Strongly Regular Graphs and Their Symmetries

Eric Swartz

William \& Mary

October 25, 2023

Graphs

Definition

- graph Γ : vertices $V(\Gamma)$ and edges $E(\Gamma)$ (unordered pairs of distinct vertices)
- Edges are undirected, and there are no "loops" or "multiple edges"

What do we mean by symmetry?

Formally:

Definition

- automorphism: bijection $g: V(\Gamma) \rightarrow V(\Gamma)$ that sends edges to edges and non-edges to non-edges
- set of all automorphisms of Γ : $\operatorname{Aut}(\Gamma)$.

What do we mean by symmetry?

Formally:

Definition

- automorphism: bijection $g: V(\Gamma) \rightarrow V(\Gamma)$ that sends edges to edges and non-edges to non-edges
- set of all automorphisms of Γ : $\operatorname{Aut}(\Gamma)$.
- Every graph has at least one automorphism: the identity map that sends every vertex to itself! We will denote the identity simply by 1 .

What do we mean by symmetry?

Formally:

Definition

- automorphism: bijection $g: V(\Gamma) \rightarrow V(\Gamma)$ that sends edges to edges and non-edges to non-edges
- set of all automorphisms of Γ : $\operatorname{Aut}(\Gamma)$.
- Every graph has at least one automorphism: the identity map that sends every vertex to itself! We will denote the identity simply by 1.
- If you know some abstract algebra, $\operatorname{Aut}(\Gamma)$ is a group with binary operation composition of functions: it is associative, has an identity 1 , and every automorphism has an inverse.

An example: 5-cycle

Consider the 5 -cycle, C_{5}.

5-cycle, cont.

$$
\text { Aut }\left(C_{5}\right)=D_{5}=\frac{\text { rotations }}{\substack{\{\begin{array}{l}
1, r^{2}, r^{3}, r^{y}, t, t r, t r^{2}, t r^{3}, t r^{4}
\end{array} \\
\underbrace{}_{\text {"rethections" }}}}
$$

Can we impose symmetry?

Definition

- regular graph: all vertices have the same number of neighbors
- k-regular: every vertex has k neighbors

Can we impose symmetry?

Definition

- regular graph: all vertices have the same number of neighbors
- k-regular: every vertex has k neighbors

The 5 -cycle C_{5} is 2 -regular:

Frucht Graph F

Strongly Regular Graphs

Definition

(v, k, λ, μ)-strongly regular graph (SRG):

- v vertices
- k-regular (every vertex has k neighbors)
- every two neighbors have λ common neighbors
- every two non-neighbors have μ common neighbors

Strongly Regular Graphs

Definition

($v, k, \lambda, \mu)$-strongly regular graph (SRG):

- v vertices
- k-regular (every vertex has k neighbors)
- every two neighbors have λ common neighbors
- every two non-neighbors have μ common neighbors

5 -cycle is a $(5,2,0,1)$-SRG

Ex $C_{6}:$ not a SRG

A $(25,12,5,6)-$ SRG $: ~ P$

$$
\text { Aut }(p)=\{1\}
$$

SRGs are difficult!

"Strongly regular graphs stand on the cusp between the random and the highly structured."
-Peter Cameron

SRGs are difficult!

"Strongly regular graphs stand on the cusp between the random and the highly structured."
-Peter Cameron

Example

- 11084874829 SRGs with parameters $(57,24,11,9)$ arising from Steiner triple systems
- 11084710071 have trivial automorphism group!

SRGs are difficult!

"Strongly regular graphs stand on the cusp between the random and the highly structured."
-Peter Cameron

Example

- 11084874829 SRGs with parameters $(57,24,11,9)$ arising from Steiner triple systems
- 11084710071 have trivial automorphism group!

In fact, SRGs are one of the primary roadblocks preventing isomorphism testing of graphs in polynomial time.

Some Combinatorics
Proposition
Let Γ be a (v, k, λ, μ)-SR.

- The complement (switch edges and non-edges) is a

Linear algebra is really useful

Definition

- Γ : graph with v vertices
- adjacency matrix of $\Gamma: v \times v$ matrix $A=\left(a_{i j}\right)$, with rows/columns labeled by vertices
- $a_{i j}= \begin{cases}1 & \text { if } i j \text { is an edge }, \\ 0 & \text { otherwise. }\end{cases}$

Linear algebra is really useful

Definition

- Γ : graph with v vertices
- adjacency matrix of $\Gamma: v \times v$ matrix $A=\left(a_{i j}\right)$, with rows/columns labeled by vertices
- $a_{i j}= \begin{cases}1 & \text { if } i j \text { is an edge }, \\ 0 & \text { otherwise }\end{cases}$

Using the adjacency matrix

Proposition
The i, j-entry of A^{n} counts the number of walks of length n from i to j.

