Harmonic forms on pinched surfaces

Bjoern Muetzel

Eckerd College

September 15, 2021
Harmonic forms on pinched surfaces

joint work with Peter Buser, Eran Makover and Robert Silhol
'The fox knows many little things,
but the hedgehog knows one big thing'.

Archilochus (680 - 645 BC)
'The fox knows many little things, but the hedgehog knows one big thing'.
Archilochus (680 - 645 BC)
'The fox knows many little things, but the hedgehog knows one big thing'.
Archilochus (680 - 645 BC)
1. Surfaces and geodesics

2. Harmonic vector fields on Riemannian surfaces

3. Riemann surfaces with short simple closed geodesics
 - Riemann surfaces
 - separating case
 - non-separating case
A Riemannian surface is a surface where we can measure angles, distances and area.

- **Note:** The neighborhood of two different points can be different.
- For example, a disk of radius 1, might have a different shape and area at each point.
In the **Euclidean plane** the shortest path between two points is a **straight line**.

- A **shortest path** generalizes the notion of a straight line.
- A **geodesic** is a curve, that is "locally" a shortest path.
- Locally a geodesic arc is like a **rubber band**.
We are interested in compact, orientable surfaces without boundary. Up to deformation these can be classified by their "number of holes".

- The number of holes is the genus g of the surface S.
- The surfaces of genus $g \geq 2$ look like glued tori or pretzel surfaces.
A **canonical homology basis** for a surface S of genus g is a set $(\alpha_1, \alpha_2, \ldots, \alpha_{2g})$ of $2g$ simple closed curves, such that

- The curves come in pairs.
- Each pair has exactly one point of intersection.
- The pairs are mutually disjoint.
A 1-form w is a vector field on a Riemannian surface.

A function $f : S \to \mathbb{R}$ can be interpreted as a membrane layed over the surface.

A vector field w is closed if it is locally the gradient of a function f, i.e. $w = \text{grad } f$, i.e. if it has a potential function.

In this case the direction of a vector of $w = \text{grad } f$ indicates the direction of the strongest increase of the function f.

The length of a vector of $w = \text{grad } f$ indicates the magnitude of the increase.
Harmonic functions with boundary conditions

- We think about the function as a membrane.
- The energy $E(\text{grad } f)$ of a function is given by:
 \[
 E(\text{grad } f) = \lim_{n \to \infty} \sum_{i=1}^{n} \ell(v_i)^2 \cdot \text{area}(U_i).
 \]
- For fixed boundary values we try to find the membrane that has minimal global tension.
- This function f has minimal energy. Such a function is called harmonic.
- In this case the function solves the Dirichlet problem.
Harmonic vector fields on a Riemannian surface

There is no global harmonic function f on a surface S except for the constant function. However, there are harmonic vector fields.

A harmonic vector field can be integrated over a loop of the homology basis.

Take $(\alpha_1, \alpha_2, \ldots, \alpha_{2g})$. A dual basis of harmonic vector fields $(\sigma_1, \sigma_2, \ldots, \sigma_{2g})$ is given by

$$\int_{\alpha_i} \sigma_j = \delta_{ij}, \quad \text{for} \quad i, j \in \{1, 2, \ldots, 2g\}.$$

Example Take σ_2

$$\int_{\alpha_1} \sigma_2 = 0, \quad \int_{\alpha_2} \sigma_2 = 1, \quad \int_{\alpha_3} \sigma_2 = 0, \ldots$$
We can still get a harmonic function if we cut the surface open. However, the exact boundary values are unknown. Only the difference between boundary values on both sides is known. A harmonic form has minimal energy among all forms with the same periods.

Example Take σ_2 with antiderivative F_2

$$\int_{\alpha_2} \sigma_2 = 1 \iff F_2(p_2) - F_2(p_1) = 1$$

Note: The harmonic vector field is the vector field with the minimal energy under the given integral conditions.
The **hyperbolic plane** \mathbb{H} is an open disk with radius 1. **Geodesics** are straight lines through the center or half-circles meeting the boundary at an angle of 90 degrees.
Definition: A Riemann surface S of genus $g \geq 2$ is surface of constant curvature -1. It can be obtained by gluing a hyperbolic polygon with $4g$ sides by gluing opposite sides.
Collar lemma A short curve γ in Riemann surfaces has a large collar $C(\gamma)$. $C(\gamma)$ can be mapped conformally onto a thin flat cylinder C.
Conformal maps

A **conformal map** $\phi : S_1 \rightarrow S_2$ is a map that preserves angles. Conformal maps also preserve the energy.
Short separating simple closed geodesics
Short separating simple closed geodesics

Idea: If the "constraint" is on one side the harmonic vector field vanishes on the other side.

Theorem (Vanishing theorem)

Let S be a Riemann surface of genus $g \geq 2$ and γ be separating, such that $\ell(\gamma) \leq \frac{1}{2}$. Let σ be a real harmonic vector field, such that $\int_{\alpha_i} \sigma = 0$ for all $\alpha_i \subset S_2$. Then

$$E_{S_2}(\sigma) \leq 2 \cdot 10^4 \cdot \exp \left(-\frac{2 \cdot \pi^2}{\ell(\gamma)} \right) \cdot E_S(\sigma).$$
Short non-separating simple closed geodesics

Theorem (Non-separating case)

Let $\gamma = \alpha_1$ be non-separating, such that $\ell(\gamma) \leq \frac{1}{2}$. For the energies $E(\sigma_1)$ and $E(\sigma_2)$ of the canonical harmonic vector fields σ_1 and σ_2 we obtain

$$E(\sigma_1) \text{ is of order } \frac{1}{\ell(\alpha_1)} \quad \text{and} \quad E(\sigma_2) \text{ is of order } \ell(\alpha_1).$$
Local conclusion

- Harmonic vector fields on Riemannian surface can be understood intuitively via their energy minimizing property.
- Harmonic vector fields can be well approximated in collars.
- **Outlook:** We can use this fact to get insight into the Uniformization of surfaces.
- Collars are as important as disks in Riemannian geometry.
Global conclusion

- Harmonic vector fields can be easily understood, but they are hard to master.
- Ideals and dreams are easy to have but hard to realize.
Thank you for your attention!