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Positive semide�nite matrices

A n× n Hermitian matrix A is positive semide�nite (PSD) if the quadratic form
z∗Az ≥ 0 for all z ∈ Cn. Let Pn denotes the set of all n× n PSD matrices.

=⇒ Pn forms a closed convex cone.

=⇒ A :=
(
aij
)
∈ Pn if A := (aij) ∈ Pn, i.e., closed under taking entrywise conjugates.

The set of n× n PSD matrices forms a semigroup.

Theorem (Schur [J. Reine Angew. Math. (Crelle) 1911])

Suppose n ≥ 1 is an integer, and A := (aij) and B := (bij) ∈ Cn×n are PSD. Then

A ◦B := (aijbij) is PSD.

In particular, for integer m ≥ 0 (under the convention 00 := 1)

A◦m := A ◦A ◦ · · · ◦A =
(
amij
)
is PSD.
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Pn (i.e. the class of n× n PSD matrices)

I Forms a closed convex cone.
I Closed under taking entrywise conjugates.
I A semigroup under entrywise multiplication.

A = (aij) is PSD ⇐⇒ A = (aij) is PSD.

A◦m = (amij ) is PSD and A
◦k

= (aij
k) is PSD.

A◦m ◦A◦k = (amij aij
k) is PSD.

cm,kA
◦m ◦A◦k =

(
cm,k a

m
ij aij

k) is PSD∑
m,k≥0

cm,kA
◦m ◦A◦k =

( ∑
m,k≥0

cm,k a
m
ij aij

k
)
is PSD

for integers m, k ≥ 0 and cm,k ≥ 0.

More succinctly, the in�nite sums of Herz functions∑
m,k≥0

cm,kz
mzk, where cm,k ≥ 0 for all m, k ≥ 0 (1)

when operating entrywise on any PSD matrix, preserve its positivity. (Pólya and Szegö
(1925) for real PSD matrices.)
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The question
Find if there are functions which are not an in�nite sum of Herz functions, but preserve
positivity via operating entrywise.

Loewner positive functions

Let P denote a subset of all Hermitian PSD matrices, and f be a complex valued
function such that f [A] :=

(
f(aij)

)
is well-de�ned for all A := (aij) ∈ P. Then f is

Loewner positive over P if

f [A] =


f(a11) f(a12) · · · f(a1n)
f(a21) f(a22) · · · f(a2n)

...
...

. . .
...

f(an1) f(an2) · · · f(ann)

 is PSD for all A = (aij) ∈ P.

Loewner positive functions can be explored

� For di�erent choices of P

{
= Pn

(
= ∪nk=1Pk

)
(�xed-dimensional)

= ∪∞k=1Pk (dimension-free)

� For entrywise variations of “f [−]”�main focus in the talk.
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Overview

1. Metric geometry, positivity, and Loewner positive functions.

2. First entrywise variant of “f [−]” and its generalization.

3. Main results for the new variants of “f [−].”

4. Proofs.
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Recall. . .

Positive semide�nite matrices

An n×n Hermitian matrix A is positive semide�nite (PSD) if one of the following holds:

1. The quadratic form z∗Az ≥ 0 for all z ∈ Cn.
2. All principal minors of A are nonnegative.

3. All eigenvalues of A are nonnegative.

Notations

� Pn denotes the set of all n× n PSD matrices.

� Pn(I) := Pn ∩ In×n, where I ⊆ C.
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PART 1

Metric geometry,

Positivity,

&

Loewner positive functions.



Recall. . .

Metric spaces

A metric space X is a nonempty set, with a metric d : X ×X → R such that

1. Positivity: d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y.

2. Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.
3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Positive de�nite functions

Suppose (X, d) is metric space, and f : [0,∞)→ R. f is positive de�nite over X, if for
every set of points x1, x2, . . . , xn, the matrix(

f ◦ d(xi, xj)
)n
i,j=1

is positive semide�nite.
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Metric embedding into Rr

Metric space embedding into Euclidean spaces Rr, for integer r ≥ 1.

Theorem (Schoenberg [Ann. of Math. 1935, Trans. Amer. Math. Soc. 1938])

Let (X = {x0, x1, . . . , xn}, d) be a metric space. The following are equivalent.

