Open Quantum Systems, Quantum Tomography

Chi-Kwong Li

Department of Mathematics, The College of William and Mary; Institute for Quantum Computing, University of Waterloo

Ongoing project with
Mikio Nakahara, Diane Pelejo, Sage Stanish*, Shuhong Wang*.

[^0]
Introduction for open quantum system

- For a closed system, quantum states are represented by unit vectors in a Hilbert space, say, \mathbb{C}^{n} with inner product

$$
\langle x \mid y\rangle=\sum_{j=1}^{n} \bar{x}_{j} y_{j} \text { if }|x\rangle=\left(x_{1}, \ldots, x_{n}\right)^{t},|y\rangle=\left(y_{1}, \ldots, y_{n}\right)^{t}
$$

Introduction for open quantum system

- For a closed system, quantum states are represented by unit vectors in a Hilbert space, say, \mathbb{C}^{n} with inner product

$$
\langle x \mid y\rangle=\sum_{j=1}^{n} \bar{x}_{j} y_{j} \text { if }|x\rangle=\left(x_{1}, \ldots, x_{n}\right)^{t},|y\rangle=\left(y_{1}, \ldots, y_{n}\right)^{t}
$$

- If one set up the measurement device corresponding to the orthonormal basis $\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{n}\right\rangle\right\}$ for \mathbb{C}^{n}, then a measurement of $|x\rangle=\left(x_{1}, \ldots, x_{n}\right)^{t}$ will result in one of the state $\left|u_{j}\right\rangle$ with probability $\left|\left\langle u_{j} \mid x\right\rangle\right|^{2}$.

$$
\text { If }\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\} \text { is used, then }\left|\left\langle e_{j} \mid x\right\rangle\right|^{2}=\left|x_{j}\right|^{2}
$$

Introduction for open quantum system

- For a closed system, quantum states are represented by unit vectors in a Hilbert space, say, \mathbb{C}^{n} with inner product

$$
\langle x \mid y\rangle=\sum_{j=1}^{n} \bar{x}_{j} y_{j} \text { if }|x\rangle=\left(x_{1}, \ldots, x_{n}\right)^{t},|y\rangle=\left(y_{1}, \ldots, y_{n}\right)^{t}
$$

- If one set up the measurement device corresponding to the orthonormal basis $\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{n}\right\rangle\right\}$ for \mathbb{C}^{n}, then a measurement of $|x\rangle=\left(x_{1}, \ldots, x_{n}\right)^{t}$ will result in one of the state $\left|u_{j}\right\rangle$ with probability $\left|\left\langle u_{j} \mid x\right\rangle\right|^{2}$.

$$
\text { If }\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\} \text { is used, then }\left|\left\langle e_{j} \mid x\right\rangle\right|^{2}=\left|x_{j}\right|^{2} \text {. }
$$

- If the measurement device will give a reading λ_{j} when $|x\rangle$ collapses to $\left|u_{j}\right\rangle$, then the expectation of the measurement of $|x\rangle$ will be

$$
\sum_{j=1}^{n} \lambda_{j}\left|\left\langle u_{j} \mid x_{j}\right\rangle\right|^{2}=\operatorname{tr}(A|x\rangle\langle x|)=\langle x| A|x\rangle
$$

where $A=U\left({ }^{\lambda_{1}}\right.$

$$
\begin{aligned}
& \text { } \lambda_{n} U^{*} \text { and } U \text { has columns }\left|u_{1}\right\rangle, \ldots,\left|u_{n}\right\rangle . \\
& \text { If } A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \text {, then }\langle x| A|x\rangle=\sum_{j=1}^{n} \lambda_{j}\left|x_{j}\right|^{2} .
\end{aligned}
$$

Introduction for open quantum system

- For a closed system, quantum states are represented by unit vectors in a Hilbert space, say, \mathbb{C}^{n} with inner product

$$
\langle x \mid y\rangle=\sum_{j=1}^{n} \bar{x}_{j} y_{j} \text { if }|x\rangle=\left(x_{1}, \ldots, x_{n}\right)^{t},|y\rangle=\left(y_{1}, \ldots, y_{n}\right)^{t}
$$

- If one set up the measurement device corresponding to the orthonormal basis $\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{n}\right\rangle\right\}$ for \mathbb{C}^{n}, then a measurement of $|x\rangle=\left(x_{1}, \ldots, x_{n}\right)^{t}$ will result in one of the state $\left|u_{j}\right\rangle$ with probability $\left|\left\langle u_{j} \mid x\right\rangle\right|^{2}$.

$$
\text { If }\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\} \text { is used, then }\left|\left\langle e_{j} \mid x\right\rangle\right|^{2}=\left|x_{j}\right|^{2} \text {. }
$$

