Positivity preservers
 forbidden to operate on diagonal blocks

Prateek Kumar Vishwakarma

College of William \& Mary Groups, Analysis, Geometry Seminar

04 October 2023

Positive semidefinite matrices

A $n \times n$ Hermitian matrix A is positive semidefinite (PSD) if the quadratic form $z^{*} A z \geq 0$ for all $z \in \mathbb{C}^{n}$. Let \mathbb{P}_{n} denotes the set of all $n \times n$ PSD matrices.
$\Longrightarrow \mathbb{P}_{n}$ forms a closed convex cone.

Positive semidefinite matrices

A $n \times n$ Hermitian matrix A is positive semidefinite (PSD) if the quadratic form $z^{*} A z \geq 0$ for all $z \in \mathbb{C}^{n}$. Let \mathbb{P}_{n} denotes the set of all $n \times n$ PSD matrices.
$\Longrightarrow \mathbb{P}_{n}$ forms a closed convex cone.
$\Longrightarrow \bar{A}:=\left(\overline{a_{i j}}\right) \in \mathbb{P}_{n}$ if $A:=\left(a_{i j}\right) \in \mathbb{P}_{n}$, i.e., closed under taking entrywise conjugates.

Positive semidefinite matrices

A $n \times n$ Hermitian matrix A is positive semidefinite (PSD) if the quadratic form $z^{*} A z \geq 0$ for all $z \in \mathbb{C}^{n}$. Let \mathbb{P}_{n} denotes the set of all $n \times n$ PSD matrices.
$\Longrightarrow \mathbb{P}_{n}$ forms a closed convex cone.
$\Longrightarrow \bar{A}:=\left(\overline{a_{i j}}\right) \in \mathbb{P}_{n}$ if $A:=\left(a_{i j}\right) \in \mathbb{P}_{n}$, i.e., closed under taking entrywise conjugates.

The set of $n \times n$ PSD matrices forms a semigroup.
Theorem (Schur [J. Reine Angew. Math. (Crelle) 1911])
Suppose $n \geq 1$ is an integer, and $A:=\left(a_{i j}\right)$ and $B:=\left(b_{i j}\right) \in \mathbb{C}^{n \times n}$ are PSD. Then

$$
A \circ B:=\left(a_{i j} b_{i j}\right) \quad \text { is PSD. }
$$

Positive semidefinite matrices

A $n \times n$ Hermitian matrix A is positive semidefinite (PSD) if the quadratic form $z^{*} A z \geq 0$ for all $z \in \mathbb{C}^{n}$. Let \mathbb{P}_{n} denotes the set of all $n \times n$ PSD matrices.
$\Longrightarrow \mathbb{P}_{n}$ forms a closed convex cone.
$\Longrightarrow \bar{A}:=\left(\overline{a_{i j}}\right) \in \mathbb{P}_{n}$ if $A:=\left(a_{i j}\right) \in \mathbb{P}_{n}$, i.e., closed under taking entrywise conjugates.

The set of $n \times n$ PSD matrices forms a semigroup.
Theorem (Schur [J. Reine Angew. Math. (Crelle) 1911])
Suppose $n \geq 1$ is an integer, and $A:=\left(a_{i j}\right)$ and $B:=\left(b_{i j}\right) \in \mathbb{C}^{n \times n}$ are PSD. Then

$$
A \circ B:=\left(a_{i j} b_{i j}\right) \quad \text { is PSD. }
$$

In particular, for integer $m \geq 0$ (under the convention $0^{0}:=1$)

$$
A^{\circ m}:=A \circ A \circ \cdots \circ A=\left(a_{i j}^{m}\right) \text { is PSD. }
$$

\mathbb{P}_{n} (i.e. the class of $n \times n$ PSD matrices)

- Forms a closed convex cone.
- Closed under taking entrywise conjugates.
- A semigroup under entrywise multiplication.
\mathbb{P}_{n} (i.e. the class of $n \times n$ PSD matrices)
- Forms a closed convex cone.
- Closed under taking entrywise conjugates.
- A semigroup under entrywise multiplication.

$$
A=\left(a_{i j}\right) \text { is } \mathrm{PSD}
$$

\mathbb{P}_{n} (i.e. the class of $n \times n$ PSD matrices)

- Forms a closed convex cone.
- Closed under taking entrywise conjugates.
- A semigroup under entrywise multiplication.

$$
A=\left(a_{i j}\right) \text { is PSD } \Longleftrightarrow \bar{A}=\left(\overline{a_{i j}}\right) \text { is PSD. }
$$

\mathbb{P}_{n} (i.e. the class of $n \times n$ PSD matrices)

- Forms a closed convex cone.
- Closed under taking entrywise conjugates.
- A semigroup under entrywise multiplication.

$$
\begin{aligned}
A=\left(a_{i j}\right) \text { is PSD } & \Longleftrightarrow \bar{A}=\left(\overline{a_{i j}}\right) \text { is PSD. } \\
A^{\circ m}=\left(a_{i j}^{m}\right) \text { is PSD } & \text { and } \\
A^{\circ m} \circ \bar{A}^{\circ k}=\left({\overline{a_{i j}}}^{k}\right) \text { is PSD. } & =\left(a_{i j}^{m}{\overline{a_{i j}}}^{k}\right) \text { is PSD. }
\end{aligned}
$$

\mathbb{P}_{n} (i.e. the class of $n \times n$ PSD matrices)

- Forms a closed convex cone.
- Closed under taking entrywise conjugates.
- A semigroup under entrywise multiplication.

$$
\begin{aligned}
A=\left(a_{i j}\right) \text { is PSD } & \Longleftrightarrow \bar{A}=\left(\overline{a_{i j}}\right) \text { is PSD. } \\
A^{\circ m}=\left(a_{i j}^{m}\right) \text { is PSD } & \text { and } \bar{A}^{\circ k}=\left({\overline{a_{i j}}}^{k}\right) \text { is PSD. } \\
A^{\circ m} \circ \bar{A}^{\circ k} & =\left(a_{i j}^{m}{\overline{a_{i j}}}^{k}\right) \text { is PSD. } \\
c_{m, k} A^{\circ m} \circ \bar{A}^{\circ k} & =\left(c_{m, k} a_{i j}^{m}{\overline{a_{i j}}}^{k}\right) \text { is PSD } \\
\sum_{m, k \geq 0} c_{m, k} A^{\circ m} \circ \bar{A}^{\circ k} & =\left(\sum_{m, k \geq 0} c_{m, k} a_{i j}^{m}{\overline{a_{i j}}}^{k}\right) \text { is PSD } \\
& \text { for integers } m, k \geq 0 \text { and } c_{m, k} \geq 0 .
\end{aligned}
$$

\mathbb{P}_{n} (i.e. the class of $n \times n$ PSD matrices)

- Forms a closed convex cone.
- Closed under taking entrywise conjugates.
- A semigroup under entrywise multiplication.

$$
\begin{aligned}
A=\left(a_{i j}\right) \text { is PSD } & \Longleftrightarrow \bar{A}=\left(\overline{a_{i j}}\right) \text { is PSD. } \\
A^{\circ m}=\left(a_{i j}^{m}\right) \text { is PSD } & \text { and } \bar{A}^{\circ k}=\left({\overline{a_{i j}}}^{k}\right) \text { is PSD. } \\
A^{\circ m} \circ \bar{A}^{\circ k} & =\left(a_{i j}^{m}{\overline{a_{i j}}}^{k}\right) \text { is PSD. } \\
c_{m, k} A^{\circ m} \circ \bar{A}^{\circ k} & =\left(c_{m, k} a_{i j}^{m}{\overline{a_{i j}}}^{k}\right) \text { is PSD } \\
\sum_{m, k \geq 0} c_{m, k} A^{\circ m} \circ \bar{A}^{\circ k} & =\left(\sum_{m, k \geq 0} c_{m, k} a_{i j}^{m}{\overline{a_{i j}}}^{k}\right) \text { is PSD } \\
& \text { for integers } m, k \geq 0 \text { and } c_{m, k} \geq 0 .
\end{aligned}
$$

More succinctly, the infinite sums of Herz functions

$$
\begin{equation*}
\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}, \quad \text { where } c_{m, k} \geq 0 \text { for all } m, k \geq 0 \tag{1}
\end{equation*}
$$

when operating entrywise on any PSD matrix, preserve its positivity. (Pólya and Szegö (1925) for real PSD matrices.)

The question

Find if there are functions which are not an infinite sum of Herz functions, but preserve positivity via operating entrywise.

The question

Find if there are functions which are not an infinite sum of Herz functions, but preserve positivity via operating entrywise.

Loewner positive functions

Let \mathcal{P} denote a subset of all Hermitian PSD matrices, and f be a complex valued function such that $f[A]:=\left(f\left(a_{i j}\right)\right)$ is well-defined for all $A:=\left(a_{i j}\right) \in \mathcal{P}$. Then f is Loewner positive over \mathcal{P} if

$$
f[A]=\left(\begin{array}{cccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)
\end{array}\right) \text { is PSD for all } A=\left(a_{i j}\right) \in \mathcal{P}
$$

The question

Find if there are functions which are not an infinite sum of Herz functions, but preserve positivity via operating entrywise.

Loewner positive functions

Let \mathcal{P} denote a subset of all Hermitian PSD matrices, and f be a complex valued function such that $f[A]:=\left(f\left(a_{i j}\right)\right)$ is well-defined for all $A:=\left(a_{i j}\right) \in \mathcal{P}$. Then f is Loewner positive over \mathcal{P} if

$$
f[A]=\left(\begin{array}{cccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)
\end{array}\right) \text { is PSD for all } A=\left(a_{i j}\right) \in \mathcal{P}
$$

Loewner positive functions can be explored

- For different choices of $\mathcal{P} \begin{cases}=\mathbb{P}_{n}\left(=\cup_{k=1}^{n} \mathbb{P}_{k}\right) & \\ =\cup_{k=1}^{\infty} \mathbb{P}_{k} & \text { (fixed-dimensional) } \\ & \text { (dimension-free) }\end{cases}$

The question

Find if there are functions which are not an infinite sum of Herz functions, but preserve positivity via operating entrywise.

Loewner positive functions

Let \mathcal{P} denote a subset of all Hermitian PSD matrices, and f be a complex valued function such that $f[A]:=\left(f\left(a_{i j}\right)\right)$ is well-defined for all $A:=\left(a_{i j}\right) \in \mathcal{P}$. Then f is Loewner positive over \mathcal{P} if

$$
f[A]=\left(\begin{array}{cccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)
\end{array}\right) \text { is PSD for all } A=\left(a_{i j}\right) \in \mathcal{P}
$$

Loewner positive functions can be explored

- For different choices of $\mathcal{P} \begin{cases}=\mathbb{P}_{n}\left(=\cup_{k=1}^{n} \mathbb{P}_{k}\right) & \\ =\cup_{k=1}^{\infty} \mathbb{P}_{k} & \text { (fixed-dimensional) } \\ \text { (dimension-free) }\end{cases}$
- For entrywise variations of " $f[-]$ " - main focus in the talk.

