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Definition

The groups, graphs, etc., considered in this talk will be finite.

Definition

A subset S of elements of a group G is a (v , k ,�, µ)-partial di↵erence set
(PDS)

if

• |G | = v ,

• |S | = k ,

• if 1 6= g 2 G and g 2 S , then g can be written as the product ab�1,
where a, b 2 S , exactly � di↵erent ways, and

• if 1 6= g 2 G and g /2 S , then g can be written as the product ab�1,
where a, b 2 S , exactly µ di↵erent ways.

Why partial di↵erence set? Originally interest was in abelian groups, and
the operation was addition.
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Small example

Example

• G : Z/13Z, operation +

• S = {1, 3, 4, 9, 10, 12}

For elements in S :

• 1 = 4� 3 = 10� 9

• 3 = 4� 1 = 12� 9

• 4 = 3� 12 = 1� 10

• 9 = 12� 3 = 10� 1

• 10 = 1� 4 = 9� 12

• 12 = 3� 4 = 9� 10
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Small example

Example

• G : Z/13Z, operation +

• S = {1, 3, 4, 9, 10, 12}

For nonidentity elements not in S :

• 2 = 3� 1 = 12� 10 = 1� 12

• 5 = 9� 4 = 1� 9 = 4� 12

• 6 = 9� 3 = 10� 4 = 3� 10

• 7 = 3� 9 = 4� 10 = 10� 3

• 8 = 4� 9 = 9� 1 = 12� 4

• 11 = 1� 3 = 10� 12 = 12� 1
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Small example

Example

• G : Z/13Z, operation +

• S = {1, 3, 4, 9, 10, 12}

For nonidentity elements not in S :

• 2 = 3� 1 = 12� 10 = 1� 12

• 5 = 9� 4 = 1� 9 = 4� 12

• 6 = 9� 3 = 10� 4 = 3� 10

• 7 = 3� 9 = 4� 10 = 10� 3

• 8 = 4� 9 = 9� 1 = 12� 4

• 11 = 1� 3 = 10� 12 = 12� 1

S is a (13, 6, 2, 3)-PDS.
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Small example, continued

Example

• G : Z/13Z, operation +

• S = {1, 3, 4, 9, 10, 12}
• S is a (13, 6, 2, 3)-PDS with 0 /2 S , S = �S

• Cay(G , S): undirected (13, 6, 2, 3)-strongly regular Cayley graph.

0

1

2

34
5

6

7

8

9 10

11

12
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S squirts mod 13

1 12 3 16 42 4 22 9 32

10 36 62 12 25 52



Paley’s Theorem

In fact, the last example generalizes:

Theorem (Paley 1933)

• q: odd prime power

• q ⌘ 1 (mod 4)

• G : the additive group of a finite field GF(q)

• S : set of all nonzero squares in GF(q)

Then, S is a (q, q�1
2 , q�5

4 , q�1
4 )-PDS in G .

Eric Swartz (W&M) PDSs in nonabelian groups November 1, 2023 5 / 18
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Equivalent concepts

Definition

A (v , k ,�, µ)-PDS is called regular if 1 /2 S and S = S�1.

Proposition

G : finite group

S : regular (v , k ,�, µ)-PDS , Cay(G , S): (v , k ,�, µ)-SRG.

SO: regular (v , k ,�, µ)-PDS in G $ G acts transitively, fixed-point-freely
on vertices of (v , k ,�, µ)-SRG
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What’s known?

• Extensive knowledge for abelian groups (see Ma’s survey (1994))

• Very few known for nonabelian groups!