- If the measurement device will give a reading λ_{j} when $|x\rangle$ collapses to $\left|u_{j}\right\rangle$, then the expectation of the measurement of $|x\rangle$ will be

$$
\sum_{j=1}^{n} \lambda_{j}\left|\left\langle u_{j} \mid x_{j}\right\rangle\right|^{2}=\operatorname{tr}(A|x\rangle\langle x|)=\langle x| A|x\rangle
$$

where $A=U\left({ }^{\lambda_{1}}\right.$

$$
\begin{aligned}
& \text { } \lambda_{n} U^{*} \text { and } U \text { has columns }\left|u_{1}\right\rangle, \ldots,\left|u_{n}\right\rangle \text {. } \\
& \text { If } A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \text {, then }\langle x| A|x\rangle=\sum_{j=1}^{n} \lambda_{j}\left|x_{j}\right|^{2} .
\end{aligned}
$$

- The evolution of the system is governed by the Schrödinger equation, and we have $|x(t)\rangle=e^{i H_{t}}|x(0)\rangle=V_{t}|x(0)\rangle$, where V_{t} is unitary.

Open quantum systems

- For an open quantum system, the principal system (say, \mathbb{C}^{n}) always interact with the environment system (say, \mathbb{C}^{m}) so that the combined (bipartite) system is represented by unit vectors $|\psi\rangle \in \mathbb{C}^{m n}$.

Open quantum systems

- For an open quantum system, the principal system (say, \mathbb{C}^{n}) always interact with the environment system (say, \mathbb{C}^{m}) so that the combined (bipartite) system is represented by unit vectors $|\psi\rangle \in \mathbb{C}^{m n}$.
- A quantum sate may appear as a mix of the pure states $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle$, say with probability p_{1}, \ldots, p_{k}.

Open quantum systems

- For an open quantum system, the principal system (say, \mathbb{C}^{n}) always interact with the environment system (say, \mathbb{C}^{m}) so that the combined (bipartite) system is represented by unit vectors $|\psi\rangle \in \mathbb{C}^{m n}$.
- A quantum sate may appear as a mix of the pure states $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle$, say with probability p_{1}, \ldots, p_{k}.
- The expectation of a measurement associated with $A=A^{\dagger}$ will be

$$
\sum_{j=1}^{k} p_{j} \operatorname{tr} A\left|x_{j}\right\rangle\left\langle x_{j}\right|=\operatorname{tr}(A \rho)
$$

where $\rho=\sum_{j=1}^{k} p_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|$ is a positive semidefinite matrix with trace 1 , known as a density matrix.

Open quantum systems

- For an open quantum system, the principal system (say, \mathbb{C}^{n}) always interact with the environment system (say, \mathbb{C}^{m}) so that the combined (bipartite) system is represented by unit vectors $|\psi\rangle \in \mathbb{C}^{m n}$.
- A quantum sate may appear as a mix of the pure states $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle$, say with probability p_{1}, \ldots, p_{k}.
- The expectation of a measurement associated with $A=A^{\dagger}$ will be

$$
\sum_{j=1}^{k} p_{j} \operatorname{tr} A\left|x_{j}\right\rangle\left\langle x_{j}\right|=\operatorname{tr}(A \rho)
$$

where $\rho=\sum_{j=1}^{k} p_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|$ is a positive semidefinite matrix with trace 1 , known as a density matrix.

- It is possible that

$$
\rho=\sum_{j=1}^{k} p_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|=\sum_{j=1}^{\ell} q_{j}\left|y_{j}\right\rangle\left\langle y_{j}\right| .
$$

So, a general mixed state is represented as a density matrix ρ.

Open quantum systems

- For an open quantum system, the principal system (say, \mathbb{C}^{n}) always interact with the environment system (say, \mathbb{C}^{m}) so that the combined (bipartite) system is represented by unit vectors $|\psi\rangle \in \mathbb{C}^{m n}$.
- A quantum sate may appear as a mix of the pure states $\left|x_{1}\right\rangle, \ldots,\left|x_{k}\right\rangle$, say with probability p_{1}, \ldots, p_{k}.
- The expectation of a measurement associated with $A=A^{\dagger}$ will be

$$
\sum_{j=1}^{k} p_{j} \operatorname{tr} A\left|x_{j}\right\rangle\left\langle x_{j}\right|=\operatorname{tr}(A \rho)
$$

where $\rho=\sum_{j=1}^{k} p_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|$ is a positive semidefinite matrix with trace 1 , known as a density matrix.