Overview

1. Metric geometry, positivity, and Loewner positive functions.
2. First entrywise variant of " $f[-]$ " and its generalization.
3. Main results for the new variants of " $f[-]$."
4. Proofs.

Recall. . .

Positive semidefinite matrices

An $n \times n$ Hermitian matrix A is positive semidefinite (PSD) if one of the following holds:

1. The quadratic form $z^{*} A z \geq 0$ for all $z \in \mathbb{C}^{n}$.
2. All principal minors of A are nonnegative.
3. All eigenvalues of A are nonnegative.

Notations

- \mathbb{P}_{n} denotes the set of all $n \times n$ PSD matrices.
- $\mathbb{P}_{n}(I):=\mathbb{P}_{n} \cap I^{n \times n}$, where $I \subseteq \mathbb{C}$.

PART 1

Metric geometry, Positivity,
\&
Loewner positive functions.

Recall. . .

Metric spaces

A metric space X is a nonempty set, with a metric $d: X \times X \rightarrow \mathbb{R}$ such that

1. Positivity: $d(x, y) \geq 0$ for all $x, y \in X$, with equality if and only if $x=y$.
2. Symmetry: $d(x, y)=d(y, x)$ for all $x, y \in X$.
3. Triangle inequality: $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

Positive definite functions

Suppose (X, d) is metric space, and $f:[0, \infty) \rightarrow \mathbb{R} . f$ is positive definite over X, if for every set of points $x_{1}, x_{2}, \ldots, x_{n}$, the matrix

$$
\left(f \circ d\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n} \quad \text { is positive semidefinite. }
$$

Metric embedding into \mathbb{R}^{r}

Metric space embedding into Euclidean spaces \mathbb{R}^{r}, for integer $r \geq 1$.

Metric embedding into \mathbb{R}^{r}

Metric space embedding into Euclidean spaces \mathbb{R}^{r}, for integer $r \geq 1$.
Theorem (Schoenberg [Ann. of Math. 1935, Trans. Amer. Math. Soc. 1938])
Let $\left(X=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, d\right)$ be a metric space. The following are equivalent.

1. The metric space (X, d) embeds isometrically into Euclidean space \mathbb{R}^{r}, for some integer $r \geq 1$.
2. The $n \times n$ (modified) Cayley-Menger matrix

$$
A:=\left(d\left(x_{0}, x_{i}\right)^{2}+d\left(x_{0}, x_{j}\right)^{2}-d\left(x_{i}, x_{j}\right)^{2}\right)_{i, j=1}^{n} \text { is PSD. }
$$

Metric embedding into \mathbb{R}^{r}

Metric space embedding into Euclidean spaces \mathbb{R}^{r}, for integer $r \geq 1$.
Theorem (Schoenberg [Ann. of Math. 1935, Trans. Amer. Math. Soc. 1938])
Let $\left(X=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, d\right)$ be a metric space. The following are equivalent.

1. The metric space (X, d) embeds isometrically into Euclidean space \mathbb{R}^{r}, for some integer $r \geq 1$.
2. The $n \times n$ (modified) Cayley-Menger matrix

$$
A:=\left(d\left(x_{0}, x_{i}\right)^{2}+d\left(x_{0}, x_{j}\right)^{2}-d\left(x_{i}, x_{j}\right)^{2}\right)_{i, j=1}^{n} \text { is PSD. }
$$

3. The $(n+1) \times(n+1)$ matrix

$$
B:=\left(\exp \left(-\sigma^{2} d\left(x_{i}, x_{j}\right)^{2}\right)\right)_{i, j=0}^{n} \text { is PSD }
$$

along any sequence of nonzero scalars $\sigma \in \mathbb{R}$ converging to zero.
Moreover, the smallest such r is the rank of the matrix A.

Metric embedding into unit/Hilbert sphere

Metric space embedding into unit spheres S^{r-1}, for integer $r \geq 2$, and S^{∞}.

- Positive definiteness of exactly one function - the cosine.

Metric embedding into unit/Hilbert sphere

Metric space embedding into unit spheres S^{r-1}, for integer $r \geq 2$, and S^{∞}.

- Positive definiteness of exactly one function - the cosine.
- Impose arclength metric d_{a} on S^{r-1}, where $r \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$, defined as

$$
d_{a}(x, y):=\arccos (\langle x, y\rangle), \quad \text { for all } x, y \in S^{r-1}
$$

Metric embedding into unit/Hilbert sphere

Metric space embedding into unit spheres S^{r-1}, for integer $r \geq 2$, and S^{∞}.

- Positive definiteness of exactly one function - the cosine.
- Impose arclength metric d_{a} on S^{r-1}, where $r \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$, defined as

$$
d_{a}(x, y):=\arccos (\langle x, y\rangle), \quad \text { for all } x, y \in S^{r-1}
$$

- Suppose $\xi: X \hookrightarrow S^{r-1}$ is an isometric embedding, where
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is with metric $d(\cdot, \cdot) \leq \pi$, and
- $r \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$.

Then

$$
\cos \circ d\left(x_{i}, x_{j}\right)=\cos \circ d_{a}\left(\xi\left(x_{i}\right), \xi\left(x_{j}\right)\right)=\left\langle\xi\left(x_{i}\right), \xi\left(x_{j}\right)\right\rangle
$$

Metric embedding into unit/Hilbert sphere (cont.)

This means

$$
C:=\left(\cos \circ d\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n} \text { is a Gram matrix (of rank at most } r \text {). }
$$

Therefore C is PSD, and cos is positive definite over S^{r-1}, for $r \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$.

Metric embedding into unit/Hilbert sphere (cont.)

This means

$$
C:=\left(\cos \circ d\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n} \text { is a Gram matrix (of rank at most } r \text {). }
$$

Therefore C is PSD, and cos is positive definite over S^{r-1}, for $r \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$.

In fact, the converse also holds:

Theorem (Schoenberg [Ann. of Math. 1935])
Let $\left(X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, d\right)$ be a metric space with diameter at most π. The following are equivalent.

1. The metric space (X, d) embeds isometrically into the unit sphere S^{r-1}, but not into S^{r-2}.
2. $C:=\left(\cos \circ d\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}$ is PSD of rank r.

Metric embedding into unit/Hilbert sphere (cont.)

This means

$$
C:=\left(\cos \circ d\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n} \text { is a Gram matrix (of rank at most } r \text {). }
$$

Therefore C is PSD, and cos is positive definite over S^{r-1}, for $r \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$.

In fact, the converse also holds:

Theorem (Schoenberg [Ann. of Math. 1935])
Let $\left(X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, d\right)$ be a metric space with diameter at most π. The following are equivalent.

1. The metric space (X, d) embeds isometrically into the unit sphere S^{r-1}, but not into S^{r-2}.
2. $C:=\left(\cos \circ d\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}$ is PSD of rank r.

In particular, (X, d) isometrically embeds into S^{∞} if and only if cosine is positive definite over X.

Loewner positive functions over correlation matrices

More examples of such positive definite functions over S^{∞} ?

- Schoenberg classified functions f such that $f \circ \cos$ is positive definite over S^{∞}.

Loewner positive functions over correlation matrices

More examples of such positive definite functions over S^{∞} ?

- Schoenberg classified functions f such that $f \circ \cos$ is positive definite over S^{∞}.

Observations

- $C:=\left(\operatorname{cosod} a\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}$ is a correlation matrix for $x_{1}, x_{2}, \ldots, x_{n} \in S^{\infty}$.

Loewner positive functions over correlation matrices

More examples of such positive definite functions over S^{∞} ?

- Schoenberg classified functions f such that $f \circ \cos$ is positive definite over S^{∞}.

Observations

- $C:=\left(\cos \circ d_{a}\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}$ is a correlation matrix for $x_{1}, x_{2}, \ldots, x_{n} \in S^{\infty}$.
- $f \circ \cos$ is positive definite over $S^{\infty} \Longleftrightarrow f$ is Loewner positive over the set of correlation matrices.

Loewner positive functions over correlation matrices

More examples of such positive definite functions over S^{∞} ?

- Schoenberg classified functions f such that $f \circ \cos$ is positive definite over S^{∞}.

Observations

- $C:=\left(\cos \circ d_{a}\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}$ is a correlation matrix for $x_{1}, x_{2}, \ldots, x_{n} \in S^{\infty}$.
- $f \circ \cos$ is positive definite over $S^{\infty} \Longleftrightarrow f$ is Loewner positive over the set of correlation matrices.

Theorem (Schoenberg [Duke Math. J. 1942])
Let $I=[-1,1]$, and $f: I \rightarrow \mathbb{R}$ be continuous. The following are equivalent.

1. $f \circ \cos$ is positive definite over S^{∞}.
2. $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all correlation matrices $A=\left(a_{i j}\right)$.
3. $f(x)=\sum_{k \geq 0} c_{k} x^{k}$ for all $x \in I$, where $c_{k} \geq 0$ for all $k \geq 0$.

Loewner positive functions over all dimensions

Lemma (Pólya-Szegö 1925)
Suppose $f(x):=\sum_{k \geq 0} c_{k} x^{k}$ is a power series with all $c_{k} \geq 0$, that converges over $I \subseteq \mathbb{R}$. Then $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A:=\left(a_{i j}\right)$, where $a_{i j} \in I$.

Loewner positive functions over all dimensions

Lemma (Pólya-Szegö 1925)
Suppose $f(x):=\sum_{k \geq 0} c_{k} x^{k}$ is a power series with all $c_{k} \geq 0$, that converges over $I \subseteq \mathbb{R}$. Then $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A:=\left(a_{i j}\right)$, where $a_{i j} \in I$.

Theorem (Rudin [Duke Math. J. 1959],
Christensen-Ressel [Trans. Amer. Math. Soc. 1978])
Let $I=(-\rho, \rho)$ for $0<\rho \leq \infty$, and $f: I \rightarrow \mathbb{R}$. The following are equivalent:

1. $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A=\left(a_{i j}\right)$, where all entries $a_{i j} \in I$.
2. $f(x)=\sum_{k \geq 0} c_{k} x^{k}$ for all $x \in I$, where $c_{k} \geq 0$ for all $k \geq 0$.

Loewner positive functions over all dimensions

Lemma (Pólya-Szegö 1925)
Suppose $f(x):=\sum_{k \geq 0} c_{k} x^{k}$ is a power series with all $c_{k} \geq 0$, that converges over $I \subseteq \mathbb{R}$. Then $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A:=\left(a_{i j}\right)$, where $a_{i j} \in I$.

