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Quantum postulates - Superposition
Quantum states are unit vectors in a Hilbert space represented as linear
combinations of a fixed orthonormal basis of the state space.

Example. Photons can be in vertical and horizontal polarization,

represented by |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
.

A photon state has the form |ψ⟩ = a|0⟩ + b|1⟩ =
(
a
b

)
with a, b ∈ C, |a|2 + |b|2 = 1.

Think about the Schrödinger cat.

A 2-phonton state is a unit vector |ψ⟩ ∈ C4 represented as a linear
combination of

|00⟩ =

(
1
0
0
0

)
, |01⟩ =

(
0
1
0
0

)
, |10⟩ =

(
0
0
1
0

)
, |11⟩ =

(
0
0
0
1

)
.

An n-photon state is a unit vector |ψ⟩ in CN with N = 2n represented as
a linear combination of |0 . . . 0⟩, . . . , |1 · · · 1⟩.
For a small n, say, n = 100, the state space has very high dimension.
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Quantum measurement, and dynamics
Upon measurement by the basis {|0⟩, |1⟩}, the quantum state |ψ⟩ =

(
a
b

)
will become |0⟩ or |1⟩ with probabilities |a|2 and |b|2, respectively.

Measurements will “destroy” the quantum states.
When you open the box containing the Schrödinger cat, you will only see
a alive cat |0⟩ or a dead cat |1⟩.
When you open the box containing n Schrödinger cats, you will only see
one of the states |qn−1 · · · q0⟩. The measurement process is highly discontinuous.

As a function of time t, a quantum system |ψ(t)⟩ is governed by the
Schrödinger equation

iℏd|ψ(t)⟩
dt

= H|ψ(0)⟩.

The matrix H is a Hermitian operator known as the Hamiltonian of the
system, and may depends on t; the quantity ℏ is the Planck’s constant.
The solution is approximated by the evolution operator U , which is
unitary, such that

|ψ(t)⟩ = U |ψ(0)⟩ with U = eiH .
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Quantum Computing - Circuit Model

Encode a problem using n-qubits |ψ0⟩ = |qn−1 . . . q0⟩ corresponding to
n-digit binary numbers.

Apply a suitable unitary operator to get |ψ⟩ = U |ψ0⟩.
Measure U |ψ⟩ to get the desired result (with high probability).
For example, to determine whether a function f : Zn

2 → Z2 is constant or
balanced, i.e., f−1({0}) and f−1({1}) have the same size.

* Classical computing require checking f(i) for 2n−1 + 1 values of i to be
sure.

* Deutsch-Jozsa Algorithm only requires the
construction of a unitary Uf corresponding
to f , and then apply it to |ψ0⟩ so that the
measurement of Uf |ψ0⟩ will give the answer
with high probability.
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Adiabatic Quantum Computing Model

Encode the solution of a problem as the smallest diagonal entry of a large
Hermitian matrix H1 ∈ MN with N = 2n.

Find a Hermitian matrix H0 ∈ MN such as H0 = −
∑N−1

j=0 Xj , where Xj

is a tensor product with n− 1 copy of I2 and 1 copy of X =
(

0 1
1 0

)
at

the jth component. For example, if n = 3, then X0 = XII, X1 = IXI, X2 = IIX.

For Ht = (1 − t)H0 + tH1 for t ∈ [0, 1], let |ψt⟩ be the ground state of
Ht, i.e., the eigenvector corresponding to the smallest eigenvalue.
Under suitable condition, the ground state (1, . . . , 1)t/

√
2n of H0 will

change continuously to the ground state |ej⟩ of H1.
We can then determine the smallest diagonal entry of H1.
For example, if R = pq for two large prime numbers p, q, we can
construct H1 with diagonal entries (R− pq)2 for p, q = 1, . . . ,

√
R.

How to set up a quantum system with H1 as the Hamiltonian is
challenging.
There are many other implementation issues.
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Under suitable condition, the ground state (1, . . . , 1)t/

√
2n of H0 will

change continuously to the ground state |ej⟩ of H1.
We can then determine the smallest diagonal entry of H1.
For example, if R = pq for two large prime numbers p, q, we can
construct H1 with diagonal entries (R− pq)2 for p, q = 1, . . . ,

√
R.

How to set up a quantum system with H1 as the Hamiltonian is
challenging.
There are many other implementation issues.
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Quantum state tomography

If there is an ensemble of identical copies of a quantum state
|ψ⟩ = a|0⟩ + b|1⟩ =

(
a
b

)
, then we can do measurement to

determine/estimate |a|2, |b|2.

But we will not be ale to estimate the actual complex numbers a, b.
We can apply rotation to |ψ⟩ by a unitary matrix U and measure U |ψ⟩ to
get additional information.
In quantum physics, |ψ⟩ and eit|ψ⟩ represent the same quantum states.
So, we may assume that |ψ⟩ = a|0⟩ + b|1⟩ such that a ≥ 0.

Let H = 1√
2

(
1 1
1 −1

)
, G = 1√

2

(
1 i
i 1

)
.

Then we can use the measurements of

I|ψ⟩ =
(

a
b

)
, H|ψ⟩ =

(
a + b
a − b

)
, G|ψ⟩ =

(
a + ib
ia + b

)
to determine/estimate a, b.
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Higher dimensions
For a two qubit state |ψ⟩ = (a1, a2, a3, a4)t with a1 ≥ 0, in most cases
we can determine |ψ⟩ by the measurements of |ψ⟩, U1|ψ⟩, . . . , U4|ψ⟩ with

U1 = I ⊗H =
(

H 0
0 H

)
, U2 = I ⊗G =

(
G 0
0 G

)
,

U3 = H ⊗ I = 1√
2

(
I I
I −I

)
, U4 = G⊗ I = 1√

2

(
I iI
iI I

)
.

These are local measurements that can be done separately for the first
and second qubit.
However, if |ψ⟩ = (a1, 0, 0, a4), or (0, a2, a3, 0)t, we need to use non-local
operation such as the CNOT gate:

C =
(
I2 0
0 X

)
with X =

(
0 1
1 0

)
.

The use of CNOT gate is expensive and attractive to error.

In general, for an n-qubit states |ψ⟩, the number of local unitary
operators and CNOT gates needed depend on the zero pattern of |ψ⟩.
How to minimize the use of CNOT gates is of interest.

This is an on-going project with Shuhong Wang, Kevin Wu and Zherui Zhang.
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Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

A general quantum (mixed) state is an N ×N density matrix ρ, A is
Hermitian with nonnegative eigenvalues summing up to 1.

One can use U0 = I, U1, . . . , UN do measurements of the diagonal entries
of UjρU

∗
j to determine ρ.

In quantum computing, N = 2n is an n-qubit system. We can use unitary
operators of the form V1 ⊗ · · · ⊗ Vn with Vj ∈ {I,H,G} to determine ρ.
In this scheme, we need to do 3n set of such (local) measurements. The
number cannot be reduced.
If non-local unitary operators are allowed, we only need N + 1 = 2n + 1
sets of measurements.
We “extend” an n-qubit state ρ as a 2n-qubit state by an operation of
the form ρ̃ = XρX∗ ∈ MN2 , where X is N ×N2 such that X∗X = IN .
A measurement of ρ̃ can determine ρ.
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Other interesting topics

Quantum system tomography.

Quantum states and quantum operations with special properties.

Separability of quantum states.

Distinguishability of quantum channels.

Quantum error correction, Toric code.

Applications of quantum computing techniques to image processing,
neural network, AI, ....

Hope to tell you more next time.
Thank you for your attention!
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