1. The metric space (X, d) embeds isometrically into Euclidean space Rr, for some
integer r ≥ 1.

2. The n× n (modi�ed) Cayley�Menger matrix

A :=
(
d(x0, xi)

2 + d(x0, xj)
2 − d(xi, xj)2

)n
i,j=1

is PSD.

3. The (n+ 1)× (n+ 1) matrix

B :=
(
exp (−σ2d(xi, xj)

2)
)n
i,j=0

is PSD

along any sequence of nonzero scalars σ ∈ R converging to zero.

Moreover, the smallest such r is the rank of the matrix A.
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Metric embedding into unit/Hilbert sphere

Metric space embedding into unit spheres Sr−1, for integer r ≥ 2, and S∞.

- Positive de�niteness of exactly one function� the cosine.

• Impose arclength metric da on Sr−1, where r ∈ Z≥2 ∪ {∞}, de�ned as

da(x, y) := arccos(〈x, y〉), for all x, y ∈ Sr−1.

• Suppose ξ : X ↪→ Sr−1 is an isometric embedding, where

- X = {x1, . . . , xn} is with metric d(·, ·) ≤ π, and
- r ∈ Z≥2 ∪ {∞}.

Then

cos ◦d(xi, xj) = cos ◦da(ξ(xi), ξ(xj)) = 〈ξ(xi), ξ(xj)〉.
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Metric embedding into unit/Hilbert sphere (cont.)

This means

C :=
(
cos ◦d(xi, xj)

)n
i,j=1

is a Gram matrix (of rank at most r).

Therefore C is PSD, and cos is positive de�nite over Sr−1, for r ∈ Z≥2 ∪ {∞}.

In fact, the converse also holds:

Theorem (Schoenberg [Ann. of Math. 1935])

Let (X = {x1, x2, . . . , xn}, d) be a metric space with diameter at most π. The following
are equivalent.

1. The metric space (X, d) embeds isometrically into the unit sphere Sr−1, but not
into Sr−2.

2. C :=
(
cos ◦d(xi, xj)

)n
i,j=1

is PSD of rank r.

In particular, (X, d) isometrically embeds into S∞ if and only if

cosine is positive de�nite over X.
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Loewner positive functions over correlation matrices

More examples of such positive de�nite functions over S∞?

- Schoenberg classi�ed functions f such that f ◦ cos is positive de�nite over S∞.

Observations

� C :=
(
cos ◦da(xi, xj)

)n
i,j=1

is a correlation matrix for x1, x2, . . . , xn ∈ S∞.

� f ◦ cos is positive de�nite over S∞ ⇐⇒ f is Loewner positive over the set of
correlation matrices.

Theorem (Schoenberg [Duke Math. J. 1942])

Let I = [−1, 1], and f : I → R be continuous. The following are equivalent.

1. f ◦ cos is positive de�nite over S∞.

2. f [A] :=
(
f(aij)

)
is PSD for all correlation matrices A = (aij).

3. f(x) =
∑
k≥0 ckx

k for all x ∈ I, where ck ≥ 0 for all k ≥ 0.
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Loewner positive functions over all dimensions

Lemma (Pólya�Szegö 1925)

Suppose f(x) :=
∑
k≥0 ckx

k is a power series with all ck ≥ 0, that converges over

I ⊆ R. Then f [A] :=
(
f(aij)

)
is PSD for all PSD A := (aij), where aij ∈ I.

Theorem (Rudin [Duke Math. J. 1959],
Christensen�Ressel [Trans. Amer. Math. Soc. 1978])

Let I = (−ρ, ρ) for 0 < ρ ≤ ∞, and f : I → R. The following are equivalent:

1. f [A] :=
(
f(aij)

)
is PSD for all PSD A = (aij), where all entries aij ∈ I.

2. f(x) =
∑
k≥0 ckx

k for all x ∈ I, where ck ≥ 0 for all k ≥ 0.

Rudin conjectured the complex version:
∑
m,k≥0 cm,kz

mzk, with cm,k ≥ 0.
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Loewner positive functions over all dimensions (cont.)