Theorem (Rudin [Duke Math. J. 1959],
Christensen-Ressel [Trans. Amer. Math. Soc. 1978])
Let $I=(-\rho, \rho)$ for $0<\rho \leq \infty$, and $f: I \rightarrow \mathbb{R}$. The following are equivalent:

1. $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A=\left(a_{i j}\right)$, where all entries $a_{i j} \in I$.
2. $f(x)=\sum_{k \geq 0} c_{k} x^{k}$ for all $x \in I$, where $c_{k} \geq 0$ for all $k \geq 0$.

Rudin conjectured the complex version: $\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$, with $c_{m, k} \geq 0$.

Loewner positive functions over all dimensions (cont.)

Theorem (Herz [Ann. Inst. Fourier (Grenoble) 1963], FitzGerald-Micchelli-Pinkus [Linear Algebra Appl. 1995])
Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $f: I \rightarrow \mathbb{C}$. The following are equivalent:

1. $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A=\left(a_{i j}\right)$, where all entries $a_{i j} \in I$.
2. $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.

Loewner positive functions over all dimensions (cont.)

Theorem (Herz [Ann. Inst. Fourier (Grenoble) 1963], FitzGerald-Micchelli-Pinkus [Linear Algebra Appl. 1995])
Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $f: I \rightarrow \mathbb{C}$. The following are equivalent:

1. $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A=\left(a_{i j}\right)$, where all entries $a_{i j} \in I$.
2. $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.

Similar results were obtained for doubly nonnegative matrices by Vasudeva:
Theorem (Vasudeva [Indian J. Pure Appl. Math. 1979], Guillot-Khare-Rajaratnam [Trans. Amer. Math. Soc. 2017])
Let $I=(0, \rho)$ or $[0, \rho)$ for $0<\rho \leq \infty$, and $f: I \rightarrow \mathbb{R}$. The following are equivalent:

1. $f[A]:=\left(f\left(a_{i j}\right)\right)$ is PSD for all PSD $A=\left(a_{i j}\right)$, where all entries $a_{i j} \in I$.
2. $f(x)=\sum_{k \geq 0} c_{k} x^{k}$ for all $x \in I$, where $c_{k} \geq 0$ for all $k \geq 0$.

Loewner positive functions over all dimensions (summary)

(Dimension-free) Loewner positive functions over $\mathcal{P}:=\cup_{n=1}^{\infty} \mathbb{P}_{n}(I)$.

- Exactly the class of infinite sums of Herz functions over I, for $I=D(0, \rho)$, $(-\rho, \rho),(0, \rho)$, and $[0, \rho)$.

Loewner positive functions over all dimensions (summary)

(Dimension-free) Loewner positive functions over $\mathcal{P}:=\cup_{n=1}^{\infty} \mathbb{P}_{n}(I)$.

- Exactly the class of infinite sums of Herz functions over I, for $I=D(0, \rho)$, $(-\rho, \rho),(0, \rho)$, and $[0, \rho)$.
- In particular, these are absolutely monotonic for real domains I. However, such is not the case in the fixed-dimensional setting, i.e. when $\mathcal{P}=\mathbb{P}_{n}(I)$, for fixed $n \geq 1$.

Loewner positive functions over all dimensions (summary)

(Dimension-free) Loewner positive functions over $\mathcal{P}:=\cup_{n=1}^{\infty} \mathbb{P}_{n}(I)$.

- Exactly the class of infinite sums of Herz functions over I, for $I=D(0, \rho)$, $(-\rho, \rho),(0, \rho)$, and $[0, \rho)$.
- In particular, these are absolutely monotonic for real domains I. However, such is not the case in the fixed-dimensional setting, i.e. when $\mathcal{P}=\mathbb{P}_{n}(I)$, for fixed $n \geq 1$.

Example 1

Observe that, for all integers $\alpha \geq 0$,

$$
f_{\alpha}(x):=x^{\alpha}, x \geq 0, \text { is Loewner positive over } \mathbb{P}_{n}((0, \infty)), \text { for all } n \geq 1
$$

Loewner positive functions over all dimensions (summary)

(Dimension-free) Loewner positive functions over $\mathcal{P}:=\cup_{n=1}^{\infty} \mathbb{P}_{n}(I)$.

- Exactly the class of infinite sums of Herz functions over I, for $I=D(0, \rho)$, $(-\rho, \rho),(0, \rho)$, and $[0, \rho)$.
- In particular, these are absolutely monotonic for real domains I. However, such is not the case in the fixed-dimensional setting, i.e. when $\mathcal{P}=\mathbb{P}_{n}(I)$, for fixed $n \geq 1$.

Example 1

Observe that, for all integers $\alpha \geq 0$,

$$
f_{\alpha}(x):=x^{\alpha}, x \geq 0 \text {, is Loewner positive over } \mathbb{P}_{n}((0, \infty)) \text {, for all } n \geq 1 .
$$

Natural to ask for the classification of all $\alpha \in \mathbb{R}$, such that
f_{α} is Loewner positive over $\mathbb{P}_{n}((0, \infty))$, for a fixed $n \geq 2$.

Loewner positive functions over all dimensions (summary)

(Dimension-free) Loewner positive functions over $\mathcal{P}:=\cup_{n=1}^{\infty} \mathbb{P}_{n}(I)$.

- Exactly the class of infinite sums of Herz functions over I, for $I=D(0, \rho)$, $(-\rho, \rho),(0, \rho)$, and $[0, \rho)$.
- In particular, these are absolutely monotonic for real domains I. However, such is not the case in the fixed-dimensional setting, i.e. when $\mathcal{P}=\mathbb{P}_{n}(I)$, for fixed $n \geq 1$.

Example 1

Observe that, for all integers $\alpha \geq 0$,

$$
f_{\alpha}(x):=x^{\alpha}, x \geq 0, \text { is Loewner positive over } \mathbb{P}_{n}((0, \infty)) \text {, for all } n \geq 1 .
$$

Natural to ask for the classification of all $\alpha \in \mathbb{R}$, such that
f_{α} is Loewner positive over $\mathbb{P}_{n}((0, \infty))$, for a fixed $n \geq 2$.

Theorem (FitzGerald-Horn [J. Math. Anal. Appl. 1977])
Let $n \geq 2$ be an integer, and $\alpha \in \mathbb{R}$. Suppose $f_{\alpha}(x):=x^{\alpha}$ for $x \geq 0$. Then,
f_{α} is Loewner positive over $\mathbb{P}_{n}((0, \infty)) \Longleftrightarrow \alpha \in[n-2, \infty) \cup \mathbb{Z}_{\geq 0}$.

Loewner positive functions over fixed dimension

Example 2

Polynomials with nonnegative coefficients are all the polynomials that are dimension-free Loewner positive.

Loewner positive functions over fixed dimension

Example 2

Polynomials with nonnegative coefficients are all the polynomials that are dimension-free Loewner positive.
Find a polynomial with a negative coefficient, which preserves positivity on $\mathbb{P}_{n}((0, \rho))$, for fixed $n \geq 3$.

Loewner positive functions over fixed dimension

Example 2

Polynomials with nonnegative coefficients are all the polynomials that are dimension-free Loewner positive.
Find a polynomial with a negative coefficient, which preserves positivity on $\mathbb{P}_{n}((0, \rho))$, for fixed $n \geq 3$. Resolved in

- Belton-Guillot-Khare-Putinar [Adv. Math., 2016], and
- Khare-Tao [Amer. J. Math., 2021].

Loewner positive functions over fixed dimension

Example 2

Polynomials with nonnegative coefficients are all the polynomials that are dimension-free Loewner positive.
Find a polynomial with a negative coefficient, which preserves positivity on $\mathbb{P}_{n}((0, \rho))$, for fixed $n \geq 3$. Resolved in

- Belton-Guillot-Khare-Putinar [Adv. Math., 2016], and
- Khare-Tao [Amer. J. Math., 2021].

Both the examples

- Feature non-absolutely monotonic Loewner positive functions in the fixed-dimensional setting.

Loewner positive functions over fixed dimension

Example 2

Polynomials with nonnegative coefficients are all the polynomials that are dimension-free Loewner positive.
Find a polynomial with a negative coefficient, which preserves positivity on $\mathbb{P}_{n}((0, \rho))$, for fixed $n \geq 3$. Resolved in

- Belton-Guillot-Khare-Putinar [Adv. Math., 2016], and
- Khare-Tao [Amer. J. Math., 2021].

Both the examples

- Feature non-absolutely monotonic Loewner positive functions in the fixed-dimensional setting.
- In the dimension-free setting, however, non-absolutely monotonic Loewner positive functions cannot exist. (Schoenberg, Rudin, Herz, Vasudeva.)

Loewner positive functions over fixed dimension

Example 2

Polynomials with nonnegative coefficients are all the polynomials that are dimension-free Loewner positive.
Find a polynomial with a negative coefficient, which preserves positivity on $\mathbb{P}_{n}((0, \rho))$, for fixed $n \geq 3$. Resolved in

- Belton-Guillot-Khare-Putinar [Adv. Math., 2016], and
- Khare-Tao [Amer. J. Math., 2021].

Both the examples

- Feature non-absolutely monotonic Loewner positive functions in the fixed-dimensional setting.
- In the dimension-free setting, however, non-absolutely monotonic Loewner positive functions cannot exist. (Schoenberg, Rudin, Herz, Vasudeva.)

In this talk

- First examples of (real) non-absolutely monotonic dimension-free Loewner positive functions - for a refined entrywise variant of " $f[A]$."
- This translates into discovering dimension-free Loewner positive functions over complex PSD matrices which are not an infinite sum of Herz functions.

PART 2

An entrywise variant,

$$
\&
$$

Generalizations.

An entrywise variant motivated by modern applications

Consider the following functions for $\epsilon>0$:

- Hard thresholding: $f_{\epsilon}^{H}(x):= \begin{cases}x, & \text { if }|x|>\epsilon, \\ 0, & \text { otherwise. }\end{cases}$
- Soft thresholding: $f_{\epsilon}^{S}(x):=\operatorname{sgn}(x)(|x|-\epsilon)_{+}$.

An entrywise variant motivated by modern applications

Consider the following functions for $\epsilon>0$:

- Hard thresholding: $f_{\epsilon}^{H}(x):= \begin{cases}x, & \text { if }|x|>\epsilon, \\ 0, & \text { otherwise. }\end{cases}$
- Soft thresholding: $f_{\epsilon}^{S}(x):=\operatorname{sgn}(x)(|x|-\epsilon)_{+}$.

In modern high-dimensional probability and statistics, these functions are often applied entrywise to the off-diagonal entries of correlation matrices to improve the quality of the correlation matrix.

