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Graphs

Definition

• graph �: vertices V (�) and edges E (�) (unordered pairs of distinct

vertices)

• Edges are undirected, and there are no “loops” or “multiple edges”
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What do we mean by symmetry?

Formally:

Definition

• automorphism: bijection g : V (�) ! V (�) that sends edges to edges

and non-edges to non-edges

• set of all automorphisms of �: Aut(�).

• Every graph has at least one automorphism: the identity map that

sends every vertex to itself! We will denote the identity simply by 1.

• If you know some abstract algebra, Aut(�) is a group with binary

operation composition of functions: it is associative, has an identity

1, and every automorphism has an inverse.
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An example: 5-cycle

Consider the 5-cycle, C5.
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5-cycle, cont.
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Can we impose symmetry?

Definition

• regular graph: all vertices have the same number of neighbors

• k-regular: every vertex has k neighbors

The 5-cycle C5 is 2-regular:
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Frucht Graph
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Strongly Regular Graphs

Definition

(v , k ,�, µ)-strongly regular graph (SRG):

• v vertices

• k-regular (every vertex has k neighbors)

• every two neighbors have � common neighbors

• every two non-neighbors have µ common neighbors

5-cycle is a (5, 2, 0, 1)-SRG
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A (25,12,5,6)-SRG
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SRGs are di�cult!

“Strongly regular graphs stand on the cusp between the random and the

highly structured.”

-Peter Cameron

Example

• 11084874829 SRGs with parameters (57, 24, 11, 9) arising from

Steiner triple systems

• 11084710071 have trivial automorphism group!

In fact, SRGs are one of the primary roadblocks preventing isomorphism

testing of graphs in polynomial time.
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Some Combinatorics

Proposition

Let � be a (v , k ,�, µ)-SRG.

• The complement (switch edges and non-edges) is a
(v , v � k � 1, v � 2k + µ� 2, v � 2k + �)-SRG.

• k(k � �� 1) = (v � k � 1)µ.
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Linear algebra is really useful

Definition

• �: graph with v vertices

• adjacency matrix of �: v ⇥ v matrix A = (aij), with rows/columns

labeled by vertices

• aij =

(
1 if ij is an edge,

0 otherwise.

1

2

3

4 5
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Using the adjacency matrix

Proposition

The i , j-entry of An counts the number of walks of length n from i to j .
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SRGs and their spectrum
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SRGs and their spectrum, cont.
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SRGs and their spectrum, cont.

Proposition

�: (v , k ,�, µ)-SRG with adjacency matrix A. Let
� = (�� µ)2 + 4(k � µ). The eigenvalues of A are:

• k , with multiplicity 1

• ✓1 =
1
2

⇣
(�� µ) +

p
�

⌘
, with multiplicity

m1 =
1
2

⇣
(v � 1)� 2k+(v�1)(��µ)p

�

⌘

• ✓2 =
1
2

⇣
(�� µ)�

p
�

⌘
, with multiplicity

m2 =
1
2

⇣
(v � 1) +

2k+(v�1)(��µ)p
�

⌘

Furthermore, if k 6= v�1
2 , then ✓1 and ✓2 are integers.
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Cayley Graphs

Definition

Cayley graph Cay(G , S)

• G : group

• S ⇢ G

• 1 /2 S , S = S (�1)

• Cay(G , S) has vertex set G

• g ⇠ h when gh�1 2 S
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Example: 5-cycle
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Example: Paley(13)

• G = Z/13Z, operation: +
• S = {1, 3, 4, 9, 10, 12}
• x ⇠ y when x � y 2 S

• Cay(G , S) is a (13, 6, 2, 3)-SRG
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How Cayley graphs work
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Partial Di↵erence Sets

Definition

G : group

S ⇢ G
S is a (v , k ,�, µ)-partial di↵erence set (PDS) if

• |G | = v ,

• |S | = k ,

• if 1 6= g 2 G and g 2 S , then g can be written as the product ab�1
,

where a, b 2 S , exactly � di↵erent ways, and

• if 1 6= g 2 G and g /2 S , then g can be written as the product ab�1
,

where a, b 2 S , exactly µ di↵erent ways.
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• if 1 6= g 2 G and g /2 S , then g can be written as the product ab�1
,

where a, b 2 S , exactly µ di↵erent ways.

S is called regular if 1 /2 S and S = S�1
.

S : regular (v , k ,�, µ)-PDS () Cay(G , S): (v , k ,�, µ)-SRG.
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Petersen graph
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Petersen graph is not a Cayley graph!
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Petersen not Cayley, cont.
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A useful theorem

Theorem (De Winter, Kamischke, Wang (2016))

• Cay(G , S): (v , k ,�, µ)-SRG

• (S : (v , k ,�, µ)-PDS)

• x : nonidentity element of G

• d1(x): number of vertices x sends to adjacent vertices

• � = (�� µ)2 + 4(k � µ)

• eigenvalues k > ✓1 > ✓2

k � ✓2 ⌘ µ� ✓2(✓1 + 1) ⌘ d1(x) (mod

p
�)
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Some recent results

Theorem (S., Tauscheck (2021))

• S : (v , k ,�, µ)-PDS in group G

• �(x) := |xG \ S ||CG (x)|

�(x) ⌘ µ� ✓2(✓1 + 1) (mod

p
�)

In particular, if
p
� does not divide µ� ✓2(✓1 + 1), then every nonidentity

conjugacy class meets S .

Example

• Petersen graph: (10, 3, 0, 1)-SRG

• ✓1 = 1, ✓2 = �2,
p
� = 3

• 3 - 1� (�2)(1 + 1): every nontrivial conjugacy class of group of order

10 would meet a (10, 3, 0, 1)-PDS (size 3)

• C10: 9 nontrivial classes, D5: 4 nontrivial classes... not possible!
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Some recent results, cont.

Corollary (S., Tauscheck (2021))

If
p
� divides neither µ� ✓2(✓1 + 1) nor v � 2k + �� ✓2(✓1 + 1), then a

group with a nontrivial center cannot contain a (v , k ,�, µ)-PDS.

IDEA: Apply previous theorem to the graph and its complement!
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Thank you!
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