Strongly Regular Graphs and Their Symmetries

Eric Swartz

William & Mary

October 25, 2023

Graphs

Definition

- graph Γ: vertices V(Γ) and edges E(Γ) (unordered pairs of distinct vertices)
- Edges are undirected, and there are no "loops" or "multiple edges"

Formally:

- automorphism: bijection $g: V(\Gamma) \to V(\Gamma)$ that sends edges to edges and non-edges to non-edges
- set of all automorphisms of Γ : $Aut(\Gamma)$.

Formally:

- automorphism: bijection $g: V(\Gamma) \to V(\Gamma)$ that sends edges to edges and non-edges to non-edges
- set of all automorphisms of Γ : $Aut(\Gamma)$.
- Every graph has at least one automorphism: the identity map that sends every vertex to itself! We will denote the identity simply by 1.

Formally:

- automorphism: bijection $g: V(\Gamma) \to V(\Gamma)$ that sends edges to edges and non-edges to non-edges
- set of all automorphisms of Γ : $Aut(\Gamma)$.
- Every graph has at least one automorphism: the identity map that sends every vertex to itself! We will denote the identity simply by 1.
- If you know some abstract algebra, Aut(Γ) is a group with binary operation composition of functions: it is associative, has an identity 1, and every automorphism has an inverse.

An example: 5-cycle

5-cycle, cont.

Definition

- regular graph: all vertices have the same number of neighbors
- *k*-regular: every vertex has *k* neighbors

Definition

- regular graph: all vertices have the same number of neighbors
- *k*-regular: every vertex has *k* neighbors

The 5-cycle C_5 is 2-regular:

Frucht Graph F

Strongly Regular Graphs

Definition

- (v, k, λ, μ) -strongly regular graph (SRG):
 - v vertices
 - *k*-regular (every vertex has *k* neighbors)
 - every two neighbors have λ common neighbors
 - every two non-neighbors have μ common neighbors

Strongly Regular Graphs

- (v, k, λ, μ) -strongly regular graph (SRG):
 - v vertices
 - *k*-regular (every vertex has *k* neighbors)
 - every two neighbors have λ common neighbors
 - every two non-neighbors have μ common neighbors

A (25,12,5,6)-SRG : P

"Strongly regular graphs stand on the cusp between the random and the highly structured."

-Peter Cameron

"Strongly regular graphs stand on the cusp between the random and the highly structured." -Peter Cameron

Example

- 11084874829 SRGs with parameters (57, 24, 11, 9) arising from Steiner triple systems
- 11084710071 have trivial automorphism group!

"Strongly regular graphs stand on the cusp between the random and the highly structured." -Peter Cameron

Example

- 11084874829 SRGs with parameters (57, 24, 11, 9) arising from Steiner triple systems
- 11084710071 have trivial automorphism group!

In fact, SRGs are one of the primary roadblocks preventing isomorphism testing of graphs in polynomial time.

Some Combinatorics

Proposition

Linear algebra is really useful

- Γ: graph with *v* vertices
- adjacency matrix of Γ: v × v matrix A = (a_{ij}), with rows/columns labeled by vertices

•
$$a_{ij} = \begin{cases} 1 & \text{if } ij \text{ is an edge,} \\ 0 & \text{otherwise.} \end{cases}$$

Linear algebra is really useful

- Γ: graph with v vertices
- adjacency matrix of Γ: v × v matrix A = (a_{ij}), with rows/columns labeled by vertices

•
$$a_{ij} = \begin{cases} 1 & \text{if } ij \text{ is an edge,} \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

The *i*, *j*-entry of A^n counts the number of walks of length n from *i* to *j*.

$$\left(A_{\lambda_{0}}^{2}\right)_{\kappa} = \sum_{\kappa} a_{\lambda\kappa}^{\prime} a_{\kappaj}^{\prime}$$