- It is possible that

$$
\rho=\sum_{j=1}^{k} p_{j}\left|x_{j}\right\rangle\left\langle x_{j}\right|=\sum_{j=1}^{\ell} q_{j}\left|y_{j}\right\rangle\left\langle y_{j}\right| .
$$

So, a general mixed state is represented as a density matrix ρ.

- If $\rho=|x\rangle\langle x|$ for a unit vector $|x\rangle$, then ρ a pure state.

Measurements and quantum operations

- One can construct measurement operators associated with a set of matrices M_{1}, \ldots, M_{s} such that $\sum_{j=1}^{s} M_{j}^{\dagger} M_{j}=I_{n}$ and ρ will become

Measurements and quantum operations

- One can construct measurement operators associated with a set of matrices M_{1}, \ldots, M_{s} such that $\sum_{j=1}^{s} M_{j}^{\dagger} M_{j}=I_{n}$ and ρ will become

$$
\begin{aligned}
& \frac{1}{p_{j}} M_{j} \rho M_{j}^{\dagger} \text { with probability } p_{j}=\operatorname{tr}\left(M_{j} \rho M_{j}^{\dagger}\right) \\
& \quad \text { If } M_{j}=E_{j j} \text { and } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

Measurements and quantum operations

- One can construct measurement operators associated with a set of matrices M_{1}, \ldots, M_{s} such that $\sum_{j=1}^{s} M_{j}^{\dagger} M_{j}=I_{n}$ and ρ will become

$$
\begin{aligned}
& \frac{1}{p_{j}} M_{j} \rho M_{j}^{\dagger} \text { with probability } p_{j}=\operatorname{tr}\left(M_{j} \rho M_{j}^{\dagger}\right) \\
& \text { If } M_{j}=E_{j j} \text { and } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

- A quantum operation between open systems of dimension n and m has the form

$$
\begin{aligned}
\rho & \mapsto
\end{aligned} \sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger} \text { with } \sum_{j=1}^{r} F_{j}^{\dagger} F_{j}=I_{n} .
$$

Measurements and quantum operations

- One can construct measurement operators associated with a set of matrices M_{1}, \ldots, M_{s} such that $\sum_{j=1}^{s} M_{j}^{\dagger} M_{j}=I_{n}$ and ρ will become

$$
\begin{aligned}
& \frac{1}{p_{j}} M_{j} \rho M_{j}^{\dagger} \text { with probability } p_{j}=\operatorname{tr}\left(M_{j} \rho M_{j}^{\dagger}\right) \\
& \text { If } M_{j}=E_{j j} \text { and } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

- A quantum operation between open systems of dimension n and m has the form

$$
\begin{aligned}
\rho \mapsto & \sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger} \text { with } \sum_{j=1}^{r} F_{j}^{\dagger} F_{j}=I_{n} \\
& \text { If } \rho \mapsto U \rho U^{*} \text { for } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

- All these can be explained by letting $|\psi\rangle=|u\rangle \otimes|v\rangle \in \mathbb{C}^{n m}$ with $|u\rangle \in \mathbb{C}^{n}$ (principal system) and $|v\rangle \in \mathbb{C}^{m}$ (the environment).

Measurements and quantum operations

- One can construct measurement operators associated with a set of matrices M_{1}, \ldots, M_{s} such that $\sum_{j=1}^{s} M_{j}^{\dagger} M_{j}=I_{n}$ and ρ will become

$$
\begin{aligned}
& \frac{1}{p_{j}} M_{j} \rho M_{j}^{\dagger} \text { with probability } p_{j}=\operatorname{tr}\left(M_{j} \rho M_{j}^{\dagger}\right) \\
& \text { If } M_{j}=E_{j j} \text { and } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

- A quantum operation between open systems of dimension n and m has the form

$$
\begin{aligned}
\rho \mapsto & \sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger} \text { with } \sum_{j=1}^{r} F_{j}^{\dagger} F_{j}=I_{n} \\
& \text { If } \rho \mapsto U \rho U^{*} \text { for } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

- All these can be explained by letting $|\psi\rangle=|u\rangle \otimes|v\rangle \in \mathbb{C}^{n m}$ with $|u\rangle \in \mathbb{C}^{n}$ (principal system) and $|v\rangle \in \mathbb{C}^{m}$ (the environment).
- Then the evolution of the total system is $U|\psi\rangle$ in $\mathbb{C}^{n m}$.

