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What is an observable quantity?

If you ask Wikipedia:

{ We should study linear operators on Hilbert spaces.
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Hilbert spaces

A Hilbert space is a complex vector space H equipped with an inner
product

〈·, ·〉 : H ×H −→ C

that is complete for the associated norm
‖ξ‖ :=

√
〈ξ, ξ〉.

From Wikipedia:

‘Completeness means that if a particle moves along the broken path (in
blue) travelling a finite total distance, then the particle has a well-defined
net displacement (in orange).’
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Completeness vs. completeness

A metric space is said complete if all Cauchy sequences converge.

Theorem
A normed linear space (E, ‖ · ‖) is complete if and only if absolutely
convergent series are convergent, that is:∑

n≥0

‖ξn‖ < +∞ ⇒
∑
n≥0

ξn converges in E.

‘Completeness means that if a particle moves along the broken path
travelling a finite total distance, then the particle has a well-defined net
displacement.’
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Bounded operators

We will focus on bounded operators on H , that is, continuous linear maps
T : H −→ H .

Theorem
Let T : E −→ F be a linear map between normed linear spaces. The
following are equivalent:

• T is continuous on E.
• T is bounded on the unit ball of E.
• T is Lipschitz:

‖Tx‖ ≤ K‖x‖ for all x ∈ E.

If T is continuous, we define its operator norm by:
‖T‖op = sup

‖x‖≤1
‖Tx‖ = inf

{
K , K is a Lipschitz constant for T

}
.
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Adjoints

If H is a Hilbert space, denote by B(H) the space of bounded operators
from H to itself.The operator norm makes it a Banach algebra.

Theorem
If T ∈ B(H), there exists a unique operator T∗ such that:

〈Tξ, η〉 = 〈ξ,T∗η〉
for all ξ, η in H .

Properties of the adjoint:
• If H is finite-dimensional, mat(T∗) = t mat(T)

• Adjunction is an isometry:
‖T∗‖op = ‖T‖op

C*-identity
For every T in B(H),

‖T∗T‖op = ‖T‖2op
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(Concrete) C*-algebras

Definition
A C*-algebra is a closed subalgebra of B(H) that is stable under adjoint.

I. Gelfand (1913 - 2009)

Examples:

• C, with z∗ = z̄ and ‖z‖ = |z|
• Mn(C) = B(Cn)

• B(H): bounded operators on H
• K(H): compact operators on H
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Commutative C*-algebras

Theorem (Gelfand-Naimark, 1943)
If A is a commutative C*-algebra, there exists a locally compact Hausdorff
space X (the spectrum of A ) such that

A ' C0(X).

• The C*-algebra structure on C0(X) is given by:

‖f‖ = sup
x∈X
|f(x)| and f∗(x) = f(x).

• C0(X) is unital if and only if X is compact.

C*-algebras = noncommutative topology
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John von Neumann (1903 - 1957)
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Commutants

The commutant of a subset A ⊂ B(H) is

A ′ :=
{
y ∈ B(H) , xy = yx for all x ∈ A

}
.

The bicommutant of A is

A ′′ = (A ′)′.

Remark: A ⊂ A ′′ for any A .

Example: let A = Mn(C) ' B(Cn). Then

A ′ = C.In and A ′′ = Mn(C) = A

Question
Say A is stable under algebraic operations and taking adjoints. What is the
difference between A and A ′′?
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The Bicommutant Theorem

B(H) carries other useful topologies than the one given by ‖ · ‖op : the
strong operator topology (SOT) and the weak operator topology (WOT).

WOT ≺ SOT ≺ norm topology

In particular, for any subset X of B(H),

X
‖·‖op
⊂ X

SOT
⊂ X

WOT

Von Neumann’s Bicommutant Theorem
Let M be a unital ∗-subalgebra of B(H). Then

M
SOT

= M
WOT

= M′′.
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W*- and von Neumann Algebras

Recall:

Definition
A C*-algebra is a closed ∗-subalgebra of B(H).

Similarly,

Definition
A W*-algebra is a weakly closed ∗-subalgebra of B(H).

Equivalently, by the Bicommutant Theorem:

Definition
A von Neumann algebra is a ∗-subalgebra M of B(H) such that M = M′′.
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Commutative von Neumann Algebras

If X is a space carrying a σ-finite measure µ, and f ∈ L∞(X , µ), then
Mf : ϕ 7−→ f .ϕ

is a bounded operator on the Hilbert space L2(X , µ), with ‖Mf‖op = ‖f‖∞.

