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What are copositive matrices?

Definition

Let Sn be the set of all real n-by-n symmetric matrices. Then, A 2 Sn is copositive (CoP) if its
quadratic form x

T
Ax � 0 for all nonnegative vectors x 2 Rn.

• A generalization of positive semidefinite (PSD) matrices: for a PSD matrix B , xTBx � 0
for all vectors x 2 Rn.

• All copositive matrices form a convex cone.
• Convex cone: closed under linear combinations with positive coe�cients.

• Copositive matrices were first defined by T. S. Motzkin in 1952.
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Why do we care?

Copositive (CoP) matrices have many applications:

• In optimization theory: copositivity o↵ers a unified convex way to reformulate
nonconvex mixed quadratic programs into convex programs [10].

• In di↵erential equations: CoP matrices have applications in quadratic di↵erential
equations [7].

• In theoretical economics: can be used to model discrete markets and games [9].

• Strong modeling power, but hard: new theory & checking copositivity is NP-hard.

Thus, CoP matrices are really useful, but more studies are needed.
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Checking copositivity

In 1960, Kaplan provides the following way to check copositivity:

Theorem (Kaplan, 1960 [3])

Let A 2 Sn. Then A is copositive if and only if every principal submatrix B of A has no
eigenvector v > 0 with associated eigenvalue � < 0.

• This theorem provides us with a systematic way to check copositivity.

• However: NP-hard & exponential e↵orts.
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Some entrywise properties

In [6], Bundfuss presents the following four entrywise properties for CoP matrices:

Proposition [6]

Let A = [aii ] be a CoP matrix. Then:

(i) aij � 0 for all i .

(ii) If aii = 0, then aij � 0 for all j .

(iii) aij � �p
aiiajj for all i and all j .
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Spectral of CoP matrices

Definition

The spectral radius of a matrix A is the largest absolute value of A’s eigenvalues.

Theorem [11]

Let A be CoP. Then, the spectral radius ⇢(A) is an eigenvalue of A.

i.e., CoP matrices have the Perron property.
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Ordinary vs. Exceptional

Let Sn be the set of n-by-n real symmetric matrices.
Let Cn = {A 2 Sn : A is copositive (CoP)}
Pn = {A 2 Sn : A is positive semidefinite (PSD)};
Nn = {A 2 Sn : A is nonnegative (sN)} (entry-wise nonnegative).

Theorem (Diananda, 1961 [4])

In general, Pn +Nn ⇢ Cn. For n  4,Pn +Nn = Cn.

Definition

A CoP matrix is exceptional if it is not the sum of a PSD matrix and an sN matrix.
Otherwise, we say the matrix is ordinary.

Thus, if the size of a CoP matrix is less than or equal to 4, then this CoP matrix is ordinary.
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Example: 5-by-5 exceptional CoP

Examples

The Horn Matrix:

A =

2

66664

1 �1 1 1 �1
�1 1 �1 1 1
1 �1 1 �1 1
1 1 �1 1 �1
�1 1 1 �1 1

3

77775

The Horn matrix is exceptional CoP and cannot be decomposed into PSD + sN.
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Example: ordinary CoP

Examples

A =

2

4
1 3 �1
3 1 1
�1 3 2

3

5 =

2

4
1 0 �1
0 1 1
�1 1 1

3

5+

2

4
0 3 0
3 0 2
0 2 1

3

5 .

CoP PSD sN

Here, A is ordinary CoP, and A can be decomposed into PSD + sN.
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CoP-preserved operations

Start from something easy: CoP matrices with entries from {1,�1} or {1,�1, 0}.

Then, A 2 Sn is CoP if and only if all of its principal submatrices do not contain the following
“forbidden” patterns (up to permutation similarity) [1]:

“Forbidden” patterns

2

4
1 �1 �1
�1 1 �1
�1 �1 1

3

5 &

2

4
1 �1 �1
�1 1 0
�1 0 1

3

5
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Example: {1, 0,�1}

In this case, it is easier to check copositivity. (In an n-by-n matrix, there are a total of
�n
3

�

3-by-3 principal submatrix.)

Examples

A =

2

664

1 1 �1 �1
1 1 1 1
�1 1 1 0
�1 1 0 1

3

775

Then, A is not CoP.
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Hadamard Product & Kronecker Product

• Positive semidefiniteness is preserved under Hadamard and Kronecker products.
• Since CoP matrices are generalizations of PSD matrices, we wonder if copositivity would
also be preserved.

