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© Hilbert Spaces and Operators

@® Von Neumann Algebras

© Classification of Factors



If you ask Wikipedia:

Quantum mechanics | edit|

In quantum physics, observables manifest as linear operators on a Hilbert space representing the state space of quantum states.

~> We should study linear operators on Hilbert spaces. J
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Hilbert spaces

A Hilbert space is a complex vector space H equipped with an inner
product

G,y HxH —C
that is complete for the associated norm

1€l == V<&, ).

From Wikipedia:

‘Completeness means that if a particle moves along the broken path (in
blue) travelling a finite total distance, then the particle has a well-defined
net displacement (in orange).’

5/24



Completeness vs. completeness

A metric space is said complete if all Cauchy sequences converge.

Theorem

A normed linear space (E, || - ||) is complete if and only if absolutely
convergent series are convergent, that is:

Dl < +o0 =

n>0

‘Completeness means that if a particle moves along the broken path
travelling a finite total distance, then the particle has a



Bounded operators

We will focus on bounded operators on H, that is, continuous linear maps
T:-H— H.
Theorem

Let T : E — F be a linear map between normed linear spaces. The
following are equivalent:

e T is continuous on E.
e T is bounded on the unit ball of E.
e Tis Lipschitz:

| Tx|| < K||x|| forall x e E.

If T is continuous, we define its operator norm by:
ITllop = sup [ITx|| = inf{K, K is a Lipschitz constant for T}.

lIxll<1
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Adjoints

If H is a Hilbert space, denote by B(H) the space of bounded operators
from H to itself. The operator norm makes it a Banach algebra.

Theorem
If T € B(H), there exists a unique operator T* such that:

(TEm) =& T
forall & nin H.

Properties of the adjoint:
e If H is finite-dimensional, mat(T*) = ! mat(T)
e Adjunction is an isometry:
”T*“op = ||T||op

C*-identity

For every T in B(H),
IT* Tllop = IITI3,




(Concrete) C*-algebras

Definition
A C*-algebra is a closed subalgebra of B(H) that is stable under adjoint. J

.\{
C- & Examples:

e C, withz* =zand|z|| = |z

* My(C) =B(C")

* B(H): bounded operators on H
® R(H): compact operators on H

I. Gelfand (1913 - 2009)
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Commutative C*-algebras

Theorem (Gelfand-Naimark, 1943)

If A is a commutative C*-algebra, there exists a locally compact Hausdorff
space X (the spectrum of A) such that

A = Co(X).

® The C*-algebra structure on Cy(X) is given by:

Ifll = sup |[f(x)] and f*(x) = f(x).

xeX

® Co(X) is unital if and only if X is compact.

Cr-algebras = noncommutative topology
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John von Neumann (1903 - 1957)
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Commutants
The commutant of a subset A ¢ B(H) is
A= {y e B(H), xy =yx forallxe A}.
The bicommutant of A is
AII — (Al)/'
Remark: A c A” for any A.
Example: let A = M,(C) ~ B(C"). Then

A'=C.l, and A”=M,(C)=A

Question

Say A is stable under algebraic operations and taking adjoints. What is the
difference between A and A”?

13/24



The Bicommutant Theorem

B(H) carries other useful topologies than the one given by || - [lop: the
strong operator topology (SOT) and the weak operator topology (WOT).

WOT < SOT < norm topology

In particular, for any subset X of B(H),
oo _ 3¢SOT _ 5 woT

Von Neumann’s Bicommutant Theorem
Let M be a unital *-subalgebra of B(H). Then

75T — T
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Recall:

A C*-algebra is a closed =-subalgebra of B(H). I

Similarly,

A W*-algebra is a weakly closed :-subalgebra of B(H). I

Equivalently, by the Bicommutant Theorem:

A von Neumann algebra is a *-subalgebra M of B(H) such that M = M”.
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Commutative von Neumann Algebras

If X is a space carrying a o-finite measure u, and f € L*(X, u), then
M : o+ fo
is a bounded operator on the Hilbert space L2(X, u), with [|Mfllop = IIfllco-

This is the only possibility!

Theorem
A commutative von Neumann algebra of operators on a separable Hilbert
space is x-isomorphic to exactly one of the following:
e (°({1,2,...,n}) withn > 1
¢*(N)
L=([0,1])
L=([0,1]u{1,2,...,n}) withn > 1
L=([0,1] UN)



C*-algebras = noncommutative topology J

von Neumann algebras = noncommutative measure theory J

~> What are the building blocks of the theory?
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Factors

Definition
A von Neumann algebra M c B(H) is called a factor if
MnM = C.1Q3(7_()

Remark: M N M’ = Z(M) does not depend on the Hilbert space H.

Structure Theorem

Any separable von Neumann algebra M is isomorphic to a direct integral
of factors: there exists a measurable space 7~ with a o-finite measure u
and a family {M;};cs of factors such that:

M~ f: M, du(t)

Remark: C is the only commutative factor.



Group von Neumann Algebras

Let I be a discrete group with group algebra

Crlr = {Z ay.y,a, € C and a, # 0 only for finitely many y}.
vel

Then CT acts on the Hilbert space ¢2(I") by left multiplication:

Cr c B(£3(1))
and the von Neumann algebra of I is:

Lry=cr? =" —cr

Theorem
L(M)is afactor < T has infinite conjugacy classes. J

If m # n, is it the case that L(Fp,) # L(Fp)? Still open...
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(How) can factors be classified?

® Yes and no...

® They can be organized in three generic families using

® projections and traces (Murray - von Neumann, 1930’s)

* the flow of weights (Connes, 1970’s).

e Useful invariants have been constructed, but there is no hope of
classification (except for the first family)...

~> It's a good thing!
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Partial Isometries

Definition
An element uin B(H) is called a partial isometry if

lluéll = 1]l

for all ¢ € (keru)*.

Example: consider the shift operators on H = (2(N):

R : (X1,X2,...) — (0,X1,X2,...)

L: (X1,X2,...) | (X2,X3,...)
They are adjoint to each other and satisfy:

R*R — LR — Id[Z(N)

RR* = RL = projection onto (0, *, ,*,...) = (ker L)*

9 Ty T Ty
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Algebra of Projections (Murray - von Neumann, 1936)

A projection in a von Neumann algebra M is an element p € M such that:
® o 22
p=p=p.
We write p < q if pH c gH.

® Two projection p, g € M are said equivalent (p ~ q) if there is a partial
isometry u € M such that

vu=p and uu =gq.

* We write p < q if there exists a partial isometry u € M such that
uUu=p and uwu*<aq.

® A projection p # 0 is called minimal if for all projections g € M,
gsp = q=0 or g=p.

® A projection p # 0 is called finite if for all projections q € M,
p~g=p = qg=p.
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Murray - von Neumann Classification (1936 - 1943)
Let M c B(H) be a factor. We say that M is of type:
e [ if it contains a minimal projection;

Misoftype | & M =~ B(H). )

~» Type I factors are classified by dimension.

¢ |I: if it contains no minimal projection, but a finite projection;
* Type Il if 134 is finite (hence all projections are);
® Type ll.: if 141 is not finite, but some projections in M are.

Any Il factor is of the form M ® B(H) with M of type Il; and dim H = . J

e |II: if it contains no finite projection.
® Type Ill; with 0 < A < 1, from the Connes spectrum (1970’s)
® Every lll factor is of the form M = R with M of type Il, (Tomita-Takesaki)
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