Partial difference sets in nonabelian groups

Eric Swartz
(joint with Jim Davis, John Polhill, Ken Smith)

William \& Mary
November 1, 2023

Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

The groups, graphs, etc., considered in this talk will be finite.
Definition
A subset S of elements of a group G is a (v, k, λ, μ)-partial difference set (PDS)

Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,

Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,

Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly λ different ways, and

Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly λ different ways, and
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly μ different ways.

Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly λ different ways, and $a-b$
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly μ different ways. $a-b$

Why partial difference set? Originally interest was in abelian groups, and the operation was addition.

Small example

Example

- $G: \mathbb{Z} / 13 \mathbb{Z}$, operation +
- $S=\{1,3,4,9,10,12\}$

Small example

Example

- $G: \mathbb{Z} / 13 \mathbb{Z}$, operation +
- $S=\{1,3,4,9,10,12\}$

For elements in S :

- $1=4-3=10-9$
- $3=4-1=12-9$
- $4=3-12=1-10$
- $9=12-3=10-1$
- $10=1-4=9-12$
- $12=3-4=9-10$

Small example

Example

- $G: \mathbb{Z} / 13 \mathbb{Z}$, operation +
- $S=\{1,3,4,9,10,12\}$

For nonidentity elements not in S :

- $2=3-1=12-10=1-12$
- $5=9-4=1-9=4-12$
- $6=9-3=10-4=3-10$
- $7=3-9=4-10=10-3$
- $8=4-9=9-1=12-4$
- $11=1-3=10-12=12-1$

Small example

Example

- $G: \mathbb{Z} / 13 \mathbb{Z}$, operation +
- $S=\{1,3,4,9,10,12\}$

For nonidentity elements not in S :

- $2=3-1=12-10=1-12$
- $5=9-4=1-9=4-12$
- $6=9-3=10-4=3-10$
- $7=3-9=4-10=10-3$
- $8=4-9=9-1=12-4$
- $11=1-3=10-12=12-1$
S is a $(13,6,2,3)$-PDS.

Small example, continued

Example

- $G: \mathbb{Z} / 13 \mathbb{Z}$, operation $+\quad S$: squares $\bmod 13$
- $S=\{1,3,4,9,10,12\} \quad 1=1^{2}, 3=16=4^{2}, \quad 10=36=6^{2}, \quad 12=25=5^{2}$
- S is a $(13,6,2,3)$-PDS with $0 \notin S, S=-S$
- $\operatorname{Cay}(G, S)$: undirected $(13,6,2,3)$-strongly regular Cayley graph.

Paley's Theorem

In fact, the last example generalizes:

Theorem (Paley 1933)

- q: odd prime power
- $q \equiv 1(\bmod 4)$
- G : the additive group of a finite field $\mathrm{GF}(q)$

- S : set of all nonzero squares in $\mathrm{GF}(q)$

Then, S is a $\left(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4}\right)-P D S$ in G.

Equivalent concepts

Definition

A (v, k, λ, μ)-PDS is called regular if $1 \notin S$ and $S=S^{-1}$.

Equivalent concepts

Definition

A (v, k, λ, μ)-PDS is called regular if $1 \notin S$ and $S=S^{-1}$.

```
Proposition
G: finite group
S: regular (v,k,\lambda,\mu)-PDS \Leftrightarrow Cay(G, S):(v,k,\lambda,\mu)-SRG.
```


Equivalent concepts

Definition

A (v, k, λ, μ)-PDS is called regular if $1 \notin S$ and $S=S^{-1}$.

Proposition

G : finite group
$S:$ regular $(v, k, \lambda, \mu)-P D S \Leftrightarrow \operatorname{Cay}(G, S):(v, k, \lambda, \mu)-S R G$.
SO: regular (v, k, λ, μ)-PDS in $G \leftrightarrow G$ acts transitively, fixed-point-freely on vertices of (v, k, λ, μ)-SRG

What's known?

- Extensive knowledge for abelian groups (see Ma's survey (1994))
- Very few known for nonabelian groups!

What's known?