An entrywise variant motivated by modern applications

Consider the following functions for $\epsilon>0$:

- Hard thresholding: $f_{\epsilon}^{H}(x):= \begin{cases}x, & \text { if }|x|>\epsilon, \\ 0, & \text { otherwise. }\end{cases}$
- Soft thresholding: $f_{\epsilon}^{S}(x):=\operatorname{sgn}(x)(|x|-\epsilon)_{+}$.

In modern high-dimensional probability and statistics, these functions are often applied entrywise to the off-diagonal entries of correlation matrices to improve the quality of the correlation matrix.

Even for sparse correlation matrices, no universal ϵ exists such that the application of f_{ϵ}^{H} or f_{ϵ}^{S} on the off-diagonal entries preserves positivity.

Loewner positive functions operating on off-diagonals

Definition Let $I \subset \mathbb{C}, f: I \rightarrow \mathbb{C}$, and $n \geq 1$. Define $f_{*}[-]: I^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ as

$$
f_{*}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & \ldots & f\left(a_{2 n}\right) \\
f\left(a_{31}\right) & f\left(a_{32}\right) & a_{33} & & f\left(a_{3 n}\right) \\
& \vdots & & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & f\left(a_{n 3}\right) & \ldots & a_{n n}
\end{array}\right) \quad \text { for all } A=\left(a_{i j}\right) \in I^{n \times n} .
$$

Loewner positive functions operating on off-diagonals

Definition Let $I \subset \mathbb{C}, f: I \rightarrow \mathbb{C}$, and $n \geq 1$. Define $f_{*}[-]: I^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ as

$$
f_{*}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & \ldots & f\left(a_{2 n}\right) \\
f\left(a_{31}\right) & f\left(a_{32}\right) & a_{33} & & f\left(a_{3 n}\right) \\
& \vdots & & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & f\left(a_{n 3}\right) & \ldots & a_{n n}
\end{array}\right) \quad \text { for all } A=\left(a_{i j}\right) \in I^{n \times n} .
$$

Classification in a real setting:
Theorem (Guillot-Rajaratnam [Trans. Amer. Math. Soc. 2015])
Let $I=(-\rho, \rho)$ for $0<\rho \leq \infty$, and $f: I \rightarrow \mathbb{R}$. TFAE:

1. $f_{*}[A] \in \mathbb{P}_{n}$ for all $A=\left(a_{i j}\right) \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. $\quad f(x)=\sum_{k \geq 0} c_{k} x^{k}$ for all $x \in I$, where $c_{k} \geq 0$ for all $k \geq 0$, and

Loewner positive functions operating on off-diagonals

Definition Let $I \subset \mathbb{C}, f: I \rightarrow \mathbb{C}$, and $n \geq 1$. Define $f_{*}[-]: I^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ as

$$
f_{*}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & \ldots & f\left(a_{2 n}\right) \\
f\left(a_{31}\right) & f\left(a_{32}\right) & a_{33} & & f\left(a_{3 n}\right) \\
& \vdots & & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & f\left(a_{n 3}\right) & \ldots & a_{n n}
\end{array}\right) \quad \text { for all } A=\left(a_{i j}\right) \in I^{n \times n} .
$$

Classification in a real setting:
Theorem (Guillot-Rajaratnam [Trans. Amer. Math. Soc. 2015])
Let $I=(-\rho, \rho)$ for $0<\rho \leq \infty$, and $f: I \rightarrow \mathbb{R}$. TFAE:

1. $f_{*}[A] \in \mathbb{P}_{n}$ for all $A=\left(a_{i j}\right) \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. $-f(x)=\sum_{k \geq 0} c_{k} x^{k}$ for all $x \in I$, where $c_{k} \geq 0$ for all $k \geq 0$, and

- $|f(x)| \leq|x|$ for all $x \in I$.

$$
f[A]=\left(\begin{array}{ccccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \cdots \\
f\left(a_{21}\right) & f\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \cdots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & f\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \quad \Longleftrightarrow \quad f \text { is AM. }
$$

$$
\begin{aligned}
& f[A]=\left(\begin{array}{ccccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & f\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & f\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \quad \Longleftrightarrow \quad f \text { is AM. } \\
& f_{*}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & a_{33} & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \Longrightarrow f \text { is AM. }
\end{aligned}
$$

$$
\begin{aligned}
& f[A]=\left(\begin{array}{ccccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & f\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & f\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \\
& f_{*}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \cdots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & a_{33} & f\left(a_{34}\right) & \cdots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \\
& f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & a_{12} & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
a_{21} & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \\
& \Longleftrightarrow \quad f \text { is } \mathrm{AM} \text {. } \\
& \Longrightarrow \quad f \text { is } \mathrm{AM} . \\
& \Longrightarrow \quad \text { ?? }
\end{aligned}
$$

$$
\begin{aligned}
& f[A]=\left(\begin{array}{ccccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & f\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & f\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \\
& f_{*}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & a_{33} & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \\
& f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & a_{12} & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
a_{21} & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \\
& (g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & g\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
g\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right) \\
& \Longleftrightarrow \quad f \text { is } \mathrm{AM} \text {. } \\
& \Longrightarrow \quad f \text { is } \mathrm{AM} \text {. }
\end{aligned}
$$

Two functions acting entrywise

Definition

Let $n \geq 1$ be an integer, $I \subset \mathbb{C}$ and $g, f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]}$, where $[n]:=\{1, \ldots, n\}$. Define

$$
(g, f)_{T_{n}}[-]: I^{n \times n} \rightarrow \mathbb{C}^{n \times n},
$$

such that for all $A=\left(a_{i j}\right) \in I^{n \times n}$,

$$
(g, f)_{T_{n}}[A]_{i j}:= \begin{cases}g\left(a_{i j}\right) & \text { if } i, j \in U \text { for some } U \in T_{n}, \\ f\left(a_{i j}\right) & \text { otherwise. }\end{cases}
$$

For instance

$$
T_{3}=\{\{1,3\},\{2\}\} \quad \Longrightarrow \quad(g, f)_{T_{3}}[A]=\left(\begin{array}{lll}
g\left(a_{11}\right) & f\left(a_{12}\right) & g\left(a_{13}\right) \\
f\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) \\
g\left(a_{31}\right) & f\left(a_{32}\right) & g\left(a_{33}\right)
\end{array}\right)
$$

Two functions acting entrywise

Definition

Let $n \geq 1$ be an integer, $I \subset \mathbb{C}$ and $g, f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]}$, where $[n]:=\{1, \ldots, n\}$. Define

$$
(g, f)_{T_{n}}[-]: I^{n \times n} \rightarrow \mathbb{C}^{n \times n}
$$

such that for all $A=\left(a_{i j}\right) \in I^{n \times n}$,

$$
(g, f)_{T_{n}}[A]_{i j}:= \begin{cases}g\left(a_{i j}\right) & \text { if } i, j \in U \text { for some } U \in T_{n} \\ f\left(a_{i j}\right) & \text { otherwise }\end{cases}
$$

For instance

$$
\begin{aligned}
& T_{3}=\{\{1,3\},\{2\}\} \Longrightarrow \quad(g, f)_{T_{3}}[A]=\left(\begin{array}{lll}
g\left(a_{11}\right) & f\left(a_{12}\right) & g\left(a_{13}\right) \\
f\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) \\
g\left(a_{31}\right) & f\left(a_{32}\right) & g\left(a_{33}\right)
\end{array}\right) \\
& T_{4}=\{\{1\},\{2,3\},\{2,4\}\} \quad \Longrightarrow \quad(g, f)_{T_{4}}[A]=\left(\begin{array}{llll}
g\left(a_{11}\right) & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) \\
f\left(a_{21}\right) & g\left(a_{22}\right) & g\left(a_{23}\right) & g\left(a_{24}\right) \\
f\left(a_{31}\right) & g\left(a_{32}\right) & g\left(a_{33}\right) & f\left(a_{34}\right) \\
f\left(a_{41}\right) & g\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right)
\end{array}\right)
\end{aligned}
$$

Question

Given a sequence $\left(T_{n}\right)_{n \geq 1}$, what are all those functions $g, f: I \rightarrow \mathbb{C}$ such that the two-function operation $(g, f)_{T_{n}}[-]$ preserves positivity over $\mathbb{P}_{n}(I)$ for all $n \geq 1$?

Question

Given a sequence $\left(T_{n}\right)_{n \geq 1}$, what are all those functions $g, f: I \rightarrow \mathbb{C}$ such that the two-function operation $(g, f)_{T_{n}}[-]$ preserves positivity over $\mathbb{P}_{n}(I)$ for all $n \geq 1$?

Notation

For $g=$ Id we use $f_{T_{n}}[-]:=(g, f)_{T_{n}}[-]$.

Question

Given a sequence $\left(T_{n}\right)_{n \geq 1}$, what are all those functions $g, f: I \rightarrow \mathbb{C}$ such that the two-function operation $(g, f)_{T_{n}}[-]$ preserves positivity over $\mathbb{P}_{n}(I)$ for all $n \geq 1$?

Notation

For $g=\mathrm{Id}$ we use $f_{T_{n}}[-]:=(g, f)_{T_{n}}[-]$.

Note that

- $f_{T_{n}}[-]=f[-]$ when $T_{n}=\{\emptyset\}$ (Schoenberg, Rudin / Herz / Vasudeva)
- $f_{T_{n}}[-]=f_{*}[-]$ when $T_{n}=\{\{1\},\{2\}, \ldots,\{n\}\}$.
(Guillot-Rajaratnam)
- In all of these cases, the preservers are absolutely monotonic / infinite sums of Herz functions.

Question

Given a sequence $\left(T_{n}\right)_{n \geq 1}$, what are all those functions $g, f: I \rightarrow \mathbb{C}$ such that the two-function operation $(g, f)_{T_{n}}[-]$ preserves positivity over $\mathbb{P}_{n}(I)$ for all $n \geq 1$?

Notation

For $g=$ Id we use $f_{T_{n}}[-]:=(g, f)_{T_{n}}[-]$.

Note that

- $f_{T_{n}}[-]=f[-]$ when $T_{n}=\{\emptyset\}$ (Schoenberg, Rudin / Herz / Vasudeva)
- $f_{T_{n}}[-]=f_{*}[-]$ when $T_{n}=\{\{1\},\{2\}, \ldots,\{n\}\}$.
(Guillot-Rajaratnam)
- In all of these cases, the preservers are absolutely monotonic / infinite sums of Herz functions.

Our contribution

- Classification for every other $\left(T_{n}\right)_{n \geq 1}$.
- This uncovers dimension-free preservers that are not absolutely monotonic / infinite sums of Herz functions.