Measurements and quantum operations

- One can construct measurement operators associated with a set of matrices M_{1}, \ldots, M_{s} such that $\sum_{j=1}^{s} M_{j}^{\dagger} M_{j}=I_{n}$ and ρ will become

$$
\begin{aligned}
& \frac{1}{p_{j}} M_{j} \rho M_{j}^{\dagger} \text { with probability } p_{j}=\operatorname{tr}\left(M_{j} \rho M_{j}^{\dagger}\right) \\
& \text { If } M_{j}=E_{j j} \text { and } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

- A quantum operation between open systems of dimension n and m has the form

$$
\begin{aligned}
\rho \mapsto & \sum_{j=1}^{r} F_{j} \rho F_{j}^{\dagger} \text { with } \sum_{j=1}^{r} F_{j}^{\dagger} F_{j}=I_{n} \\
& \text { If } \rho \mapsto U \rho U^{*} \text { for } \rho=|x\rangle\langle x| \text {, this reduces to the closed system situation. }
\end{aligned}
$$

- All these can be explained by letting $|\psi\rangle=|u\rangle \otimes|v\rangle \in \mathbb{C}^{n m}$ with $|u\rangle \in \mathbb{C}^{n}$ (principal system) and $|v\rangle \in \mathbb{C}^{m}$ (the environment).
- Then the evolution of the total system is $U|\psi\rangle$ in $\mathbb{C}^{n m}$.
- If we consider $U|\psi\rangle\langle\psi| U^{\dagger}$ in the principal system we can apply the linear map $\operatorname{tr} 2_{2}$ such that $\operatorname{tr}_{2}\left(\rho_{1} \otimes \rho_{2}\right)=\rho_{1}$ for any $\rho_{1} \in M_{p}$ and $\rho_{2} \in M_{q}$.

Quantum Tomography

- We use the measurement operators $\left\{E_{11}, \ldots, E_{n n}\right\}$.

Quantum Tomography

- We use the measurement operators $\left\{E_{11}, \ldots, E_{n n}\right\}$.
- If many identical quantum states ρ are available to be measured, then one can estimate (determine) $\rho_{j j}$ for $j=1, \ldots, n$.

Quantum Tomography

- We use the measurement operators $\left\{E_{11}, \ldots, E_{n n}\right\}$.
- If many identical quantum states ρ are available to be measured, then one can estimate (determine) $\rho_{j j}$ for $j=1, \ldots, n$.
- To get information of the off-diagonal entries of ρ, we get the measurements for $U \rho U^{\dagger}$ for different unitary U.

Quantum Tomography

- We use the measurement operators $\left\{E_{11}, \ldots, E_{n n}\right\}$.
- If many identical quantum states ρ are available to be measured, then one can estimate (determine) $\rho_{j j}$ for $j=1, \ldots, n$.
- To get information of the off-diagonal entries of ρ, we get the measurements for $U \rho U^{\dagger}$ for different unitary U.
- For example, if $\rho=\frac{1}{2}\left(\begin{array}{ll}1+a & b-i c \\ b+i c & 1-a\end{array}\right)$ we can first determine

$$
(1+a) / 2 \text { and }(1-a) / 2
$$

Quantum Tomography

- We use the measurement operators $\left\{E_{11}, \ldots, E_{n n}\right\}$.
- If many identical quantum states ρ are available to be measured, then one can estimate (determine) $\rho_{j j}$ for $j=1, \ldots, n$.
- To get information of the off-diagonal entries of ρ, we get the measurements for $U \rho U^{\dagger}$ for different unitary U.
- For example, if $\rho=\frac{1}{2}\left(\begin{array}{cc}1+a & b-i c \\ b+i c & 1-a\end{array}\right)$ we can first determine

$$
(1+a) / 2 \text { and }(1-a) / 2
$$

- Let $U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right)$ and $V=U^{*}$. Then

$$
U \rho U^{*}=\frac{1}{2}\left(\begin{array}{cc}
1+b & c-i a \\
c+i a & 1-b
\end{array}\right) \quad \text { and } \quad V \rho V^{*}=\frac{1}{2}\left(\begin{array}{cc}
1+c & a-i b \\
a+i b & 1-c
\end{array}\right) .
$$

Quantum Tomography

- We use the measurement operators $\left\{E_{11}, \ldots, E_{n n}\right\}$.
- If many identical quantum states ρ are available to be measured, then one can estimate (determine) $\rho_{j j}$ for $j=1, \ldots, n$.
- To get information of the off-diagonal entries of ρ, we get the measurements for $U \rho U^{\dagger}$ for different unitary U.
- For example, if $\rho=\frac{1}{2}\left(\begin{array}{cc}1+a & b-i c \\ b+i c & 1-a\end{array}\right)$ we can first determine

$$
(1+a) / 2 \text { and }(1-a) / 2
$$

- Let $U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right)$ and $V=U^{*}$. Then

$$
U \rho U^{*}=\frac{1}{2}\left(\begin{array}{cc}
1+b & c-i a \\
c+i a & 1-b
\end{array}\right) \quad \text { and } \quad V \rho V^{*}=\frac{1}{2}\left(\begin{array}{cc}
1+c & a-i b \\
a+i b & 1-c
\end{array}\right) .
$$

- We can then determine $(1+b) / 2,(1+c) / 2$, etc.