Theorem (Herz [Ann. Inst. Fourier (Grenoble) 1963],
FitzGerald�Micchelli�Pinkus [Linear Algebra Appl. 1995])

Let I = D(0, ρ) for 0 < ρ ≤ ∞, and f : I → C. The following are equivalent:

1. f [A] :=
(
f(aij)

)
is PSD for all PSD A = (aij), where all entries aij ∈ I.

2. f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

Similar results were obtained for doubly nonnegative matrices by Vasudeva:

Theorem (Vasudeva [Indian J. Pure Appl. Math. 1979],
Guillot�Khare�Rajaratnam [Trans. Amer. Math. Soc. 2017])

Let I = (0, ρ) or [0, ρ) for 0 < ρ ≤ ∞, and f : I → R. The following are equivalent:

1. f [A] :=
(
f(aij)

)
is PSD for all PSD A = (aij), where all entries aij ∈ I.

2. f(x) =
∑
k≥0 ckx

k for all x ∈ I, where ck ≥ 0 for all k ≥ 0.
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Loewner positive functions over all dimensions (summary)

(Dimension-free) Loewner positive functions over P := ∪∞n=1Pn(I).
- Exactly the class of in�nite sums of Herz functions over I, for I = D(0, ρ),
(−ρ, ρ), (0, ρ), and [0, ρ).

- In particular, these are absolutely monotonic for real domains I. However, such is
not the case in the �xed-dimensional setting, i.e. when P = Pn(I), for �xed n ≥ 1.

Example 1

Observe that, for all integers α ≥ 0,

fα(x) := xα, x ≥ 0, is Loewner positive over Pn((0,∞)), for all n ≥ 1.

Natural to ask for the classi�cation of all α ∈ R, such that

fα is Loewner positive over Pn((0,∞)), for a �xed n ≥ 2.

Theorem (FitzGerald�Horn [J. Math. Anal. Appl. 1977])

Let n ≥ 2 be an integer, and α ∈ R. Suppose fα(x) := xα for x ≥ 0. Then,

fα is Loewner positive over Pn((0,∞)) ⇐⇒ α ∈ [n− 2,∞) ∪ Z≥0.
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Loewner positive functions over �xed dimension
Example 2

Polynomials with nonnegative coe�cients are all the polynomials that are dimension-free
Loewner positive.

Find a polynomial with a negative coe�cient, which preserves positivity on Pn((0, ρ)),
for �xed n ≥ 3. Resolved in

� Belton�Guillot�Khare�Putinar [Adv. Math., 2016], and

� Khare�Tao [Amer. J. Math., 2021].

Both the examples

� Feature non-absolutely monotonic Loewner positive functions in the
�xed-dimensional setting.

� In the dimension-free setting, however, non-absolutely monotonic Loewner positive
functions cannot exist. (Schoenberg, Rudin, Herz, Vasudeva.)

In this talk

� First examples of (real) non-absolutely monotonic dimension-free Loewner
positive functions� for a re�ned entrywise variant of “f [A].”

� This translates into discovering dimension-free Loewner positive functions over
complex PSD matrices which are not an in�nite sum of Herz functions.
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PART 2

An entrywise variant,

&

Generalizations.



An entrywise variant motivated by modern applications

Consider the following functions for ε > 0 :

� Hard thresholding: fHε (x) :=

{
x, if |x| > ε,

0, otherwise.

� Soft thresholding: fSε (x) := sgn(x)(|x| − ε)+.

In modern high-dimensional probability and statistics, these functions are often applied
entrywise to the o�-diagonal entries of correlation matrices to improve the quality of the
correlation matrix.

Even for sparse correlation matrices, no universal ε exists such that the application of
fHε or fSε on the o�-diagonal entries preserves positivity.
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Loewner positive functions operating on o�-diagonals

De�nition Let I ⊂ C, f : I → C, and n ≥ 1. De�ne f∗[−] : In×n → Cn×n as

f∗[A] =


a11 f(a12) f(a13) f(a1n)

f(a21) a22 f(a23) . . . f(a2n)
f(a31) f(a32) a33 f(a3n)

...
. . .

