Von Neumann Algebras, Subfactor and Knots II. Subfactors

Pierre Clare

GAG seminar

March 12, 2021

Summary of Last Week

Pactors of Type II1

3 Representation Theory of II_1 Factors and the Jones Index

If \mathcal{H} is a Hilbert space.

Denote by $\mathfrak{B}(\mathcal{H})$ the space of bounded operators from \mathcal{H} to itself.

Theorem If $T \in \mathfrak{B}(\mathcal{H})$, there exists a unique operator T^* such that: $\langle T\xi, \eta \rangle = \langle \xi, T^*\eta \rangle$ for all ξ, η in \mathcal{H} .

We are interested in subalgebras of $\mathfrak{B}(\mathcal{H})$ that are stable under $T \mapsto T^*$.

Definition

A C*-algebra is a closed subalgebra $A \subset \mathfrak{B}(\mathcal{H})$ that is stable under adjoint.

I. Gelfand (1913 - 2009)

Examples:

- $M_n(\mathbb{C}) = \mathfrak{B}(\mathbb{C}^n)$
- $\mathfrak{B}(\mathcal{H})$: bounded operators on \mathcal{H}
- $\Re(\mathcal{H})$: compact operators on \mathcal{H}
- A commutative \Rightarrow A \simeq C₀(X).

Commutants

The *commutant* of a subset $A \subset \mathfrak{B}(\mathcal{H})$ is

$$A' := \{ y \in \mathfrak{B}(\mathcal{H}) , xy = yx \text{ for all } x \in A \}.$$

The *bicommutant* of A is

$$A^{\prime\prime}=(A^{\prime})^{\prime}.$$

Remark: $A \subset A''$ for any A.

Example: let $A = M_n(\mathbb{C}) \simeq \mathfrak{B}(\mathbb{C}^n)$. Then

$$A' = \mathbb{C}.I_n$$
 and $A'' = M_n(\mathbb{C}) = A$

Definition

A von Neumann algebra is a *-subalgebra M of $\mathfrak{B}(\mathcal{H})$ such that M = M''.

John von Neumann (1903 - 1957)

Examples:

- $M_n(\mathbb{C}) = \mathfrak{B}(\mathbb{C}^n)$
- $\mathfrak{B}(\mathcal{H})$: bounded operators on \mathcal{H}
- *M* commutative \Rightarrow *M* \simeq *L*^{∞}(*X*, μ).

Definition

A von Neumann algebra $M \subset \mathfrak{B}(\mathcal{H})$ is called a *factor* if $M \cap M' = \mathbb{C}.1_{\mathfrak{B}(\mathcal{H})}$

Structure Theorem

Any separable von Neumann algebra *M* is isomorphic to a direct integral of factors:

$$M\simeq\int_{\mathcal{T}}^{\oplus}M_t\,d\mu(t)$$

Group von Neumann Algebras

Let Γ be a discrete group with group algebra

$$\mathbb{C}\Gamma = \big\{\sum_{\gamma \in \Gamma} \alpha_{\gamma}.\gamma \text{ , } \alpha_{\gamma} \in \mathbb{C} \text{ and } \alpha_{\gamma} \neq 0 \text{ only for finitely many } \gamma\big\}.$$

Then $\mathbb{C}\Gamma$ acts on the Hilbert space $\ell^2(\Gamma)$ by left multiplication:

 $\mathbb{C}\Gamma\subset\mathfrak{B}\!\left(\ell^2(\Gamma)\right)$

and the von Neumann algebra of Γ is:

$$L(\Gamma) := \overline{\mathbb{C}\Gamma}^{SOT} = \overline{\mathbb{C}\Gamma}^{WOT} = \mathbb{C}\Gamma''$$

Theorem

 $L(\Gamma)$ is a factor \Leftrightarrow Γ has infinite conjugacy classes.

The Free Group Isomorphism Problem

If $m \neq n$, is it the case that $L(\mathbb{F}_m) \neq L(\mathbb{F}_n)$? Still open...

Algebra of Projections (Murray - von Neumann, 1936)

A projection in a von Neumann algebra *M* is an element $p \in M$ such that: $p^* = p = p^2$. We write $p \leq q$ if $p\mathcal{H} \subset q\mathcal{H}$.

Two projection p, q ∈ M are said equivalent (p ~ q) if there is a partial isometry u ∈ M such that

$$u^*u = p$$
 and $uu^* = q$.