Definition

Let A = (aij),B = (bij),A,B 2 Mn. The Hadamard product of A and B , denoted by A � B , is
an entrywise multiplication: A � B = (aijbij).

Definition

Let A = (aij) 2 Mm,n,B 2 Mp,q. Then, the Kronecker product of A and B , denoted by A⌦ B ,
is a pm-by-qn matrix:

A⌦ B =

2

64
a11B · · · a1nB
...

. . .
...

am1B · · · amnB

3

75
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Hadamard Product & Kronecker Product

Examples

Let A =

2

4
1 1 1
1 1 �1
1 �1 1

3

5 ,B =

2

4
1 �1 �1
�1 1 1
�1 1 1

3

5 . Then, A � B =

2

4
1 �1 �1
�1 1 �1
�1 �1 1

3

5 .

Remark

Let A = (aij),B = (bij),A,B 2 Mn. Then, A � B is a principal submatrix of A⌦ B .

Thus, the Hadamard (and also Kronecker) product of two general CoP matrices is not CoP.

What about some special CoP matrices Hadamard/Kronecker product with CoP matrices?
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Dual cone: completely positive matrices

Definition

Let A 2 Sn. A is completely positive(CP) if A can be factorized as A = BB
T for nonnegative

matrix B 2 Mn,m. CP matrices are special PSD matrices and also CoP matrices.

The set of all CP matrices also form a convex cone, and it is the dual cone of CoP matrices[8].

Definition

For a cone K ⇢ Sn, the dual cone is: K ⇤ =
�
Y 2 Sn : Tr

�
Y

T
X
�
� 0 8X 2 K

 
.

Since x
T
Ax = Tr

�
A
T
xx

T
�
, all matrices of the form xx

T with x � 0 are in the dual cone of
Cn.
Thus, all CP matrices form a dual cone of CoP matrices.
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Hadamard Product & Kronecker Product

Let A be a CoP matrix. Then:

Theorem [1]

B � A is copositive if and only if B is CP.

Theorem

B ⌦ A is copositive if and only if B is CP.
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Other matrix operations: polynomial?

For PSD matrices: if A is PSD, then p(A) is PSD if p(t) � 0 for all t � 0.
(If � is an eigenvalue for A, then p(�) is an eigenvalue for p(A).)

Question

Which polynomial preserves copositivity?

This leads us to consideration of powers.

• Even power: Yes, definitely.

• Odd power: Not always.
• Example of CoP being preserved: all PSD matrices.
• Example of CoP not being preserved: Horn matrix.
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Odd powers?

Examples

The Horn Matrix:

A =

2

66664

1 �1 1 1 �1
�1 1 �1 1 1
1 �1 1 �1 1
1 1 �1 1 �1
�1 1 1 �1 1

3

77775
,A3 =

2

66664

13 �11 5 5 �11
�11 13 �11 5 5
5 �11 13 �11 5
5 5 �11 13 �11

�11 5 5 �11 13

3

77775

Let B be the principal submatrix of A3 with the first three rows & columns. Then, B has

eigenvalue � = �0.2560 with eigenvector v =

2

4
0.4586
0.7611
0.4586

3

5.

Thus, A3 is not CoP by Kaplan’s Theorem.

Note: the Horn matrix is exceptional (cannot be decomposed into PSD + sN).
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Odd powers: ordinary vs. exceptional

Why is Horn matrix no longer CoP after cubing?

• We decided to run some simulations with ordinary & exceptional matrices.

• Recall: a matrix is ordinary if it can be decomposed into PSD + sN.
• It is easy to generate random ordinary CoP matrices, but hard to generate exceptional
CoP matrices.

• There are some studies on exceptional CoP matrices with certain structures[2], but only
some limited cases.
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Odd powers: ordinary vs. exceptional

We did simulations with size n = 5, 6, 7, 8, each with more than 100,000 random ordinary
matrices. We reaches the following conjecture:

Conjecture

Let A 2 Cn. Then A
3 is CoP if and only if A is ordinary (that is, A 2 Pn +Nn).

What is the di↵erence between ordinary CoP & exceptional CoP?
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Ordinary Recognition & Decomposition Problem

Here, we introduce the ordinary recognition & decomposition problem:

Question

• Given a CoP matrix, how to tell whether it is ordinary or not?

