Partial difference sets in nonabelian groups

Eric Swartz (joint with Jim Davis, John Polhill, Ken Smith)

William & Mary

November 1, 2023

The groups, graphs, etc., considered in this talk will be finite.

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**)

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

• |G| = v,

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

- |G| = v,
- |S| = k,

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

- |G| = v,
- |S| = k,
- if 1 ≠ g ∈ G and g ∈ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly λ different ways, and

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

- |G| = v,
- |S| = k,
- if 1 ≠ g ∈ G and g ∈ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly λ different ways, and
- if 1 ≠ g ∈ G and g ∉ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly µ different ways.

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ) -partial difference set (**PDS**) if

- |G| = v,
- |S| = k,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product ab^{-1} , where $a, b \in S$, exactly λ different ways, and a-b
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product ab^{-1} , where $a, b \in S$, exactly μ different ways. a 5

Why partial *difference* set? Originally interest was in abelian groups, and the operation was addition.

Example

- G: $\mathbb{Z}/13\mathbb{Z}$, operation +
- $S = \{1, 3, 4, 9, 10, 12\}$

Example

- $G: \mathbb{Z}/13\mathbb{Z}$, operation +
- $S = \{1, 3, 4, 9, 10, 12\}$

For elements in *S*:

- 1 = 4 3 = 10 9
- 3 = 4 1 = 12 9
- 4 = 3 12 = 1 10
- 9 = 12 3 = 10 1
- 10 = 1 4 = 9 12
- 12 = 3 4 = 9 10

Example

- $G: \mathbb{Z}/13\mathbb{Z}$, operation +
- $S = \{1, 3, 4, 9, 10, 12\}$

For nonidentity elements not in *S*:

- 2 = 3 1 = 12 10 = 1 12
- 5 = 9 4 = 1 9 = 4 12
- 6 = 9 3 = 10 4 = 3 10
- 7 = 3 9 = 4 10 = 10 3
- 8 = 4 9 = 9 1 = 12 4
- 11 = 1 3 = 10 12 = 12 1

Example

- $G: \mathbb{Z}/13\mathbb{Z}$, operation +
- $S = \{1, 3, 4, 9, 10, 12\}$

For nonidentity elements not in S:

- 2 = 3 1 = 12 10 = 1 12
- 5 = 9 4 = 1 9 = 4 12
- 6 = 9 3 = 10 4 = 3 10
- 7 = 3 9 = 4 10 = 10 3
- 8 = 4 9 = 9 1 = 12 4
- 11 = 1 3 = 10 12 = 12 1

S is a (13, 6, 2, 3)-PDS.

Small example, continued

Example • $G: \mathbb{Z}/13\mathbb{Z}$, operation + • $S = \{1, 3, 4, 9, 10, 12\}$ • S is a (13, 6, 2, 3)-PDS with $0 \notin S$, S = -S• Cay(G, S): undirected (13, 6, 2, 3)-strongly regular Cayley graph.

In fact, the last example generalizes:

Theorem (Paley 1933)

- q: odd prime power
- $q \equiv 1 \pmod{4}$
- G: the additive group of a finite field GF(q)
- S: set of all nonzero squares in GF(q)

Then, S is a $(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4})$ -PDS in G.

if q is prive GF(q) = Z/gZ

Equivalent concepts

Definition

A (v, k, λ, μ) -PDS is called *regular* if $1 \notin S$ and $S = S^{-1}$.

Equivalent concepts

Definition

A (v, k, λ, μ) -PDS is called *regular* if $1 \notin S$ and $S = S^{-1}$.

Proposition

- G: finite group
- S: regular (v, k, λ, μ) -PDS \Leftrightarrow Cay(G, S): (v, k, λ, μ) -SRG.

Equivalent concepts

Definition

A (v, k, λ, μ) -PDS is called *regular* if $1 \notin S$ and $S = S^{-1}$.

Proposition

G: finite group

S: regular (v, k, λ, μ) -PDS $\Leftrightarrow \operatorname{Cay}(G, S)$: (v, k, λ, μ) -SRG.

