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Overview

• Reviewing block theory and related notions

• Fusion systems, saturated fusion systems, block fusion systems

• Our observations
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Throughout:

• G is a finite group,

• p is a prime dividing the order of G,

• k is a field of characteristic p,

• kG is the group algebra (k-vector space with G as its basis)

• Z(kG) is the center of kG

Definition

• An idempotent of any ring R, is an non-zero element e ∈ R such
that e2 = e.

• Two idempotents e, f ∈ R are called orthogonal if ef = 0 = fe.

• An idempotent e ∈ R is called primitive if it cannot be written as
e = e1 + e2 with e1, e2 orthogonal idempotents of R.

• A primitive decomposition of 1R is a set I = {e1, e2, · · · , en} of
pairwise orthogonal and primitive idempotents with
e1 + e2 + · · ·+ en = 1R.
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Definition

• A block idempotent b of kG is a primitive idempotent of Z(kG).

• The algebra B := kGb is called a block of kG and it is an
indecomposable as k-algebra and similarly (kG, kG)-bimodule.

• Let {b1, b2, · · · , bn} be a primitive decomposition of 1 in Z(kG).
Denote kGbi := Bi. Then, kG = B1 ⊕B2 ⊕ · · · ⊕Bn is called the
block decomposition of kG.
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(G-algebra is a k-algebra with a G-action.)

Relative Trace Map

• Let A be a G-algebra over k, a field of characteristic p. For
H ≤ G, let AH := {a ∈ A | ha = a for all h ∈ H}.
• Note that if L ≤ H ≤ G, we have AH ⊆ AL.

• The relative trace map TrHL : AL → AH is defined by
a 7→

∑
h∈[H/L]

ha.

• AHL := Im(TrHL ).
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Brauer homomorphism

• Let A be a G-algebra over k, a field of characteristic p. For
H ≤ G, let AH<H be the sum of all relative traces AHL with L < H.

• The Brauer quotient is A(H) := AH/AH<H .

• The Brauer homomorphism is the canonical surjection
BrAH : AH � A(H).
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Remark

If A is the group algebra kG, then the Brauer map is just the k-linear
projection BrkGP : (kG)P � kCG(P ),∑

g∈G
agg 7→

∑
g∈CG(P )

agg.
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Definition (Brauer Pair)

• A kG-Brauer pair is a pair (P, e) where P is a p-subgroup of G
and e is a block idempotent of kCG(P ).

• If i is an idempotent of (kG)P , we say i is associated to (P, e) if
eBrkGP (i) = BrkGP (i)e = BrkGP (i) 6= 0.

Definition

Let (Q, f) and (P, e) be kG-Brauer pairs. We say that (Q, f) is
contained in (P, e) and write (Q, f) ≤ (P, e) if Q ≤ P and if any
primitive idempotent i of (kG)P which is associated to (P, e) is also
associated to (Q, f).

Çisil Karagüzel (UCSC) Block Fusion Systems April 23, 2021 8 / 30



Definition (Brauer Pair)

• A kG-Brauer pair is a pair (P, e) where P is a p-subgroup of G
and e is a block idempotent of kCG(P ).

• If i is an idempotent of (kG)P , we say i is associated to (P, e) if
eBrkGP (i) = BrkGP (i)e = BrkGP (i) 6= 0.

Definition

Let (Q, f) and (P, e) be kG-Brauer pairs. We say that (Q, f) is
contained in (P, e) and write (Q, f) ≤ (P, e) if Q ≤ P and if any
primitive idempotent i of (kG)P which is associated to (P, e) is also
associated to (Q, f).
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Theorem

Let (P, e) be a kG-Brauer pair and let Q ≤ P .

(a) There exists a unique block idempotent f of kCG(Q) such that
(Q, f) ≤ (P, e).

(b) Inclusion of kG-Brauer pairs is a transitive relation.

Remark

The set of kG-Brauer pairs is a G-poset via the map sending an
kG-Brauer pair (P, e) and x ∈ G to the kG-Brauer pair
x(P, e) = (xP , xe).
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Definition (b-Brauer pair)

Let b be a block idempotent of kG. A b-Brauer pair is an kG-Brauer
pair (P, e) such that BrkGP (b)e 6= 0.

