) = Q(v).

* QXM — yM) = Q((x — y)M) = Q(x — y)
® Automorphism of each graph!
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Other automorphisms

® Matrices!

® Suppose M € GL(4,3), Q(vM) = Q(v).

* QIxM —yM) = Q((x —y)M) = Q(x —y) A T )
® Automorphism of each graph! \/ toams lf2 =y

® Combine the two: M € GL(4,3), M preserves Q; v € V
o xIMvl— M+ v
o QUM — M) = Q((xM + v) — (yM +v)) = Q(x — ¥)

o X[M,V] Ny[Mav]  — XN_y ?\
= Q[(x-y)"'\)
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Other automorphisms

® Matrices!

® Suppose M € GL(4,3), Q(vM) = Q(v).

* QXM —yM) = Q((x —y)M) = Q(x — y)
® Automorphism of each graph!

® Combine the two: M € GL(4,3), M preserves Q; v € V

o xIMVl.— M+ v

o QUMY —yMVl) = Q((xM + v) — (yM + v)) = Q(x — y)
o xIMV] o yIMV] s s~y

e Composition: [Ml, Vl][MQ, V2] = [Ml My, vi My + V2]

WM Crayv, ) [ ) tnM, “Wh
<)< E" ) 7) 2 - (KM‘ {'V‘) L'\’L - leMl_‘_v( Mz.(—vz': )Q ) -\'VJ
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Example

® For a € Z/3Z, define

(1 0 O oz\
A 0 1 0 —«
" la —a 1 o?
\0 0 0 1/

® X = (X17X27X37X4)
* Q(x) = x1x2 + X33
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Example

® For o € Z/37Z, define

1 0 0 «
A (O 1 0 —oz\
T la —a 1 a?

\0 0 0 1

X = (X17X27X37X4)
Q(x) = x1x2 + x3X4
XAq = (X1 4+ X3, X2 — X3, X3, X] — QXo + a°X3 + X4)

QRQ(xA.) = (x1 + ax3)(x0 — ax3) + x3(ax1 — axo + a’x3 + x3)
= X1X2 — X1X3 + QX2 X3 — 042X3
+ X1X3 — QX2 X3 + a2X3 + X3X4

= X1X2 + X3X4

= Q(x)
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Example, cont.

° Ay =1, AaAB — Aoz—l—ﬁ
o A2:A2, AO:A%
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Example, cont.

o Ay =1, AaAﬁ — A(H_B
® AQZA%, AOZA‘;’

® Standard basis: e, &, €3, 4
* v =¢ +e& =(1,1,0,0)

(10

0 1 \
0O 1 0 -1
1 -1 1

\oooi)

® if uc <e1 — 62,63,e4> — U, then uA; € U
e {Ay, A1, Ay = A%} stabilize decomposition V = (v) @ (e1 — e, 3, €1)

e vA; =(1,1,0,0) =(1,1,0,0) = v
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he group

raas lo N'es Ly fhig?
TU::{[l,u]:UGU:<e1—e2,@’( hre-s =7 A U

o A:={[An,av|:a€Z/3Z}, where v =(1,1,0,0)
° G := <Tu,./4>
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he group

o Ty:=All,ul:ue U= (e1 —e,e3,€1)}
o A:={[An,av]:a€Z/3Z}, where v =(1,1,0,0)
° G := <Tu,./4>

() X[Ive3][A17V] — (X + e3)[A1’V] — (X + e3)A1 4+ v =
xAr + ((e1 — &) + &3+ &) + v
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he group

o Ty =Allul:ue U= (e1 —e,e3,€1)}
o A:={[Ay,av]:a € Z/3Z}, where v =(1,1,0,0)
o G .= <Tu,./4>

o liellAd (x4 el = (x4 e3) Ay + v =
xAr + ((e1 — &) + &3+ &) + v
® X[Alav][lae3] — (XA]. —I— V)[I7e3] — XA]_ _I_ €3 _|_ vV

® Nonabelian!