SO: regular (v, k, λ, μ) -PDS in $G \leftrightarrow G$ acts transitively, fixed-point-freely on vertices of (v, k, λ, μ) -SRG

What's known?

- Extensive knowledge for abelian groups (see Ma's survey (1994))
- Very few known for nonabelian groups!

What's known?

- Extensive knowledge for abelian groups (see Ma's survey (1994))
- Very few known for nonabelian groups!
- Smith (1995): regular (4t², 2t² t, t² t, t² t)-PDSs in certain nonabelian groups
- Kantor (1986), Ghinelli (2012): regular (q³, q² + q - 2, q - 2, q + 2)-PDS in Heisenberg group of order q³ (q odd prime power)
- S. (2015): regular (p³, p² + p − 2, p − 2, p + 2)-PDS S of extraspecial group of order p³, exponent p² (p odd)
- Feng, He, Chen (2020): PDSs of exponent 4, 8, and 16 and of nilpotency class 2, 3, 4, and 6
- Feng, Li (2021): same graphs as Kantor/Ghinelli considered, but *many* groups!

Example: Set up

- $V = \mathbb{Z}/3\mathbb{Z}^4$, the 4-dimensional vector space over $\mathbb{Z}/3\mathbb{Z}$
- |*V*| = 81

Example: Set up

- $V = \mathbb{Z}/3\mathbb{Z}^4$, the 4-dimensional vector space over $\mathbb{Z}/3\mathbb{Z}$
- |V| = 81
- For $x = (x_1, x_2, x_3, x_4) \in V$, define

 $Q(x) = x_1 x_2 + x_3 x_4$

Example: Set up

- $V = \mathbb{Z}/3\mathbb{Z}^4$, the 4-dimensional vector space over $\mathbb{Z}/3\mathbb{Z}$
- |V| = 81
- For $x = (x_1, x_2, x_3, x_4) \in V$, define

$$Q(x) = x_1x_2 + x_3x_4$$

For any $x, y \in V$, there are three options:

Q(x - y) = 0
 Q(x - y) is a nonzero square: Q(x - y) = 1
 Q(x - y) is a nonsquare: Q(x - y) = 2

Three graphs

For each graph: vertices are $V = \mathbb{Z}/3\mathbb{Z}^4$

•
$$\Gamma_0: x \sim y \iff Q(x-y) = 0$$

• Γ_0 is an (81, 32, 13, 12)-SRG

Three graphs

For each graph: vertices are $V = \mathbb{Z}/3\mathbb{Z}^4$

•
$$\Gamma_0: x \sim y \iff Q(x-y) = 0$$

• Γ_0 is an (81, 32, 13, 12)-SRG

•
$$\Gamma_1$$
: $x \sim y \iff Q(x - y) = 1$ (nonzero square)

• Γ_1 is an (81, 24, 9, 6)-SRG

(Affine Polar Ga Three graphs Q(7-7) For each graph: vertices are $V = \mathbb{Z}/3\mathbb{Z}^4$ (0,0,0,0) • $\Gamma_0: x \sim y \iff Q(x-y) = 0$ 个 • Γ₀ is an (81, 32, 13, 12)-SRG $n_{x} Q(\bar{x}-0) = 0$ F=(1,0,0,0) • Γ_1 : $x \sim y \iff Q(x - y) = 1$ (nonzero square) • Γ₁ is an (81, 24, 9, 6)-SRG د = • Γ_2 : $x \sim y \iff Q(x - y) = 2$ (nonsquare) Γ₂ is an (81, 24, 9, 6)-SRG

Automorphisms

• Here, this amounts to ensuring $Q(x^g - y^g) = Q(x - y)$

- **RECALL:** an automorphism g is a bijection of vertices such that $x^{g} \sim y^{g} \iff x \sim y$
- Here, this amounts to ensuring $Q(x^g y^g) = Q(x y)$

- Translations!
- For $v \in V$, define T_v by $T_v : x \mapsto x + v$
- $Q(x^{T_v} y^{T_v}) = Q((x + v) (y + v)) = Q(x y)$
- $T_V := \{T_v : v \in V\}$: transitive, fixed-point-free... but very abelian! $T_v T_u = T_{v+u} = T_u T_v$

Other automorphisms

- Matrices!
- Suppose $M \in GL(4,3)$, Q(vM) = Q(v).