• Smith (1995): regular (4t2, 2t2 � t, t2 � t, t2 � t)-PDSs in certain
nonabelian groups

• Kantor (1986), Ghinelli (2012): regular
(q3, q2 + q � 2, q � 2, q + 2)-PDS in Heisenberg group of order q3 (q
odd prime power)

• S. (2015): regular (p3, p2 + p � 2, p � 2, p + 2)-PDS S of
extraspecial group of order p3, exponent p2 (p odd)

• Feng, He, Chen (2020): PDSs of exponent 4, 8, and 16 and of
nilpotency class 2, 3, 4, and 6

• Feng, Li (2021): same graphs as Kantor/Ghinelli considered, but
many groups!
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Example: Set up

• V = Z/3Z4, the 4-dimensional vector space over Z/3Z
• |V | = 81

• For x = (x1, x2, x3, x4) 2 V , define

Q(x) = x1x2 + x3x4

For any x , y 2 V , there are three options:

(1) Q(x � y) = 0

(2) Q(x � y) is a nonzero square: Q(x � y) = 1

(3) Q(x � y) is a nonsquare: Q(x � y) = 2
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Three graphs

For each graph: vertices are V = Z/3Z4

• �0: x ⇠ y () Q(x � y) = 0

• �0 is an (81, 32, 13, 12)-SRG

• �1: x ⇠ y () Q(x � y) = 1 (nonzero square)

• �1 is an (81, 24, 9, 6)-SRG

• �2: x ⇠ y () Q(x � y) = 2 (nonsquare)

• �2 is an (81, 24, 9, 6)-SRG
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Automorphisms

• RECALL: an automorphism g is a bijection of vertices such that
xg ⇠ yg () x ⇠ y

• Here, this amounts to ensuring Q(xg � yg ) = Q(x � y)

• Translations!

• For v 2 V , define Tv by Tv : x 7! x + v

• Q(xTv � yTv ) = Q((x + v)� (y + v)) = Q(x � y)

• TV := {Tv : v 2 V }: transitive, fixed-point-free... but very abelian!

Eric Swartz (W&M) PDSs in nonabelian groups November 1, 2023 10 / 18
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Other automorphisms

• Matrices!

• Suppose M 2 GL(4, 3), Q(vM) = Q(v).

• Q(xM � yM) = Q((x � y)M) = Q(x � y)

• Automorphism of each graph!

• Combine the two: M 2 GL(4, 3), M preserves Q; v 2 V

• x [M,v ] := xM + v

• Q(x [M,v ] � y [M,v ]) = Q((xM + v)� (yM + v)) = Q(x � y)

• x [M,v ] ⇠ y [M,v ] () x ⇠ y

• Composition: [M1, v1][M2, v2] = [M1M2, v1M2 + v2]
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Other automorphisms

• Matrices!

• Suppose M 2 GL(4, 3), Q(vM) = Q(v).

• Q(xM � yM) = Q((x � y)M) = Q(x � y)

• Automorphism of each graph!

• Combine the two: M 2 GL(4, 3), M preserves Q; v 2 V

• x [M,v ] := xM + v

• Q(x [M,v ] � y [M,v ]) = Q((xM + v)� (yM + v)) = Q(x � y)

• x [M,v ] ⇠ y [M,v ] () x ⇠ y

• Composition: [M1, v1][M2, v2] = [M1M2, v1M2 + v2]

Eric Swartz (W&M) PDSs in nonabelian groups November 1, 2023 11 / 18

gt

I

t a s lateby

a
Q ex y M



Other automorphisms

• Matrices!

• Suppose M 2 GL(4, 3), Q(vM) = Q(v).

• Q(xM � yM) = Q((x � y)M) = Q(x � y)

• Automorphism of each graph!

• Combine the two: M 2 GL(4, 3), M preserves Q; v 2 V

• x [M,v ] := xM + v

• Q(x [M,v ] � y [M,v ]) = Q((xM + v)� (yM + v)) = Q(x � y)

• x [M,v ] ⇠ y [M,v ] () x ⇠ y

• Composition: [M1, v1][M2, v2] = [M1M2, v1M2 + v2]

Eric Swartz (W&M) PDSs in nonabelian groups November 1, 2023 11 / 18

x Emir
E

XM er
2nd XMMatu Matu x D



Example

• For ↵ 2 Z/3Z, define

A↵ :=

0

BB@

1 0 0 ↵
0 1 0 �↵
↵ �↵ 1 ↵2

0 0 0 1

1

CCA

• x = (x1, x2, x3, x4)
• Q(x) = x1x2 + x3x4

• xA↵ = (x1 + ↵x3, x2 � ↵x3, x3,↵x1 � ↵x2 + ↵2x3 + x4)
•

Q(xA↵) = (x1 + ↵x3)(x2 � ↵x3) + x3(↵x1 � ↵x2 + ↵2x3 + x4)

= x1x2 � ↵x1x3 + ↵x2x3 � ↵2x3

+ ↵x1x3 � ↵x2x3 + ↵2x3 + x3x4

= x1x2 + x3x4

= Q(x)
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Example, cont.

