Von Neumann Algebras, Subfactor and Knots

I. Von Neumann Algebras, Factors

Pierre Clare

GAG seminar

March 5, 2021

1 Hilbert Spaces and Operators

2 Von Neumann Algebras

3 Classification of Factors

If you ask Wikipedia:

Quantum mechanics [edit]

In quantum physics, observables manifest as linear operators on a Hilbert space representing the state space of quantum states.

\rightarrow We should study linear operators on Hilbert spaces.

Hilbert spaces

A Hilbert space is a complex vector space \mathcal{H} equipped with an inner product

$$\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{C}$$

that is complete for the associated norm

$$\|\xi\| := \sqrt{\langle \xi, \xi \rangle}.$$

From Wikipedia:

'Completeness means that if a particle moves along the broken path (in blue) travelling a finite total distance, then the particle has a well-defined net displacement (in orange).'

Completeness vs. completeness

A metric space is said *complete* if all Cauchy sequences converge.

Theorem

A normed linear space $(E, \|\cdot\|)$ is complete if and only if absolutely convergent series are convergent, that is:

 $\sum ||\mathbf{x}|| = 1$

$$\sum_{n\geq 0} ||\varsigma_n|| < +\infty \qquad \Rightarrow \qquad \sum_{n\geq 0} \varsigma_n \text{ converges in } E.$$

 $\sum e$

'Completeness means that if a particle moves along the broken path travelling a finite total distance, then the particle has a well-defined net displacement.'

Bounded operators

We will focus on bounded operators on \mathcal{H} , that is, continuous linear maps $T: \mathcal{H} \longrightarrow \mathcal{H}$.

Theorem

Let $T : E \longrightarrow F$ be a linear map between normed linear spaces. The following are equivalent:

- *T* is continuous on *E*.
- T is bounded on the unit ball of E.
- T is Lipschitz:

 $||Tx|| \le K||x||$ for all $x \in E$.

If *T* is continuous, we define its *operator norm* by:

$$\|T\|_{op} = \sup_{\|x\| \le 1} \|Tx\| = \inf \{K, K \text{ is a Lipschitz constant for } T\}.$$

Adjoints

If \mathcal{H} is a Hilbert space, denote by $\mathfrak{B}(\mathcal{H})$ the space of bounded operators from \mathcal{H} to itself. The operator norm makes it a *Banach algebra*.

Theorem

If $T \in \mathfrak{B}(\mathcal{H})$, there exists a unique operator T^* such that:

$$\langle T\xi,\eta\rangle = \langle \xi,T^*\eta\rangle$$

for all ξ , η in \mathcal{H} .

Properties of the adjoint:

- If \mathcal{H} is finite-dimensional, $mat(T^*) = \overline{t mat(T)}$
- Adjunction is an isometry:

$$||T^*||_{op} = ||T||_{op}$$

C*-identity

For every T in $\mathfrak{B}(\mathcal{H})$,

$$\|T^*T\|_{op} = \|T\|_{op}^2$$

Definition

A C^{*}-algebra is a closed subalgebra of $\mathfrak{B}(\mathcal{H})$ that is stable under adjoint.

I. Gelfand (1913 - 2009)

Examples:

- \mathbb{C} , with $z^* = \overline{z}$ and ||z|| = |z|
- $M_n(\mathbb{C}) = \mathfrak{B}(\mathbb{C}^n)$
- $\mathfrak{B}(\mathcal{H})$: bounded operators on \mathcal{H}
- $\Re(\mathcal{H})$: compact operators on \mathcal{H}

Theorem (Gelfand-Naimark, 1943)

If A is a commutative C*-algebra, there exists a locally compact Hausdorff space X (the *spectrum* of A) such that

$$A\simeq C_0(X).$$

• The C*-algebra structure on $C_0(X)$ is given by:

$$||f|| = \sup_{x \in X} |f(x)|$$
 and $f^*(x) = \overline{f(x)}$.

• $C_0(X)$ is unital *if and only if X* is compact.

C*-algebras = noncommutative topology

John von Neumann (1903 - 1957)

Commutants

The *commutant* of a subset $A \subset \mathfrak{B}(\mathcal{H})$ is

$$A' := \{ y \in \mathfrak{B}(\mathcal{H}) , xy = yx \text{ for all } x \in A \}.$$

The bicommutant of A is

$$A^{\prime\prime}=(A^{\prime})^{\prime}.$$

Remark: $A \subset A''$ for any A.

Example: let $A = M_n(\mathbb{C}) \simeq \mathfrak{B}(\mathbb{C}^n)$. Then

$$A' = \mathbb{C}.I_n$$
 and $A'' = M_n(\mathbb{C}) = A$

Question

Say *A* is stable under algebraic operations and taking adjoints. What is the difference between *A* and A''?

