Matrix problems in Quantum Computing

Chi-Kwong Li
Department of Mathematics, The College of William and Mary; Institute for Quantum Computing, University of Waterloo

Quantum postulates - Superposition

- Quantum states are unit vectors in a Hilbert space represented as linear combinations of a fixed orthonormal basis of the state space.

Quantum postulates - Superposition

- Quantum states are unit vectors in a Hilbert space represented as linear combinations of a fixed orthonormal basis of the state space.
- Example. Photons can be in vertical and horizontal polarization, represented by $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$.

Quantum postulates - Superposition

- Quantum states are unit vectors in a Hilbert space represented as linear combinations of a fixed orthonormal basis of the state space.
- Example. Photons can be in vertical and horizontal polarization, represented by $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$.
- A photon state has the form $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$ with $a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1$.

Think about the Schrödinger cat.

Quantum postulates - Superposition

- Quantum states are unit vectors in a Hilbert space represented as linear combinations of a fixed orthonormal basis of the state space.
- Example. Photons can be in vertical and horizontal polarization, represented by $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$.
- A photon state has the form $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$ with $a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1$.

Think about the Schrödinger cat.

- A 2-phonton state is a unit vector $|\psi\rangle \in \mathbb{C}^{4}$ represented as a linear combination of

$$
|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|01\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Quantum postulates - Superposition

- Quantum states are unit vectors in a Hilbert space represented as linear combinations of a fixed orthonormal basis of the state space.
- Example. Photons can be in vertical and horizontal polarization, represented by $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$.
- A photon state has the form $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$ with $a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1$.
 Think about the Schrödinger cat.
- A 2-phonton state is a unit vector $|\psi\rangle \in \mathbb{C}^{4}$ represented as a linear combination of

$$
|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|01\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

- An n-photon state is a unit vector $|\psi\rangle$ in \mathbb{C}^{N} with $N=2^{n}$ represented as a linear combination of $|0 \ldots 0\rangle, \ldots,|1 \cdots 1\rangle$.

Quantum postulates - Superposition

- Quantum states are unit vectors in a Hilbert space represented as linear combinations of a fixed orthonormal basis of the state space.
- Example. Photons can be in vertical and horizontal polarization, represented by $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$.
- A photon state has the form $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$ with $a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1$.
- A 2-phonton state is a unit vector $|\psi\rangle \in \mathbb{C}^{4}$ represented as a linear combination of

$$
|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|01\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

- An n-photon state is a unit vector $|\psi\rangle$ in \mathbb{C}^{N} with $N=2^{n}$ represented as a linear combination of $|0 \ldots 0\rangle, \ldots,|1 \cdots 1\rangle$.
- For a small n, say, $n=100$, the state space has very high dimension.

Quantum measurement, and dynamics

- Upon measurement by the basis $\{|0\rangle,|1\rangle\}$, the quantum state $|\psi\rangle=\binom{a}{b}$ will become $|0\rangle$ or $|1\rangle$ with probabilities $|a|^{2}$ and $|b|^{2}$, respectively.

Quantum measurement, and dynamics

- Upon measurement by the basis $\{|0\rangle,|1\rangle\}$, the quantum state $|\psi\rangle=\binom{a}{b}$ will become $|0\rangle$ or $|1\rangle$ with probabilities $|a|^{2}$ and $|b|^{2}$, respectively.
- Measurements will "destroy" the quantum states.

Quantum measurement, and dynamics

- Upon measurement by the basis $\{|0\rangle,|1\rangle\}$, the quantum state $|\psi\rangle=\binom{a}{b}$ will become $|0\rangle$ or $|1\rangle$ with probabilities $|a|^{2}$ and $|b|^{2}$, respectively.
- Measurements will "destroy" the quantum states.
- When you open the box containing the Schrödinger cat, you will only see a alive cat $|0\rangle$ or a dead cat $|1\rangle$.