• A0 = I , A↵A� = A↵+�

• A2 = A2
1, A0 = A3

1

• Standard basis: e1, e2, e3, e4
• v := e1 + e2 = (1, 1, 0, 0)

• vA1 = (1, 1, 0, 0)

0

BB@

1 0 0 1
0 1 0 �1
1 �1 1 1
0 0 0 1

1

CCA = (1, 1, 0, 0) = v

• if u 2 he1 � e2, e3, e4i = U, then uA1 2 U

• {A0,A1,A2 = A2
1} stabilize decomposition V = hvi � he1 � e2, e3, e4i
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The group

• TU := {[I , u] : u 2 U = he1 � e2, e3, e4i}
• A := {[A↵,↵v ] : ↵ 2 Z/3Z}, where v = (1, 1, 0, 0)

• G := hTU ,Ai

• x [I ,e3][A1,v ] = (x + e3)[A1,v ] = (x + e3)A1 + v =
xA1 + ((e1 � e2) + e3 + e4) + v

• x [A1,v ][I ,e3] = (xA1 + v)[I ,e3] = xA1 + e3 + v

• Nonabelian!

• In fact, for u 2 he1 � e2, e3, e4i,

[I , u][A↵v ] = [A↵, v ][I , uA↵]

• |G | = 81

Eric Swartz (W&M) PDSs in nonabelian groups November 1, 2023 14 / 18
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• x [I ,e3][A1,v ] = (x + e3)[A1,v ] = (x + e3)A1 + v =
xA1 + ((e1 � e2) + e3 + e4) + v

• x [A1,v ][I ,e3] = (xA1 + v)[I ,e3] = xA1 + e3 + v

• Nonabelian!

• In fact, for u 2 he1 � e2, e3, e4i,

[I , u][A↵v ] = [A↵, v ][I , uA↵]

• |G | = 81
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The group, cont.

• TU := {[I , u] : u 2 U = he1 � e2, e3, e4i}
• A := {[A↵, v ] : ↵ 2 Z/3Z}, where v = (1, 1, 0, 0)

• G := hTU ,Ai

• Let x 2 V . x = ↵v + u, ↵ 2 Z/3Z. u 2 U

• unique [M,w ] 2 G with w = x :

[A↵,↵v ][I , u] = [A↵,↵v + u] = [A↵, x ]

• [A↵, x ] is the unique element of G such that 0[A↵,x] = x

• |G | = |V | = 81, G : transitive, fixed-point-free

• Each of �0, �1, �2 can be expressed as a Cayley graph on G
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Summary of some recent results

• First known examples of PDSs in nonabelian groups of order q2m,
where q is a power of an odd prime p and m > 2.

• The groups constructed can have exponent as small as p or as large
as pr in a group of order p2r .

• We construct what we believe are the first known Paley-type PDSs in
nonabelian groups and what we believe are the first examples of
Paley-Hadamard di↵erence sets in nonabelian groups.

• EXAMPLE: (q, q�1
2 , q�5

4 , q�1
4 ) = (81, 40, 19, 20)

• Using analogues of “product theorems” for abelian groups, we obtain
several examples of each
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Recent results, cont.

Let q be a prime power and r < q + 1 be an integer dividing q + 1.
There exists a genuinely nonabelian PDS with parameters

v = q3,

k = (q � 1)

✓
(q + 1)2

r
� q

◆
,

� = r

✓
q + 1

r
� 1

◆3

+ r � 3,

µ =

✓
q + 1

r
� 1

◆✓
(q + 1)2

r
� q

◆
.
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Thank you!
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