		(g, f)	(g, f)	f	f
	$\left(T_{n}\right)_{n \geq 1}$	$\begin{gathered} I=D(0, \rho), \\ \text { where } 0<\rho \leq \infty \end{gathered}$	where $0<\rho \leq \infty$	$\begin{gathered} I=D(0, \rho), \\ \text { where } 0<\rho \leq \infty \end{gathered}$	$\begin{gathered} I_{\rho,} \\ \text { where } 0<\rho \leq \infty \\ \hline \hline \end{gathered}$
1.	$\begin{gathered} T_{n}=\emptyset \\ \text { for all } n \geq 1 \end{gathered}$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0 \end{gathered}$	$\begin{gathered} f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ \text { where all } c_{k} \geq 0 \end{gathered}$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0 \end{gathered}$	$\begin{gathered} f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ \text { where all } c_{k} \geq 0 \end{gathered}$
2.	$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{n} \neq \emptyset \text { for some } n \geq 2$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0, \\ g(x) \geq f(x) \text { over } I \geq 0 \end{gathered}$	$\begin{gathered} f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ \text { where all } c_{k} \geq 0, \\ g(x) \geq f(x) \text { over } I_{\geq 0} \end{gathered}$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0 \\ x \geq f(x) \text { over } I_{\geq 0} \end{gathered}$	$\begin{aligned} & f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ & \text { where all } c_{k} \geq 0, \\ & x \geq f(x) \text { over } I_{\geq 0} \end{aligned}$
3.	$\begin{gathered} T_{n}=\text { subpartition }([n]) \\ \text { for all } n \geq 3, \text { and } \\ T_{n} \nsubseteq\{\{j\}: j \in[n]\} \\ \text { for some } n \geq 3 \end{gathered}$	$\begin{gathered} \text { for } g(z)=\alpha z^{m} \bar{z}^{k} \\ \text { where } \alpha \geq 0, m, k \in \mathbb{Z} \geq 0 \\ f(z)=\operatorname{cg}(z) \text {, where } \end{gathered}$	$\begin{gathered} \text { for } g(z)=\alpha x^{k} \\ \text { where } \alpha \geq 0, k \in \mathbb{Z}_{\geq 0}: \\ f(x)=c g(x) \text {, where } \end{gathered}$	$f(z)=c z$, where	$f(x)=c x$, where
3.a	$\begin{gathered} \sqcup_{J \in T_{n}} J=[n] \\ \text { for all } n \geq 1 \text {, and } \\ K:=\max _{n \geq 1}\left\|T_{n}\right\| \in \mathbb{Z} \end{gathered}$	$c \in[-1 /(K-1), 1]$			
3.b	remaining sub-cases	$c \in[0,1]$	$c \in[0,1]$	$c \in[0,1]$	$c \in[0,1]$
4.	$\begin{gathered} T_{n} \neq \text { subpartition }([n]) \\ \text { for some } n \geq 3 \end{gathered}$	$\begin{gathered} f(z)=g(z)= \\ \sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}, \\ \text { where } c_{m, k} \geq 0 \end{gathered}$	$\begin{gathered} f(x)=g(x)= \\ \sum_{k \geq 0} c_{k} x^{k}, \\ \text { where } c_{k} \geq 0 \end{gathered}$	$\begin{gathered} f(z)=z \\ \text { (over any } I \subseteq \mathbb{C} \text {) } \end{gathered}$	$\begin{gathered} f(x)=x \\ \text { (over any } I \subseteq \mathbb{R} \text {) } \end{gathered}$

TABLE 2. $\left(T_{n}\right)_{n \geq 1}$ against (g, f) and f for domains $D(0, \rho)$ and I_{ρ}, where I_{ρ} is any of the real domains $(-\rho, \rho),(0, \rho)$ and $[0, \rho)$. 'Subpartition $([n])$ ' here refers to a partition of a subset of $[n]$. Here we study the dimension free case, i.e. assume for all $n \geq 2$ that $T_{n} \neq\{[n]\}$; and for each n, the subsets in T_{n} are pairwise incomparable.

PART 3

The classifications.

Main reference

P.V., Positivity preservers forbidden to operate on diagonal blocks. Trans. Amer. Math. Soc., 376, pp. 5261-5279, 2023.

Theorems A, B, and C

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

Theorem A

$$
(g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

- Suppose $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$.

Theorem A

$$
(g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

- Suppose $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$.

TFAE.

1. $(g, f)_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. $\downarrow f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.

- $g(z) \geq f(z)$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.
- Two-fold generalization of Guillot-Rajaratnam (Trans. Amer. Math. Soc. 2015).

Theorem B

$$
(g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & g\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
g\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

- Suppose
- each T_{n} is a partition of a subset of $[n]$, and
- there exists $N \geq 3$ such that $T_{N} \nsubseteq\{\{j\}: j \in[N]\}$.

Theorem B

$$
(g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & g\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
g\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

- Suppose
- each T_{n} is a partition of a subset of $[n]$, and
- there exists $N \geq 3$ such that $T_{N} \nsubseteq\{\{j\}: j \in[N]\}$.
- Suppose g is a Herz function, i.e., $g(z):=\alpha z^{m} \bar{z}^{k}$ for $\alpha \geq 0$ and integer $m, k \geq 0$.

Theorem B

$$
(g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & g\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
g\left(a_{21}\right) & g\left(a_{22}\right) & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

- Suppose
- each T_{n} is a partition of a subset of $[n]$, and
- there exists $N \geq 3$ such that $T_{N} \nsubseteq\{\{j\}: j \in[N]\}$.
- Suppose g is a Herz function, i.e., $g(z):=\alpha z^{m} \bar{z}^{k}$ for $\alpha \geq 0$ and integer $m, k \geq 0$. TFAE.

1. $(g, f)_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. $f(z)=c g(z)$ for all $z \in I$, where,
a. $c \in[-1 /(K-1), 1]$ - if T_{n} is a partition of $[n]$ for all $n \geq 1$, and $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.
b. $c \in[0,1]$ for the remaining cases.

Theorem C

$$
(g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & g\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
g\left(a_{21}\right) & g\left(a_{22}\right) & g\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & g\left(a_{32}\right) & g\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

- Suppose there exists $N \geq 3$ such that T_{N} is not a partition of any subset of [N].

Theorem C

$$
(g, f)_{T_{n}}[A]=\left(\begin{array}{ccccc}
g\left(a_{11}\right) & g\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
g\left(a_{21}\right) & g\left(a_{22}\right) & g\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & g\left(a_{32}\right) & g\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & g\left(a_{44}\right) & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

Let $I=D(0, \rho)$ for $0<\rho \leq \infty$, and $g, f: I \rightarrow \mathbb{C}$. Let $T_{n} \subseteq 2^{[n]}$ for all $n \geq 1$ such that at least one T_{n} is nonempty.

- Suppose there exists $N \geq 3$ such that T_{N} is not a partition of any subset of $[N]$. TFAE.

1. $(g, f)_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. $g(z)=f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.

Theorem A	Theorem B	Theorem C
g acts on diagonal entries then $f \leq g$	g acts on off-diagonal entries with no overlap then $f=c g$ with $\|c\| \leq 1$	g acts on off-diagonal entries with overlap then $f=g$

Table 2.2: Observe the decreasing difference between g and f as the size of blocks where g operates grows.

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. Exactly one of the following holds:
S. If $T_{n}=\emptyset$ for all $n \geq 1$, then \rightsquigarrow Schoenberg, Rudin / Herz / Vasudeva

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. Exactly one of the following holds:
S. If $T_{n}=\emptyset$ for all $n \geq 1$, then \rightsquigarrow Schoenberg, Rudin / Herz / Vasudeva

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then
- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0} . \rightsquigarrow$ Guillot-Rajaratnam (real)

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. Exactly one of the following holds:
S. If $T_{n}=\emptyset$ for all $n \geq 1$, then \rightsquigarrow Schoenberg, Rudin / Herz / Vasudeva

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then
- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0} . \rightsquigarrow$ Guillot-Rajaratnam (real)
B. If T_{n} is a partition of a subset of $[n]$ for all $n \geq 1$, and there exists $N \geq 3$ such that there is a $U \in T_{N}$ with $|U| \geq 2$, then

$$
f(z)=c z \text { for all } z \in I
$$

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. Exactly one of the following holds:
S. If $T_{n}=\emptyset$ for all $n \geq 1$, then \rightsquigarrow Schoenberg, Rudin / Herz / Vasudeva

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then
- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0} . \rightsquigarrow$ Guillot-Rajaratnam (real)
B. If T_{n} is a partition of a subset of $[n]$ for all $n \geq 1$, and there exists $N \geq 3$ such that there is a $U \in T_{N}$ with $|U| \geq 2$, then

$$
f(z)=c z \text { for all } z \in I, \text { where }
$$

a. $c \in[-1 /(K-1), 1]$, where $\max _{n \geq 1}\left|T_{n}\right|=: K<\infty$, and each T_{n} is a partition of $[n]$.

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. Exactly one of the following holds:
S. If $T_{n}=\emptyset$ for all $n \geq 1$, then \rightsquigarrow Schoenberg, Rudin / Herz / Vasudeva

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then
- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0} . \rightsquigarrow$ Guillot-Rajaratnam (real)
B. If T_{n} is a partition of a subset of $[n]$ for all $n \geq 1$, and there exists $N \geq 3$ such that there is a $U \in T_{N}$ with $|U| \geq 2$, then

$$
f(z)=c z \text { for all } z \in I, \text { where }
$$

a. $c \in[-1 /(K-1), 1]$, where $\max _{n \geq 1}\left|T_{n}\right|=: K<\infty$, and each T_{n} is a partition of $[n]$.
b. $c \in[0,1]$ for the remaining cases.

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. Exactly one of the following holds:
S. If $T_{n}=\emptyset$ for all $n \geq 1$, then \rightsquigarrow Schoenberg, Rudin / Herz / Vasudeva

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then
- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0} . \rightsquigarrow$ Guillot-Rajaratnam (real)
B. If T_{n} is a partition of a subset of $[n]$ for all $n \geq 1$, and there exists $N \geq 3$ such that there is a $U \in T_{N}$ with $|U| \geq 2$, then

$$
f(z)=c z \text { for all } z \in I, \text { where }
$$

a. $c \in[-1 /(K-1), 1]$, where $\max _{n \geq 1}\left|T_{n}\right|=: K<\infty$, and each T_{n} is a partition of $[n]$.
b. $c \in[0,1]$ for the remaining cases.
C. If T_{N} is not a partition of any subset of $[N]$ for some $N \geq 3$, then

$$
f(z)=z \text { for all } z \in I
$$

f acts on all the entries	f is forbidden from some 1×1 principal block	f is forbidden from some $k \times k$ principal block, $k \geq 2$
\Uparrow	\Downarrow	\Uparrow
f is an infinite sum of Herz functions	f is an infinite sum of Herz functions, which is pointwise bounded-above by the identity function	f is linear, vanishing at the origin, and sometimes with negative slope

Table 2.1: Observe the contrast in the class of the positivity preservers when the size of the forbidden principal block is increased from 1×1 to $k \times k$, for $k \geq 2$.