Quantum measurement, and dynamics

- Upon measurement by the basis $\{|0\rangle,|1\rangle\}$, the quantum state $|\psi\rangle=\binom{a}{b}$ will become $|0\rangle$ or $|1\rangle$ with probabilities $|a|^{2}$ and $|b|^{2}$, respectively.
- Measurements will "destroy" the quantum states.
- When you open the box containing the Schrödinger cat, you will only see a alive cat $|0\rangle$ or a dead cat $|1\rangle$.
- When you open the box containing n Schrödinger cats, you will only see one of the states $\left|q_{n-1} \cdots q_{0}\right\rangle$.

Quantum measurement, and dynamics

- Upon measurement by the basis $\{|0\rangle,|1\rangle\}$, the quantum state $|\psi\rangle=\binom{a}{b}$ will become $|0\rangle$ or $|1\rangle$ with probabilities $|a|^{2}$ and $|b|^{2}$, respectively.
- Measurements will "destroy" the quantum states.
- When you open the box containing the Schrödinger cat, you will only see a alive cat $|0\rangle$ or a dead cat $|1\rangle$.
- When you open the box containing n Schrödinger cats, you will only see one of the states $\left|q_{n-1} \cdots q_{0}\right\rangle$.

The measurement process is highly discontinuous.

- As a function of time t, a quantum system $|\psi(t)\rangle$ is governed by the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(0)\rangle
$$

Quantum measurement, and dynamics

- Upon measurement by the basis $\{|0\rangle,|1\rangle\}$, the quantum state $|\psi\rangle=\binom{a}{b}$ will become $|0\rangle$ or $|1\rangle$ with probabilities $|a|^{2}$ and $|b|^{2}$, respectively.
- Measurements will "destroy" the quantum states.
- When you open the box containing the Schrödinger cat, you will only see a alive cat $|0\rangle$ or a dead cat $|1\rangle$.
- When you open the box containing n Schrödinger cats, you will only see one of the states $\left|q_{n-1} \cdots q_{0}\right\rangle$.

The measurement process is highly discontinuous.

- As a function of time t, a quantum system $|\psi(t)\rangle$ is governed by the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(0)\rangle
$$

- The matrix H is a Hermitian operator known as the Hamiltonian of the system, and may depends on t; the quantity \hbar is the Planck's constant.

Quantum measurement, and dynamics

- Upon measurement by the basis $\{|0\rangle,|1\rangle\}$, the quantum state $|\psi\rangle=\binom{a}{b}$ will become $|0\rangle$ or $|1\rangle$ with probabilities $|a|^{2}$ and $|b|^{2}$, respectively.
- Measurements will "destroy" the quantum states.
- When you open the box containing the Schrödinger cat, you will only see a alive cat $|0\rangle$ or a dead cat $|1\rangle$.
- When you open the box containing n Schrödinger cats, you will only see one of the states $\left|q_{n-1} \cdots q_{0}\right\rangle$.
- As a function of time t, a quantum system $|\psi(t)\rangle$ is governed by the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(0)\rangle
$$

- The matrix H is a Hermitian operator known as the Hamiltonian of the system, and may depends on t; the quantity \hbar is the Planck's constant.
- The solution is approximated by the evolution operator U, which is unitary, such that

$$
|\psi(t)\rangle=U|\psi(0)\rangle \quad \text { with } U=e^{i H}
$$

Quantum Computing - Circuit Model

- Encode a problem using n-qubits $\left|\psi_{0}\right\rangle=\left|q_{n-1} \ldots q_{0}\right\rangle$ corresponding to n-digit binary numbers.

Quantum Computing - Circuit Model

- Encode a problem using n-qubits $\left|\psi_{0}\right\rangle=\left|q_{n-1} \ldots q_{0}\right\rangle$ corresponding to n-digit binary numbers.
- Apply a suitable unitary operator to get $|\psi\rangle=U\left|\psi_{0}\right\rangle$.