- Extensive knowledge for abelian groups (see Ma's survey (1994))
- Very few known for nonabelian groups!
- Smith (1995): regular $\left(4 t^{2}, 2 t^{2}-t, t^{2}-t, t^{2}-t\right)$-PDSs in certain nonabelian groups
- Kantor (1986), Ghinelli (2012): regular $\left(q^{3}, q^{2}+q-2, q-2, q+2\right)$-PDS in Heisenberg group of order $q^{3}(q$ odd prime power)
- S. (2015): regular $\left(p^{3}, p^{2}+p-2, p-2, p+2\right)$-PDS S of extraspecial group of order p^{3}, exponent p^{2} (p odd)
- Feng, He, Chen (2020): PDSs of exponent 4, 8, and 16 and of nilpotency class 2, 3, 4, and 6
- Feng, Li (2021): same graphs as Kantor/Ghinelli considered, but many groups!

Example: Set up

- $V=\mathbb{Z} / 3 \mathbb{Z}^{4}$, the 4-dimensional vector space over $\mathbb{Z} / 3 \mathbb{Z}$
- $|V|=81$

Example: Set up

- $V=\mathbb{Z} / 3 \mathbb{Z}^{4}$, the 4-dimensional vector space over $\mathbb{Z} / 3 \mathbb{Z}$
- $|V|=81$
- For $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V$, define

$$
Q(x)=x_{1} x_{2}+x_{3} x_{4}
$$

Example: Set up

- $V=\mathbb{Z} / 3 \mathbb{Z}^{4}$, the 4-dimensional vector space over $\mathbb{Z} / 3 \mathbb{Z}$
- $|V|=81$
- For $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V$, define

$$
Q(x)=x_{1} x_{2}+x_{3} x_{4}
$$

For any $x, y \in V$, there are three options:
(1) $Q(x-y)=0$
(2) $Q(x-y)$ is a nonzero square: $Q(x-y)=1$
(3) $Q(x-y)$ is a nonsquare: $Q(x-y)=2$

Three graphs

For each graph: vertices are $V=\mathbb{Z} / 3 \mathbb{Z}^{4}$

- $\Gamma_{0}: x \sim y \Longleftrightarrow Q(x-y)=0$
- Γ_{0} is an $(81,32,13,12)-$ SRG

Three graphs

For each graph: vertices are $V=\mathbb{Z} / 3 \mathbb{Z}^{4}$

- $\Gamma_{0}: x \sim y \Longleftrightarrow Q(x-y)=0$
- Γ_{0} is an $(81,32,13,12)$-SRG
- $\Gamma_{1}: x \sim y \Longleftrightarrow Q(x-y)=1$ (nonzero square)
- Γ_{1} is an $(81,24,9,6)$-SRG

Three graphs

(Affine Pohs Guphs

For each graph: vertices are $V=\mathbb{Z} / 3 \mathbb{Z}^{4}$

- $\Gamma_{0}: x \sim y \Longleftrightarrow Q(x-y)=0$
- Γ_{0} is an ($81,32,13,12$)-SRG

$$
\Gamma_{1} \cong \Gamma_{2}
$$

- $\Gamma_{1}: x \sim y \Longleftrightarrow Q(x-y)=1$ (nonzero square)
- Γ_{1} is an ($81,24,9,6$)-SRG
- $\Gamma_{2}: x \sim y \Longleftrightarrow Q(x-y)=2$ (nonsquare)
- Γ_{2} is an ($81,24,9,6$)-SRG

Automorphisms

$g(x) \quad g(y)$

- RE\&ALL: automorphism g is a bijection of vertices such that $x^{g} \sim y^{g} \Longleftrightarrow x \sim y$
- Here, this amounts to ensuring $Q\left(x^{g}-y^{g}\right)=Q(x-y)$

Automorphisms

- RECALL: an automorphism g is a bijection of vertices such that $x^{g} \sim y^{g} \Longleftrightarrow x \sim y$
- Here, this amounts to ensuring $Q\left(x^{g}-y^{g}\right)=Q(x-y)$
- Translations!
- For $v \in V$, define T_{v} by $T_{v}: x \mapsto x+v$
- $Q\left(x^{T_{v}}-y^{T_{v}}\right)=Q((x+v)-(y+v))=Q(x-y)$
- $T_{V}:=\left\{T_{v}: v \in V\right\}:$ transitive, fixed-point-free.... but very abelian!

$$
T_{v} T_{u}=T_{v+u}=T_{u} T_{v}
$$

Other automorphisms

- Matrices!
- Suppose $M \in \operatorname{GL}(4,3), Q(v M)=Q(v)$.
- $Q(x M-y M)=Q((x-y) M)=Q(x-y)$
- Automorphism of each graph!