Remark

Let (Q, f) ≤ (P, e) be kG-Brauer pairs. If (P, e) is a b-Brauer pair,
then so are (Q, f) and x(P, e) for any x ∈ G.

Notation

We denote by BP(kG) the set of kG-Brauer pairs and by BP(kG, b)
the set of b-Brauer pairs.
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Definition

Let b a block idempotent of kG. A subgroup P of G, minimal with the
property that b ∈ TrG

P ((kG)P) is called a defect group of the block
idempotent b and of the block algebra kGb.

• The defect groups of kGb form a single G-conjugacy class of
p-subgroups of G.
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Theorem

(a) The maximal elements in BP(kG, b) with respect to ≤ form a
single G-orbit.

(b) For (P, e) ∈ BP(kG, b) the following are equivalent:

(i) (P, e) is a maximal element in BP(kG, b).
(ii) P is a defect group of kGb.
(iii) P is a maximal among all p-subgroups of G with the property

BrP (b) 6= 0.
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Fusion systems

Notation

For subgroups Q and R of G,

• HomG(Q,R) denotes the set of all group homomorphisms
φ : Q→ R with the property that there exists g ∈ G with
φ(x) = cg(x) for all x ∈ Q.

• We set AutG(Q) := HomG(Q,Q).

Definition

Fix a finite group G. Let P ∈ Sylp(G). The fusion category of G over
P is the category FP (G) whose objects are the subgroups of P , and the
morphism sets are, for all subgroups Q and R of P , HomG(Q,R).
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The (abstract) fusion system

Definition

Let P be a finite p-group. A fusion system over P is a category F
whose objects are the subgroups of P , and for any Q,R ≤ P , the set
HomF (Q,R) has the following properties:

• HomP (Q,R) ⊆ HomF (Q,R) ⊆ Inj(Q,R)

• For each ϕ ∈ HomF (Q,R), the group isomorphism Q→ ϕ(Q),
u 7→ ϕ(u), and its inverse are morphisms in F .

Example

•FP (G) where P ∈ Sylp(G).
•F(P,eP )(kGb), fusion system of a block b of kG over a p-group P ,
where k is an arbitrary field of prime characteristic p.
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Definition

Let F be a fusion system over a finite p-group P .

• A subgroup Q of P is called fully F-centralized if
|CP (Q)| ≥ |CP (R)| for any subgroup R of P which is
F-isomorphic to Q.

• A subgroup Q of P is called fully F-normalized if
|NP (Q)| ≥ |NP (R)| for any subgroup R of P which is
F-isomorphic to Q.

Definition

Let F be a fusion system over a p-group P and ϕ : Q→ R be an
isomorphism in F . We define

Nϕ := {y ∈ NP (Q) | ∃z ∈ NP (R) s.t. ϕ ◦ cy = cz ◦ ϕ : Q→ R}.

Note that QCP (Q) ≤ Nϕ ≤ NP (Q).
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Definition

A fusion system F over a p-group P is called saturated if the
following two conditions hold:

(i) Sylow axiom: AutP (P ) is a Sylow p-subgroup of AutF (P ).

(ii) Extension axiom: For every Q ≤ P , and ϕ ∈ HomF (Q,P ) such
that ϕ(Q) is fully F-normalized, there exists a morphism
ψ ∈ HomF (Nϕ, P ) whose restriction to Q equals to ϕ.

Example

FP (G) is saturated where P ∈ Sylp(G).
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Why are the saturated fusion systems nice?

Alperin’s Fusion Theorem

Let F be a saturated fusion system over a p-group P . Then,

F = 〈AutF (Q) | Q = P or Q is F-centric〉P .

Definition

A subgroup Q ≤ P is F-centric if CP (R) = Z(R) for all R which are
F-isomorphic to Q.
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Notation: Let b be a block of kG and (P, eP ) be a maximal b-Brauer
pair. For each Q ≤ P , let eQ denote the unique block of kCG(Q) such
that (Q, eQ) ≤ (P, eP ).