Quantum Computing - Circuit Model

- Encode a problem using n-qubits $\left|\psi_{0}\right\rangle=\left|q_{n-1} \ldots q_{0}\right\rangle$ corresponding to n-digit binary numbers.
- Apply a suitable unitary operator to get $|\psi\rangle=U\left|\psi_{0}\right\rangle$.
- Measure $U|\psi\rangle$ to get the desired result (with high probability).

Quantum Computing - Circuit Model

- Encode a problem using n-qubits $\left|\psi_{0}\right\rangle=\left|q_{n-1} \ldots q_{0}\right\rangle$ corresponding to n-digit binary numbers.
- Apply a suitable unitary operator to get $|\psi\rangle=U\left|\psi_{0}\right\rangle$.
- Measure $U|\psi\rangle$ to get the desired result (with high probability).
- For example, to determine whether a function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is constant or balanced, i.e., $f^{-1}(\{0\})$ and $f^{-1}(\{1\})$ have the same size.

Quantum Computing - Circuit Model

- Encode a problem using n-qubits $\left|\psi_{0}\right\rangle=\left|q_{n-1} \ldots q_{0}\right\rangle$ corresponding to n-digit binary numbers.
- Apply a suitable unitary operator to get $|\psi\rangle=U\left|\psi_{0}\right\rangle$.
- Measure $U|\psi\rangle$ to get the desired result (with high probability).
- For example, to determine whether a function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is constant or balanced, i.e., $f^{-1}(\{0\})$ and $f^{-1}(\{1\})$ have the same size.
* Classical computing require checking $f(i)$ for $2^{n-1}+1$ values of i to be sure.

Quantum Computing - Circuit Model

- Encode a problem using n-qubits $\left|\psi_{0}\right\rangle=\left|q_{n-1} \ldots q_{0}\right\rangle$ corresponding to n-digit binary numbers.
- Apply a suitable unitary operator to get $|\psi\rangle=U\left|\psi_{0}\right\rangle$.
- Measure $U|\psi\rangle$ to get the desired result (with high probability).
- For example, to determine whether a function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is constant or balanced, i.e., $f^{-1}(\{0\})$ and $f^{-1}(\{1\})$ have the same size.
* Classical computing require checking $f(i)$ for $2^{n-1}+1$ values of i to be sure.
* Deutsch-Jozsa Algorithm only requires the construction of a unitary U_{f} corresponding to f, and then apply it to $\left|\psi_{0}\right\rangle$ so that the measurement of $U_{f}\left|\psi_{0}\right\rangle$ will give the answer with high probability.

Adiabatic Quantum Computing Model

- Encode the solution of a problem as the smallest diagonal entry of a large Hermitian matrix $H_{1} \in M_{N}$ with $N=2^{n}$.

Adiabatic Quantum Computing Model

- Encode the solution of a problem as the smallest diagonal entry of a large Hermitian matrix $H_{1} \in M_{N}$ with $N=2^{n}$.
- Find a Hermitian matrix $H_{0} \in M_{N}$ such as $H_{0}=-\sum_{j=0}^{N-1} X_{j}$, where X_{j} is a tensor product with $n-1$ copy of I_{2} and 1 copy of $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ at the j th component. For example, if $n=3$, then $X_{0}=X I I, X_{1}=I X I, X_{2}=I I X$.

Adiabatic Quantum Computing Model

- Encode the solution of a problem as the smallest diagonal entry of a large Hermitian matrix $H_{1} \in M_{N}$ with $N=2^{n}$.
- Find a Hermitian matrix $H_{0} \in M_{N}$ such as $H_{0}=-\sum_{j=0}^{N-1} X_{j}$, where X_{j} is a tensor product with $n-1$ copy of I_{2} and 1 copy of $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ at the j th component. For example, if $n=3$, then $X_{0}=X I I, X_{1}=I X I, X_{2}=I I X$.
- For $H_{t}=(1-t) H_{0}+t H_{1}$ for $t \in[0,1]$, let $\left|\psi_{t}\right\rangle$ be the ground state of H_{t}, i.e., the eigenvector corresponding to the smallest eigenvalue.