•
$$Q(xM-yM) = Q((x-y)M) = Q(x-y)$$

• Automorphism of each graph!

Other automorphisms

- Matrices!
- Suppose $M \in \operatorname{GL}(4,3)$, Q(vM) = Q(v).
- Q(xM-yM) = Q((x-y)M) = Q(x-y)
- Automorphism of each graph!
- Combine the two: $M \in \operatorname{GL}(4,3)$, M preserves Q; $v \in V$

•
$$x^{[M,v]} := xM + v$$

•
$$Q(x^{[M,v]} - y^{[M,v]}) = Q((xM + v) - (yM + v)) = Q(x - y)$$

•
$$x^{[M,v]} \sim y^{[M,v]} \iff x \sim y$$

= $Q((x-\gamma)M)$

11 / 18

what I translate by

Other automorphisms

- Matrices!
- Suppose $M \in GL(4,3)$, Q(vM) = Q(v).
- Q(xM-yM) = Q((x-y)M) = Q(x-y)
- Automorphism of each graph!
- Combine the two: $M \in \operatorname{GL}(4,3)$, M preserves Q; $v \in V$
- $x^{[M,v]} := xM + v$
- $Q(x^{[M,v]} y^{[M,v]}) = Q((xM + v) (yM + v)) = Q(x y)$
- $x^{[M,v]} \sim y^{[M,v]} \iff x \sim y$
- Composition: $[M_1, v_1][M_2, v_2] = [M_1M_2, v_1M_2 + v_2]$

$$\left(X^{[M_{1},v_{1}]}\right)^{[M_{2},v_{2}]} = \left(XM_{1}+v_{1}\right)^{[M_{2},v_{2}]} = XM_{1}M_{2}+v_{1}M_{2}+v_{2} = X^{[M_{1}M_{2},v_{1}M_{2}]}$$

Example

• For $\alpha \in \mathbb{Z}/3\mathbb{Z}$, define

•
$$x = (x_1, x_2, x_3, x_4)$$

• $Q(x) = x_1x_2 + x_3x_4$

Example

• For $\alpha \in \mathbb{Z}/3\mathbb{Z}$, define

$$A_{\alpha} := \begin{pmatrix} 1 & 0 & 0 & \alpha \\ 0 & 1 & 0 & -\alpha \\ \alpha & -\alpha & 1 & \alpha^2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

•
$$x = (x_1, x_2, x_3, x_4)$$

• $Q(x) = x_1 x_2 + x_3 x_4$
• $xA_{\alpha} = (x_1 + \alpha x_3, x_2 - \alpha x_3, x_3, \alpha x_1 - \alpha x_2 + \alpha^2 x_3 + x_4)$
•

$$Q(xA_{\alpha}) = (x_{1} + \alpha x_{3})(x_{2} - \alpha x_{3}) + x_{3}(\alpha x_{1} - \alpha x_{2} + \alpha^{2} x_{3} + x_{4})$$

= $x_{1}x_{2} - \alpha x_{1}x_{3} + \alpha x_{2}x_{3} - \alpha^{2}x_{3}$
+ $\alpha x_{1}x_{3} - \alpha x_{2}x_{3} + \alpha^{2}x_{3} + x_{3}x_{4}$
= $x_{1}x_{2} + x_{3}x_{4}$
= $Q(x)$

Eric Swartz (W&M)

November 1, 2023

Example, cont.

•
$$A_0 = I$$
, $A_{\alpha}A_{\beta} = A_{\alpha+\beta}$

•
$$A_2 = A_1^2$$
, $A_0 = A_1^3$

Example, cont.