PART 4

Proofs.

Folklore results on matrices

(a) (Weyl's inequality.) Let $\lambda_{\max }(X)$ and $\lambda_{\min }(X)$, respectively, denote the maximum and minimum eigenvalues of square matrix X. Then, for $n \times n$ Hermitian matrices A and B,

$$
\lambda_{\min }(A)+\lambda_{\max }(B) \geq \lambda_{\min }(A+B) \geq \lambda_{\min }(A)+\lambda_{\min }(B)
$$

Note that $\lambda_{\min }(X)$ is super-additive over the class of Hermitian matrices X.
(b) (Eigen-pairs of the tensor product.) Let $A_{n \times n}$ and $B_{m \times m}$ be two Hermitian matrices. Suppose

$$
\begin{array}{ll}
A \text { has eigen-pairs }\left(\lambda_{i}(A), v_{i}(A)\right), & 1 \leq i \leq n, \text { and } \\
B \text { has eigen-pairs }\left(\lambda_{j}(B), v_{j}(B)\right), & 1 \leq j \leq m
\end{array}
$$

Then,

$$
A \otimes B \text { has eigen-pairs }\left(\lambda_{i}(A) \lambda_{j}(B), v_{i}(A) \otimes v_{j}(B)\right), \quad \begin{aligned}
& 1 \leq i \leq n \\
& \\
& 1 \leq j \leq m
\end{aligned}
$$

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
2. Exactly one of the following holds:
S. If $T_{n}=\emptyset$ for all $n \geq 1$, then \rightsquigarrow Schoenberg, Rudin / Herz / Vasudeva

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then
- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0} . \rightsquigarrow$ Guillot-Rajaratnam (real)
B. If T_{n} is a partition of a subset of $[n]$ for all $n \geq 1$, and there exists $N \geq 3$ such that there is a $U \in T_{N}$ with $|U| \geq 2$, then

$$
f(z)=c z \text { for all } z \in I, \text { where }
$$

a. $c \in[-1 /(K-1), 1]$, where $\max _{n \geq 1}\left|T_{n}\right|=: K<\infty$, and each T_{n} is a partition of $[n]$.
b. $c \in[0,1]$ for the remaining cases.
C. If T_{N} is not a partition of any subset of $[N]$ for some $N \geq 3$, then

$$
f(z)=z \text { for all } z \in I
$$

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.
$(\mathbf{A}) \Longrightarrow(\mathbf{1})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

$(\mathbf{A}) \Longrightarrow(\mathbf{1})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.
$(\mathbf{A}) \Longrightarrow(\mathbf{1})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.

Observe that,

$$
f_{T_{n}}[A]=f[A]+\mathbf{0}_{T_{n}}[A-f[A]], \quad \text { for all } A \in \mathbb{P}_{n}(I), \text { for all } n \geq 1
$$

$(\mathbf{A}) \Longrightarrow(\mathbf{1})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.

Observe that,

$$
f_{T_{n}}[A]=f[A]+\mathbf{0}_{T_{n}}[A-f[A]], \quad \text { for all } A \in \mathbb{P}_{n}(I), \text { for all } n \geq 1
$$

- $f[A]$ is PSD by the Herz theorem.
- Since, $z \geq f(z)$ for all $z \in I \cap \mathbb{R}_{\geq 0}, \mathbf{0}_{T_{n}}[A-f[A]]$ is PSD.
$(\mathbf{A}) \Longrightarrow(\mathbf{1})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.

Observe that,

$$
f_{T_{n}}[A]=f[A]+\mathbf{0}_{T_{n}}[A-f[A]], \quad \text { for all } A \in \mathbb{P}_{n}(I), \text { for all } n \geq 1
$$

- $f[A]$ is PSD by the Herz theorem.
- Since, $z \geq f(z)$ for all $z \in I \cap \mathbb{R}_{\geq 0}, \mathbf{0}_{T_{n}}[A-f[A]]$ is PSD.

Therefore, $f_{T_{n}}[A] \in \mathbb{P}_{n}$. This completes the implication.
$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & f\left(a_{12}\right) & f\left(a_{13}\right) & f\left(a_{14}\right) & \ldots \\
f\left(a_{21}\right) & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \\
f\left(a_{31}\right) & f\left(a_{32}\right) & f\left(a_{33}\right) & f\left(a_{34}\right) & \ldots \\
f\left(a_{41}\right) & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
\left(\begin{array}{cccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)
\end{array}\right)_{n \times n}
$$

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

$$
\left.\left(\begin{array}{cccc}
f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)
\end{array}\right)_{n \times n} \quad \begin{array}{c}
f\left(a_{12}\right) \\
\cdots
\end{array} \quad \begin{array}{ccc}
a_{11} & f\left(a_{1 n}\right) \\
f\left(a_{21}\right) & a_{22} & \cdots \\
\vdots\left(a_{2 n}\right) \\
f\left(a_{n 1}\right) & \vdots\left(a_{n 2}\right) & \cdots \\
\vdots
\end{array} a_{n n}\right)_{n \times n}
$$

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.
$\left(\begin{array}{cccc}f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\ f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)\end{array}\right)_{n \times n} \quad$ OR $\quad\left(\begin{array}{cccc}a_{11} & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\ f\left(a_{21}\right) & a_{22} & \cdots & f\left(a_{2 n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & a_{n n}\end{array}\right)_{n \times n}$

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R} \geq 0$.
$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.
$\left(\begin{array}{cccc}f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\ f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)\end{array}\right)_{n \times n} \quad$ OR $\quad\left(\begin{array}{cccc}a_{11} & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\ f\left(a_{21}\right) & a_{22} & \cdots & f\left(a_{2 n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & a_{n n}\end{array}\right)_{n \times n}$

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R} \geq 0$.
- If $f[A]$ is PSD for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$, then invoke Herz theorem.
- If $f_{*}[A]$ is PSD for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$, then we do the following.

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch, cont.)

$$
\begin{aligned}
f_{*}\left[\mathbf{1}_{m} \otimes A\right] & =f\left[\mathbf{1}_{m} \otimes A\right]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right) \\
& =\mathbf{1}_{m} \otimes f[A]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right) .
\end{aligned}
$$

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch, cont.)

$$
\begin{aligned}
f_{*}\left[\mathbf{1}_{m} \otimes A\right] & =f\left[\mathbf{1}_{m} \otimes A\right]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right) \\
& =\mathbf{1}_{m} \otimes f[A]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)
\end{aligned}
$$

Using Weyl's inequality for Hermitian matrices,

$$
\begin{aligned}
0 \leq \lambda_{\min }\left(f_{*}\left[\mathbf{1}_{m} \otimes A\right]\right) & =\lambda_{\min }\left(\mathbf{1}_{m} \otimes f[A]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)\right) \\
& \leq \lambda_{\min }\left(\mathbf{1}_{m} \otimes f[A]\right)+\lambda_{\max }\left(\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)\right) \\
& \leq m \lambda_{\min }(f[A])+\max _{i \in[1, n]}\left(a_{i i}-f\left(a_{i i}\right)\right)
\end{aligned}
$$

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch, cont.)

$$
\begin{aligned}
f_{*}\left[\mathbf{1}_{m} \otimes A\right] & =f\left[\mathbf{1}_{m} \otimes A\right]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right) \\
& =\mathbf{1}_{m} \otimes f[A]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)
\end{aligned}
$$

Using Weyl's inequality for Hermitian matrices,

$$
\begin{aligned}
0 \leq \lambda_{\min }\left(f_{*}\left[\mathbf{1}_{m} \otimes A\right]\right) & =\lambda_{\min }\left(\mathbf{1}_{m} \otimes f[A]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)\right) \\
& \leq \lambda_{\min }\left(\mathbf{1}_{m} \otimes f[A]\right)+\lambda_{\max }\left(\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)\right) \\
& \leq m \lambda_{\min }(f[A])+\max _{i \in[1, n]}\left(a_{i i}-f\left(a_{i i}\right)\right)
\end{aligned}
$$

This gives us,

$$
\lambda_{\min }(f[A]) \geq-\frac{1}{m} \max _{i \in[1, n]}\left(a_{i i}-f\left(a_{i i}\right)\right)
$$

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch, cont.)

$$
\begin{aligned}
f_{*}\left[\mathbf{1}_{m} \otimes A\right] & =f\left[\mathbf{1}_{m} \otimes A\right]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right) \\
& =\mathbf{1}_{m} \otimes f[A]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)
\end{aligned}
$$

Using Weyl's inequality for Hermitian matrices,

$$
\begin{aligned}
0 \leq \lambda_{\min }\left(f_{*}\left[\mathbf{1}_{m} \otimes A\right]\right) & =\lambda_{\min }\left(\mathbf{1}_{m} \otimes f[A]+\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)\right) \\
& \leq \lambda_{\min }\left(\mathbf{1}_{m} \otimes f[A]\right)+\lambda_{\max }\left(\operatorname{Id}_{m} \otimes \operatorname{diag}\left(a_{i i}-f\left(a_{i i}\right)\right)\right) \\
& \leq m \lambda_{\min }(f[A])+\max _{i \in[1, n]}\left(a_{i i}-f\left(a_{i i}\right)\right)
\end{aligned}
$$

This gives us,

$$
\lambda_{\min }(f[A]) \geq-\frac{1}{m} \max _{i \in[1, n]}\left(a_{i i}-f\left(a_{i i}\right)\right)
$$

Since m can be arbitrarily large,

$$
\lambda_{\min }(f[A]) \geq 0
$$

Invoke Herz theorem to conclude,

$$
f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \text { for all } z \in I, \text { where } c_{m, k} \geq 0
$$

$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch, cont.)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.
$\left(\begin{array}{cccc}f\left(a_{11}\right) & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\ f\left(a_{21}\right) & f\left(a_{22}\right) & \cdots & f\left(a_{2 n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & f\left(a_{n n}\right)\end{array}\right)_{n \times n} \quad$ OR $\quad\left(\begin{array}{cccc}a_{11} & f\left(a_{12}\right) & \cdots & f\left(a_{1 n}\right) \\ f\left(a_{21}\right) & a_{22} & \cdots & f\left(a_{2 n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f\left(a_{n 1}\right) & f\left(a_{n 2}\right) & \cdots & a_{n n}\end{array}\right)_{n \times n}$

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.
$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch, cont.)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.
$(\mathbf{1}) \Longrightarrow(\mathbf{A})$ (sketch, cont.)
$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. The following holds:

- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.