SRGs and their spectrum

$$A^{2} = k I + \lambda A + (J - I - A) \mu$$

$$J : all \quad I's \quad matrix$$

$$A^{2} - (\lambda - \mu) A - (k - \mu) I = \mu J$$
Since are using vertex that k neighbors
$$A \vec{I} = k \vec{I} \quad ("Perm root")$$

$$FACT : A (red, symmetric), to o the about the are o-theorem that I$$
Suppose $A \vec{v}^{2} = \Theta \vec{v} \quad (\vec{v} \cdot \vec{I} = 0)$

50

SRGs and their spectrum, cont.

$$\begin{pmatrix} A^2 - (\lambda - \mu) A - (k - \mu) I \end{pmatrix} \vec{v} = \mu \int \vec{v} \\ Again : A \vec{v} = \Theta \vec{v}, \quad \vec{1} \cdot \vec{v} = 0 \\ (\theta^2 - (\lambda - \mu) \Theta - (k - \mu)) \vec{v} = \vec{0} \end{pmatrix}$$

SRGs and their spectrum, cont.

Proposition

- Γ: (v, k, λ, μ) -SRG with adjacency matrix A. Let $\Delta = (\lambda - \mu)^2 + 4(k - \mu)$. The eigenvalues of A are:
 - k, with multiplicity 1

•
$$\theta_1 = \frac{1}{2} \left((\lambda - \mu) + \sqrt{\Delta} \right)$$
, with multiplicity
 $m_1 = \frac{1}{2} \left((v - 1) - \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{\Delta}} \right)$
• $\theta_2 = \frac{1}{2} \left((\lambda - \mu) - \sqrt{\Delta} \right)$, with multiplicity
 $m_2 = \frac{1}{2} \left((v - 1) + \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{\Delta}} \right)$

Furthermore, if $k \neq \frac{v-1}{2}$, then θ_1 and θ_2 are integers.

Cayley Graphs

Definition

Cayley graph Cay(G, S)

• G: group

$$S \subset G$$
 if $x \in S$ $p_{-} \times f \in S$

- 1 ∉ S, S = S⁽⁻¹⁾
 Cay(G, S) has vertex set G
- $g \sim h$ when $gh^{-1} \in S$

S C

Example: 5-cycle

$$G = (\frac{Z}{52}, \pm)$$

$$= \{0, 1, 2, 3, 4\}$$
Here, "gh" means
"gh" means
"g-h"
since opent is t

$$S = \{1, 4\} = \{1, 1\}$$

Example: Paley(13)

- $G = \mathbb{Z}/13\mathbb{Z}$, operation: + • $S = \{1, 3, 4, 9, 10, 12\}$ nonzer squares and 13 • $x \sim y$ when $x - y \in S$
- Cay(G, S) is a (13, 6, 2, 3)-SRG

How Cayley graphs work

$$C_{aq}(G,S): g \rightarrow p G, S \leq G$$

$$x \sim y \quad (z) \quad xy^{-1} \in S$$
Neighors of 166:
$$S_{appene} \xrightarrow{x \sim y}, g \in G$$

$$x = xy^{-1} \in S \quad (xg)(yg)^{-1} = (xg)(g^{-1}y^{-1})$$

$$= xy^{-1} \in S$$
See ding each vertex $x \mapsto xg^{-1} \in S$

$$See ding each vertex $x \mapsto xg^{-1} \in S$

$$Meighten s \neq y$$

$$The xy^{-1} \in S \implies xy^{-1} = s \in S$$

$$Neighten s \neq y$$$$

x = sy

~ _ 0

Syl

Definition

G: group $S \subset G$

- S is a $(\mathbf{v}, \mathbf{k}, \lambda, \mu)$ -partial difference set (PDS) if
 - |G| = v,

- G: group
- $S \subset G$
- S is a $(\mathbf{v}, \mathbf{k}, \lambda, \mu)$ -partial difference set (PDS) if
 - |G| = v,
 - |S| = k,

Definition

G: group

 $S \subset G$

S is a $(\mathbf{v}, \mathbf{k}, \lambda, \mu)$ -partial difference set (PDS) if

- |G| = v,
- |S| = k,
- if 1 ≠ g ∈ G and g ∈ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly λ different ways, and

Definition

G: group

 $S \subset G$

S is a $(\mathbf{v}, \mathbf{k}, \lambda, \mu)$ -partial difference set (PDS) if

- |G| = v,
- |S| = k,
- if 1 ≠ g ∈ G and g ∈ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly λ different ways, and
- if 1 ≠ g ∈ G and g ∉ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly µ different ways.