Other automorphisms

- Matrices!
- Suppose $M \in \operatorname{GL}(4,3), Q(v M)=Q(v)$.
- $Q(x M-y M)=Q((x-y) M)=Q(x-y)$
- Automorphism of each graph!
- Combine the two: $M \in \operatorname{GL}(4,3), M$ preserves $Q ; v \in V$
- $x^{[M, v]}:=x M+v$
- $Q\left(x^{[M, v]}-y^{[M, v]}\right)=Q((x M+v)-(y M+v))=Q(x-y)$
- $x^{[M, v]} \sim y^{[M, v]} \Longleftrightarrow x \sim y$

$$
=Q((x-y) M)
$$

Other automorphisms

- Matrices!
- Suppose $M \in \operatorname{GL}(4,3), Q(v M)=Q(v)$.
- $Q(x M-y M)=Q((x-y) M)=Q(x-y)$
- Automorphism of each graph!
- Combine the two: $M \in \operatorname{GL}(4,3), M$ preserves $Q ; v \in V$
- $x^{[M, v]}:=x M+v$
- $Q\left(x^{[M, v]}-y^{[M, v]}\right)=Q((x M+v)-(y M+v))=Q(x-y)$
- $x^{[M, v]} \sim y^{[M, v]} \Longleftrightarrow x \sim y$
- Composition: $\left[M_{1}, v_{1}\right]\left[M_{2}, v_{2}\right]=\left[M_{1} M_{2}, v_{1} M_{2}+v_{2}\right]$
$\left(x^{\left[M_{1}, v,\right]}\right)^{\left[\mu_{2}, v_{2}\right]}=\left(x M_{1}+v_{1}\right)^{\left[\mu_{2}, v_{2}\right]}=x M_{1} M_{2}+v_{1} M_{2}+v_{2}=x^{\left[M_{1} M_{2}, v \mu_{2}, \mu_{2}\right]}$

Example

- For $\alpha \in \mathbb{Z} / 3 \mathbb{Z}$, define

$$
A_{\alpha}:=\left(\begin{array}{cccc}
1 & 0 & 0 & \alpha \\
0 & 1 & 0 & -\alpha \\
\alpha & -\alpha & 1 & \alpha^{2} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- $Q(x)=x_{1} x_{2}+x_{3} x_{4}$

Example

- For $\alpha \in \mathbb{Z} / 3 \mathbb{Z}$, define

$$
A_{\alpha}:=\left(\begin{array}{cccc}
1 & 0 & 0 & \alpha \\
0 & 1 & 0 & -\alpha \\
\alpha & -\alpha & 1 & \alpha^{2} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- $Q(x)=x_{1} x_{2}+x_{3} x_{4}$
- $x A_{\alpha}=\left(x_{1}+\alpha x_{3}, x_{2}-\alpha x_{3}, x_{3}, \alpha x_{1}-\alpha x_{2}+\alpha^{2} x_{3}+x_{4}\right)$

$$
\begin{aligned}
Q\left(x A_{\alpha}\right)= & \left(x_{1}+\alpha x_{3}\right)\left(x_{2}-\alpha x_{3}\right)+x_{3}\left(\alpha x_{1}-\alpha x_{2}+\alpha^{2} x_{3}+x_{4}\right) \\
& =x_{1} x_{2}-\alpha x_{1} x_{3}+\alpha x_{2} x_{3}-\alpha^{2} x_{3} \\
& +\alpha x_{1} x_{3}-\alpha x_{2} x_{3}+\alpha^{2} x_{3}+x_{3} x_{4} \\
= & x_{1} x_{2}+x_{3} x_{4} \\
= & Q(x)
\end{aligned}
$$

Example, cont.