•
$$A_0 = I$$
, $A_{\alpha}A_{\beta} = A_{\alpha+\beta}$

•
$$A_2 = A_1^2$$
, $A_0 = A_1^3$

• Standard basis:
$$e_1, e_2, e_3, e_4$$

•
$$v := e_1 + e_2 = (1, 1, 0, 0)$$

• $vA_1 = (1, 1, 0, 0) \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (1, 1, 0, 0) = v$

• if $u \in \langle e_1 - e_2, e_3, e_4 \rangle = U$, then $uA_1 \in U$

• $\{A_0, A_1, A_2 = A_1^2\}$ stabilize decomposition $V = \langle v \rangle \oplus \langle e_1 - e_2, e_3, e_4 \rangle$

•
$$T_U := \{ [I, u] : u \in U = \langle e_1 - e_2, e_3, e_4 \rangle \}$$
 Transle hims by Thirds
• $\mathcal{A} := \{ [\mathcal{A}_{\alpha}, \alpha v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$, where $v = (1, 1, 0, 0)$
• $G := \langle T_U, \mathcal{A} \rangle$

- $T_U := \{ [I, u] : u \in U = \langle e_1 e_2, e_3, e_4 \rangle \}$
- $\mathcal{A} := \{ [\mathcal{A}_{\alpha}, \alpha v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$, where v = (1, 1, 0, 0)
- $G := \langle T_U, \mathcal{A} \rangle$
- $x^{[I,e_3][A_1,v]} = (x+e_3)^{[A_1,v]} = (x+e_3)A_1 + v = xA_1 + ((e_1 e_2) + e_3 + e_4) + v$

- $T_U := \{ [I, u] : u \in U = \langle e_1 e_2, e_3, e_4 \rangle \}$
- $\mathcal{A} := \{ [\mathcal{A}_{\alpha}, \alpha v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$, where v = (1, 1, 0, 0)
- $G := \langle T_U, \mathcal{A} \rangle$
- $x^{[I,e_3][A_1,v]} = (x+e_3)^{[A_1,v]} = (x+e_3)A_1 + v = xA_1 + ((e_1-e_2)+e_3+e_4) + v$
- $x^{[A_1,v][I,e_3]} = (xA_1 + v)^{[I,e_3]} = xA_1 + e_3 + v$
- Nonabelian!

- $T_U := \{ [I, u] : u \in U = \langle e_1 e_2, e_3, e_4 \rangle \}$
- $\mathcal{A} := \{ [\mathcal{A}_{\alpha}, \alpha v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$, where v = (1, 1, 0, 0)
- $G := \langle T_U, \mathcal{A} \rangle$
- $x^{[I,e_3][A_1,v]} = (x+e_3)^{[A_1,v]} = (x+e_3)A_1 + v = xA_1 + ((e_1-e_2)+e_3+e_4) + v$
- $x^{[A_1,v][I,e_3]} = (xA_1 + v)^{[I,e_3]} = xA_1 + e_3 + v$
- Nonabelian!
- In fact, for $u \in \langle e_1 e_2, e_3, e_4 \rangle$, $[I, u][A_{\text{OV}}] = [A_{\alpha} \text{OV}][I, uA_{\alpha}]$

- $T_U := \{ [I, u] : u \in U = \langle e_1 e_2, e_3, e_4 \rangle \}$
- $\mathcal{A} := \{ [\mathcal{A}_{\alpha}, \alpha v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$, where v = (1, 1, 0, 0)
- $G := \langle T_U, \mathcal{A} \rangle$
- $x^{[I,e_3][A_1,v]} = (x+e_3)^{[A_1,v]} = (x+e_3)A_1 + v = xA_1 + ((e_1-e_2)+e_3+e_4) + v$
- $x^{[A_1,v][I,e_3]} = (xA_1 + v)^{[I,e_3]} = xA_1 + e_3 + v$
- Nonabelian!
- In fact, for $u \in \langle e_1 e_2, e_3, e_4
 angle$,

$$[I, u][A_{\alpha\beta}v] = [A_{\alpha}, v][I, uA_{\alpha}]$$

$$\begin{bmatrix} A_{\alpha}, v\\ \end{bmatrix} \begin{bmatrix} I, u\\ \end{bmatrix}$$

$$\begin{bmatrix} A_{\alpha}, v\\ \end{bmatrix} \begin{bmatrix} I, u\\ \end{bmatrix}$$

$$3 \text{ choices}$$

$$[u] = 3^{3} = 27$$

• |G| = 81

The group, cont.