Definition

- G: group
- $S \subset G$
- S is a $(\mathbf{v}, \mathbf{k}, \lambda, \mu)$ -partial difference set (PDS) if
 - |G| = v,
 - |S| = k,
 - if 1 ≠ g ∈ G and g ∈ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly λ different ways, and
 - if 1 ≠ g ∈ G and g ∉ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly µ different ways.

S is called regular if $1 \notin S$ and $S = S^{-1}$.

Definition

- G: group
- $S \subset G$
- S is a $(\mathbf{v}, \mathbf{k}, \lambda, \mu)$ -partial difference set (**PDS**) if
 - |G| = v,
 - |S| = k,
 - if 1 ≠ g ∈ G and g ∈ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly λ different ways, and
 - if 1 ≠ g ∈ G and g ∉ S, then g can be written as the product ab⁻¹, where a, b ∈ S, exactly µ different ways.

S is called regular if $1 \notin S$ and $S = S^{-1}$.

S: regular (v, k, λ, μ) -PDS \iff Cay(G, S): (v, k, λ, μ) -SRG.

Petersen graph
$$\mathcal{P}$$
 (10, 3, 0, 1)

Petersen graph is not a Cayley graph!

IDEA: Two graps w/ ten elemente: T^{-} , D_{5} $(Z_{10}, +)$, D_{5} Similar here! abelin, al so s, t e S => s-', t-' e S s⁻' t⁻'s t = | 4-yele

Petersen not Cayley, cont.

Theorem (De Winter, Kamischke, Wang (2016))

- Cay(G, S): (v, k, λ, μ) -SRG
- (S: (v, k, λ, μ) -PDS)

Theorem (De Winter, Kamischke, Wang (2016))

- Cay(G, S): (v, k, λ, μ)-SRG
- (S: (v, k, λ, μ) -PDS)
- x: nonidentity element of G
- $d_1(x)$: number of vertices x sends to adjacent vertices

Theorem (De Winter, Kamischke, Wang (2016))

- Cay(G, S): (v, k, λ, μ)-SRG
- (S: (v, k, λ, μ) -PDS)
- x: nonidentity element of G
- $d_1(x)$: number of vertices x sends to adjacent vertices

•
$$\Delta = (\lambda - \mu)^2 + 4(k - \mu)^2$$

• eigenvalues $k > \theta_1 > \theta_2$

Theorem (De Winter, Kamischke, Wang (2016))

- Cay(G, S): (v, k, λ, μ) -SRG
- (S: (v, k, λ, μ) -PDS)
- x: nonidentity element of G
- $d_1(x)$: number of vertices x sends to adjacent vertices

•
$$\Delta = (\lambda - \mu)^2 + 4(k - \mu)$$

• eigenvalues $k > \theta_1 > \theta_2$

 $k - \theta_2 \equiv \mu - \theta_2(\theta_1 + 1) \equiv d_1(x) \pmod{\sqrt{\Delta}}$

Theorem (S., Tauscheck (2021))

• S: (v, k, λ, μ) -PDS in group G • $\Phi(x) := |x^G \cap S| |C_G(x)|$

 $C_{G}(x) = \tilde{z}\gamma \in G: \gamma x = x\gamma \tilde{z}$

Theorem (S., Tauscheck (2021))