Basic Quantum State Tomography (QST) scheme

- In general, to determine a density matrix $\rho \in M_{N}$, we need to determine
* N real diagonal entries summing up to 1 ,
* $N(N-1) / 2$ off diagonal complex entries in the upper part.

Basic Quantum State Tomography (QST) scheme

- In general, to determine a density matrix $\rho \in M_{N}$, we need to determine * N real diagonal entries summing up to 1 , * $N(N-1) / 2$ off diagonal complex entries in the upper part.

So, the measurements should determine

$$
N-1+N(N-1)=(N+1)(N-1) \text { real numbers. }
$$

Basic Quantum State Tomography (QST) scheme

- In general, to determine a density matrix $\rho \in M_{N}$, we need to determine
* N real diagonal entries summing up to 1 ,
* $N(N-1) / 2$ off diagonal complex entries in the upper part.

So, the measurements should determine

$$
N-1+N(N-1)=(N+1)(N-1) \text { real numbers. }
$$

- A measurement of $U_{j} \rho U_{j}^{*}$ give $N-1$ real numbers. So, we need the measurements from

$$
U_{0} \rho U_{0}^{*}, \ldots, U_{N} \rho U_{N}^{*}
$$

assuming the measurement data are not redundant.

Basic Quantum State Tomography (QST) scheme

- In general, to determine a density matrix $\rho \in M_{N}$, we need to determine
* N real diagonal entries summing up to 1 ,
* $N(N-1) / 2$ off diagonal complex entries in the upper part.

So, the measurements should determine

$$
N-1+N(N-1)=(N+1)(N-1) \text { real numbers. }
$$

- A measurement of $U_{j} \rho U_{j}^{*}$ give $N-1$ real numbers. So, we need the measurements from

$$
U_{0} \rho U_{0}^{*}, \ldots, U_{N} \rho U_{N}^{*}
$$

assuming the measurement data are not redundant.

- In fact, U_{0}, \ldots, U_{N} exist so that $\rho \in M_{N}$ can be determined by the diagonal entries of $U_{0} \rho U_{0}^{*}, \ldots, U_{N} \rho U_{N}^{*}$.

Basic Quantum State Tomography (QST) scheme

- In general, to determine a density matrix $\rho \in M_{N}$, we need to determine
* N real diagonal entries summing up to 1 ,
* $N(N-1) / 2$ off diagonal complex entries in the upper part.

So, the measurements should determine

$$
N-1+N(N-1)=(N+1)(N-1) \text { real numbers. }
$$

- A measurement of $U_{j} \rho U_{j}^{*}$ give $N-1$ real numbers. So, we need the measurements from

$$
U_{0} \rho U_{0}^{*}, \ldots, U_{N} \rho U_{N}^{*}
$$

assuming the measurement data are not redundant.

- In fact, U_{0}, \ldots, U_{N} exist so that $\rho \in M_{N}$ can be determined by the diagonal entries of $U_{0} \rho U_{0}^{*}, \ldots, U_{N} \rho U_{N}^{*}$.

For instance, one may choose U_{0}, \ldots, U_{N} corresponding to a family of mutually unbiased bases such that the matrix all entries of $U_{i}^{*} U_{j}$ have the same magnitude $1 / \sqrt{N}$ for any $i \neq j$. Such families exist if $N=p^{n}$ for prime numbers p.

Basic Quantum State Tomography (QST) scheme

- In general, to determine a density matrix $\rho \in M_{N}$, we need to determine
* N real diagonal entries summing up to 1 ,
* $N(N-1) / 2$ off diagonal complex entries in the upper part.

So, the measurements should determine

$$
N-1+N(N-1)=(N+1)(N-1) \text { real numbers. }
$$

- A measurement of $U_{j} \rho U_{j}^{*}$ give $N-1$ real numbers. So, we need the measurements from

$$
U_{0} \rho U_{0}^{*}, \ldots, U_{N} \rho U_{N}^{*}
$$

assuming the measurement data are not redundant.

- In fact, U_{0}, \ldots, U_{N} exist so that $\rho \in M_{N}$ can be determined by the diagonal entries of $U_{0} \rho U_{0}^{*}, \ldots, U_{N} \rho U_{N}^{*}$.

