
Enumerating Minimum Path Covers of Trees

Merielyn Sher
Advisor: Dr. Charles Johnson

October 1, 2021

Outline

I Background

I Motivation

I Definitions

I Trees with Multiple-Component Hi-graphs

I Trees with Single-Component Hi-graphs

I Irreducible Trees

Background

I A path cover of a tree T is a collection of induced paths of
T that are vertex disjoint and cover all the vertices of T .

I A minimum path cover (MPC) of T is a path cover with
the minimum possible number of paths.

I The path cover number of T , denoted P(T), is the number
of paths in a MPC.

I P(T) denotes the set of all MPC’s of T . N(T) denotes the
number of distinct MPC’s of T . Note that N(T) = |P(T)|.

Background

A tree can have unique or multiple MPC’s.

P(T2) = 2;N(T2) = 1

P(T1) = 4;N(T1) = 19

Motivation

I Let A = (aij) be an n × n Hermitian matrix. The graph of A,
denoted G(A), is the simple undirected graph on n vertices
with an edge {i , j} if and only if i 6= j and aij 6= 0.

I Given an undirected graph G, H(G) is the set of all Hermitian
matrices with graph G .

1 2 3 4 5 6

1 2 1 0 0 0 0
2 1 2 1 1 0 0
3 0 1 2 0 0 0
4 0 1 0 2 1 1
5 0 0 0 1 2 0
6 0 0 0 1 0 2

1 2

3

4

5

6
T

A ∈ H(T)

Motivation

I For a matrix in H(G), the possible multiplicities of its
eigenvalues are constrained by G .

I The multiplicity list of a n × n matrix is a simple partition of
n in which the parts are the multiplicities of the distinct
eigenvalues.

I For a graph G , a major constraint on the multiplicity lists for
matrices in H(G) is the maximum multiplicity, M(G), that is,
the largest multiplicity that can occur.

Motivation

Theorem (JL-D99)

For any tree T , M(T) = P(T).

Example:

Some possible multiplicity lists:
{(4, 3, 1, 1, 1), (4, 2, 2, 1, 1), (4, 2, 1, 1, 1, 1), (4, 1, 1, 1, 1, 1, 1), · · · }

M(T) = 4 = P(T).

Motivation

I Different ways that the maximum multiplicity can occur for a
given tree

I M(T) = P(T) =⇒ different ways that P(T) occurs?

Definitions

I The degree of a vertex v in a tree T , denoted degT (v), is the
number of neighboring branches at v

I A high degree vertex (HDV) in a tree is a vertex of degree
at least 3. A low degree vertex has degree 1 or 2.

Definitions

The Hi-graph, H(T), of a tree T is the subgraph induced by
its HDV’s. H(T) is a forest with one or more components (each of
which is a tree).

E.g.

v1 v2

T

H(T)

Definitions

The Hi-graph, H(T), of a tree T is the subgraph induced by
its HDV’s. H(T) is a forest with one or more components (each of
which is a tree).

E.g.

v1 v2 v3

v4

T

H(T)

Definitions

I The incremental degree of a vertex v in T , idegT (v), is the
difference between its degrees in T and in H(T).

I A high-incremental degree (HID) vertex in H(T) is one of
incremental degree at least 2; otherwise it is of
low-incremental degree (LID).

I A labeled Hi-graph, denoted HL(T), has all its vertices
labeled with their respective incremental degrees.

v1 v2 v3

v4

02

2

2

T HL(T)

Edge Status

Definition
An edge is absent if it is used in no MPC of T ; An edge is
required if it is used in all MPC’s; An edge is discretionary if it
occurs in some but not all MPC’s.

Example:

r

r

a a

r

r

d

d d

Edge Status

Proposition

Any edge between two low degree vertices is a required edge.

For a tree T , the value of N(T) is independent of the lengths
of the paths induced by the low degree vertices in T .

T1 v1 v2 T2

Theorem
If two trees T1 and T2 have the same labeled Hi-graph, then
P(T1) = P(T2) and N(T1) = N(T2).

T1

T2

3 3

HL(T1)&HL(T2)
P(T1) = P(T2) = 3;N(T1) = N(T2) = 9

Trees with Multiple-Component Hi-graphs

Trees with Multiple-Component Hi-graphs

The Hi-graph of a tree T has two or more components when
there are one or more low-degree vertices on a single path between
two of the HDV’s.

v1 v2

T

3 3

H(T)

Hyphen Decomposition
A hyphen is a path induced by the low-degree vertex or

vertices between two HDV’s in T .

v1 v2

Hyphen

T

v1

T1

v2

T2

Hyphen Hyphen

3

H(T1)

3

H(T2)

Trees with Multiple-Component Hi-graphs

Proposition

Let T be a tree with a two-component Hi-graph, and let T1 and
T2 be the results of hyphen-decomposing T . Then,

N(T) = N(T1)N(T2)

.

v1 v2

Hyphen

T

v1

T1

v2

T2

Hyphen Hyphen

N(T1) = 3;N(T2) = 3;N(T) = 9

Proof idea:
I The hyphen in T is always included in a single path in every

MPC of T1 and T2.
I For any two MPC’s of T1 and T2, a MPC for T can be

constructed by merging the two respective paths in the two
MPC’s that contain the hyphen.

I Construct a function f : P(T1)×P(T2)→ P(T), and show
that f is a bijection.

