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Operator Algebras

If H is a Hilbert space.

Denote by B(H) the space of bounded operators from H to itself.

Theorem
If T ∈ B(H), there exists a unique operator T∗ such that:

〈Tξ, η〉 = 〈ξ,T∗η〉
for all ξ, η in H .

We are interested in subalgebras of B(H) that are stable under T 7→ T∗.
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C*-algebras

Definition
A C*-algebra is a closed subalgebra A ⊂ B(H) that is stable under adjoint.

I. Gelfand (1913 - 2009)

Examples:

• Mn(C) = B(Cn)

• B(H): bounded operators on H
• K(H): compact operators on H
• A commutative⇒ A ' C0(X).
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Commutants

The commutant of a subset A ⊂ B(H) is

A ′ :=
{
y ∈ B(H) , xy = yx for all x ∈ A

}
.

The bicommutant of A is

A ′′ = (A ′)′.

Remark: A ⊂ A ′′ for any A .

Example: let A = Mn(C) ' B(Cn). Then

A ′ = C.In and A ′′ = Mn(C) = A
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Definition
A von Neumann algebra is a ∗-subalgebra M of B(H) such that M = M′′.

John von Neumann
(1903 - 1957)

Examples:

• Mn(C) = B(Cn)

• B(H): bounded operators on H
• M commutative⇒ M ' L∞(X , µ).
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Factors

Definition
A von Neumann algebra M ⊂ B(H) is called a factor if

M ∩M′ = C.1B(H)

Structure Theorem
Any separable von Neumann algebra M is isomorphic to a direct integral
of factors:

M '
∫ ⊕

T

Mt dµ(t)
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Group von Neumann Algebras

Let Γ be a discrete group with group algebra

CΓ =
{∑
γ∈Γ

αγ.γ , αγ ∈ C and αγ , 0 only for finitely many γ
}
.

Then CΓ acts on the Hilbert space `2(Γ) by left multiplication:

CΓ ⊂ B
(
`2(Γ)

)
and the von Neumann algebra of Γ is:

L(Γ) := CΓ
SOT

= CΓ
WOT

= CΓ′′

Theorem
L(Γ) is a factor ⇔ Γ has infinite conjugacy classes.

The Free Group Isomorphism Problem
If m , n, is it the case that L(Fm) ; L(Fn)? Still open...
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Algebra of Projections (Murray - von Neumann, 1936)

A projection in a von Neumann algebra M is an element p ∈ M such that:
p∗ = p = p2.

We write p ≤ q if pH ⊂ qH .

• Two projection p, q ∈ M are said equivalent (p ∼ q) if there is a partial
isometry u ∈ M such that

u∗u = p and uu∗ = q.

• We write p � q if there exists a partial isometry u ∈ M such that
u∗u = p and uu∗ ≤ q.

• A projection p , 0 is called minimal if for all projections q ∈ M,
q ≤ p ⇒ q = 0 or q = p.

• A projection p , 0 is called finite if for all projections q ∈ M,
p ∼ q ≤ p ⇒ q = p.
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Murray - von Neumann Classification (1936 - 1943)

Let M ⊂ B(H) be a factor. We say that M is of type:

• I: if it contains a minimal projection;

M is of type I ⇔ M ' B(H).

{ Type I factors are classified by dimension.

• II: if it contains no minimal projection, but a finite projection;
• Type II1: if 1B(H) is finite (hence all projections are);
• Type II∞: if 1B(H) is not finite, but some projections in M are.

Any II∞ factor is of the form M ⊗B(H) with M of type II1 and dimH = ∞.

• III: if it contains no finite projection.
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Refresher on Traces

Trace of a matrix

The trace of a matrix x = (xij) ∈ Mn(C) is Tr x =
∑

i

xii . It satisfies

Tr ab = Tr ba and Tr p = dimC(range p) = dimC pCn

if p is a projection.

Exercise
Any linear map ϕ : Mn(C) −→ C such that

ϕ(ab) = ϕ(ba)

for all a, b is a scalar multiple of the trace: ϕ(x) =
ϕ(In)

n .Tr x.