For instance, one may choose U_{0}, \ldots, U_{N} corresponding to a family of mutually unbiased bases such that the matrix all entries of $U_{i}^{*} U_{j}$ have the same magnitude $1 / \sqrt{N}$ for any $i \neq j$. Such families exist if $N=p^{n}$ for prime numbers p.

- But we need to find U_{0}, \ldots, U_{N} that can be implemented efficiently, and the measurements can be obtained accurately.

Quantum State Tomography by Local Measurements

- For an n-qubit state $\rho \in M_{N}$ with $N=2^{n}$, one can determine ρ using local unitary matrices of the form

$$
U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n} \text { with } 2 \times 2 \text { unitary matrices } V_{i j} .
$$

Quantum State Tomography by Local Measurements

- For an n-qubit state $\rho \in M_{N}$ with $N=2^{n}$, one can determine ρ using local unitary matrices of the form

$$
U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n} \text { with } 2 \times 2 \text { unitary matrices } V_{i j} .
$$

- This means that the different parties can do their measurements in separate locations. But one needs more measurements.

Quantum State Tomography by Local Measurements

- For an n-qubit state $\rho \in M_{N}$ with $N=2^{n}$, one can determine ρ using local unitary matrices of the form

$$
U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n} \text { with } 2 \times 2 \text { unitary matrices } V_{i j} .
$$

- This means that the different parties can do their measurements in separate locations. But one needs more measurements.

Theorem [Li, Nakahara, Pelejo, Stanish, Wang (2023?)]

An n-qubit state ρ can be determined by the measurements of $U_{j} \rho U_{j}^{*}$ for $j=1, \ldots, 3^{n}$, where $U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n}$ with

$$
V_{j k} \in\left\{I_{2}, U, U^{*}\right\} \quad \text { with } \quad U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) .
$$

Quantum State Tomography by Local Measurements

- For an n-qubit state $\rho \in M_{N}$ with $N=2^{n}$, one can determine ρ using local unitary matrices of the form

$$
U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n} \text { with } 2 \times 2 \text { unitary matrices } V_{i j} .
$$

- This means that the different parties can do their measurements in separate locations. But one needs more measurements.

Theorem [Li, Nakahara, Pelejo, Stanish, Wang (2023?)]

An n-qubit state ρ can be determined by the measurements of $U_{j} \rho U_{j}^{*}$ for $j=1, \ldots, 3^{n}$, where $U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n}$ with

$$
V_{j k} \in\left\{I_{2}, U, U^{*}\right\} \quad \text { with } \quad U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) .
$$

Moreover, 3^{n} is optimal, i.e., if one uses only measurements of local unitary transforms of ρ, at least 3^{n} unitary transforms are needed.

Quantum State Tomography by Local Measurements

- For an n-qubit state $\rho \in M_{N}$ with $N=2^{n}$, one can determine ρ using local unitary matrices of the form

$$
U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n} \text { with } 2 \times 2 \text { unitary matrices } V_{i j} .
$$

- This means that the different parties can do their measurements in separate locations. But one needs more measurements.

Theorem [Li, Nakahara, Pelejo, Stanish, Wang (2023?)]

An n-qubit state ρ can be determined by the measurements of $U_{j} \rho U_{j}^{*}$ for $j=1, \ldots, 3^{n}$, where $U_{j}=V_{j 1} \otimes \cdots \otimes V_{j n}$ with

$$
V_{j k} \in\left\{I_{2}, U, U^{*}\right\} \quad \text { with } \quad U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) .
$$

Moreover, 3^{n} is optimal, i.e., if one uses only measurements of local unitary transforms of ρ, at least 3^{n} unitary transforms are needed.

Recall that for $\rho \in M_{N}$ with 2^{n}, we can find $N+1=2^{n}+1$ unitary matrices $U_{0}, \ldots, U_{N} \in M_{N}$ to determine ρ. Here, we need 3^{n} local unitary matrices.

Assisted Quantum State Tomography

- One may do QST of an n-qubit state more efficiently with the assistance of another n-qubit state.

Assisted Quantum State Tomography

- One may do QST of an n-qubit state more efficiently with the assistance of another n-qubit state.
- For example, to determine $\rho \in M_{2^{2}}$, we construct $\tilde{\rho} \in M_{2^{4}}$ so that the 16 diagonal entries of $\tilde{\rho}$ can be used to determine ρ.

Assisted Quantum State Tomography

- One may do QST of an n-qubit state more efficiently with the assistance of another n-qubit state.
- For example, to determine $\rho \in M_{2^{2}}$, we construct $\tilde{\rho} \in M_{2^{4}}$ so that the 16 diagonal entries of $\tilde{\rho}$ can be used to determine ρ.
- In general, one can entangle an n-qubit state $\rho \in M_{N}$ with another n-qubit state to get a $2 n$-qubit state $\hat{\rho} \in M_{N^{2}}$ so that the N^{2} diagonal entries of $\hat{\rho}$ can be used to determine ρ.