...
f(an1) f(an2) f(an3) . . . ann

 for all A = (aij) ∈ In×n.

Classi�cation in a real setting:

Theorem (Guillot�Rajaratnam [Trans. Amer. Math. Soc. 2015])

Let I = (−ρ, ρ) for 0 < ρ ≤ ∞, and f : I → R. TFAE:
1. f∗[A] ∈ Pn for all A = (aij) ∈ Pn(I), for all n ≥ 1.

2. I f(x) =
∑
k≥0 ckx

k for all x ∈ I, where ck ≥ 0 for all k ≥ 0, and

I |f(x)| ≤ |x| for all x ∈ I.
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f [A] =


f(a11) f(a12) f(a13) f(a14) . . .
f(a21) f(a22) f(a23) f(a24)
f(a31) f(a32) f(a33) f(a34) . . .
f(a41) f(a42) f(a43) f(a44)

...
...

. . .

 ⇐⇒ f is AM.

f∗[A] =


a11 f(a12) f(a13) f(a14) . . .

f(a21) a22 f(a23) f(a24)
f(a31) f(a32) a33 f(a34) . . .
f(a41) f(a42) f(a43) a44

...
...

. . .

 =⇒ f is AM.

fTn [A] =


a11 a12 f(a13) f(a14) . . .
a21 a22 f(a23) f(a24)

f(a31) f(a32) f(a33) f(a34) . . .
f(a41) f(a42) f(a43) a44

...
...

. . .

 =⇒ ??

(g, f)Tn [A] =


g(a11) g(a12) f(a13) f(a14) . . .
g(a21) g(a22) f(a23) f(a24)
f(a31) f(a32) f(a33) f(a34) . . .
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Two functions acting entrywise

De�nition

Let n ≥ 1 be an integer, I ⊂ C and g, f : I → C. Suppose Tn ⊂ 2[n], where
[n] := {1, . . . , n}. De�ne

(g, f)Tn [−] : I
n×n → Cn×n,

such that for all A = (aij) ∈ In×n,

(g, f)Tn [A]ij :=

{
g(aij) if i, j ∈ U for some U ∈ Tn,
f(aij) otherwise.

For instance

T3 = {{1, 3}, {2}} =⇒ (g, f)T3 [A] =

g(a11) f(a12) g(a13)
f(a21) g(a22) f(a23)
g(a31) f(a32) g(a33)



T4 = {{1}, {2, 3}, {2, 4}} =⇒ (g, f)T4 [A] =


g(a11) f(a12) f(a13) f(a14)
f(a21) g(a22) g(a23) g(a24)
f(a31) g(a32) g(a33) f(a34)
f(a41) g(a42) f(a43) g(a44)
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Question

Given a sequence (Tn)n≥1, what are all those functions g, f : I → C such that the
two-function operation (g, f)Tn [−] preserves positivity over Pn(I) for all n ≥ 1?

Notation

For g = Id we use fTn [−] := (g, f)Tn [−].

Note that

� fTn [−] = f [−] when Tn = {∅}. (Schoenberg, Rudin / Herz / Vasudeva)

� fTn [−] = f∗[−] when Tn = {{1}, {2}, . . . , {n}}. (Guillot�Rajaratnam)

I In all of these cases, the preservers are absolutely monotonic / in�nite sums
of Herz functions.

Our contribution

� Classi�cation for every other (Tn)n≥1.

� This uncovers dimension-free preservers that are not absolutely monotonic /
in�nite sums of Herz functions.
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PART 3

The classi�cations.



Main reference

P.V., Positivity preservers forbidden to operate on diagonal blocks.
Trans. Amer. Math. Soc., 376, pp. 5261-5279, 2023.
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Theorems A, B, and C

(g, f)Tn [A] =


g(a11) f(a12) f(a13) f(a14) . . .
f(a21) g(a22) f(a23) f(a24)
f(a31) f(a32) f(a33) f(a34) . . .
f(a41) f(a42) f(a43) g(a44)

...
...