- $A_{0}=I, A_{\alpha} A_{\beta}=A_{\alpha+\beta}$
- $A_{2}=A_{1}^{2}, A_{0}=A_{1}^{3}$

Example, cont.

- $A_{0}=I, A_{\alpha} A_{\beta}=A_{\alpha+\beta}$
- $A_{2}=A_{1}^{2}, A_{0}=A_{1}^{3}$
- Standard basis: $e_{1}, e_{2}, e_{3}, e_{4}$
- $v:=e_{1}+e_{2}=(1,1,0,0)$
- $v A_{1}=(1,1,0,0)\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)=(1,1,0,0)=v$
- if $u \in\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle=U$, then $u A_{1} \in U$
- $\left\{A_{0}, A_{1}, A_{2}=A_{1}^{2}\right\}$ stabilize decomposition $V=\langle v\rangle \oplus\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle$

The group

- $T_{U}:=\left\{[1, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$ Translations by This U
- $\mathcal{A}:=\left\{\left[A_{\alpha}, \alpha v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$

The group

- $T_{U}:=\left\{[I, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$
- $\mathcal{A}:=\left\{\left[A_{\alpha}, \alpha v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$
- $x^{\left[/, e_{3}\right]\left[A_{1}, v\right]}=\left(x+e_{3}\right)^{\left[A_{1}, v\right]}=\left(x+e_{3}\right) A_{1}+v=$ $x A_{1}+\left(\left(e_{1}-e_{2}\right)+e_{3}+e_{4}\right)+v$

The group

- $T_{U}:=\left\{[I, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$
- $\mathcal{A}:=\left\{\left[A_{\alpha}, \alpha v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$
- $x^{\left[I, e_{3}\right]\left[A_{1}, v\right]}=\left(x+e_{3}\right)^{\left[A_{1}, v\right]}=\left(x+e_{3}\right) A_{1}+v=$ $x A_{1}+\left(\left(e_{1}-e_{2}\right)+e_{3}+e_{4}\right)+v$
- $x^{\left[A_{1}, v\right]\left[I, e_{3}\right]}=\left(x A_{1}+v\right)^{\left[I, e_{3}\right]}=x A_{1}+e_{3}+v$
- Nonabelian!

The group

- $T_{U}:=\left\{[I, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$
- $\mathcal{A}:=\left\{\left[A_{\alpha}, \alpha v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$
- $x^{\left[1, e_{3}\right]\left[A_{1}, v\right]}=\left(x+e_{3}\right)^{\left[A_{1}, v\right]}=\left(x+e_{3}\right) A_{1}+v=$ $x A_{1}+\left(\left(e_{1}-e_{2}\right)+e_{3}+e_{4}\right)+v$
- $x^{\left[A_{1}, v\right]\left[I, e_{3}\right]}=\left(x A_{1}+v\right)^{\left[I, e_{3}\right]}=x A_{1}+e_{3}+v$
- Nonabelian!
- In fact, for $u \in\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle$,

$$
[I, u]\left[A_{\alpha}, \psi\right]=\left[A_{\alpha}, \mathscr{q}\right]\left[I, u A_{\alpha}\right]
$$

The group

- $T_{U}:=\left\{[I, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$
- $\mathcal{A}:=\left\{\left[A_{\alpha}, \alpha v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$
- $x^{\left[/, e_{3}\right]\left[A_{1}, v\right]}=\left(x+e_{3}\right)^{\left[A_{1}, v\right]}=\left(x+e_{3}\right) A_{1}+v=$ $x A_{1}+\left(\left(e_{1}-e_{2}\right)+e_{3}+e_{4}\right)+v$
- $x^{\left[A_{1}, v\right]\left[/, e_{3}\right]}=\left(x A_{1}+v\right)^{\left[/, e_{3}\right]}=x A_{1}+e_{3}+v$
- Nonabelian!
- In fact, for $u \in\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle$,

$$
\begin{aligned}
& {[I, u]\left[A_{\alpha, v}\right]=\left[A_{\alpha}, \alpha\right]\left[I, u A_{\alpha}\right]} \\
& \underbrace{\left[A_{\alpha}, \alpha\right] \underbrace{[I, u]_{1}}_{|u|}}_{3 \text { choices }}=3^{3}=27
\end{aligned}
$$

- $|G|=81$

The group, cont.