Assisted Quantum State Tomography

- One may do QST of an n-qubit state more efficiently with the assistance of another n-qubit state.
- For example, to determine $\rho \in M_{2^{2}}$, we construct $\tilde{\rho} \in M_{2^{4}}$ so that the 16 diagonal entries of $\tilde{\rho}$ can be used to determine ρ.
- In general, one can entangle an n-qubit state $\rho \in M_{N}$ with another n-qubit state to get a $2 n$-qubit state $\hat{\rho} \in M_{N^{2}}$ so that the N^{2} diagonal entries of $\hat{\rho}$ can be used to determine ρ.
- For $\rho \in M_{N}$, one need to determine ρ using the diagonal entries of

$$
U\left(E_{11} \otimes \rho\right) U^{*}=U\left(\begin{array}{ll}
\rho & \\
& 0_{N^{2}-N}
\end{array}\right) U^{*} \in M_{N^{2}}
$$

Assisted Quantum State Tomography

- One may do QST of an n-qubit state more efficiently with the assistance of another n-qubit state.
- For example, to determine $\rho \in M_{2^{2}}$, we construct $\tilde{\rho} \in M_{2^{4}}$ so that the 16 diagonal entries of $\tilde{\rho}$ can be used to determine ρ.
- In general, one can entangle an n-qubit state $\rho \in M_{N}$ with another n-qubit state to get a $2 n$-qubit state $\hat{\rho} \in M_{N^{2}}$ so that the N^{2} diagonal entries of $\hat{\rho}$ can be used to determine ρ.
- For $\rho \in M_{N}$, one need to determine ρ using the diagonal entries of

$$
U\left(E_{11} \otimes \rho\right) U^{*}=U\left(\begin{array}{ll}
\rho & \\
& 0_{N^{2}-N}
\end{array}\right) U^{*} \in M_{N^{2}}
$$

- Technically, one needs to construct a quantum operation $\Phi: M_{N} \rightarrow M_{N^{2}}$ and uses the diagonal entries of $\Phi(\rho)$ to determine ρ.

Assisted Quantum State Tomography

- One may do QST of an n-qubit state more efficiently with the assistance of another n-qubit state.
- For example, to determine $\rho \in M_{2^{2}}$, we construct $\tilde{\rho} \in M_{2^{4}}$ so that the 16 diagonal entries of $\tilde{\rho}$ can be used to determine ρ.
- In general, one can entangle an n-qubit state $\rho \in M_{N}$ with another n-qubit state to get a $2 n$-qubit state $\hat{\rho} \in M_{N^{2}}$ so that the N^{2} diagonal entries of $\hat{\rho}$ can be used to determine ρ.
- For $\rho \in M_{N}$, one need to determine ρ using the diagonal entries of

$$
U\left(E_{11} \otimes \rho\right) U^{*}=U\left(\begin{array}{ll}
\rho & \\
& 0_{N^{2}-N}
\end{array}\right) U^{*} \in M_{N^{2}}
$$

- Technically, one needs to construct a quantum operation $\Phi: M_{N} \rightarrow M_{N^{2}}$ and uses the diagonal entries of $\Phi(\rho)$ to determine ρ.
- Showing the existence of such a map is non-trivial.

Assisted Quantum State Tomography

- One may do QST of an n-qubit state more efficiently with the assistance of another n-qubit state.
- For example, to determine $\rho \in M_{2^{2}}$, we construct $\tilde{\rho} \in M_{2^{4}}$ so that the 16 diagonal entries of $\tilde{\rho}$ can be used to determine ρ.
- In general, one can entangle an n-qubit state $\rho \in M_{N}$ with another n-qubit state to get a $2 n$-qubit state $\hat{\rho} \in M_{N^{2}}$ so that the N^{2} diagonal entries of $\hat{\rho}$ can be used to determine ρ.
- For $\rho \in M_{N}$, one need to determine ρ using the diagonal entries of

$$
U\left(E_{11} \otimes \rho\right) U^{*}=U\left(\begin{array}{ll}
\rho & \\
& 0_{N^{2}-N}
\end{array}\right) U^{*} \in M_{N^{2}}
$$

- Technically, one needs to construct a quantum operation $\Phi: M_{N} \rightarrow M_{N^{2}}$ and uses the diagonal entries of $\Phi(\rho)$ to determine ρ.
- Showing the existence of such a map is non-trivial.
- Moreover, one needs to find an efficient method to do the construction.
- 1-qubit Assisted State Tomography

- 2-qubit Assisted State Tomography

- 3-qubit Assisted State Tomography

- 1-qubit Assisted State Tomography

- 2-qubit Assisted State Tomography

Theorem [LNPSW (2023?)]