- We write $p \le q$ if there exists a partial isometry $u \in M$ such that $u^*u = p$ and $uu^* \le q$.
- A projection $p \neq 0$ is called *minimal* if for all projections $q \in M$,

$$q \le p \Rightarrow q = 0 \text{ or } q = p.$$

• A projection $p \neq 0$ is called *finite* if for all projections $q \in M$, $p \sim q \leq p \implies q = p$.

Murray - von Neumann Classification (1936 - 1943)

Let $M \subset \mathfrak{B}(\mathcal{H})$ be a factor. We say that *M* is of type:

• *I*: if it contains a minimal projection;

 $M ext{ is of type } I \Leftrightarrow M \simeq \mathfrak{B}(\mathcal{H}).$

 \sim Type *I* factors are classified by dimension.

- *II*: if it contains no minimal projection, but a finite projection;
 - Type II_1 : if $1_{\mathfrak{B}(\mathcal{H})}$ is finite (hence all projections are);
 - Type II_{∞} : if $1_{\mathfrak{B}(\mathcal{H})}$ is not finite, but some projections in M are.

Any I_{∞} factor is of the form $M \otimes \mathfrak{B}(\mathcal{H})$ with M of type I_1 and dim $\mathcal{H} = \infty$.

• *III*: if it contains no finite projection.

Refresher on Traces

Trace of a matrix

The *trace* of a matrix $x = (x_{ij}) \in M_n(\mathbb{C})$ is $\operatorname{Tr} x = \sum_i x_{ii}$. It satisfies Tr $ab = \operatorname{Tr} ba$ and $\operatorname{Tr} p = \dim_{\mathbb{C}} (\operatorname{range} p) = \dim_{\mathbb{C}} p\mathbb{C}^n$

if p is a projection.

Exercise

Any linear map $\varphi: M_n(\mathbb{C}) \longrightarrow \mathbb{C}$ such that

arphi(ab)=arphi(ba)

for all *a*, *b* is a scalar multiple of the trace: $\varphi(x) = \frac{\varphi(l_n)}{n}$. Tr *x*.

Harder exercise

If \mathcal{H} is infinite-dimensional, any linear map $\varphi: \mathfrak{B}(\mathcal{H}) \longrightarrow \mathbb{C}$ such that $\varphi(ab) = \varphi(ba)$

for all a, b is... 0.

Definition

A linear functional τ on a von Neumann algebra *M* is called:

- *positive* if $\tau(x^*x) \ge 0$ for all $x \in M$
- faithful if $\tau(x^*x) = 0 \implies x = 0$
- a state if τ(1) = 1
- *tracial* if $\tau(xy) = \tau(yx)$ for all $x, y \in M$

A tracial state is called a trace.

Example: consider the group factor of $L(\Gamma) \subset \mathfrak{B}(\ell^2(\Gamma))$ associated with an icc group Γ . Then

$$\tau(x) = \langle x \delta_e, \delta_e \rangle$$

extends to a faithful trace.

Recall that: $g\delta_h = \delta_{gh}$ and $\langle \delta_a, \delta_b \rangle = \delta_{a,b}$.

Characterization of *II*¹ factors

Finite factors

Let *M* be a factor. The following are equivalent:

- *M* has a norm-continuous trace.
- 1 is a finite projection.
- *M* is of type I_n (with *n* finite) or of type II_1 .

Under these conditions, *M* is said finite.

Remark: 1 is a finite projection if and only if $u^*u = 1 \Rightarrow uu^* = 1$.

Corollary

Group factors $L(\Gamma)$ are of type II_1 .

The factor $L(S_{\infty})$ is called *hyperfinite* and plays a special role in the theory. There are *many* more, constructed from group actions (Popa, Vaes,...)

Goals

- The Jones Index → How do II₁ factors sit within each other?
- The Jones Tower
- Temperley-Lieb algebras, braids, knots, tangles...

Left to right: Vaughan Jones and the HOMFLY crew, <u>1985</u> J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish, and D. Yetter

Standard Form of a *II*¹ factor

Let *M* be a factor with continuous and faithful trace τ . The pairing

$$\langle x,y\rangle = \tau(y^*x) \in \mathbb{C}$$

defines an inner product on M.

Let $L^2(M, \tau)$ be the associated completion of *M*. There is an embedding:

$$\begin{array}{rccc} M & \longrightarrow & L^2(M) \\ x & \longmapsto & \hat{x} \\ 1 & \longmapsto & \Omega \end{array}$$

M is represented on the Hilbert space $L^2(M)$ by considering:

$$\pi_{\tau}(x)\hat{y} = \widehat{xy} := x\hat{y}$$

and extending it to a morphism

$$\pi_{\tau}: M \longrightarrow \mathfrak{B}(L^2(M)).$$

This representation is called the *standard form* of *M* and we have: $\hat{x} = \widehat{x1} = x\hat{1} = x\Omega$ so that $\tau(x) = \langle x\Omega, \Omega \rangle$.