- $T_U := \{ [I, u] : u \in U = \langle e_1 e_2, e_3, e_4 \rangle \}$
- $\mathcal{A} := \{ [\mathcal{A}_{\alpha}, v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$, where v = (1, 1, 0, 0)
- $G := \langle T_U, \mathcal{A} \rangle$

The group, cont.

•
$$T_U := \{ [I, u] : u \in U = \langle e_1 - e_2, e_3, e_4 \rangle \}$$

•
$$\mathcal{A} := \{ [A_{\alpha}, v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$$
, where $v = (1, 1, 0, 0)$

•
$$G := \langle T_U, \mathcal{A} \rangle$$
 $V = \langle \mathcal{V} \oplus \mathcal{V}$

• Let
$$x \in V$$
 $x = \alpha v + u$, $\alpha \in \mathbb{Z}/3\mathbb{Z}$. $u \in U$

• unique
$$[M, w] \in G$$
 with $w = x$:

$$[A_{\alpha}, \alpha v][I, u] = [A_{\alpha}, \alpha v + u] = [A_{\alpha}, x]$$

The group, cont.

- $T_U := \{ [I, u] : u \in U = \langle e_1 e_2, e_3, e_4 \rangle \}$
- $\mathcal{A} := \{ [\mathcal{A}_{\alpha}, v] : \alpha \in \mathbb{Z}/3\mathbb{Z} \}$, where v = (1, 1, 0, 0)
- $G := \langle T_U, \mathcal{A} \rangle$
- Let $x \in V$. $x = \alpha v + u$, $\alpha \in \mathbb{Z}/3\mathbb{Z}$. $u \in U$
- unique $[M, w] \in G$ with w = x:

$$[A_{\alpha}, \alpha v][I, u] = [A_{\alpha}, \alpha v + u] = [A_{\alpha}, x]$$

- $[A_{\alpha}, x]$ is the unique element of G such that $\vec{0}^{[A_{\alpha}, x]} = x$
- |G| = |V| = 81, G: transitive, fixed-point-free
- Each of Γ_0 , Γ_1 , Γ_2 can be expressed as a Cayley graph on G

Summary of some recent results

- First known examples of PDSs in nonabelian groups of order q^{2m}, where q is a power of an odd prime p and m ≥ 2.
- The groups constructed can have exponent as small as p or as large as p^r in a group of order p^{2r}.

- First known examples of PDSs in nonabelian groups of order q^{2m}, where q is a power of an odd prime p and m ≥ 2.
- The groups constructed can have exponent as small as p or as large as p^r in a group of order p^{2r}.
- We construct what we believe are the first known Paley-type PDSs in nonabelian groups and what we believe are the first examples of Paley-Hadamard difference sets in nonabelian groups.

• **EXAMPLE:**
$$(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4}) = (81, 40, 19, 20)$$

- First known examples of PDSs in nonabelian groups of order q^{2m}, where q is a power of an odd prime p and m ≥ 2.
- The groups constructed can have exponent as small as p or as large as p^r in a group of order p^{2r}.
- We construct what we believe are the first known Paley-type PDSs in nonabelian groups and what we believe are the first examples of Paley-Hadamard difference sets in nonabelian groups.

• **EXAMPLE:**
$$(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4}) = (81, 40, 19, 20)$$

 Using analogues of "product theorems" for abelian groups, we obtain several examples of each Let q be a prime power and r < q + 1 be an integer dividing q + 1. There exists a genuinely nonabelian PDS with parameters

$$v = q^3,$$

$$k = (q-1)\left(\frac{(q+1)^2}{r} - q\right),$$

$$\lambda = r\left(\frac{q+1}{r} - 1\right)^3 + r - 3,$$

$$\mu = \left(\frac{q+1}{r} - 1\right)\left(\frac{(q+1)^2}{r} - q\right)$$

Thank you!