Adiabatic Quantum Computing Model

- Encode the solution of a problem as the smallest diagonal entry of a large Hermitian matrix $H_{1} \in M_{N}$ with $N=2^{n}$.
- Find a Hermitian matrix $H_{0} \in M_{N}$ such as $H_{0}=-\sum_{j=0}^{N-1} X_{j}$, where X_{j} is a tensor product with $n-1$ copy of I_{2} and 1 copy of $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ at the j th component. For example, if $n=3$, then $X_{0}=X I I, X_{1}=I X I, X_{2}=I I X$.
- For $H_{t}=(1-t) H_{0}+t H_{1}$ for $t \in[0,1]$, let $\left|\psi_{t}\right\rangle$ be the ground state of H_{t}, i.e., the eigenvector corresponding to the smallest eigenvalue.
- Under suitable condition, the ground state $(1, \ldots, 1)^{t} / \sqrt{2^{n}}$ of H_{0} will change continuously to the ground state $\left|e_{j}\right\rangle$ of H_{1}.
We can then determine the smallest diagonal entry of H_{1}.

Adiabatic Quantum Computing Model

- Encode the solution of a problem as the smallest diagonal entry of a large Hermitian matrix $H_{1} \in M_{N}$ with $N=2^{n}$.
- Find a Hermitian matrix $H_{0} \in M_{N}$ such as $H_{0}=-\sum_{j=0}^{N-1} X_{j}$, where X_{j} is a tensor product with $n-1$ copy of I_{2} and 1 copy of $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ at the j th component. For example, if $n=3$, then $X_{0}=X I I, X_{1}=I X I, X_{2}=I I X$.
- For $H_{t}=(1-t) H_{0}+t H_{1}$ for $t \in[0,1]$, let $\left|\psi_{t}\right\rangle$ be the ground state of H_{t}, i.e., the eigenvector corresponding to the smallest eigenvalue.
- Under suitable condition, the ground state $(1, \ldots, 1)^{t} / \sqrt{2^{n}}$ of H_{0} will change continuously to the ground state $\left|e_{j}\right\rangle$ of H_{1}.
We can then determine the smallest diagonal entry of H_{1}.
- For example, if $R=p q$ for two large prime numbers p, q, we can construct H_{1} with diagonal entries $(R-p q)^{2}$ for $p, q=1, \ldots, \sqrt{R}$.

Adiabatic Quantum Computing Model

- Encode the solution of a problem as the smallest diagonal entry of a large Hermitian matrix $H_{1} \in M_{N}$ with $N=2^{n}$.
- Find a Hermitian matrix $H_{0} \in M_{N}$ such as $H_{0}=-\sum_{j=0}^{N-1} X_{j}$, where X_{j} is a tensor product with $n-1$ copy of I_{2} and 1 copy of $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ at the j th component. For example, if $n=3$, then $X_{0}=X I I, X_{1}=I X I, X_{2}=I I X$.
- For $H_{t}=(1-t) H_{0}+t H_{1}$ for $t \in[0,1]$, let $\left|\psi_{t}\right\rangle$ be the ground state of H_{t}, i.e., the eigenvector corresponding to the smallest eigenvalue.
- Under suitable condition, the ground state $(1, \ldots, 1)^{t} / \sqrt{2^{n}}$ of H_{0} will change continuously to the ground state $\left|e_{j}\right\rangle$ of H_{1}.
We can then determine the smallest diagonal entry of H_{1}.
- For example, if $R=p q$ for two large prime numbers p, q, we can construct H_{1} with diagonal entries $(R-p q)^{2}$ for $p, q=1, \ldots, \sqrt{R}$.
- How to set up a quantum system with H_{1} as the Hamiltonian is challenging.