• If we have an ordinary CoP matrix, how to decompose it into PSD + sN?
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Ordinary Recognition & Decomposition Problem

To discuss this problem, we note the following matrix properties:

1. Let A be an ordinary CoP with one possible decomposition A = P + N (P is PSD, N is
nonnegative). Then, P contains all negative entries of A.

2. For a PSD matrix, if we make the diagonals even more positive, it does not destroy the
positive semi-definiteness.

P1 =


1 �1
�1 1

�
) P2 =


3 �1
�1 3

�

3. Thus, if N has some positive values on the diagonal, then we can move the positive
diagonal weight all to P ; the new decomposition will still be a valid ordinary
decomposition.

22 / 39



Ordinary Recognition ) PSD Completion Problem

The ordinary recognition problem is equivalent to a restricted type of PSD completion
problem. Let A 2 Cn.

Let D 2 Sn contain only the diagonal entries of A;
let N 2 Sn contain only the negative o↵-diagonal entries of A;
let P 2 Sn contain only the positive o↵-diagonal entries of A.
Let B = N + D, and let the zero entries be unspecified. Then, we make this conjecture:

Conjecture

A is ordinary if and only if B has a PSD completion with entries no more than P .

A =

2

4
a �d f

�d b �e

f �e c

3

5 ;) B =

2

4
a �d ⇤
�d b �e

⇤ �e c

3

5
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Ordinary Recognition ) PSD Completion

If this conjecture is true, then we will have a great way to recognize ordinary CoP matrices and
decompose them systematically.

Specifically, we start with a “skeleton” and gradually transfer positive weight from P to B . If
we use up everything but still not yet gotten a PSD matrix, then it is exceptional.

A =

2

4
a �d f

�d b �e

f �e c

3

5 ;) ”Skeleton”B =

2

4
a �d 0
�d b �e

0 �e c

3

5
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Example: 3-by-3

Examples

A 3-by-3 example (size  4 : all ordinary):

A =

2

4
13 �9 28
�9 12 �11
28 �11 20

3

5 ;B =

2

4
13 �9 0
�9 12 �11
0 �11 20

3

5

B is not PSD with a negative eigenvalue � = �0.16.
If we transfer some weight from the positive o↵-diagonal entry in A to B :

B
0 =

2

4
13 �9 1
�9 12 �11
1 �11 20

3

5 is PSD; B 0 + (A� B
0) is a ordinary decomposition of A.

There can be many ways to decompose an ordinary CoP matrix.

25 / 39



Example: Horn matrix

Examples

Horn matrix (exceptional): A =

2

66664

1 �1 1 1 �1
�1 1 �1 1 1
1 �1 1 �1 1
1 1 �1 1 �1
�1 1 1 �1 1

3

77775
;

D = I5,P =

2

66664

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

3

77775
;B =

2

66664

1 �1 0 0 �1
�1 1 �1 0 0
0 �1 1 �1 0
0 0 �1 1 �1
�1 0 0 1 �1

3

77775
.

B has no PSD completion here; if we transfer the positive o↵-diagonal weight on P to B , we
can never get a PSD matrix.
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3-by-3 Ordinary Decomposition

We start from 3-by-3 ordinary CoP matrices and want to come up with a general scheme of
ordinary decomposition.

• Wlog, we can take diagonals to be 1’s using diagonal equivalence.

• Let d , e, f � 0, then we have 4 cases (up to permutation similarity):

A1 =

2

4
1 d f

d 1 e

f e 1

3

5 ;A2 =

2

4
1 �d f

�d 1 e

f e 1

3

5 ;A3 =

2

4
1 �d f

�d 1 �e

f �e 1

3

5 ;A4 =

2

4
1 �d �f

�d 1 �e

�f �e 1;

3

5
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3-by-3 Ordinary Decomposition

• Claim: we only need to consider A3.

A1 =

2

4
1 d f

d 1 e

f e 1

3

5 = I3 +

2

4
0 d f

d 0 e

f e 0

3

5 ;

A2 =

2

4
1 �d f

�d 1 e

f e 1

3

5 =

2

4
1 �d 0
�d 1 0
0 0 1

3

5+

2

4
0 0 f

0 0 e

f e 0

3

5 .

