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(9[- -]

o Bilinearity:
o [az + by, 2] = alz, 2] + by, 2
o [z,ax + byl = alz, 2] + b[2, Y]

o Alternativity: [z,2] =0
e Jacobi: [z, [y, z]] + [y, [z, z]] + [z, [z, y]] = 0

Example
% % % %
A3—5[(4)
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Lie Algebra
(g, [=—])

Kirillov Form
Bgo(xvy) = —d(p(l’,y) = 90([x7y])

Index

ind g = min dim(ker(B,))
peg”

Regular
dim(ker(B,)) = ind g
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dimg = 2k dimg =2k +1

(g, ) is Frobenius (g, ) is contact

= (dp)* #0 = P A(dp)* £0
<= indg=0 = indg=1

<= B, non-degenerate = ker(B,) = span{h}
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Useful Equivalence

e regular ¢ € g*,
g contact <= | @ ker(B,) = span{h}, and

o ¢(h) # 0.
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Theorem (Dergachev and Kirillov - J. Lie Theory, 2000)

If 5 is a type-A seaweed, then

inds =2C + P — 1.

Corollary: If s is a contact, type-A seaweed, then either P = 2
or C=1.

Wild Conjecture: The “homotopy type” of a seaweed
completely determines when it is contact.
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Theorem (Coll, Mayers, R., and Salgado - Pac. J. Math.,

All index-one, type-A seaweeds are contact.

9
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Two cases to consider

H(1,1) and H(2)
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Step 1: Regular ¢

U{1,2} U{3,4} U{5,6}

¢ = {{1,2} x {1,2},{3,4} x {3,4}, {5,6} x {5,6}}

= {{5,6} x {1,2}, {1,2} x {374}}
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Theorem (Coll and R. - in preparation)

All index-one, type-C seaweeds are contact.

Four cases to consider

0 Ho(1,1,...,1) Q@ He(l,...,1,3,1,....1)

Q He(l,...,1,2,1,...,1) @ He(l,...,1,2)
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Question

Are all index-one seaweeds contact?

Answer

NO!
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Theorem (Panyushev - Ann. Inst. Fourier, 2005)

All type-A and type-C seaweeds are “quasi-reductive.”

Definition

g is quasi-reductive if there exists ¢ € g* for which

ker(B,,) : :
° @/Z(g) is reductive, and

o the elements of Z (ker(Bw)/Z(

g)) are semisimple.
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An index-one seaweed is contact if and only if it is
quasi-reductive.
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Proof
(QR = contact)

Choose ¢ € s* such that ker(B,) = span{h}, h € s semisimple.

h semisimple = h € bh.

Generate Cartan-Weyl basis from h;

@ [h,h]=0,forall ¥ €h,and @ [h,e,] = cqeq, for all roots a.
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ker(B,/) = span{h} — Cartan-Weyl bracket structure.
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Proof
(QR = contact)

If o(h) = 0, then define ¢’ = ¢ + eh*.
¢’ is regular — nullity is upper semicontinuous.

ker(B,/) = span{h} — Cartan-Weyl bracket structure.

¢'(h) = #0.

Therefore, ¢’ is contact on s.
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Theorem (Ammari - J. Lie Theory, 2022)

A seaweed is quasi-reductive if and only if it is “stable.”

Definition

w € g* is stable if there exists V' 3 ¢ for which

€V = ker(B,) and ker(By) are conjugate.
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Useful Equivalence

Lemma (Ammari - J. Lie Theory, 2013)

s stable <= [ker(B,),s| Nker(B,) = {0}.
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Proof:

(contact = stable)

Fix “contact basis:”

— k
° p=Ey ° By =) i (E5NES )
—> ker(By) = span{F}

< B,(F1,x) = E{([E1,2]) =0, forallz €5
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Proof:

(contact = stable)

Fix “contact basis:”

— k
° p=Ej ° By =) i (E5NES )
—> ker(By) = span{F}
< B,(F1,x) = E{([E1,2]) =0, forallz €5

— [ker(B,),s] Nker(B,) = {0}
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Closing the Problem

Proof:

(contact = stable)

Fix “contact basis:”

° p=Ey ° B, = Zf:l(E;z A E5¢+1)
—> ker(By) = span{F}
<= By(Ei,z) = E{([E1,2]) =0, forallz € 5
= [ker(By), s] Nker(B,) = {0}

<> § stable.

Nick Russoniello Contact Seaweeds
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e Type A and Type C — Panyushev, 2005
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Quasi-reductive seaweeds

e Type A and Type C — Panyushev, 2005

o Type D “without seaweed shape” —
Panyushev and Yakimova, 2018

o Exceptional — Ammari, 2022

o Type B and Type D parabolics —
Duflo, Khalgui, and Torasso, 2012
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Facts

Quasi-reductivity is preserved by winding moves

Homotopy type identifies the underlying parabolic
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Contact Homotopy Types

o Hp(1,1,...,1)
o Hp(l,...,1,2)

o Hp(l,...,1,3,1,...,1)
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2|3]48
Is s ‘3||10| contact?

QP () @Q B 6 @Q B 49 (D 49 (9

Hp(1,1,2) = contact
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