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{llll}
2 & 1 & 1
\end{array}\right) \quad \begin{array}{ll}
& \\
\left(A^{2}\right)_{j j} & =\sum_{k} a_{i k} a_{k j}
\end{array} \\
&
\end{aligned}
$$

SRGs and their spectrum

$$
A^{2}=k I+\lambda A+(J-I-A) \mu
$$

J : all i's matix

$$
\text { so: } \quad A^{2}-(\lambda-\mu) A-(k-\mu) I=\mu J
$$

Since arey verter has k naishlers

$$
A \overrightarrow{1}=k \overrightarrow{1} \quad \text { ("Perom root") }
$$

FACT: A (red, symetric), so othen aigarevene ae 0 -thogal $+\overrightarrow{1}$
Syprex $A \vec{v}=\theta \vec{v} \quad(\vec{v} \cdot \vec{I}=0)$

SRGs and their spectrum, cont.

$$
\begin{gathered}
\left(A^{2}-(\lambda-\mu) A-(k-\mu) I\right) \vec{v}=\mu \int \vec{v} \\
\text { Again: } A \vec{v}=\theta \vec{v}, \vec{I} \cdot \vec{v}=0 \\
\left(\theta^{2}-(\lambda-\mu) \theta-(k-\mu)\right) \vec{v}=\overrightarrow{0}
\end{gathered}
$$

SRGs and their spectrum, cont.

Proposition

$\Gamma:(v, k, \lambda, \mu)-S R G$ with adjacency matrix A. Let $\Delta=(\lambda-\mu)^{2}+4(k-\mu)$. The eigenvalues of A are:

- k, with multiplicity 1
- $\theta_{1}=\frac{1}{2}((\lambda-\mu)+\sqrt{\Delta})$, with multiplicity

$$
m_{1}=\frac{1}{2}\left((v-1)-\frac{2 k+(v-1)(\lambda-\mu)}{\sqrt{\Delta}}\right)
$$

- $\theta_{2}=\frac{1}{2}((\lambda-\mu)-\sqrt{\Delta})$, with multiplicity

$$
m_{2}=\frac{1}{2}\left((v-1)+\frac{2 k+(v-1)(\lambda-\mu)}{\sqrt{\Delta}}\right)
$$

Furthermore, if $k \neq \frac{v-1}{2}$, then θ_{1} and θ_{2} are integers.

Cayley Graphs

Definition

Cayley graph $\operatorname{Cay}(G, S)$

- G: group
- $S \subset G$
- $1 \notin S, S=S^{(-1)}$
- $\operatorname{Cay}(G, S)$ has vertex set G
- $g \sim h$ when $g h^{-1} \in S$

Example: 5-cycle

$$
\begin{aligned}
& G=(\mathbb{\mathbb { L }} / 5 \mathbb{2},+) \\
&=\{0,1,2,3,4\} \\
& \text { Here, "gh"" means } \\
& \text { since opent ist } \\
& S=\{1,4\}=\{ \pm 1\}
\end{aligned}
$$

Example: Paley(13)

- $G=\mathbb{Z} / 13 \mathbb{Z}$, operation: +
- $S=\{1,3,4,9,10,12\}$
nonzers square
- $x \sim y$ when $x-y \in S$
- $\operatorname{Cay}(G, S)$ is a $(13,6,2,3)$-SRG

How Cayley graphs work

$$
\begin{array}{lll}
C a p & (G, S): & \\
& x \sim y, & S \leq G \\
& x \sim y & x y^{-1} \in S
\end{array}
$$

Neighors of $\mid \in G$:

Seppare $\underbrace{x^{\sim} y,}_{x y^{-1} \in S} \quad g \in G$

$$
\begin{aligned}
(x g)(y g)^{-1} & =(x g)\left(g^{-1} y^{-1}\right) \\
& =x y^{-1} \in S
\end{aligned}
$$