. . .


n×n

Let I = D(0, ρ) for 0 < ρ ≤ ∞, and g, f : I → C. Let Tn ⊆ 2[n] for all n ≥ 1 such that
at least one Tn is nonempty.

� Suppose Tn ⊆ {{j} : j ∈ [n]} for all n ≥ 1.

TFAE.

1. (g, f)Tn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

2. � f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

� g(z) ≥ f(z) for all z ∈ I ∩ R≥0.

• Two-fold generalization of Guillot�Rajaratnam (Trans. Amer. Math. Soc. 2015).
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Theorem B

(g, f)Tn [A] =


g(a11) g(a12) f(a13) f(a14) . . .
g(a21) g(a22) f(a23) f(a24)
f(a31) f(a32) f(a33) f(a34) . . .
f(a41) f(a42) f(a43) g(a44)

...
...

. . .


n×n

Let I = D(0, ρ) for 0 < ρ ≤ ∞, and g, f : I → C. Let Tn ⊆ 2[n] for all n ≥ 1 such that
at least one Tn is nonempty.

� Suppose

I each Tn is a partition of a subset of [n], and
I there exists N ≥ 3 such that TN 6⊆ {{j} : j ∈ [N ]}.

� Suppose g is a Herz function, i.e., g(z) := αzmzk for α ≥ 0 and integer m, k ≥ 0.

TFAE.

1. (g, f)Tn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

2. f(z) = cg(z) for all z ∈ I, where,
a. c ∈ [−1/(K − 1), 1]�if Tn is a partition of [n] for all n ≥ 1, and

K := maxn≥1 |Tn| <∞.
b. c ∈ [0, 1] for the remaining cases.
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Theorem C

(g, f)Tn [A] =


g(a11) g(a12) f(a13) f(a14) . . .
g(a21) g(a22) g(a23) f(a24)
f(a31) g(a32) g(a33) f(a34) . . .
f(a41) f(a42) f(a43) g(a44)

...
...

. . .


n×n

Let I = D(0, ρ) for 0 < ρ ≤ ∞, and g, f : I → C. Let Tn ⊆ 2[n] for all n ≥ 1 such that
at least one Tn is nonempty.

� Suppose there exists N ≥ 3 such that TN is not a partition of any subset of [N ].

TFAE.

1. (g, f)Tn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

2. g(z) = f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.
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Corollary D

Let I = D(0, ρ) for 0 < ρ ≤ ∞; f : I → C. Suppose Tn ⊂ 2[n] \ {[n]}, n ≥ 1. TFAE:

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

2. Exactly one of the following holds:

S. If Tn = ∅ for all n ≥ 1, then  Schoenberg, Rudin / Herz / Vasudeva

I f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

A. If Tn ⊆ {{j} : j ∈ [n]} for all n ≥ 1, and TN 6= ∅ for some N ≥ 2, then

I f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.
I f(z) ≤ z for all z ∈ I ∩ R≥0.  Guillot�Rajaratnam (real)

B. If Tn is a partition of a subset of [n] for all n ≥ 1, and
there exists N ≥ 3 such that there is a U ∈ TN with |U | ≥ 2, then

f(z) = cz for all z ∈ I, where

a. c ∈ [−1/(K − 1), 1], where maxn≥1 |Tn| =: K <∞, and each Tn is a
partition of [n].

b. c ∈ [0, 1] for the remaining cases.

C. If TN is not a partition of any subset of [N ] for some N ≥ 3, then

f(z) = z for all z ∈ I.
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S. If Tn = ∅ for all n ≥ 1, then  Schoenberg, Rudin / Herz / Vasudeva

I f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

A. If Tn ⊆ {{j} : j ∈ [n]} for all n ≥ 1, and TN 6= ∅ for some N ≥ 2, then

I f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.
I f(z) ≤ z for all z ∈ I ∩ R≥0.  Guillot�Rajaratnam (real)

B. If Tn is a partition of a subset of [n] for all n ≥ 1, and
there exists N ≥ 3 such that there is a U ∈ TN with |U | ≥ 2, then

f(z) = cz for all z ∈ I

, where

a. c ∈ [−1/(K − 1), 1], where maxn≥1 |Tn| =: K <∞, and each Tn is a
partition of [n].

b. c ∈ [0, 1] for the remaining cases.