Definition

The fusion system of a block kGb over (P, eP ) is the category
F(P,eP )(kGb) whose objects are the subgroups of P and which has
morphism sets, for subgroups Q and R of P ,

{ϕ ∈ Hom(Q,R) : ϕ = cg for some g ∈ G s.t. g(Q, eQ) ≤ (R, eR)}.
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Theorem

Let (P, eP ) be a maximal b-Brauer pair and suppose that k is a splitting
field for kCG(P )eP , i.e. for every simple kCG(P )eP -module V one has
a k-algebra isomorphism EndkCG(P )eP (V ) ∼= k. Then, the category
F(P,eP )(kGb) is saturated.

Remark

If k is not a splitting field for kCG(P )eP , there are examples in which
the corresponding block fusion system fails to be saturated.
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Example

Let p = 2, k = F2 and G = D24 = (C3 × C4) o C2. Let g be the
generator of C3.

• b := g + g2 is a block idempotent of F2G,

• (P, e) := (C4, b) is a maximal (F2G, b)-Brauer pair,

• One has AutP (P ) = {1},
• AutF(P,e)(F2Gb)

(P ) ∼= C2.

• Then AutP (P ) /∈ Sylp(AutF(P,e)(F2Gb)
(P )). Hence Sylow axiom fails

and the block fusion system F(P,e)(F2Gb) is not saturated.
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Observations: [Boltje, K., Yılmaz]

Throughout: Let L/K be a Galois extension of finite fields of
characteristic p, prime and Γ := Gal(L/K).

• Γ acts via K-algebra automorphism on LG and also on Z(LG) by
applying γ ∈ Γ to the coefficients of an element in LG.

• Γ permutes the block idempotents of LG.

• Brauer homomorphism commutes with Γ-action.
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Proposition

(i) If b is a block of LG, then Γb := tr(b) =
∑

γ∈Γ/stabΓ(b) γ(b) is a
block of KG.

(ii) There is a bijective correspondence between
Bl(LG)/Γ←→ Bl(KG) induced by b 7→ Γb.

(iii) If Γb and b are corresponding blocks of KG and LG, then they
have the same defect groups.
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Notation: ≤K and ≤L denote the poset structures of BP(KG) and
BP(LG), respectively.

Proposition

For (Q, f), (P, e) ∈ BP(LG) with Q ≤ P , the following are equivalent:

(i) (Q, f) ≤L (P, e) in BP(LG).

(ii) (Q, Γf) ≤K (P, Γe) in BP(KG).
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Lemma

Let BP(LG, b) denote the set of (LG, b)-Brauer pairs and similarly
BP(KG, Γb) for (KG, Γb)-Brauer pairs. Then, we have surjective
G-poset map

BP(LG, b) � BP(KG, Γb) given by (Q, f) 7→ (Q, Γf).

Lemma

Let (P, e) be maximal in BP(LG, b) then (P, Γe) be maximal in
BP(KG, Γb). There exists an embedding

I : F(P,e)(LGb) ↪→ F(P,Γe)(KG
Γb).
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Idea

(P, e) is a maximal (LG, b)-Brauer pair.
(P, Γe) is a maximal (KG, Γb)-Brauer pair.

Observation: NG(P, Γe)/NG(P, e) ∼= stabΓ(b)/stabΓ(e) is a cyclic
group.
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Main Theorem

Theorem

Let b be a block of LG, and (P, e) a maximal (LG, b)-Brauer pair. Let
g0 ∈ NG(P, Γe) be such that 〈g0NG(P, e)〉 = NG(P, Γe)/NG(P, e) and set
σ := cg0 ∈ Aut(P ). Then,

F(P,Γe)(KG
Γb) = 〈F(P,e)(LGb), σ〉.
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Consequences of the Main Theorem

Proposition

Using the same notation as before.

(i) Q ≤ P is fully F(P,e)(LGb)-centralized(normalized) if and only if Q

is fully F(P,Γe)(KG
Γb)-centralized(normalized).

(ii) Q ≤ P is F(P,e)(LGb)-centric if and only if Q is

F(P,Γe)(KG
Γb)-centric.
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Theorem

Using the same notation as before, F(P,Γe)(KG
Γb) is saturated if and

only if F(P,e)(LGb) is saturated and [stabΓ(b) : stabΓ(e)] is not divisible
by p.
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Thank You

Çisil Karagüzel (UCSC) Block Fusion Systems April 23, 2021 30 / 30


