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Reality and Strong Reality

An element g in a group G is said to be real in G if it is conjugate
to its inverse by an element in G.

If g can be conjugated to its inverse by an involution, that is, if
there is s ∈ G such that sgs−1 = g−1 and s2 = 1, then g is said to
be strongly real in G.

Quick example: (12)(123)(12) = (132) ∈ S3.
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Reality and Strong Reality

Reality and strong reality are properties of classes, not just
elements:

sgs−1 = g−1, tgt−1 = h =⇒ (tst−1)h(tst−1)−1 = h−1.

An equivalent condition for g ∈ G to be strongly real in G is that
g is the product of two involutions in G:

g = st, s2 = t2 = 1 =⇒ sgs = ts;

sgs = g−1, s2 = 1 =⇒ g = s(g−1s) with s2 = (g−1s)2 = 1.

Elements conjugating g ∈ G to the same element differ by an
element in the centralizer:

sgs−1 = tgt−1 =⇒ gs−1t = s−1tg =⇒ t ∈ sCG(g).
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Reality and Strong Reality

An element may be (strongly) real in G but not (strongly) real in
a subgroup H of G

Quick example: (123) ∈ A3
There is no σ ∈ A3 such that σ(123)σ−1 = (132)

Modding out by a subgroup:

Let N be a normal subgroup of G. Then
gN ∼ hN in G/N ⇐⇒ g is conjugate to an element of hN in G.
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Examples

The cyclic groups Zp, p > 2

No elements are real except for the identity

The symmetric group Sn

All elements are strongly real

The group Q8 of quaternions

j is real with ij(−i) = −j, but j is not strongly real
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Representation Theory

Given a finite group G and a field F, an F-representation of G is
a homomorphism ρ : G→ GL(V) for some finite-dimensional
vector space V over F.

A subrepresentation of the representation ρ is a subspace W of V
that is invariant under the action of G, that is, ρ(g)w ∈ W for all
g ∈ G,w ∈ W.

The representation ρ is called irreducible if it is nonzero and
there are no proper nontrivial subrepresentations.

And given an F-representation ρ of G, the F-character of G
afforded by ρ is the map χ : G→ F defined by χ(g) = tr(ρ(g)).
The character χ is itself called irreducible if it is afforded by an
irreducible representation.
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Representation Theory

For any C-character χ : G→ C of G,
χ(g−1) = χ(g) and χ(sgs−1) = χ(g).

So if g is real, then χ is real-valued on the class of g.

In fact, g ∈ G is real if and only if χ(g) is real for every
complex-valued irreducible character χ of G,

and the number of real-valued irreducible complex characters of
G is equal to the number of real classes.
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Representation Theory

The representation ρ : G→ GL(V) is called a real representation
if there is a basis for V under which the matrix of ρ(g) has all
real entries for all g ∈ G.

Problem (Brauer, 1963)
Characterize by means of group theoretical properties of G the
number of irreducible representations of G in C which are equivalent
to representations with coefficients in R.

Conjecture (Vinroot)
If G is a finite simple group of Lie type, then all real classes of G are
strongly real if and only if all real-valued irreducible characters of G
are afforded by a real representation.
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General Linear Group

Conjugacy classes of the general linear group GL(n, q):

Determined by the possible lists of elementary divisors (lists of
powers of monic irreducible polynomials in F[t])

For g ∈ GL(n, q), the elementary divisors of g−1 are the
reciprocal polynomials of the elementary divisors of g

Using this, we determine the real classes of GL(n, q)

Example list of elementary divisors:
(t − 1), (t + 1)2, (t − 2)2, (t − 2)2, (t − 2−1)2

What about strong reality?

Theorem (Wonenburger, 1966)

All real classes of GL(n, q) are strongly real.
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Symplectic Group

Let V be a vector space of dimension 2n over the field F and let
B : V × V → F be a nondegenerate alternating bilinear form on
V .

Nondegenerate: B(v,w) = 0 for all w ∈ V =⇒ v = 0
Alternating: B(v, v) = 0 for all v ∈ V

Then we define the symplectic group over V to be the subgroup
of GL(V) consisting of those τ ∈ GL(V) satisfying

B(τv, τw) = B(v,w) for all v,w ∈ V ,

and denote it by Sp(V), Sp(2n,F), or, when F is finite of order q,
Sp(2n, q).

Any choice of the form B results in the same group, up to
isomorphism!
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Symplectic Group

Skew-symmetric form:
B(v,w) = −B(w, v) for v,w ∈ V

Sp(V) ≤ SL(V) (equality for dim V = 2)

Matrix representation:

Sp(V) = {M ∈ Mn(F) : MTΩM = Ω} for Ω nonsingular and
skew-symmetric
B(v,w) = vTΩw

Z(Sp(V)) = {±1}
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Projective Symplectic Group

The projective symplectic group over V is
PSp(V) = Sp(V)/{±1}
(as with the symplectic group, we’ll also use alternate notations
PSp(2n,F) or PSp(2n, q)).