I Thus, N(T1)× N(T2) = |P(T1)||P(T2)| = |P(T)| = N(T).

v1

T1

v2

T2

Hyphen Hyphen

v1 v2

Hyphen

T

Trees with Multiple-Component Hi-graphs

Theorem
Suppose that the Hi-graph of a tree T consists of n disjoint
components. If T is hyphen-decomposed into n disjoint
components, T1,T2, · · · ,Tn, then,

N(T) =
n∏

i=1

N(Ti).

Trees with Single-Component Hi-graphs

Trees with Single-Component Hi-graphs

A generalized star, or g-star, is a tree with at most one
HDV.

Proposition

Let T be a g-star with k arms. Then,

P(T) = k − 1 and N(T) =

(
k

2

)
.

P(T) = 4;N(T) =
(5
2

)
= 10

Absent Edge Decomposition

Theorem
If a tree T is decomposed into smaller components T1,T2, · · · ,Tn

through removing all of its absent edges, then,

P(T) =
n∑

i=1

P(Ti) and N(T) =
n∏

i=1

N(Ti).

Example:

N(T) = 1×
(3
2

)
× 1 = 3

Identifying Absent Edges

Proposition

In a tree T , an edge between two HID vertices is an absent edge.

T1 v1

T2

v2 T3

Not the only type of absent edges!

Trees with Single-Component Hi-graphs
- Identifying Absent Edges

A HDV is peripheral if and only if starting from itself, there
is at most one direction to proceed in T in order to find another
HDV. A pendent g-star in a tree T is a g-star induced by a
peripheral HDV and its pendent paths.

A tree T is either a g-star itself or contains two or more
pendent g-stars.

Proposition

Removing a pendent g-star (as well as the edge that connects it
with the rest of T) from a tree T does not change the status of
the rest of the edges in T .

Trees with Single-Component Hi-graphs
- Identifying Absent Edges

”Pruning” Trees to Identify Absent Edges:

I For a tree T , select an edge e with a status that cannot be
directly identified.

I Repeatedly remove pendent g-stars as well as the edges that
connect them to the rest of the tree from T .

I Stop when
(1) e is between two HID vertices (e is absent), or
(2) a single g-star that contains e is left (e is either
discretionary or required).

Irreducible Trees

Irreducible Trees

Definition
A tree T is irreducible if H(T) is connected and there are no
absent edges in T .

Lemma
For any tree T , an edge e connecting a pendent g-star to the rest
of T is never required.

Lemma
For an irreducible tree T , an edge e connecting a pendent g-star to
the rest of T is discretionary.

Irreducible Trees - An Algorithm to Enumerate MPC’s
I Identify an edge e connecting a pendent g-star that has k

pendent paths with the rest of T .
I Partition P(T) into two subsets where e is either always used

or never used.
I For PN(T), the set where e is never used, consider the two

trees T1 and T2 as the result of the removal of e from T . We
have |PN(T)| = N(T1)N(T2) =

(k
2

)
N(T2).

T2

T1

..
. e

Irreducible Trees - An Algorithm to Enumerate MPC’s

I Now consider PU(T), where e is always used.

I In order to minimize the number of paths used, for every MPC
in PU(T), the path that includes e must also go through the
central vertex of the pendent g-star as well as one of its
pendent paths.

I We construct a subtree T ′ through selecting one of the k
pendent paths at v and removing the other (k − 1) pendent
paths from T . There are

(k
1

)
= k ways of doing this.

v T2

T ′

..
. e

Irreducible Trees - An Algorithm to Enumerate MPC’s
I For each of the k ways, we count the number of MPC’s of T ′

that use e to be consistent with our setup.

I ”Luckily”, e is required in T ′, so N(T ′) is exactly the number
of MPC’s of T ′ that use e.

I The resulting trees, regardless of which of the k pendent
paths at v is selected, are all isomorphic to one another and
thus have the same number of MPC’s, N(T ′).

I Therefore, |PU | = k × N(T ′).

v T2

T ′

..
. e

Irreducible Trees - An Algorithm to Enumerate MPC’s

Finally, we have

N(T) = |P(T)| = |PN(T)|+|PU(T)| =

(
k

2

)
×N(T2)+k×N(T ′).

v T2

T ′

..
. e

Example:

T ′

T2

e

N(T) = 1× 3 +
(2
1

)
× 1 = 5

A Complete Process of Counting MPC’s

1. Apply hyphen decomposition to decompose T into
components with connected Hi-graphs.

2. For each of the resulting components, identify all absent
edges and apply absent edge decomposition.

3. For each of the resulting components, repeat steps 1 and 2
since new hyphens and absent edges can occur after the
decomposition process. When the resulting components become
irreducible, go to step 4.

4. Use the algorithm to calculate the number of MPC’s for
irreducible trees inductively.

5. Recombine the numbers to obtain N(T).

An Example

N(T) = 3125

Thank you!

References

I C.R. Johnson and A. Leal Duarte, The maximum multiplicity
of an eigenvalue in a matrix whose graph is a tree, Linear and
Multilinear Algebra 46 (1999), 139-144.

I C.R. Johnson and A. Leal Duarte, On the possible
multiplicities of the eigenvalues of an Hermitian matrix whose
graph is a given tree, Linear Algebra Appl. 348 (2002), 7-21.

I C.R. Johnson and C.M. Saiago, Eigenvalues, Multiplicities and
Graphs, Cambridge University Press, Cambridge, 2018.

