Graphs $\Gamma = (V(\Gamma), E(\Gamma))$ Conventions: |V(r)| finite, Edges are undirected, no loops, no multiple edges {x, p} e E(r) ~~ ~ ~ p # of neighbors of vertex! degree or valency $Aut(\Gamma) := \{ bijections V(\Gamma) \rightarrow V(\Gamma) \}$ preserving E(M)] $Aut(r) \leq Sym (v(r))$ NOTATION IF ge Aut (r), « e V(r), we write x⁹ for the image of 2 under g. a G: <u>orbit</u> of a under G (all places a can be set by G) Ge: stubilizer .F & in G (all elements of G hixing a)

$$\left(\begin{array}{ccc} G & is & t \underline{\qquad} sit five & n & a & sit \\ \mathcal{L} G & is & t \underline{\qquad} sit five & n & a & sit \\ \mathcal{L} G & is & t \underline{\qquad} sit \\ \mathcal{L} G & = \mathcal{L} \end{array} \right)$$

FIRST IDEA: "A bet" of "global" symmetry
DEF G is
$$2$$
-transitive a Ω if, for
 $m = \pm \beta$, $\Upsilon \pm \delta \in \Omega$, three exists
 $g \in G$ such that $(m_1\beta)^5 = (\overline{\sigma}, \overline{\delta})$
ordered prime
Which graphs are 2 -transitive on $V(\Gamma)$?
Only complete graphs (K_n) on empty/mult
(all edges) $graphs = (\pi, \beta) \in E(\Gamma)$
or $\{\pm, \beta\} \notin E(\Gamma)$.
The me 2 -transitivity. \Box

DEF For s & Zzo, an s-arc of a g-ph

$$\Gamma$$
 is a sequence of s+1 vertices
 $(\prec_0, \prec_1, ..., \prec_s)$ satisfying :

(1)
$$\varkappa_{i} \sim \varkappa_{i+1}$$
 for $0 \le i \le s - 1$,
(2) $\varkappa_{i-1} \ne \varkappa_{i+1}$ for $1 \le i \le s - 1$.
(3) $\varkappa_{i-1} \ne \varkappa_{i+1}$ for $1 \le i \le s - 1$.
(4) $\varkappa_{i-1} \ne \varkappa_{i+1}$ for $1 \le i \le s - 1$.
(5) $\varkappa_{i-1} = \varkappa_{i+1}$ for $1 \le i \le s - 1$.
(6) $\varkappa_{i-1} = \varkappa_{i-1} = 1$ for $1 \le i \le s - 1$.
(6) $\varkappa_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(8) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(8) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(8) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(7) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(8) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.
(9) $\varepsilon_{i-1} = 1$ for $\varepsilon_{i-1} = 1$.

Complete bipartite graphs Km, n are louly 3-arc-transitive

EX Cycles! Cn is
$$s-a-c-t-ansitive$$

for all $s \ge 0$!

THM Let
$$\Gamma$$
 be a graph where all vertices
have degree ≥ 3 .

(1) (Tuffe 1947, 1959) If 1' is source to define
$$3$$
,
and all vertices have degree 3 ,
then $s \leq 5$.

(2) (Weiss 1981) IF
$$\Gamma$$
 is s-arc-transitive,
then $s \leq 7$.

$$\Gamma: \quad 2 - arc - t - arsitive g - \gamma A$$

$$FACT: \quad G := Aut(\Gamma) \cong S_4 \times C_2$$

$$G_{ooo} \cong S_3$$