Fact: the groups PSp(2n, q) are simple except for PSp(2, 2),
PSp(2, 3), PSp(4, 2)
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Reality in Symplectic Groups

Real classes in subgroups of GL(n, q)?

Fact: all classes of Sp(2n, q) are real in GL(2n, q)

Classes of GL(2n, q) containing elements of Sp(2n, q): classes
real in GL(2n, q) whose elementary divisors (t ± 1)2`−1 appear
with even multiplicity

Some conjugacy classes of GL(2n, q) ‘split’ in Sp(2n, q):

There are distinct classes in Sp(2n, q) whose elements all belong
to the same class GL(2n, q).

If r is the number of elementary divisors of form (t ± 1)2`

appearing with nonzero multiplicity, then there are 2r classes in
Sp(2n, q) contained in the corresponding class in GL(2n, q).

Example list of elementary divisors:
(t + 1), (t + 1), (t + 1)2, (t + 1)2, (t − 1)3, (t − 1)3,

(t − 1)4, (t − 2)2, (t − 2−1)2

So it’ll take some work to determine the real classes in Sp(2n, q)
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Reality in Symplectic Groups

What about strong reality?

Theorem (Gow, 1981)

When the field characteristic is 2, all elements of Sp(2n, q) are the
product of two symplectic involutions.

Theorem (Wonenburger, 1966)

In field characteristic not 2, all elements of Sp(2n, q) are the product
of two skew-symplectic involutions.

Skew symplectic: B(τv, τw) = −B(v,w) for v,w ∈ V or
MTΩM = −Ω
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Reality in Symplectic Groups

When q ≡ 1 (mod 4), −1 is a square in F,

and so Wonenburger’s result implies that all elements of
Sp(2n, q) are conjugate to their inverse by an element that
squares to −1

(g = st, s2 = t2 = 1 =⇒ g = (αs)(−αt), where α2 = −1).

We do not get strong reality for all classes in Sp(2n, q):

X =

(
1

−1

)
with Ω =

(
1

−1

)
But we do get strong reality in PSp(2n, q) (for q ≡ 1 (mod 4))!
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Reality in Symplectic Groups

When q ≡ 3 (mod 4), −1 is not a square in F, so we get
situations like the following:

X =

(
1 1

1

)
with Ω =

(
1

−1

)
(not real in Sp(2, q) when q ≡ 3 (mod 4))

X =


1 1

1
1 1

1

 with Ω =


1

−1
1

−1


(real but not strongly real in Sp(4, q) when q ≡ 3 (mod 4))
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Main Problem

Strong reality in the projective symplectic group?

g{±1} ∼ h{±1} in PSp(2n, q) ⇐⇒ g ∼ h or − h in Sp(2n, q)

We shall say that g ∈ G is negative real if it is conjugate to −g−1.

Conjecture

All real classes of PSp(2n, q) are strongly real.
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Progress
For the rest of the way, assume that q ≡ 3 (mod 4).

Proposition

The element g ∈ Sp(2n, q) is real in Sp(2n, q) if and only if it has no
elementary divisors of form (t ± 1)2`, ` ≥ 1 appearing with odd
multiplicity.



1 1
1

1 1
1

1 1
1

1
1


,



1 1
1

1 1
1

2 1
2

2−1 1
2−1


,

with Ω =



1
−1

1
−1

1
−1

1
−1


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Progress

Determining the negative real elements

Necessary condition for negative reality: the elementary divisor
f (t) must appear with the same multiplicity as f̃ (t), −f (t), and
−f̃ (t), where f̃ (t) is the reciprocal polynomial of f (t)

When all elementary divisors are of form (t ± 1)`, we can write
down explicit class representatives and determine which of these
representatives are negative real


1
1 1

−1
−1 −1

 ,


1
−1 1

−1
−1 −1

 ,


1
1 1

−1
1 −1

 ,


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Progress

Elements with all eigenvalues ±1

Proposition

A real unipotent or negative unipotent element in Sp(2n, q) is
conjugate to its inverse by an element in Sp(2n, q) whose square is
−1.

Proposition

A negative real element of Sp(2n, q) whose elementary divisors are all
of the form (t ± 1)`, ` ≥ 1 is conjugate to its negative inverse by an
element in Sp(2n, q) whose square is +1.
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Progress

Theorem
All real unipotent classes of PSp(2n, q) are strongly real in
PSp(2n, q).

(in fact, we have even more than this)

We would like this result for all real classes, and we are getting
close!
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Thank you!
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