Harder exercise
If H is infinite-dimensional, any linear map ϕ : B(H) −→ C such that

ϕ(ab) = ϕ(ba)

for all a, b is... 0.
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Traces on von Neumann algebras

Definition
A linear functional τ on a von Neumann algebra M is called:

• positive if τ(x∗x) ≥ 0 for all x ∈ M
• faithful if τ(x∗x) = 0 ⇒ x = 0
• a state if τ(1) = 1
• tracial if τ(xy) = τ(yx) for all x, y ∈ M

A tracial state is called a trace.

Example: consider the group factor of L(Γ) ⊂ B(`2(Γ)) associated with an
icc group Γ. Then

τ(x) = 〈xδe , δe〉

extends to a faithful trace.

Recall that: gδh = δgh and 〈δa , δb〉 = δa,b .
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Characterization of II1 factors

Finite factors
Let M be a factor. The following are equivalent:
• M has a norm-continuous trace.
• 1 is a finite projection.
• M is of type In (with n finite) or of type II1.

Under these conditions, M is said finite.

Remark: 1 is a finite projection if and only if u∗u = 1⇒ uu∗ = 1.

Corollary
Group factors L(Γ) are of type II1.

The factor L(S∞) is called hyperfinite and plays a special role in the theory.
There are many more, constructed from group actions (Popa, Vaes,...)
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Goals

• The Jones Index { How do II1 factors sit within each other?

• The Jones Tower

• Temperley-Lieb algebras, braids, knots, tangles...

Left to right : Vaughan Jones and the HOMFLY crew, 1985
J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish, and D. Yetter
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Standard Form of a II1 factor

Let M be a factor with continuous and faithful trace τ. The pairing
〈x, y〉 = τ(y∗x) ∈ C

defines an inner product on M.
Let L2(M, τ) be the associated completion of M. There is an embedding:

M −→ L2(M)
x 7−→ x̂
1 7−→ Ω

.

M is represented on the Hilbert space L2(M) by considering:
πτ(x)ŷ = x̂y := xŷ

and extending it to a morphism
πτ : M −→ B(L2(M)).

This representation is called the standard form of M and we have:
x̂ = x̂1 = x1̂ = xΩ

so that τ(x) = 〈xΩ,Ω〉.
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Example

Consider M = Mn(C) = B(Cn) with normalized trace τ = 1
n Tr.

Then
L2(M) = Mn(C) ' Cn2

with inner product

〈x, y〉 =
Tr y∗x

n
and special vector

Ω = In.

The standard representation is given by matrix multiplication:

πτ(x)y = xy.

Note: L2(M) ' Cn2
' Cn ⊗ Cn and this representation has dimension n2.
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Modules

Let M be a II1 factor.

A (left) M-module is a representation of M, that is, a Hilbert space H
together with an action

M ×H −→ H
(x, ξ) 7−→ xξ

that is bilinear and satisfies

x(yξ) = (xy)ξ , 1ξ = ξ , 〈xξ, η〉 = 〈ξ, x∗η〉

for all x, y ∈ M and ξ, η ∈ H .

The action is also required to be continuous in the following sense: if {xn}n

is a bounded sequence in M, then
τ(x∗nxn)→ 0 ⇒ ‖xnξ‖ → 0

for any ξ ∈ H .
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Examples of M-modules

• The standard form: L2(M).
• Let p be a projection in M′ ⊂ B(L2(M)). Consider H = pL2(M).

Then,
xpξ = pxξ

for any x ∈ M and ξ ∈ L2(M). Denote by L2(M)p this M-module.
• Amplifications:

L2(M) ⊕ . . . ⊕ L2(M)

• Infinite amplification:
`2(L2(M)) ' `2(N) ⊗ L2(M).

`2(L2(M)) =
{
(ξn)n : ξn ∈ L2(M) with

∑
n∈N

‖ξn‖
2 < ∞

}
.

Goal: quantitatively compare these examples with L2(M).
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Equivalent Representations

Let M be a II1 factor and H1, H2 two M-modules.