Example

Consider $M = M_n(\mathbb{C}) = \mathfrak{B}(\mathbb{C}^n)$ with normalized trace $\tau = \frac{1}{n}$ Tr.

Then

$$L^2(M) = M_n(\mathbb{C}) \simeq \mathbb{C}^{n^2}$$

with inner product

$$\langle x, y \rangle = \frac{\operatorname{Tr} y^* x}{n}$$

and special vector

$$\Omega = I_n.$$

The standard representation is given by matrix multiplication:

$$\pi_{\tau}(x)y=xy.$$

Note: $L^2(M) \simeq \mathbb{C}^{n^2} \simeq \mathbb{C}^n \otimes \mathbb{C}^n$ and this representation has dimension n^2 .

Modules

Let M be a II_1 factor.

A (left) *M*-module is a representation of *M*, that is, a Hilbert space \mathcal{H} together with an action

$$\begin{array}{l} \mathsf{M} \times \mathcal{H} \longrightarrow \mathcal{H} \\ (x,\xi) \longmapsto x\xi \end{array}$$

that is bilinear and satisfies

$$x(y\xi) = (xy)\xi$$
 , $1\xi = \xi$, $\langle x\xi, \eta \rangle = \langle \xi, x^*\eta \rangle$

for all $x, y \in M$ and $\xi, \eta \in \mathcal{H}$.

The action is also required to be *continuous* in the following sense: if $\{x_n\}_n$ is a bounded sequence in *M*, then

$$\tau(x_n^*x_n) \to 0 \quad \Rightarrow \quad \|x_n\xi\| \to 0$$

for any $\xi \in \mathcal{H}$.

Examples of M-modules

- The standard form: $L^2(M)$.
- Let p be a projection in $M' \subset \mathfrak{B}(L^2(M))$. Consider $\mathcal{H} = pL^2(M)$. Then,

$$xp\xi = px\xi$$

for any $x \in M$ and $\xi \in L^2(M)$. Denote by $L^2(M)p$ this *M*-module.

Amplifications:

$$L^2(M) \oplus \ldots \oplus L^2(M)$$

Infinite amplification:

$$\ell^2(L^2(M)) \simeq \ell^2(\mathbb{N}) \otimes L^2(M).$$

$$\ell^2(L^2(M)) = \{(\xi_n)_n : \xi_n \in L^2(M) \quad \text{with} \quad \sum_{n \in \mathbb{N}} ||\xi_n||^2 < \infty \}.$$

Goal: quantitatively compare these examples with $L^{2}(M)$.

Equivalent Representations

Let *M* be a II_1 factor and H_1 , H_2 two *M*-modules.

Definition

We say that \mathcal{H}_1 and \mathcal{H}_2 are *(unitarily) equivalent* and we write $\mathcal{H}_1 \simeq \mathcal{H}_2$ if there is a unitary

$$u:\mathcal{H}_1\longrightarrow\mathcal{H}_2$$

such that

$$u(x\xi)=x(u\xi)$$

for all $x \in M$ and $\xi \in \mathcal{H}_1$.

In other words, there is a commutative diagram:

$$\begin{array}{c} \mathcal{H}_1 \xrightarrow{u} \mathcal{H}_2 \\ \downarrow^x & \downarrow^x \\ \mathcal{H}_1 \xrightarrow{u} \mathcal{H}_2 \end{array}$$

Representation Theory of *II*₁ Factors (all of it!)

Theorem

Let *M* be a II_1 factor and \mathcal{H} a separable *M*-module. Then there is an isometry

$$v: \mathcal{H} \longrightarrow L^2(M) \otimes \ell^2(\mathbb{N})$$

such that

$$vx = (x \otimes 1)v$$

for all $x \in M$. Furthermore,

$$vv^* \in (M \otimes 1)' \subset \mathfrak{B}(L^2(M) \otimes \ell^2(\mathbb{N})).$$

Reformulation

Any representation of M is equivalent to

$$p(L^2(M) \otimes \ell^2(\mathbb{N}))$$

for some projection $p = vv^*$ in $(M \otimes 1)'$.

Von Neumann Dimension

Any representation \mathcal{H} of a II_1 factor M is equivalent to $p(L^2(M) \otimes \ell^2(\mathbb{N}))$ for some projection $p = vv^*$ in $(M \otimes 1)'$.