Adiabatic Quantum Computing Model

- Encode the solution of a problem as the smallest diagonal entry of a large Hermitian matrix $H_{1} \in M_{N}$ with $N=2^{n}$.
- Find a Hermitian matrix $H_{0} \in M_{N}$ such as $H_{0}=-\sum_{j=0}^{N-1} X_{j}$, where X_{j} is a tensor product with $n-1$ copy of I_{2} and 1 copy of $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ at the j th component. For example, if $n=3$, then $X_{0}=X I I, X_{1}=I X I, X_{2}=I I X$.
- For $H_{t}=(1-t) H_{0}+t H_{1}$ for $t \in[0,1]$, let $\left|\psi_{t}\right\rangle$ be the ground state of H_{t}, i.e., the eigenvector corresponding to the smallest eigenvalue.
- Under suitable condition, the ground state $(1, \ldots, 1)^{t} / \sqrt{2^{n}}$ of H_{0} will change continuously to the ground state $\left|e_{j}\right\rangle$ of H_{1}.
We can then determine the smallest diagonal entry of H_{1}.
- For example, if $R=p q$ for two large prime numbers p, q, we can construct H_{1} with diagonal entries $(R-p q)^{2}$ for $p, q=1, \ldots, \sqrt{R}$.
- How to set up a quantum system with H_{1} as the Hamiltonian is challenging.
- There are many other implementation issues.

Quantum state tomography

- If there is an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$, then we can do measurement to determine/estimate $|a|^{2},|b|^{2}$.

Quantum state tomography

- If there is an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$, then we can do measurement to determine/estimate $|a|^{2},|b|^{2}$.
- But we will not be ale to estimate the actual complex numbers a, b.

Quantum state tomography

- If there is an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$, then we can do measurement to determine/estimate $|a|^{2},|b|^{2}$.
- But we will not be ale to estimate the actual complex numbers a, b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.

Quantum state tomography

- If there is an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$, then we can do measurement to determine/estimate $|a|^{2},|b|^{2}$.
- But we will not be ale to estimate the actual complex numbers a, b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- In quantum physics, $|\psi\rangle$ and $e^{i t}|\psi\rangle$ represent the same quantum states.

Quantum state tomography

- If there is an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$, then we can do measurement to determine/estimate $|a|^{2},|b|^{2}$.
- But we will not be ale to estimate the actual complex numbers a, b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- In quantum physics, $|\psi\rangle$ and $e^{i t}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+b|1\rangle$ such that $a \geq 0$.

Quantum state tomography

- If there is an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$, then we can do measurement to determine/estimate $|a|^{2},|b|^{2}$.
- But we will not be ale to estimate the actual complex numbers a, b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- In quantum physics, $|\psi\rangle$ and $e^{i t}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+b|1\rangle$ such that $a \geq 0$.
- Let $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), \quad G=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & i \\ i & 1\end{array}\right)$.

Quantum state tomography

- If there is an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle=\binom{a}{b}$, then we can do measurement to determine/estimate $|a|^{2},|b|^{2}$.
- But we will not be ale to estimate the actual complex numbers a, b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- In quantum physics, $|\psi\rangle$ and $e^{i t}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+b|1\rangle$ such that $a \geq 0$.
- Let $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), \quad G=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & i \\ i & 1\end{array}\right)$.
- Then we can use the measurements of

$$
I|\psi\rangle=\binom{a}{b}, \quad H|\psi\rangle=\binom{a+b}{a-b}, \quad G|\psi\rangle=\binom{a+i b}{i a+b}
$$

to determine/estimate a, b.