Definition
We say that H1 and H2 are (unitarily) equivalent and we write H1 ' H2 if
there is a unitary

u : H1 −→ H2

such that
u(xξ) = x(uξ)

for all x ∈ M and ξ ∈ H1.

In other words, there is a commutative diagram:
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Representation Theory of II1 Factors (all of it!)

Theorem
Let M be a II1 factor and H a separable M-module. Then there is an
isometry

v : H −→ L2(M) ⊗ `2(N)

such that
vx = (x ⊗ 1)v

for all x ∈ M. Furthermore,
vv∗ ∈ (M ⊗ 1)′ ⊂ B

(
L2(M) ⊗ `2(N)

)
.

Reformulation
Any representation of M is equivalent to

p
(
L2(M) ⊗ `2(N)

)
for some projection p = vv∗ in (M ⊗ 1)′.
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Von Neumann Dimension

Any representation H of a II1 factor M is equivalent to p
(
L2(M) ⊗ `2(N)

)
for some projection p = vv∗ in (M ⊗ 1)′.

Idea: the size of H is measured by the trace of p.

Issue: (M ⊗ 1)′ = M′ ⊗B(`2(N)) is a II∞ factor! (No trace on B(`2(N))...)

Fix: the trace
tr = τ ⊗ Tr

can be normalized in such a way that tr(1 ⊗ q) = 1 for any rank 1
projection q in B(`2)(N).

Definition
The M-dimension of the M-module H is

dimMH = tr(vv∗) ∈ [0,∞].

Fortunately, tr(vv∗) does not depend on a choice of the isometry v.
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Properties of the von Neumann Dimension

Let M be a II1 factor.

• dimMH ∈ [0,∞] and all values occur.

• Representations of M are classified by their M-dimension:
dimMH = dimM K ⇔ H ' K .

• Direct sums: if J is countable then,
dimM

⊕
j∈J

Hj =
∑
j∈J

dimMHj .

• If p ∈ M′ is a projection then:
dimM L2(M)p = τ(p).

• M′-dimension:
dimM′H =

1
dimMH

.
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The Jones Index

Let N ⊂ M be II1 factors.

Then N acts on L2(M) and we can consider its N-dimension.

Definition
The Jones Index of the subfactor N ⊂ M is

[M : N] := dimN L2(M).

Proposition
If N ⊂ M is represented on H with dimNH < ∞, then

[M : N] =
dimNH

dimMH
.
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Sketch of Proof

Assume dimMH ≥ 1. Note that N ⊂ M implies M′ ⊂ N′ and they are both
II1 factors.
Let p ∈ M′ with

τM′(p) =
1

dimMH
.

Then
dimM(Hp) = τM′(p) · dimMH = 1

and therefore
Hp ' L2(M).

It follows that
[M : N] = dimN L2(M)

= dimNHp

= τN′(p) · dimNH = τM′(p) · dimNH

=
1

dimMH
dimNH �
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Example

Let N be a II1 factor. For k ≥ 1 integer, consider
M = Mk (N) ' N ⊗Mk (C).

Then N is a subfactor of M, via the embedding

N 3 x 7−→ x ⊗ 1 =


x 0 · · · 0

0 x
...

... x 0
0 · · · 0 x

 ∈ Mk (N)

Moreover,

L2(M) = L2
(
N ⊗Mk (C)

)
' L2(N) ⊗Mk (C) '

k2⊕
j=1

L2(N),

so that

[M : N] = dimN L2(M) =
k2∑

j=1

dimN L2(N) = k 2.

28 / 30



The Jones Index Theorem

{ Beside 1, 4, 9, . . . what possible values can [M : N] take?

Theorem (Jones, 1983)
Let N ⊂ M be a II1 subfactor. The possible values of [M : N] are given by:{

4 cos2
(

π

n + 2

)
: n ≥ 1

}
∪ [4,∞).

The proof relies on studying indices along the Jones Tower and relates in
profound ways the algebra of projections and Temperly-Lieb algebras.

"Corollary"
A new invariant for knots: the Jones polynomial (and its descendants).

29 / 30



‘God may or may not play dice but She sure loves a von Neumann algebra.’

Vaughan Jones
1952 - 2020
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