Since $T_{N} \neq \emptyset$ for some $N \geq 2$, by the positive semidefiniteness of

$$
\left(\begin{array}{cc}
z & f(z) \\
f(z) & z
\end{array}\right) \text { or }\left(\begin{array}{cc}
z & f(z) \\
f(z) & f(z)
\end{array}\right)
$$

we have $f(z) \leq z$, for $z \in I \cap \mathbb{R}_{\geq 0}$.

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
A. If $T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{N} \neq \emptyset$ for some $N \geq 2$, then

- $f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}$ for all $z \in I$, where $c_{m, k} \geq 0$ for all $m, k \geq 0$.
- $f(z) \leq z$ for all $z \in I \cap \mathbb{R}_{\geq 0}$.

Corollary D

Let $I=D(0, \rho)$ for $0<\rho \leq \infty ; f: I \rightarrow \mathbb{C}$. Suppose $T_{n} \subset 2^{[n]} \backslash\{[n]\}, n \geq 1$. TFAE:

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.
B. If T_{n} is a partition of a subset of $[n]$ for all $n \geq 1$, and there exists $N \geq 3$ such that there is a $U \in T_{N}$ with $|U| \geq 2$, then

$$
f(z)=c z \text { for all } z \in I, \text { where }
$$

a. $c \in[-1 /(K-1), 1]$, where $\max _{n \geq 1}\left|T_{n}\right|=K \in \mathbb{Z}$, if each T_{n} is a partition of $[n]$.

$(\mathbf{1}) \Longleftrightarrow($ B.a)

$$
f_{T_{n}}[A]=\left(\begin{array}{ccccc}
a_{11} & a_{12} & f\left(a_{13}\right) & f\left(a_{14}\right) & \cdots \\
a_{21} & a_{22} & f\left(a_{23}\right) & f\left(a_{24}\right) & \cdots \\
f\left(a_{13}\right) & f\left(a_{23}\right) & a_{33} & f\left(a_{34}\right) & \cdots \\
\vdots & f\left(a_{42}\right) & f\left(a_{43}\right) & a_{44} & \\
\vdots & \vdots & & \ddots
\end{array}\right)_{n \times n}
$$

$(\mathbf{1}) \Longrightarrow($ B.a) (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$.

$(\mathbf{1}) \Longrightarrow($ B.a) (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

$(\mathbf{1}) \Longrightarrow($ B.a) (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\left\{\left\{u_{1}, u_{2}, \ldots\right\},\left\{u_{3}, \ldots\right\}, \ldots\right\}$.

$(\mathbf{1}) \Longrightarrow($ B.a) (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.

$(\mathbf{1}) \Longrightarrow(B . a)$ (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

$(\mathbf{1}) \Longrightarrow(B . a)$ (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

$(\mathbf{1}) \Longrightarrow(B . a)$ (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

Step 1. Observe that, for $|z| \leq w<\rho,\left(\begin{array}{cccc}|z|^{2} / w & z & z & \mathbf{0} \\ \bar{z} & w & w & \cdots \\ \bar{z} & w & w & \\ \mathbf{0}^{T} & \vdots & & \ddots\end{array}\right)_{n_{1} \times n_{1}} \in \mathbb{P}_{n_{1}}(I)$.

$(\mathbf{1}) \Longrightarrow(B . a)$ (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

Step 1. Observe that, for $|z| \leq w<\rho,\left(\begin{array}{cccc}|z|^{2} / w & z & f(z) & \\ \bar{z} & w & f(w) & \ldots \\ \overline{f(z)} & f(w) & w & \\ & \vdots & & \ddots\end{array}\right) \in \mathbb{P}_{n_{1}}$.

$(\mathbf{1}) \Longrightarrow(B . a)$ (sketch)

Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

Step 1. Observe that, for $|z| \leq w<\rho,\left(\begin{array}{cccc}|z|^{2} / w & z & f(z) & \\ \bar{z} & w & f(w) & \ldots \\ \overline{f(z)} & f(w) & w & \\ & \vdots & & \ddots\end{array}\right) \in \mathbb{P}_{n_{1}}$.
Leading 3×3 minor is nonnegative, which needs

$$
-\left(z \frac{f(w)}{\sqrt{w}}-\sqrt{w} f(z)\right)^{2} \geq 0
$$

$(\mathbf{1}) \Longrightarrow($ B.a) (sketch)
Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

Step 1. Observe that, for $|z| \leq w<\rho,\left(\begin{array}{cccc}|z|^{2} / w & z & f(z) & \\ \bar{z} & w & f(w) & \ldots \\ \overline{f(z)} & f(w) & w & \\ & \vdots & & \ddots .\end{array}\right) \in \mathbb{P}_{n_{1}}$.
Leading 3×3 minor is nonnegative, which needs

$$
-\left(z \frac{f(w)}{\sqrt{w}}-\sqrt{w} f(z)\right)^{2} \geq 0
$$

and therefore

$$
f(z)=\frac{f(w)}{w} z \quad \text { whenever } \quad|z| \leq w<\rho
$$

Now conclude that

$$
f(z)=c z \text { for all } z \in I, \text { and for some } c \in[-1,1]
$$

$(\mathbf{1}) \Longrightarrow($ B.a) (sketch, cont.)
Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

From Step 1, $f(z)=c z$ for all $z \in I$, for some $c \in[-1,1]$.
$(\mathbf{1}) \Longrightarrow($ B.a) (sketch, cont.)
Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

From Step 1, $f(z)=c z$ for all $z \in I$, for some $c \in[-1,1]$.
Step 2. Suppose $T_{n_{2}}=\left\{U_{1}, U_{2}, \ldots, U_{K}\right\}$
$(\mathbf{1}) \Longrightarrow($ B.a) (sketch, cont.)
Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

From Step 1, $f(z)=c z$ for all $z \in I$, for some $c \in[-1,1]$.
Step 2. Suppose $T_{n_{2}}=\left\{U_{1}, U_{2}, \ldots, U_{K}\right\}$; suppose $u_{j} \in U_{j}$ for each $j \in[K]$.
$(\mathbf{1}) \Longrightarrow($ B.a) (sketch, cont.)
Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

From Step 1, $f(z)=c z$ for all $z \in I$, for some $c \in[-1,1]$.
Step 2. Suppose $T_{n_{2}}=\left\{U_{1}, U_{2}, \ldots, U_{K}\right\}$; suppose $u_{j} \in U_{j}$ for each $j \in[K]$.
For $0<|z| \in I$,
$f_{*}\left[|z| \mathbf{1}_{K \times K}\right]=\left(\begin{array}{ccc}|z| & c|z| & c|z| \\ c|z| & |z| & c|z| \\ c|z| & c|z| & |z| \\ & \vdots & \\ & \ddots .\end{array}\right)_{K \times K}$ has spectrum $\begin{cases}\lambda_{1}= & (1-c)|z|, \\ \lambda_{2}= & (1+(K-1) c)|z| .\end{cases}$
$(\mathbf{1}) \Longrightarrow($ B.a) (sketch, cont.)
Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

From Step 1, $f(z)=c z$ for all $z \in I$, for some $c \in[-1,1]$.
Step 2. Suppose $T_{n_{2}}=\left\{U_{1}, U_{2}, \ldots, U_{K}\right\}$; suppose $u_{j} \in U_{j}$ for each $j \in[K]$.
For $0<|z| \in I$,
$f_{*}\left[|z| \mathbf{1}_{K \times K}\right]=\left(\begin{array}{ccc}|z| & c|z| & c|z| \\ c|z| & |z| & c|z| \\ c|z| & c|z| & |z| \\ & \vdots & \\ & \ddots\end{array}\right)_{K \times K} \quad$ has spectrum $\left\{\begin{array}{l}\lambda_{1}=(1-c)|z|, \\ \lambda_{2}=(1+(K-1) c)|z| .\end{array}\right.$
Note that this is a principal submatrix of $f_{T_{n_{2}}}\left[|z| \mathbf{1}_{n \times n}\right]$ (corresponding to indices $u_{1}, u_{2}, \ldots, u_{K}$).
$(\mathbf{1}) \Longrightarrow($ B.a) (sketch, cont.)
Each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

- There exists $n_{1} \geq 3$ such that $T_{n_{1}}=\{\{1,2, \ldots\},\{3, \ldots\}, \ldots\}$.
- There exists $n_{2} \geq 2$ such that $\left|T_{n_{2}}\right|=K$.

1. $f_{T_{n}}[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$, for all $n \geq 1$.

From Step 1, $f(z)=c z$ for all $z \in I$, for some $c \in[-1,1]$.
Step 2. Suppose $T_{n_{2}}=\left\{U_{1}, U_{2}, \ldots, U_{K}\right\}$; suppose $u_{j} \in U_{j}$ for each $j \in[K]$.
For $0<|z| \in I$,
$f_{*}\left[|z| \mathbf{1}_{K \times K}\right]=\left(\begin{array}{ccc}|z| & c|z| & c|z| \\ c|z| & |z| & c|z| \\ c|z| & c|z| & |z| \\ & \vdots & \\ & \ddots\end{array}\right)_{K \times K}$ has spectrum $\left\{\begin{array}{l}\lambda_{1}=(1-c)|z|, \\ \lambda_{2}=(1+(K-1) c)|z| .\end{array}\right.$
Note that this is a principal submatrix of $f_{T_{n_{2}}}\left[|z| \mathbf{1}_{n \times n}\right]$ (corresponding to indices $\left.u_{1}, u_{2}, \ldots, u_{K}\right)$. As this is positive, we deduce:

$$
c \in[-1 /(K-1), 1] .
$$

$($ B.a) $\Longrightarrow(\mathbf{1})$ (sketch)

Recall each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.

$($ B.a) $\Longrightarrow(\mathbf{1})$ (sketch)

Recall each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$. B.a. Suppose $f(z)=c z$ for all $z \in I$, where $c \in[-1 /(K-1), 1]$.

$($ B.a) $\Longrightarrow(\mathbf{1})$ (sketch)

Recall each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$. B.a. Suppose $f(z)=c z$ for all $z \in I$, where $c \in[-1 /(K-1), 1]$.

Observe that

$$
f_{T_{n}}[A]=A \circ f_{T_{n}}\left[\mathbf{1}_{n \times n}\right] \quad \text { for all } A \in \mathbb{P}_{n}(I), \text { for all } n \geq 1 .
$$

$($ B.a) $\Longrightarrow(\mathbf{1})$ (sketch)

Recall each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.
B.a. Suppose $f(z)=c z$ for all $z \in I$, where $c \in[-1 /(K-1), 1]$.

Observe that

$$
f_{T_{n}}[A]=A \circ f_{T_{n}}\left[\mathbf{1}_{n \times n}\right] \quad \text { for all } A \in \mathbb{P}_{n}(I), \text { for all } n \geq 1 .
$$

It is enough to show that $f_{T_{n}}\left[\mathbf{1}_{n \times n}\right]$ is PSD.