Higher dimensions

- For a two qubit state $|\psi\rangle=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$ with $a_{1} \geq 0$, in most cases we can determine $|\psi\rangle$ by the measurements of $|\psi\rangle, U_{1}|\psi\rangle, \ldots, U_{4}|\psi\rangle$ with

$$
\begin{gathered}
U_{1}=I \otimes H=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right), \quad U_{2}=I \otimes G=\left(\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right), \\
U_{3}=H \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right), \quad U_{4}=G \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & i I \\
i I & I
\end{array}\right) .
\end{gathered}
$$

- For a two qubit state $|\psi\rangle=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$ with $a_{1} \geq 0$, in most cases we can determine $|\psi\rangle$ by the measurements of $|\psi\rangle, U_{1}|\psi\rangle, \ldots, U_{4}|\psi\rangle$ with

$$
\begin{gathered}
U_{1}=I \otimes H=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right), \quad U_{2}=I \otimes G=\left(\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right), \\
U_{3}=H \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right), \quad U_{4}=G \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & i I \\
i I & I
\end{array}\right) .
\end{gathered}
$$

- These are local measurements that can be done separately for the first and second qubit.
- For a two qubit state $|\psi\rangle=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$ with $a_{1} \geq 0$, in most cases we can determine $|\psi\rangle$ by the measurements of $|\psi\rangle, U_{1}|\psi\rangle, \ldots, U_{4}|\psi\rangle$ with

$$
\begin{gathered}
U_{1}=I \otimes H=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right), \quad U_{2}=I \otimes G=\left(\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right), \\
U_{3}=H \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right), \quad U_{4}=G \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & i I \\
i I & I
\end{array}\right) .
\end{gathered}
$$

- These are local measurements that can be done separately for the first and second qubit.
- However, if $|\psi\rangle=\left(a_{1}, 0,0, a_{4}\right)$, or $\left(0, a_{2}, a_{3}, 0\right)^{t}$, we need to use non-local operation such as the CNOT gate:

$$
C=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & X
\end{array}\right) \text { with } X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- For a two qubit state $|\psi\rangle=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$ with $a_{1} \geq 0$, in most cases we can determine $|\psi\rangle$ by the measurements of $|\psi\rangle, U_{1}|\psi\rangle, \ldots, U_{4}|\psi\rangle$ with

$$
\begin{gathered}
U_{1}=I \otimes H=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right), \quad U_{2}=I \otimes G=\left(\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right), \\
U_{3}=H \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right), \quad U_{4}=G \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & i I \\
i I & I
\end{array}\right) .
\end{gathered}
$$

- These are local measurements that can be done separately for the first and second qubit.
- However, if $|\psi\rangle=\left(a_{1}, 0,0, a_{4}\right)$, or $\left(0, a_{2}, a_{3}, 0\right)^{t}$, we need to use non-local operation such as the CNOT gate:

$$
C=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & X
\end{array}\right) \text { with } X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

The use of CNOT gate is expensive and attractive to error.

- For a two qubit state $|\psi\rangle=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$ with $a_{1} \geq 0$, in most cases we can determine $|\psi\rangle$ by the measurements of $|\psi\rangle, U_{1}|\psi\rangle, \ldots, U_{4}|\psi\rangle$ with

$$
\begin{gathered}
U_{1}=I \otimes H=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right), \quad U_{2}=I \otimes G=\left(\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right), \\
U_{3}=H \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right), \quad U_{4}=G \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & i I \\
i I & I
\end{array}\right) .
\end{gathered}
$$

- These are local measurements that can be done separately for the first and second qubit.
- However, if $|\psi\rangle=\left(a_{1}, 0,0, a_{4}\right)$, or $\left(0, a_{2}, a_{3}, 0\right)^{t}$, we need to use non-local operation such as the CNOT gate:

$$
C=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & X
\end{array}\right) \text { with } X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The use of CNOT gate is expensive and attractive to error.