Idea: the size of \mathcal{H} is measured by the trace of p.

Issue: $(M \otimes 1)' = M' \otimes \mathfrak{B}(\ell^2(\mathbb{N}))$ is a H_{∞} factor! (No trace on $\mathfrak{B}(\ell^2(\mathbb{N}))...)$ **Fix:** the trace

 $tr = \tau \otimes Tr$

can be normalized in such a way that $tr(1 \otimes q) = 1$ for any rank 1 projection q in $\mathfrak{B}(\ell^2)(\mathbb{N})$.

Definition

The *M*-dimension of the *M*-module \mathcal{H} is

$$\dim_M \mathcal{H} = \mathrm{tr}(vv^*) \in [0,\infty].$$

Fortunately, $tr(vv^*)$ does not depend on a choice of the isometry v.

Properties of the von Neumann Dimension

Let M be a II_1 factor.

- dim_{*M*} $\mathcal{H} \in [0, \infty]$ and all values occur.
- Representations of *M* are classified by their *M*-dimension: $\dim_M \mathcal{H} = \dim_M \mathcal{K} \quad \Leftrightarrow \quad \mathcal{H} \simeq \mathcal{K}.$
- Direct sums: if *J* is countable then, $\dim_M \bigoplus_{j \in J} \mathcal{H}_j = \sum_{j \in J} \dim_M \mathcal{H}_j.$
- If $p \in M'$ is a projection then:

 $\dim_M L^2(M)p = \tau(p).$

• *M'*-dimension:

$$\dim_{M'}\mathcal{H}=\frac{1}{\dim_M\mathcal{H}}.$$

The Jones Index

Let $N \subset M$ be II_1 factors.

Then N acts on $L^2(M)$ and we can consider its N-dimension.

Definition

The *Jones Index* of the subfactor $N \subset M$ is

 $[M:N] := \dim_N L^2(M).$

Proposition

If $N \subset M$ is represented on \mathcal{H} with dim_N $\mathcal{H} < \infty$, then

 $[M:N] = \frac{\dim_N \mathcal{H}}{\dim_M \mathcal{H}}.$

Sketch of Proof

Assume dim_{*M*} $\mathcal{H} \ge 1$. Note that $N \subset M$ implies $M' \subset N'$ and they are both II_1 factors. Let $p \in M'$ with

$$au_{M'}(p) = rac{1}{\dim_M \mathcal{H}}.$$

Then

$$\dim_M(\mathcal{H}p) = \tau_{M'}(p) \cdot \dim_M \mathcal{H} = 1$$

and therefore

$$\mathcal{H}p\simeq L^2(M).$$

It follows that

$$M: N] = \dim_N L^2(M)$$

= dim_N Hp
= $\tau_{N'}(p) \cdot \dim_N H = \tau_{M'}(p) \cdot \dim_N H$
= $\frac{1}{\dim_M H} \dim_N H$

Example

Let N be a II_1 factor. For $k \ge 1$ integer, consider $M = M_k(N) \simeq N \otimes M_k(\mathbb{C}).$

Then N is a subfactor of M, via the embedding

$$N \ni x \longmapsto x \otimes 1 = \begin{bmatrix} x & 0 & \cdots & 0 \\ 0 & x & & \vdots \\ \vdots & & x & 0 \\ 0 & \cdots & 0 & x \end{bmatrix} \in M_k(N)$$

Moreover,

$$L^{2}(M) = L^{2}(N \otimes M_{k}(\mathbb{C})) \simeq L^{2}(N) \otimes M_{k}(\mathbb{C}) \simeq \bigoplus_{j=1}^{k^{2}} L^{2}(N),$$

so that

$$[M:N] = \dim_N L^2(M) = \sum_{j=1}^{k^2} \dim_N L^2(N) = k^2.$$

The Jones Index Theorem

 \rightarrow Beside 1, 4, 9, ... what possible values can [*M* : *N*] take?

Theorem (Jones, 1983)

Let $N \subset M$ be a II_1 subfactor. The possible values of [M : N] are given by:

$$\left\{4\cos^2\left(\frac{\pi}{n+2}\right): n \ge 1\right\} \cup [4,\infty).$$

The proof relies on studying indices along the *Jones Tower* and relates in profound ways the algebra of projections and Temperly-Lieb algebras.

"Corollary"

A new invariant for knots: the Jones polynomial (and its descendants).

'God may or may not play dice but She sure loves a von Neumann algebra.'

Vaughan Jones 1952 - 2020