• S: (v, k, λ, μ) -PDS in group G • $\Phi(x) := |x^G \cap S| |C_G(x)|$ $\Phi(x) \equiv \mu - \theta_2(\theta_1 + 1) \pmod{\sqrt{\Delta}}$

Theorem (S., Tauscheck (2021))

• S: (v, k, λ, μ) -PDS in group G • $\Phi(x) := |x^G \cap S| |C_G(x)|$ $\Phi(x) \equiv \mu - \theta_2(\theta_1 + 1) \pmod{\sqrt{\Delta}}$

In particular, if $\sqrt{\Delta}$ does not divide $\mu - \theta_2(\theta_1 + 1)$, then every nonidentity conjugacy class meets S.

Theorem (S., Tauscheck (2021))

• S: (v, k, λ, μ) -PDS in group G • $\Phi(x) := |x^G \cap S| |C_G(x)|$ $\Phi(x) \equiv \mu - \theta_2(\theta_1 + 1) \pmod{\sqrt{\Delta}}$

In particular, if $\sqrt{\Delta}$ does not divide $\mu - \theta_2(\theta_1 + 1)$, then every nonidentity conjugacy class meets S.

Example

• Petersen graph: (10, 3, 0, 1)-SRG

Theorem (S., Tauscheck (2021))

• S: (v, k, λ, μ) -PDS in group G • $\Phi(x) := |x^G \cap S| |C_G(x)|$ $\Phi(x) \equiv \mu - \theta_2(\theta_1 + 1) \pmod{\sqrt{\Delta}}$

In particular, if $\sqrt{\Delta}$ does not divide $\mu - \theta_2(\theta_1 + 1)$, then every nonidentity conjugacy class meets S.

Example

• Petersen graph: (10, 3, 0, 1)-SRG

•
$$\theta_1 = 1$$
, $\theta_2 = -2$, $\sqrt{\Delta} = 3$

Theorem (S., Tauscheck (2021))

• S: (v, k, λ, μ) -PDS in group G • $\Phi(x) := |x^G \cap S| |C_G(x)|$ $\Phi(x) \equiv \mu - \theta_2(\theta_1 + 1) \pmod{\sqrt{\Delta}}$

In particular, if $\sqrt{\Delta}$ does not divide $\mu - \theta_2(\theta_1 + 1)$, then every nonidentity conjugacy class meets S.

Example

• Petersen graph: (10, 3, 0, 1)-SRG

•
$$heta_1=1$$
, $heta_2=-2$, $\sqrt{\Delta}=3$

 3 ∤ 1 - (-2)(1 + 1): every nontrivial conjugacy class of group of order 10 would meet a (10, 3, 0, 1)-PDS (size 3)

Theorem (S., Tauscheck (2021))

• S: (v, k, λ, μ) -PDS in group G • $\Phi(x) := |x^G \cap S| |C_G(x)|$ $\Phi(x) \equiv \mu - \theta_2(\theta_1 + 1) \pmod{\sqrt{\Delta}}$

In particular, if $\sqrt{\Delta}$ does not divide $\mu - \theta_2(\theta_1 + 1)$, then every nonidentity conjugacy class meets S.

Example

• Petersen graph: (10, 3, 0, 1)-SRG

•
$$\theta_1 = 1$$
, $\theta_2 = -2$, $\sqrt{\Delta} = 3$

- 3 ∤ 1 (-2)(1 + 1): every nontrivial conjugacy class of group of order 10 would meet a (10, 3, 0, 1)-PDS (size 3)
- C_{10} : 9 nontrivial classes, D_5 : 4 nontrivial classes... not possible!

Corollary (S., Tauscheck (2021))

If $\sqrt{\Delta}$ divides neither $\mu - \theta_2(\theta_1 + 1)$ nor $v - 2k + \lambda - \theta_2(\theta_1 + 1)$, then a group with a nontrivial center cannot contain a (v, k, λ, μ) -PDS.

IDEA: Apply previous theorem to the graph *and* its complement!

Thank you!