- In general, for an n-qubit states $|\psi\rangle$, the number of local unitary operators and CNOT gates needed depend on the zero pattern of $|\psi\rangle$.
- For a two qubit state $|\psi\rangle=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$ with $a_{1} \geq 0$, in most cases we can determine $|\psi\rangle$ by the measurements of $|\psi\rangle, U_{1}|\psi\rangle, \ldots, U_{4}|\psi\rangle$ with

$$
\begin{gathered}
U_{1}=I \otimes H=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right), \quad U_{2}=I \otimes G=\left(\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right), \\
U_{3}=H \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right), \quad U_{4}=G \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & i I \\
i I & I
\end{array}\right) .
\end{gathered}
$$

- These are local measurements that can be done separately for the first and second qubit.
- However, if $|\psi\rangle=\left(a_{1}, 0,0, a_{4}\right)$, or $\left(0, a_{2}, a_{3}, 0\right)^{t}$, we need to use non-local operation such as the CNOT gate:

$$
C=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & X
\end{array}\right) \text { with } X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The use of CNOT gate is expensive and attractive to error.

- In general, for an n-qubit states $|\psi\rangle$, the number of local unitary operators and CNOT gates needed depend on the zero pattern of $|\psi\rangle$.
- How to minimize the use of CNOT gates is of interest.
- For a two qubit state $|\psi\rangle=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{t}$ with $a_{1} \geq 0$, in most cases we can determine $|\psi\rangle$ by the measurements of $|\psi\rangle, U_{1}|\psi\rangle, \ldots, U_{4}|\psi\rangle$ with

$$
\begin{gathered}
U_{1}=I \otimes H=\left(\begin{array}{cc}
H & 0 \\
0 & H
\end{array}\right), \quad U_{2}=I \otimes G=\left(\begin{array}{cc}
G & 0 \\
0 & G
\end{array}\right), \\
U_{3}=H \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right), \quad U_{4}=G \otimes I=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & i I \\
i I & I
\end{array}\right) .
\end{gathered}
$$

- These are local measurements that can be done separately for the first and second qubit.
- However, if $|\psi\rangle=\left(a_{1}, 0,0, a_{4}\right)$, or $\left(0, a_{2}, a_{3}, 0\right)^{t}$, we need to use non-local operation such as the CNOT gate:

$$
C=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & X
\end{array}\right) \text { with } X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

The use of CNOT gate is expensive and attractive to error.

- In general, for an n-qubit states $|\psi\rangle$, the number of local unitary operators and CNOT gates needed depend on the zero pattern of $|\psi\rangle$.
- How to minimize the use of CNOT gates is of interest.

Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

- A general quantum (mixed) state is an $N \times N$ density matrix ρ, A is Hermitian with nonnegative eigenvalues summing up to 1 .

Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

- A general quantum (mixed) state is an $N \times N$ density matrix ρ, A is Hermitian with nonnegative eigenvalues summing up to 1 .
- One can use $U_{0}=I, U_{1}, \ldots, U_{N}$ do measurements of the diagonal entries of $U_{j} \rho U_{j}^{*}$ to determine ρ.

Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

- A general quantum (mixed) state is an $N \times N$ density matrix ρ, A is Hermitian with nonnegative eigenvalues summing up to 1 .
- One can use $U_{0}=I, U_{1}, \ldots, U_{N}$ do measurements of the diagonal entries of $U_{j} \rho U_{j}^{*}$ to determine ρ.
- In quantum computing, $N=2^{n}$ is an n-qubit system. We can use unitary operators of the form $V_{1} \otimes \cdots \otimes V_{n}$ with $V_{j} \in\{I, H, G\}$ to determine ρ.

Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

- A general quantum (mixed) state is an $N \times N$ density matrix ρ, A is Hermitian with nonnegative eigenvalues summing up to 1 .
- One can use $U_{0}=I, U_{1}, \ldots, U_{N}$ do measurements of the diagonal entries of $U_{j} \rho U_{j}^{*}$ to determine ρ.
- In quantum computing, $N=2^{n}$ is an n-qubit system. We can use unitary operators of the form $V_{1} \otimes \cdots \otimes V_{n}$ with $V_{j} \in\{I, H, G\}$ to determine ρ.
- In this scheme, we need to do 3^{n} set of such (local) measurements. The number cannot be reduced.

Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

- A general quantum (mixed) state is an $N \times N$ density matrix ρ, A is Hermitian with nonnegative eigenvalues summing up to 1 .
- One can use $U_{0}=I, U_{1}, \ldots, U_{N}$ do measurements of the diagonal entries of $U_{j} \rho U_{j}^{*}$ to determine ρ.
- In quantum computing, $N=2^{n}$ is an n-qubit system. We can use unitary operators of the form $V_{1} \otimes \cdots \otimes V_{n}$ with $V_{j} \in\{I, H, G\}$ to determine ρ.
- In this scheme, we need to do 3^{n} set of such (local) measurements. The number cannot be reduced.
- If non-local unitary operators are allowed, we only need $N+1=2^{n}+1$ sets of measurements.

Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

- A general quantum (mixed) state is an $N \times N$ density matrix ρ, A is Hermitian with nonnegative eigenvalues summing up to 1 .
- One can use $U_{0}=I, U_{1}, \ldots, U_{N}$ do measurements of the diagonal entries of $U_{j} \rho U_{j}^{*}$ to determine ρ.
- In quantum computing, $N=2^{n}$ is an n-qubit system. We can use unitary operators of the form $V_{1} \otimes \cdots \otimes V_{n}$ with $V_{j} \in\{I, H, G\}$ to determine ρ.
- In this scheme, we need to do 3^{n} set of such (local) measurements. The number cannot be reduced.
- If non-local unitary operators are allowed, we only need $N+1=2^{n}+1$ sets of measurements.
- We "extend" an n-qubit state ρ as a $2 n$-qubit state by an operation of the form $\tilde{\rho}=X \rho X^{*} \in M_{N^{2}}$, where X is $N \times N^{2}$ such that $X^{*} X=I_{N}$.

Mixed states (Li,Nakahara,Pelejo,Stanish,Wang)

- A general quantum (mixed) state is an $N \times N$ density matrix ρ, A is Hermitian with nonnegative eigenvalues summing up to 1 .
- One can use $U_{0}=I, U_{1}, \ldots, U_{N}$ do measurements of the diagonal entries of $U_{j} \rho U_{j}^{*}$ to determine ρ.
- In quantum computing, $N=2^{n}$ is an n-qubit system. We can use unitary operators of the form $V_{1} \otimes \cdots \otimes V_{n}$ with $V_{j} \in\{I, H, G\}$ to determine ρ.
- In this scheme, we need to do 3^{n} set of such (local) measurements. The number cannot be reduced.
- If non-local unitary operators are allowed, we only need $N+1=2^{n}+1$ sets of measurements.
- We "extend" an n-qubit state ρ as a $2 n$-qubit state by an operation of the form $\tilde{\rho}=X \rho X^{*} \in M_{N^{2}}$, where X is $N \times N^{2}$ such that $X^{*} X=I_{N}$.
- A measurement of $\tilde{\rho}$ can determine ρ.

Other interesting topics

- Quantum system tomography.

Other interesting topics

- Quantum system tomography.
- Quantum states and quantum operations with special properties.

Other interesting topics

- Quantum system tomography.
- Quantum states and quantum operations with special properties.
- Separability of quantum states.

Other interesting topics

- Quantum system tomography.
- Quantum states and quantum operations with special properties.
- Separability of quantum states.
- Distinguishability of quantum channels.

Other interesting topics

- Quantum system tomography.
- Quantum states and quantum operations with special properties.
- Separability of quantum states.
- Distinguishability of quantum channels.
- Quantum error correction, Toric code.

Other interesting topics

- Quantum system tomography.
- Quantum states and quantum operations with special properties.
- Separability of quantum states.
- Distinguishability of quantum channels.
- Quantum error correction, Toric code.
- Applications of quantum computing techniques to image processing, neural network, AI,

Other interesting topics

- Quantum system tomography.
- Quantum states and quantum operations with special properties.
- Separability of quantum states.
- Distinguishability of quantum channels.
- Quantum error correction, Toric code.
- Applications of quantum computing techniques to image processing, neural network, AI,

Hope to tell you more next time.
Thank you for your attention!