• Recall: since A2 is CoP, aij � �p
aiiajj . Thus, d2  1.
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3-by-3 Ordinary Decomposition

A3 =

2

4
1 �d f

�d 1 �e

f �e 1

3

5 =

2

4
1 �d 0
�d 1 �e

0 �e 1

3

5+

2

4
0 0 f

0 0 0
f 0 0

3

5 ;

A4 =

2

4
1 �d �f

�d 1 �e

�f �e 1.

3

5 ;

A4 is automatically PSD, so we only need to consider A3.
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3-by-3 Ordinary Decomposition

Now, let A = A3 =

2

4
1 �d f

�d 1 �e

f �e 1

3

5 ;B =

2

4
1 �d 0
�d 1 �e

0 �e 1

3

5 .

Let B 0 =

2

4
1 �d f

0

�d 1 �e

f
0 �e 1

3

5 (0  f
0  f ).

Suppose B is not PSD, and we want to make B
0 become PSD by picking a suitable value f

0.
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3-by-3 Ordinary Decomposition

B =

2

4
1 �d 0
�d 1 �e

0 �e 1

3

5 ;B 0 =

2

4
1 �d f

0

�d 1 �e

f
0 �e 1

3

5 (0  f
0  f ).

Question

Do we ever have to make a negative entry more negative to get an ordinary decomposition?

Ans: No. Since d
2  1, det(


1 �d

�d 1

�
) � 0. we need det(B 0) � 0.

But det(B) = 1� d
2 � e

2. If d and e increase, then det(B) will be more negative.
Thus, we only need to adjust the nonnegative entries.
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3-by-3 Ordinary Decomposition

B =

2

4
1 �d 0
�d 1 �e

0 �e 1

3

5 ;B 0 =

2

4
1 �d f

0

�d 1 �e

f
0 �e 1

3

5 , (0  f
0  f ).

Then, det(B 0) = �f
02 + 2def 0 � d

2 � e
2 + 1.

At det(B 0) = 0, we solve the quadratic equation: f 0 = de ±
p
(d � 1)(d + 1)(e � 1)(e + 1).

For easier notation, let
f1 = de �

p
(d � 1)(d + 1)(e � 1)(e + 1), f2 = de +

p
(d � 1)(d + 1)(e � 1)(e + 1).

Note that f1, f2 > 0.

Then, the determinant changes as the following:
1. When 0 < f

0 < f2, det(B 0) < 0;
2. When f1 < f

0 < f2, det(B 0) > 0;
3. When f

0 > f2, det(B 0) < 0.
32 / 39



3-by-3 Ordinary Decomposition

B =

2

4
1 �d 0
�d 1 �e

0 �e 1

3

5 ;B 0 =

2

4
1 �d f

0

�d 1 �e

f
0 �e 1

3

5 , (0  f
0  f ).

Let us denote the smallest eigenvalue & eigenvector of B 0 by �s and vs .
When f = 0: �s < 0, and �s is the only negative eigenvalue of B 0 due to interlacing inequality.
Also, vs > 0.

Recall: Kaplan’s Theorem: B 0 is CoP if & only if it has no � < 0 with v > 0.

Let us trace �s and vs as f 0 increases.
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Experiment Observations

B =

2

4
1 �d 0
�d 1 �e

0 �e 1

3

5 ;B 0 =

2

4
1 �d f

0

�d 1 �e

f
0 �e 1

3

5 , (0  f
0  f ).

We remark the following observations from computational experiments:

Observations

• When 0  f
0 < f1 : �s < 0, and vs > 0 ) not CoP.

• At f 0 = f1 : �s = 0, vs > 0 ) PSD.

• At f1 < f
0 < f2, there is a point where vs start to have mixed signs ) PSD.

• At f 0 > f2 : �s < 0, vs has mixed signs ) CoP.
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Experiment Observations
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Experiment Observations

• Thus, as we increase f
0, B 0 becomes an element in Pn before it becomes an element in

Cn/Pn.

• If this is true, then we will have a valid way to decompose 3-by-3 ordinary CoP matrices.
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Spectrum of ordinary CoP matrices

In these experiments, we had some interesting observation related to spectrum of ordinary CoP
matrices.

Finally, we want to draw some connections of spectrum of ordinary CoP matrices to the
spectrum of sN matrices.

• The sN inverse eigenvalue problem is unsolved.

• If we take PSD + sN, the eigenvalues never decrease.
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Thank you!
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