C. If TN is not a partition of any subset of [N ] for some N ≥ 3, then

f(z) = z for all z ∈ I.
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PART 4

Proofs.



Folklore results on matrices

(a) (Weyl's inequality.) Let λmax(X) and λmin(X), respectively, denote the maximum
and minimum eigenvalues of square matrix X. Then, for n× n Hermitian matrices
A and B,

λmin(A) + λmax(B) ≥ λmin(A+B) ≥ λmin(A) + λmin(B).

Note that λmin(X) is super-additive over the class of Hermitian matrices X.

(b) (Eigen-pairs of the tensor product.) Let An×n and Bm×m be two Hermitian
matrices. Suppose

A has eigen-pairs
(
λi(A), vi(A)

)
, 1 ≤ i ≤ n, and

B has eigen-pairs
(
λj(B), vj(B)

)
, 1 ≤ j ≤ m.

Then,

A⊗B has eigen-pairs
(
λi(A)λj(B), vi(A)⊗ vj(B)

)
, 1 ≤ i ≤ n,

1 ≤ j ≤ m.
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(A) =⇒ (1) (sketch)
Tn ⊆ {{j} : j ∈ [n]} for all n ≥ 1, and TN 6= ∅ for some N ≥ 2.

fTn [A] =


a11 f(a12) f(a13) f(a14) . . .

f(a21) a22 f(a23) f(a24)
f(a31) f(a32) f(a33) f(a34) . . .
f(a41) f(a42) f(a43) a44

...
...

. . .


n×n

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

A. The following holds:

� f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

� f(z) ≤ z for all z ∈ I ∩ R≥0.

Observe that,

fTn [A] = f [A] + 0Tn [A− f [A]], for all A ∈ Pn(I), for all n ≥ 1.

� f [A] is PSD by the Herz theorem.

� Since, z ≥ f(z) for all z ∈ I ∩ R≥0, 0Tn [A− f [A]] is PSD.
Therefore, fTn [A] ∈ Pn. This completes the implication.
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(1) =⇒ (A) (sketch)
Tn ⊆ {{j} : j ∈ [n]} for all n ≥ 1, and TN 6= ∅ for some N ≥ 2.


f(a11) f(a12) · · · f(a1n)
f(a21) f(a22) · · · f(a2n)

...
...

. . .
...

f(an1) f(an2) · · · f(ann)


n×n

OR


a11 f(a12) · · · f(a1n)

f(a21) a22 · · · f(a2n)
...

...
. . .

...
f(an1) f(an2) · · · ann


n×n

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

A. The following holds:

� f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

� f(z) ≤ z for all z ∈ I ∩ R≥0.

� If f [A] is PSD for all A ∈ Pn(I), for all n ≥ 1, then invoke Herz theorem.

� If f∗[A] is PSD for all A ∈ Pn(I), for all n ≥ 1, then we do the following.
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(1) =⇒ (A) (sketch, cont.)

f∗[1m ⊗A] = f [1m ⊗A] + Idm⊗diag(aii − f(aii))
= 1m ⊗ f [A] + Idm⊗diag(aii − f(aii)).

Using Weyl's inequality for Hermitian matrices,

0 ≤ λmin(f∗[1m ⊗A]) = λmin(1m ⊗ f [A] + Idm⊗diag(aii − f(aii)))
≤ λmin(1m ⊗ f [A]) + λmax(Idm⊗diag(aii − f(aii)))
≤ mλmin(f [A]) + max

i∈[1,n]

(aii − f(aii)).

This gives us,

λmin(f [A]) ≥ −
1

m
max
i∈[1,n]

(aii − f(aii)).

Since m can be arbitrarily large,

λmin(f [A]) ≥ 0.

Invoke Herz theorem to conclude,

f(z) =
∑
m,k≥0

cm,kz
mzk for all z ∈ I, where cm,k ≥ 0.
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Since m can be arbitrarily large,

λmin(f [A]) ≥ 0.

Invoke Herz theorem to conclude,

f(z) =
∑
m,k≥0

cm,kz
mzk for all z ∈ I, where cm,k ≥ 0.