$($ B.a) $\Longrightarrow(\mathbf{1})$ (sketch)

Recall each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$. B.a. Suppose $f(z)=c z$ for all $z \in I$, where $c \in[-1 /(K-1), 1]$.

Observe that

$$
f_{T_{n}}[A]=A \circ f_{T_{n}}\left[\mathbf{1}_{n \times n}\right] \quad \text { for all } A \in \mathbb{P}_{n}(I), \text { for all } n \geq 1 .
$$

It is enough to show that $f_{T_{n}}\left[\mathbf{1}_{n \times n}\right]$ is PSD.

- The principal submatrices of $f_{T_{n}}\left[\mathbf{1}_{n \times n}\right]$ that are of the form $f_{*}\left[\mathbf{1}_{k \times k}\right]$ where $k \leq K$ have nonnegative eigenvalues $\left\{\begin{array}{l}\lambda_{1}=1-c, \\ \lambda_{2}=1+(k-1) c .\end{array}\right.$ (We saw this in Step 2.)

$($ B.a) $\Longrightarrow(\mathbf{1})$ (sketch)

Recall each T_{n} is a partition of $[n]$ with $2 \leq\left|T_{n}\right| \leq n-1$. Set $K:=\max _{n \geq 1}\left|T_{n}\right|<\infty$.
B.a. Suppose $f(z)=c z$ for all $z \in I$, where $c \in[-1 /(K-1), 1]$.

Observe that

$$
f_{T_{n}}[A]=A \circ f_{T_{n}}\left[\mathbf{1}_{n \times n}\right] \quad \text { for all } A \in \mathbb{P}_{n}(I), \text { for all } n \geq 1
$$

It is enough to show that $f_{T_{n}}\left[\mathbf{1}_{n \times n}\right]$ is PSD.

- The principal submatrices of $f_{T_{n}}\left[\mathbf{1}_{n \times n}\right]$ that are of the form $f_{*}\left[\mathbf{1}_{k \times k}\right]$ where $k \leq K$ have nonnegative eigenvalues $\left\{\begin{array}{l}\lambda_{1}=1-c, \\ \lambda_{2}=1+(k-1) c .\end{array}\right.$ (We saw this in Step 2.)
- Its remaining submatrices have two identical rows, therefore their minor vanishes.

This completes the sketch of the equivalence.

		(g, f)	(g, f)	f	f
	$\left(T_{n}\right)_{n \geq 1}$	$\begin{gathered} I=D(0, \rho), \\ \text { where } 0<\rho \leq \infty \end{gathered}$	where $0<\rho \leq \infty$	$\begin{gathered} I=D(0, \rho), \\ \text { where } 0<\rho \leq \infty \end{gathered}$	$\begin{gathered} I_{\rho,} \\ \text { where } 0<\rho \leq \infty \\ \hline \hline \end{gathered}$
1.	$\begin{gathered} T_{n}=\emptyset \\ \text { for all } n \geq 1 \end{gathered}$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0 \end{gathered}$	$\begin{gathered} f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ \text { where all } c_{k} \geq 0 \end{gathered}$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0 \end{gathered}$	$\begin{gathered} f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ \text { where all } c_{k} \geq 0 \end{gathered}$
2.	$T_{n} \subseteq\{\{j\}: j \in[n]\}$ for all $n \geq 1$, and $T_{n} \neq \emptyset \text { for some } n \geq 2$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0, \\ g(x) \geq f(x) \text { over } I \geq 0 \end{gathered}$	$\begin{gathered} f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ \text { where all } c_{k} \geq 0, \\ g(x) \geq f(x) \text { over } I_{\geq 0} \end{gathered}$	$\begin{gathered} f(z)=\sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k} \\ \text { where all } c_{m, k} \geq 0 \\ x \geq f(x) \text { over } I_{\geq 0} \end{gathered}$	$\begin{aligned} & f(x)=\sum_{k \geq 0} c_{k} x^{k} \\ & \text { where all } c_{k} \geq 0, \\ & x \geq f(x) \text { over } I_{\geq 0} \end{aligned}$
3.	$\begin{gathered} T_{n}=\text { subpartition }([n]) \\ \text { for all } n \geq 3, \text { and } \\ T_{n} \nsubseteq\{\{j\}: j \in[n]\} \\ \text { for some } n \geq 3 \end{gathered}$	$\begin{gathered} \text { for } g(z)=\alpha z^{m} \bar{z}^{k} \\ \text { where } \alpha \geq 0, m, k \in \mathbb{Z} \geq 0 \\ f(z)=\operatorname{cg}(z) \text {, where } \end{gathered}$	$\begin{gathered} \text { for } g(z)=\alpha x^{k} \\ \text { where } \alpha \geq 0, k \in \mathbb{Z}_{\geq 0}: \\ f(x)=c g(x) \text {, where } \end{gathered}$	$f(z)=c z$, where	$f(x)=c x$, where
3.a	$\begin{gathered} \sqcup_{J \in T_{n}} J=[n] \\ \text { for all } n \geq 1 \text {, and } \\ K:=\max _{n \geq 1}\left\|T_{n}\right\| \in \mathbb{Z} \end{gathered}$	$c \in[-1 /(K-1), 1]$			
3.b	remaining sub-cases	$c \in[0,1]$	$c \in[0,1]$	$c \in[0,1]$	$c \in[0,1]$
4.	$\begin{gathered} T_{n} \neq \text { subpartition }([n]) \\ \text { for some } n \geq 3 \end{gathered}$	$\begin{gathered} f(z)=g(z)= \\ \sum_{m, k \geq 0} c_{m, k} z^{m} \bar{z}^{k}, \\ \text { where } c_{m, k} \geq 0 \end{gathered}$	$\begin{gathered} f(x)=g(x)= \\ \sum_{k \geq 0} c_{k} x^{k}, \\ \text { where } c_{k} \geq 0 \end{gathered}$	$\begin{gathered} f(z)=z \\ \text { (over any } I \subseteq \mathbb{C} \text {) } \end{gathered}$	$\begin{gathered} f(x)=x \\ \text { (over any } I \subseteq \mathbb{R} \text {) } \end{gathered}$

TABLE 2. $\left(T_{n}\right)_{n \geq 1}$ against (g, f) and f for domains $D(0, \rho)$ and I_{ρ}, where I_{ρ} is any of the real domains $(-\rho, \rho),(0, \rho)$ and $[0, \rho)$. 'Subpartition $([n])$ ' here refers to a partition of a subset of $[n]$. Here we study the dimension free case, i.e. assume for all $n \geq 2$ that $T_{n} \neq\{[n]\}$; and for each n, the subsets in T_{n} are pairwise incomparable.

Primary contributions

Primary contributions

- Further refines the work of Schoenberg-Rudin, Herz, Vasudeva, and Guillot-Rajaratnam and brings a certain progression in their ideas (and results).

Primary contributions

- Further refines the work of Schoenberg-Rudin, Herz, Vasudeva, and Guillot-Rajaratnam and brings a certain progression in their ideas (and results).
- Discovers novel examples of dimension-free non-absolutely monotonic / non-infinite sum of Herz functions entrywise positivity preservers (in a certain new setting).

Primary contributions

- Further refines the work of Schoenberg-Rudin, Herz, Vasudeva, and Guillot-Rajaratnam and brings a certain progression in their ideas (and results).
- Discovers novel examples of dimension-free non-absolutely monotonic / non-infinite sum of Herz functions entrywise positivity preservers (in a certain new setting).
- Increases the richness of the preserver problem by:
- introducing entrywise variants (g, f) preserving positivity, and
- their classification for real and complex domains.

References 1

[1] Issai Schur.
Bemerkungen zur Theorie der beschränkten Bilinearformenmit unendlich vielen Veränderlichen.
Journal für die Reine und Angewandte Mathematik. [Crelle's Journal], Vol. 140, 1911.
[2] Georg Pólya, Gabor Szegő.
Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie.
Springer-Verlag, Berlin-New York, Series - Heidelberger Taschenbücher, Band 74, 1971.
[3] Isaac J. Schoenberg.
Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espace distanciés vectoriellement applicable sur l'espace de Hilbert".
Annals of Mathematics. Second Series, Vol. 36, no. 3, 1935.
[4] Isaac J. Schoenberg.
Metric spaces and positive definite functions.
Transactions of the American Mathematical Society, Vol. 44, no. 3, 1938.

References 2

[5] Isaac J. Schoenberg.
Positive definite functions on spheres.
Duke Mathematical Journal, Vol. 9, 1942.
[6] Walter Rudin.
Positive definite sequences and absolutely monotonic functions.
Duke Mathematical Journal, Vol. 26, 1959.
[7] Carl S. Herz.
Fonctions opérant sur les fonctions définies-positives.
Université de Grenoble. Annales de I'Institut Fourier, Vol. 13, 1963.
[8] Carl H. FitzGerald, Roger A. Horn.
On fractional Hadamard powers of positive definite matrices.
Journal of Mathematical Analysis and Applications, Vol. 61, no. 3, 1977.

References 3

[9] Jens P.R. Christensen, Paul Ressel.
Functions operating on positive definite matrices and a theorem of Schoenberg. Transactions of the American Mathematical Society, Vol. 243, 1978.
[10] Harkrishan Vasudeva.
Positive definite matrices and absolutely monotonic functions. Indian Journal of Pure and Applied Mathematics, Vol. 10, no. 7, 1979.
[11] Carl H. FitzGerald, Charles A. Micchelli, Allan Pinkus. Functions that preserve families of positive semidefinite matrices.
Linear Algebra and its Applications, Vol. 221, 1995.
[12] Dominique Guillot, Bala Rajaratnam.
Functions preserving positive definiteness for sparse matrices.
Transactions of the American Mathematical Society, Vol. 367, no. 1, 2015.
[13] Alexander Belton, Dominique Guillot, Apoorva Khare, Mihai Putinar.
Matrix positivity preservers in fixed dimension. I.
Advances in Mathematics, Vol. 298, 2016.

References 4

[14] Dominique Guillot, Apoorva Khare, Bala Rajaratnam.
Preserving positivity for rank-constrained matrices.
Transactions of the American Mathematical Society, Vol. 369, no. 9, 2017.
[15] Apoorva Khare, Terence Tao.
On the sign patterns of entrywise positivity preservers in fixed dimension.
American Journal of Mathematics, 143 no. 6, pages 1863-1929, 2021.
[16] Apoorva Khare.
Matrix analysis and entrywise positivity preservers, ($\sim 300 \mathrm{pp}$. , book).
Vol. 471 in London Mathematical Society Lecture Note Series, 2022.
[17] P.V.
Positivity preservers forbidden to operate on diagonal blocks.
Transactions of the American Mathematical Society, 376, pp. 5261-5279, 2023.