Sendir euch vertex $x \longmapsto x g$ is an automo-phism

Let $x \in G$. If $x^{\sim y}$,
the $x y^{-1} \in S \Rightarrow x y^{-1}=s \in S$
Neighbes of y :

$$
x=s y
$$

Partial Difference Sets

```
Definition
\(G\) : group
\(S \subset G\)
\(S\) is a \((v, k, \lambda, \mu)\)-partial difference set (PDS) if
    - \(|G|=v\),
```


Partial Difference Sets

```
Definition
\(G\) : group
\(S \subset G\)
\(S\) is a \((v, k, \lambda, \mu)\)-partial difference set (PDS) if
- \(|G|=v\),
- \(|S|=k\),
```


Partial Difference Sets

Definition

G: group
$S \subset G$
S is a (ν, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly λ different ways, and

Partial Difference Sets

Definition

G: group
$S \subset G$
S is a (ν, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly λ different ways, and
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly μ different ways.

Partial Difference Sets

Definition

G: group
$S \subset G$
S is a (v, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly λ different ways, and
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly μ different ways.
S is called regular if $1 \notin S$ and $S=S^{-1}$.

Partial Difference Sets

Definition

G : group
$S \subset G$
S is a (v, k, λ, μ)-partial difference set (PDS) if

- $|G|=v$,
- $|S|=k$,
- if $1 \neq g \in G$ and $g \in S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly λ different ways, and
- if $1 \neq g \in G$ and $g \notin S$, then g can be written as the product $a b^{-1}$, where $a, b \in S$, exactly μ different ways.
S is called regular if $1 \notin S$ and $S=S^{-1}$.
$S:$ regular (v, k, λ, μ)-PDS $\Longleftrightarrow \operatorname{Cay}(G, S):(v, k, \lambda, \mu)-$ SRG.

Petersen graph $P \quad(10,3,0,1)$

Petersen graph is not a Cayley graph!
IDEA: Two sums w/ ten element:

$$
\begin{aligned}
& \text { abelion, } \underbrace{(\mathbb{Z} / 10,+)}_{s, 1}, \underbrace{D_{5}}_{5} \\
& 4 \text {-cycle }
\end{aligned}
$$

$$
\Rightarrow
$$

Petersen not Cayley, cont.

A useful theorem

Theorem (De Winter, Kamischke, Wang (2016))

- $\operatorname{Cay}(G, S):(v, k, \lambda, \mu)-S R G$
- (S: $(v, k, \lambda, \mu)-P D S)$

A useful theorem

Theorem (De Winter, Kamischke, Wang (2016))

- $\operatorname{Cay}(G, S):(v, k, \lambda, \mu)-S R G$
- (S: $(v, k, \lambda, \mu)-P D S)$
- x: nonidentity element of G
- $d_{1}(x)$: number of vertices x sends to adjacent vertices

A useful theorem

Theorem (De Winter, Kamischke, Wang (2016))

- $\operatorname{Cay}(G, S):(v, k, \lambda, \mu)-S R G$
- (S: $(v, k, \lambda, \mu)-P D S)$
- x : nonidentity element of G
- $d_{1}(x)$: number of vertices x sends to adjacent vertices
- $\Delta=(\lambda-\mu)^{2}+4(k-\mu)$
- eigenvalues $k>\theta_{1}>\theta_{2}$

A useful theorem

Theorem (De Winter, Kamischke, Wang (2016))

- $\operatorname{Cay}(G, S):(v, k, \lambda, \mu)-S R G$
- (S: $(v, k, \lambda, \mu)-P D S)$
- x: nonidentity element of G
- $d_{1}(x)$: number of vertices x sends to adjacent vertices
- $\Delta=(\lambda-\mu)^{2}+4(k-\mu)$
- eigenvalues $k>\theta_{1}>\theta_{2}$

$$
k-\theta_{2} \equiv \mu-\theta_{2}\left(\theta_{1}+1\right) \equiv d_{1}(x) \quad(\bmod \sqrt{\Delta})
$$

Some recent results

$$
x^{G}=\left\{s^{-1} \times g: g \in G\right\}
$$

Theorem (S., Tauscheck (2021))

- $S:(v, k, \lambda, \mu)$-PDS in group G
- $\Phi(x):=x^{6} \cap S \mid C_{G}(x) D$

Some recent results

Theorem (S., Tauscheck (2021))

- $S:(v, k, \lambda, \mu)-P D S$ in group G
- $\Phi(x):=\left|x^{G} \cap S \| C_{G}(x)\right|$

$$
\Phi(x) \equiv \mu-\theta_{2}\left(\theta_{1}+1\right) \quad(\bmod \sqrt{\Delta})
$$