Prateek Kumar Vishwakarma | PIMS | University of Regina 35



(1) =⇒ (A) (sketch, cont.)

f∗[1m ⊗A] = f [1m ⊗A] + Idm⊗diag(aii − f(aii))
= 1m ⊗ f [A] + Idm⊗diag(aii − f(aii)).

Using Weyl's inequality for Hermitian matrices,

0 ≤ λmin(f∗[1m ⊗A]) = λmin(1m ⊗ f [A] + Idm⊗diag(aii − f(aii)))
≤ λmin(1m ⊗ f [A]) + λmax(Idm⊗diag(aii − f(aii)))
≤ mλmin(f [A]) + max

i∈[1,n]

(aii − f(aii)).

This gives us,

λmin(f [A]) ≥ −
1

m
max
i∈[1,n]

(aii − f(aii)).

Since m can be arbitrarily large,

λmin(f [A]) ≥ 0.

Invoke Herz theorem to conclude,

f(z) =
∑
m,k≥0

cm,kz
mzk for all z ∈ I, where cm,k ≥ 0.

Prateek Kumar Vishwakarma | PIMS | University of Regina 35



(1) =⇒ (A) (sketch, cont.)

Tn ⊆ {{j} : j ∈ [n]} for all n ≥ 1, and TN 6= ∅ for some N ≥ 2.


f(a11) f(a12) · · · f(a1n)
f(a21) f(a22) · · · f(a2n)

...
...

. . .
...

f(an1) f(an2) · · · f(ann)


n×n

OR


a11 f(a12) · · · f(a1n)

f(a21) a22 · · · f(a2n)
...

...
. . .

...
f(an1) f(an2) · · · ann


n×n

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

A. The following holds:

� f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

� f(z) ≤ z for all z ∈ I ∩ R≥0.

� If f [A] is PSD for all A ∈ Pn(I), for all n ≥ 1, then invoke Herz theorem.

� If f∗[A] is PSD for all A ∈ Pn(I), for all n ≥ 1, then we do the following.
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mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

� f(z) ≤ z for all z ∈ I ∩ R≥0.

Since TN 6= ∅ for some N ≥ 2, by the positive semide�niteness of(
z f(z)

f(z) z

)
or

(
z f(z)

f(z) f(z)

)
,

we have f(z) ≤ z, for z ∈ I ∩ R≥0.
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Corollary D

Let I = D(0, ρ) for 0 < ρ ≤ ∞; f : I → C. Suppose Tn ⊂ 2[n] \ {[n]}, n ≥ 1. TFAE:

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

2. Exactly one of the following holds:

S. If Tn = ∅ for all n ≥ 1, then  Herz / Schoenberg�Rudin�Vasudeva (real)

� f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.

A. If Tn ⊆ {{j} : j ∈ [n]} for all n ≥ 1, and TN 6= ∅ for some N ≥ 2, then

I f(z) =
∑
m,k≥0 cm,kz

mzk for all z ∈ I, where cm,k ≥ 0 for all m, k ≥ 0.
I f(z) ≤ z for all z ∈ I ∩ R≥0.  Guillot�Rajaratnam (real)

B. If Tn is a partition of a subset of [n] for all n ≥ 1, and
there exists N ≥ 3 such that there is a U ∈ TN with |U | ≥ 2, then

f(z) = cz for all z ∈ I, where

a. c ∈ [−1/(K − 1), 1], where maxn≥1 |Tn| = K ∈ Z, if each Tn is a partition
of [n].

b. c ∈ [0, 1] for the remaining cases.

C. If TN is not a partition of any subset of [N ] for some N ≥ 3, then

f(z) = z for all z ∈ I.
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(1) ⇐⇒ (B.a)

fTn [A] =


a11 a12 f(a13) f(a14) . . .
a21 a22 f(a23) f(a24)

f(a31) f(a32) a33 f(a34) . . .
f(a41) f(a42) f(a43) a44

...
...

. . .


n×n
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(1) =⇒ (B.a) (sketch)
Each Tn is a partition of [n] with 2 ≤ |Tn| ≤ n− 1.