Eric Swartz (W&M) November 1, 2023 14 /18

PDSs in nonabelian groups




he group

o Ty =Allul:ue U= (e1 —e,e3,€1)}
o A:={[Ay,av]:a € Z/3Z}, where v =(1,1,0,0)
o G .= <Tu,./4>

o liellAd (x4 el = (x4 e3) Ay + v =
xAr + ((e1 — &) + &3+ &) + v
® X[Alav][lae3] — (XA]. —I— V)[Iae3] — XA]_ _I_ €3 _|_ vV

® Nonabelian!

® |n fact, for u € (e1 — e, €3, €4),

[I7 u] [AO%/] — [Aoz?‘v][la UAa]
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he group

o Ty:=All,ul:ue U= (e1 —e,e3,€1)}
o A:={[Ay,av]:a € Z/3Z}, where v =(1,1,0,0)
e G .= <Tu,./4>

o xlhellAvl = (x 4 e3) MVl = (x + &3)A; + v =
xAr + ((e1 — &) + &3+ &) + v
o xlAvvilhesl — (xA; + v)Ih&l = xA; + e3+ v

® Nonabelian!

® In fact, for u € (e1 — e, €3, €4),
[/, ul[Agv] = [Aasv][l, uAq]

LEA.L'\N]AL:I'\QI n
e G|=28l1 2 heias M| =3 = 2%
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he group, cont.

o Ty =A{[l,ul:ue U= (e —e,e3,€4)}
o A:={[Ay,v]:a€Z/3Z}, where v =(1,1,0,0)
o G .= <Tu,./4>
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he group, cont.

o Ty =A{[l,ul:ue U= (e —e,e3,€4)}
o A:={[Ay,v]:a€Z/3Z}, where v =(1,1,0,0)
o GZ:<TU,A> V= <\I7®u

"

o Letxe@ x=av+u ac€Z/3%. ueclU
® unique [M,w] € G with w = x:

[Aq, av][l, u] = [Aa, av + u] = [Aa, X]
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he group, cont.

o Ty ={[l,ul:ue U= (e —ep,e3,€1)}
o A:={[An,v]:a€Z/3Z}, where v =(1,1,0,0)
® G = <Tu,./4>

® letxeV. x=av+u, a€Z/3%Z. uelU
® unique [M,w] € G with w = x:

[Aq, av][l, u] = [Aa, av + u] = [Aa, X]

® [A,,x] is the unique element of G such that 04« = x
® |G| =|V| =281, G: transitive, fixed-point-free
® Each of g, '1, ['» can be expressed as a Cayley graph on G
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Summary of some recent results

® First known examples of PDSs in nonabelian groups of order g°™,
where g is a power of an odd prime p and m > 2.

® The groups constructed can have exponent as small as p or as large
as p” in a group of order p?’.
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Summary of some recent results

® First known examples of PDSs in nonabelian groups of order g°™,
where g is a power of an odd prime p and m > 2.

® The groups constructed can have exponent as small as p or as large
as p” in a group of order p?’.

® \We construct what we believe are the first known Paley-type PDSs in
nonabelian groups and what we believe are the first examples of
Paley-Hadamard difference sets in nonabelian groups.

* EXAMPLE: (q, &1, 22 92%) = (81, 40, 19, 20)
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Summary of some recent results

® First known examples of PDSs in nonabelian groups of order g°™,
where g is a power of an odd prime p and m > 2.

® The groups constructed can have exponent as small as p or as large
as p” in a group of order p?’.

® \We construct what we believe are the first known Paley-type PDSs in
nonabelian groups and what we believe are the first examples of
Paley-Hadamard difference sets in nonabelian groups.

* EXAMPLE: (q, &1, 22 92%) = (81, 40, 19, 20)

® Using analogues of “product theorems” for abelian groups, we obtain
several examples of each
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Recent results, cont.

Let g be a prime power and r < g 4+ 1 be an integer dividing g + 1.
There exists a genuinely nonabelian PDS with parameters

_ 3
V=4,

k—(q—1)<(q+1)2—q),

<q+1 ) +r — 3,
o (q 1> <(<7+r1)2 _q).

Eric Swartz (W&M) November 1, 2023 17 /18

PDSs in nonabelian groups




Thank you!
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