- $T_{U}:=\left\{[I, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$
- $\mathcal{A}:=\left\{\left[A_{\alpha}, v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$

The group, cont.

- $T_{U}:=\left\{[I, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$
- $\mathcal{A}:=\left\{\left[A_{\alpha}, v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$

$$
V=\langle v\rangle \oplus U
$$

- Let $x \in \bigvee x=\alpha v+u, \alpha \in \mathbb{Z} / 3 \mathbb{Z} . u \in U$
- unique $[M, w] \in G$ with $w=x$:

$$
\left[A_{\alpha}, \alpha v\right][I, u]=\left[A_{\alpha}, \alpha v+u\right]=\left[A_{\alpha}, x\right]
$$

The group, cont.

- $T_{U}:=\left\{[I, u]: u \in U=\left\langle e_{1}-e_{2}, e_{3}, e_{4}\right\rangle\right\}$
- $\mathcal{A}:=\left\{\left[A_{\alpha}, v\right]: \alpha \in \mathbb{Z} / 3 \mathbb{Z}\right\}$, where $v=(1,1,0,0)$
- $G:=\left\langle T_{U}, \mathcal{A}\right\rangle$
- Let $x \in V . x=\alpha v+u, \alpha \in \mathbb{Z} / 3 \mathbb{Z} . u \in U$
- unique $[M, w] \in G$ with $w=x$:

$$
\left[A_{\alpha}, \alpha v\right][I, u]=\left[A_{\alpha}, \alpha v+u\right]=\left[A_{\alpha}, x\right]
$$

- $\left[A_{\alpha}, x\right]$ is the unique element of G such that $\overrightarrow{0}^{\left[A_{\alpha}, x\right]}=x$
- $|G|=|V|=81, G$: transitive, fixed-point-free
- Each of $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ can be expressed as a Cayley graph on G

Summary of some recent results

- First known examples of PDSs in nonabelian groups of order $q^{2 m}$, where q is a power of an odd prime p and $m \geqslant 2$.
- The groups constructed can have exponent as small as p or as large as p^{r} in a group of order $p^{2 r}$.

Summary of some recent results

- First known examples of PDSs in nonabelian groups of order $q^{2 m}$, where q is a power of an odd prime p and $m \geqslant 2$.
- The groups constructed can have exponent as small as p or as large as p^{r} in a group of order $p^{2 r}$.
- We construct what we believe are the first known Paley-type PDSs in nonabelian groups and what we believe are the first examples of Paley-Hadamard difference sets in nonabelian groups.
- EXAMPLE: $\left(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4}\right)=(81,40,19,20)$

Summary of some recent results

- First known examples of PDSs in nonabelian groups of order $q^{2 m}$, where q is a power of an odd prime p and $m \geqslant 2$.
- The groups constructed can have exponent as small as p or as large as p^{r} in a group of order $p^{2 r}$.
- We construct what we believe are the first known Paley-type PDSs in nonabelian groups and what we believe are the first examples of Paley-Hadamard difference sets in nonabelian groups.
- EXAMPLE: $\left(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4}\right)=(81,40,19,20)$
- Using analogues of "product theorems" for abelian groups, we obtain several examples of each

Recent results, cont.

Let q be a prime power and $r<q+1$ be an integer dividing $q+1$. There exists a genuinely nonabelian PDS with parameters

$$
\begin{aligned}
& v=q^{3} \\
& k=(q-1)\left(\frac{(q+1)^{2}}{r}-q\right), \\
& \lambda=r\left(\frac{q+1}{r}-1\right)^{3}+r-3 \\
& \mu=\left(\frac{q+1}{r}-1\right)\left(\frac{(q+1)^{2}}{r}-q\right) .
\end{aligned}
$$

Thank you!