Let $\rho \in M_{N}$ with $N=2^{n}$. Then ρ can be determined by the diagonal entries of the matrix $U\left(E_{11} \otimes \rho\right) U^{*} \in M_{N^{2}}$ for

$$
U=\left(I_{2^{n}} \otimes F_{n}\right) C_{1} \cdots C_{n}\left(W^{\otimes n} \otimes I_{2^{n}}\right),
$$

- 1-qubit Assisted State Tomography

- 2-qubit Assisted State Tomography

Theorem [LNPSW (2023?)]

Let $\rho \in M_{N}$ with $N=2^{n}$. Then ρ can be determined by the diagonal entries of the matrix $U\left(E_{11} \otimes \rho\right) U^{*} \in M_{N^{2}}$ for

$$
U=\left(I_{2^{n}} \otimes F_{n}\right) C_{1} \cdots C_{n}\left(W^{\otimes n} \otimes I_{2^{n}}\right),
$$

where $W=\frac{1}{2}\left(\begin{array}{cc}1 & \sqrt{3} i \\ \sqrt{3} i & 1\end{array}\right), F_{n}$ is the discrete Fourier transform, and C_{j} is the controlled Hadamard gate such that $C_{j}\left|q_{2 n-1}, \ldots, q_{0}\right\rangle$ will change

$$
\left|q_{2 n-j}\right\rangle \text { to } H\left|q_{2 n-j}\right\rangle \text { if }\left|q_{n-j}\right\rangle=|1\rangle \text { for } j=0, \ldots, n-1
$$

- One may extend this idea to state tomography for a general state if it has a certain zero / non-zero patterns up to a small perturbation, say,

$$
\rho=E_{11} \otimes \hat{\rho}+\sigma
$$

- One may extend this idea to state tomography for a general state if it has a certain zero / non-zero patterns up to a small perturbation, say,

$$
\rho=E_{11} \otimes \hat{\rho}+\sigma
$$

- This corresponds to the fact that the system has some tensor structure or close to a certain tensor structure.
- One may extend this idea to state tomography for a general state if it has a certain zero / non-zero patterns up to a small perturbation, say,

$$
\rho=E_{11} \otimes \hat{\rho}+\sigma
$$

- This corresponds to the fact that the system has some tensor structure or close to a certain tensor structure.
- Also, using the idea of Leung, one may determine a quantum operation $\Phi: M_{N} \rightarrow M_{N}$ of the form $\rho \mapsto U \rho U^{*}$ for a unitary U by studying the pure state

$$
\rho_{\Phi}=\frac{1}{N}\left(\Phi\left(E_{i j}\right)\right) .
$$

- One may extend this idea to state tomography for a general state if it has a certain zero / non-zero patterns up to a small perturbation, say,

$$
\rho=E_{11} \otimes \hat{\rho}+\sigma
$$

- This corresponds to the fact that the system has some tensor structure or close to a certain tensor structure.
- Also, using the idea of Leung, one may determine a quantum operation $\Phi: M_{N} \rightarrow M_{N}$ of the form $\rho \mapsto U \rho U^{*}$ for a unitary U by studying the pure state

$$
\rho_{\Phi}=\frac{1}{N}\left(\Phi\left(E_{i j}\right)\right) .
$$

- There are much to explored, say, using other quantum computing devices such as NMR, trapped ions, optics, etc. to do tomography.
- One may extend this idea to state tomography for a general state if it has a certain zero / non-zero patterns up to a small perturbation, say,

$$
\rho=E_{11} \otimes \hat{\rho}+\sigma
$$

- This corresponds to the fact that the system has some tensor structure or close to a certain tensor structure.
- Also, using the idea of Leung, one may determine a quantum operation $\Phi: M_{N} \rightarrow M_{N}$ of the form $\rho \mapsto U \rho U^{*}$ for a unitary U by studying the pure state

$$
\rho_{\Phi}=\frac{1}{N}\left(\Phi\left(E_{i j}\right)\right)
$$

- There are much to explored, say, using other quantum computing devices such as NMR, trapped ions, optics, etc. to do tomography.
- After getting the measurements one need to use numerical methods (build a maximum likelihood function), statistical methods, symmetries in physics laws, and AI to help find the best quantum states producing the measurement data.

Thank you for your attention!

Your comments are welcome!

[^0]: * William \& Mary Students.