Some recent results

Theorem (S., Tauscheck (2021))

- $S:(v, k, \lambda, \mu)$-PDS in group G
- $\Phi(x):=\left|x^{G} \cap S \| C_{G}(x)\right|$

$$
\Phi(x) \equiv \mu-\theta_{2}\left(\theta_{1}+1\right) \quad(\bmod \sqrt{\Delta})
$$

In particular, if $\sqrt{\Delta}$ does not divide $\mu-\theta_{2}\left(\theta_{1}+1\right)$, then every nonidentity conjugacy class meets S.

Some recent results

Theorem (S., Tauscheck (2021))

- $S:(v, k, \lambda, \mu)-P D S$ in group G
- $\Phi(x):=\left|x^{G} \cap S \| C_{G}(x)\right|$

$$
\Phi(x) \equiv \mu-\theta_{2}\left(\theta_{1}+1\right) \quad(\bmod \sqrt{\Delta})
$$

In particular, if $\sqrt{\Delta}$ does not divide $\mu-\theta_{2}\left(\theta_{1}+1\right)$, then every nonidentity conjugacy class meets S.

Example

- Petersen graph: $(10,3,0,1)-$ SRG

Some recent results

Theorem (S., Tauscheck (2021))

- $S:(v, k, \lambda, \mu)-P D S$ in group G
- $\Phi(x):=\left|x^{G} \cap S \| C_{G}(x)\right|$

$$
\Phi(x) \equiv \mu-\theta_{2}\left(\theta_{1}+1\right) \quad(\bmod \sqrt{\Delta})
$$

In particular, if $\sqrt{\Delta}$ does not divide $\mu-\theta_{2}\left(\theta_{1}+1\right)$, then every nonidentity conjugacy class meets S.

Example

- Petersen graph: $(10,3,0,1)-$ SRG
- $\theta_{1}=1, \theta_{2}=-2, \sqrt{\Delta}=3$

Some recent results

Theorem (S., Tauscheck (2021))

- $S:(v, k, \lambda, \mu)$-PDS in group G
- $\Phi(x):=\left|x^{G} \cap S\right|\left|C_{G}(x)\right|$

$$
\Phi(x) \equiv \mu-\theta_{2}\left(\theta_{1}+1\right) \quad(\bmod \sqrt{\Delta})
$$

In particular, if $\sqrt{\Delta}$ does not divide $\mu-\theta_{2}\left(\theta_{1}+1\right)$, then every nonidentity conjugacy class meets S.

Example

- Petersen graph: $(10,3,0,1)-$ SRG
- $\theta_{1}=1, \theta_{2}=-2, \sqrt{\Delta}=3$
- $3 \nmid 1-(-2)(1+1)$: every nontrivial conjugacy class of group of order 10 would meet a (10, 3, 0, 1)-PDS (size 3)

Some recent results

Theorem (S., Tauscheck (2021))

- $S:(v, k, \lambda, \mu)-P D S$ in group G
- $\Phi(x):=\left|x^{G} \cap S \| C_{G}(x)\right|$

$$
\Phi(x) \equiv \mu-\theta_{2}\left(\theta_{1}+1\right) \quad(\bmod \sqrt{\Delta})
$$

In particular, if $\sqrt{\Delta}$ does not divide $\mu-\theta_{2}\left(\theta_{1}+1\right)$, then every nonidentity conjugacy class meets S.

Example

- Petersen graph: $(10,3,0,1)-$ SRG
- $\theta_{1}=1, \theta_{2}=-2, \sqrt{\Delta}=3$
- $3 \nmid 1-(-2)(1+1)$: every nontrivial conjugacy class of group of order 10 would meet a (10, 3, 0, 1)-PDS (size 3)
- C_{10} : 9 nontrivial classes, $D_{5}: 4$ nontrivial classes... not possible!

Some recent results, cont.

Corollary (S., Tauscheck (2021))

If $\sqrt{\Delta}$ divides neither $\mu-\theta_{2}\left(\theta_{1}+1\right)$ nor $v-2 k+\lambda-\theta_{2}\left(\theta_{1}+1\right)$, then a group with a nontrivial center cannot contain a (v, k, λ, μ)-PDS.

IDEA: Apply previous theorem to the graph and its complement!

Thank you!