Set K := maxn≥1 |Tn| <∞.
� There exists n1 ≥ 3 such that Tn1 = {{u1, u2, . . . }, {u3, . . . }, . . . }.
� There exists n2 ≥ 2 such that |Tn2 | = K.
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� There exists n1 ≥ 3 such that Tn1 = {{1, 2, . . . }, {3, . . . }, . . . }.
� There exists n2 ≥ 2 such that |Tn2 | = K.

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

Step 1. Observe that, for |z| ≤ w < ρ,


|z|2/w z z 0
z w w . . .
z w w

0T
...

. . .


n1×n1

∈ Pn1(I).
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(1) =⇒ (B.a) (sketch)
Each Tn is a partition of [n] with 2 ≤ |Tn| ≤ n− 1. Set K := maxn≥1 |Tn| <∞.

� There exists n1 ≥ 3 such that Tn1 = {{1, 2, . . . }, {3, . . . }, . . . }.
� There exists n2 ≥ 2 such that |Tn2 | = K.

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

Step 1. Observe that, for |z| ≤ w < ρ,


|z|2/w z f(z)
z w f(w) . . .

f(z) f(w) w
...

. . .

 ∈ Pn1 .

Leading 3× 3 minor is nonnegative, which needs

−
(
z
f(w)√
w
−
√
wf(z)

)2
≥ 0,

and therefore

f(z) =
f(w)

w
z whenever |z| ≤ w < ρ.

Now conclude that

f(z) = cz for all z ∈ I, and for some c ∈ [−1, 1].
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(1) =⇒ (B.a) (sketch, cont.)
Each Tn is a partition of [n] with 2 ≤ |Tn| ≤ n− 1. Set K := maxn≥1 |Tn| <∞.

� There exists n1 ≥ 3 such that Tn1 = {{1, 2, . . . }, {3, . . . }, . . . }.
� There exists n2 ≥ 2 such that |Tn2 | = K.

1. fTn [A] ∈ Pn for all A ∈ Pn(I), for all n ≥ 1.

From Step 1, f(z) = cz for all z ∈ I, for some c ∈ [−1, 1].

Step 2. Suppose Tn2 = {U1, U2, . . . , UK}; suppose uj ∈ Uj for each j ∈ [K].

For 0 < |z| ∈ I,

f∗[|z|1K×K ] =


|z| c|z| c|z|
c|z| |z| c|z| . . .
c|z| c|z| |z|

...
. . .


K×K

has spectrum

{
λ1 = (1− c)|z|,
λ2 = (1 + (K − 1)c)|z|.

Note that this is a principal submatrix of fTn2
[|z|1n×n] (corresponding to indices

u1, u2, . . . , uK). As this is positive, we deduce:

c ∈ [−1/(K − 1), 1].
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(B.a) =⇒ (1) (sketch)

Recall each Tn is a partition of [n] with 2 ≤ |Tn| ≤ n− 1. Set K := maxn≥1 |Tn| <∞.

B.a. Suppose f(z) = cz for all z ∈ I, where c ∈ [−1/(K − 1), 1].

Observe that

fTn [A] = A ◦ fTn [1n×n] for all A ∈ Pn(I), for all n ≥ 1.

It is enough to show that fTn [1n×n] is PSD.

• The principal submatrices of fTn [1n×n] that are of the form f∗[1k×k] where k ≤ K

have nonnegative eigenvalues

{
λ1 = 1− c,
λ2 = 1 + (k − 1)c.

(We saw this in Step 2.)

• Its remaining submatrices have two identical rows, therefore their minor vanishes.

This completes the sketch of the equivalence.
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Primary contributions

� Further re�nes the work of Schoenberg�Rudin, Herz, Vasudeva, and
Guillot�Rajaratnam and brings a certain progression in their ideas (and results).

� Discovers novel examples of dimension-free non-absolutely monotonic /
non-in�nite sum of Herz functions entrywise positivity preservers (in a certain new
setting).

� Increases the richness of the preserver problem by:

I introducing entrywise variants (g, f) preserving positivity, and
I their classi�cation for real and complex domains.
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