This is the only possibility!

Theorem
A commutative von Neumann algebra of operators on a separable Hilbert
space is ∗-isomorphic to exactly one of the following:

• `∞({1, 2, . . . , n}) with n ≥ 1
• `∞(N)

• L∞([0, 1])

• L∞([0, 1] ∪ {1, 2, . . . , n}) with n ≥ 1
• L∞([0, 1] ∪ N)
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Two-line Summary of Noncommutative Analysis

C*-algebras = noncommutative topology

von Neumann algebras = noncommutative measure theory

{ What are the building blocks of the theory?
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Factors

Definition
A von Neumann algebra M ⊂ B(H) is called a factor if

M ∩M′ = C.1B(H)

Remark: M ∩M′ = Z(M) does not depend on the Hilbert space H .

Structure Theorem
Any separable von Neumann algebra M is isomorphic to a direct integral
of factors: there exists a measurable space T with a σ-finite measure µ
and a family {Mt }t∈T of factors such that:

M '
∫ ⊕

T

Mt dµ(t)

Remark: C is the only commutative factor.
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Group von Neumann Algebras

Let Γ be a discrete group with group algebra

CΓ =
{∑
γ∈Γ

αγ.γ , αγ ∈ C and αγ , 0 only for finitely many γ
}
.

Then CΓ acts on the Hilbert space `2(Γ) by left multiplication:

CΓ ⊂ B
(
`2(Γ)

)
and the von Neumann algebra of Γ is:

L(Γ) := CΓ
SOT

= CΓ
WOT

= CΓ′′

Theorem
L(Γ) is a factor ⇔ Γ has infinite conjugacy classes.

The Free Group Isomorphism Problem
If m , n, is it the case that L(Fm) ; L(Fn)? Still open...
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(How) can factors be classified?

• Yes and no...

• They can be organized in three generic families using

• projections and traces (Murray - von Neumann, 1930’s)

• the flow of weights (Connes, 1970’s).

• Useful invariants have been constructed, but there is no hope of
classification (except for the first family)...

{ It’s a good thing!
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Partial Isometries

Definition
An element u in B(H) is called a partial isometry if

‖u ξ‖ = ‖ξ‖

for all ξ ∈ (ker u)⊥.

Example: consider the shift operators on H = `2(N):

R : (x1, x2, . . .) 7−→ (0, x1, x2, . . .)

L : (x1, x2, . . .) 7−→ (x2, x3, . . .)

They are adjoint to each other and satisfy:

R∗R = LR = Id`2(N)

RR∗ = RL = projection onto (0, ∗, ∗, ∗, . . .) = (ker L)⊥
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Algebra of Projections (Murray - von Neumann, 1936)

A projection in a von Neumann algebra M is an element p ∈ M such that:
p∗ = p = p2.

We write p ≤ q if pH ⊂ qH .

• Two projection p, q ∈ M are said equivalent (p ∼ q) if there is a partial
isometry u ∈ M such that

u∗u = p and uu∗ = q.

• We write p � q if there exists a partial isometry u ∈ M such that
u∗u = p and uu∗ ≤ q.

• A projection p , 0 is called minimal if for all projections q ∈ M,
q ≤ p ⇒ q = 0 or q = p.

• A projection p , 0 is called finite if for all projections q ∈ M,
p ∼ q ≤ p ⇒ q = p.
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Murray - von Neumann Classification (1936 - 1943)

Let M ⊂ B(H) be a factor. We say that M is of type:

• I: if it contains a minimal projection;

M is of type I ⇔ M ' B(H).

{ Type I factors are classified by dimension.

• II: if it contains no minimal projection, but a finite projection;
• Type II1: if 1B(H) is finite (hence all projections are);
• Type II∞: if 1B(H) is not finite, but some projections in M are.

Any II∞ factor is of the form M ⊗B(H) with M of type II1 and dimH = ∞.

• III: if it contains no finite projection.
• Type IIIλ with 0 ≤ λ ≤ 1, from the Connes spectrum (1970’s)
• Every III factor is of the form M o R with M of type II∞ (Tomita-Takesaki)

24 / 24


	Hilbert Spaces and Operators
	Von Neumann Algebras
	Classification of Factors