 $\mathfrak{B}(\mathcal{H})$ carries other useful topologies than the one given by $\|\cdot\|_{op}$: the strong operator topology (SOT) and the weak operator topology (WOT).

WOT < SOT < norm topology

In particular, for any subset X of $\mathfrak{B}(\mathcal{H})$,

$$\overline{X}^{\|\cdot\|_{op}} \subset \overline{X}^{SOT} \subset \overline{X}^{WOT}$$

Von Neumann's Bicommutant Theorem

Let *M* be a unital *-subalgebra of $\mathfrak{B}(\mathcal{H})$. Then

$$\overline{M}^{SOT} = \overline{M}^{WOT} = M^{\prime\prime}.$$

W*- and von Neumann Algebras

Recall:

Definition

A C^{*}-algebra is a closed *-subalgebra of $\mathfrak{B}(\mathcal{H})$.

Similarly,

Definition

A W*-algebra is a weakly closed *-subalgebra of $\mathfrak{B}(\mathcal{H})$.

Equivalently, by the Bicommutant Theorem:

Definition

A von Neumann algebra is a *-subalgebra M of $\mathfrak{B}(\mathcal{H})$ such that M = M''.

Commutative von Neumann Algebras

If X is a space carrying a σ -finite measure μ , and $f \in L^{\infty}(X,\mu)$, then $M_f : \varphi \longmapsto f.\varphi$ is a bounded operator on the Hilbert space $L^2(X,\mu)$, with $||M_f||_{op} = ||f||_{\infty}$.

This is the only possibility!

Theorem

A commutative von Neumann algebra of operators on a separable Hilbert space is *-isomorphic to exactly one of the following:

- $\ell^{\infty}(\{1, 2, ..., n\})$ with $n \ge 1$
- $\ell^{\infty}(\mathbb{N})$
- *L*[∞]([0, 1])
- $L^{\infty}([0,1] \cup \{1,2,...,n\})$ with $n \ge 1$
- $L^{\infty}([0,1] \cup \mathbb{N})$

Two-line Summary of Noncommutative Analysis

C*-algebras = noncommutative topology

von Neumann algebras = noncommutative measure theory

→ What are the building blocks of the theory?

Factors

Definition

A von Neumann algebra $M \subset \mathfrak{B}(\mathcal{H})$ is called a *factor* if $M \cap M' = \mathbb{C}.1_{\mathfrak{B}(\mathcal{H})}$

Remark: $M \cap M' = Z(M)$ does not depend on the Hilbert space \mathcal{H} .

Structure Theorem

Any separable von Neumann algebra *M* is isomorphic to a direct integral of factors: there exists a measurable space \mathcal{T} with a σ -finite measure μ and a family $\{M_t\}_{t\in\mathcal{T}}$ of factors such that:

$$M\simeq\int_{\mathcal{T}}^{\oplus}M_t\,d\mu(t)$$

Remark: \mathbb{C} is the only commutative factor.

Group von Neumann Algebras

Let Γ be a discrete group with group algebra

$$\mathbb{C}\Gamma = \big\{\sum_{\gamma \in \Gamma} \alpha_{\gamma}.\gamma \text{ , } \alpha_{\gamma} \in \mathbb{C} \text{ and } \alpha_{\gamma} \neq 0 \text{ only for finitely many } \gamma\big\}.$$

Then $\mathbb{C}\Gamma$ acts on the Hilbert space $\ell^2(\Gamma)$ by left multiplication:

 $\mathbb{C}\Gamma\subset\mathfrak{B}\!\left(\ell^2(\Gamma)\right)$

and the von Neumann algebra of Γ is:

$$L(\Gamma) := \overline{\mathbb{C}\Gamma}^{SOT} = \overline{\mathbb{C}\Gamma}^{WOT} = \mathbb{C}\Gamma''$$

Theorem

 $L(\Gamma)$ is a factor \Leftrightarrow Γ has infinite conjugacy classes.

The Free Group Isomorphism Problem

If $m \neq n$, is it the case that $L(\mathbb{F}_m) \neq L(\mathbb{F}_n)$? Still open...

- Yes and no...
- They can be organized in three generic families using
 - projections and traces (Murray von Neumann, 1930's)
 - the flow of weights (Connes, 1970's).
- Useful invariants have been constructed, but there is no hope of classification (except for the first family)...
- \rightarrow It's a good thing!

Partial Isometries

Definition

An element *u* in $\mathfrak{B}(\mathcal{H})$ is called a *partial isometry* if $||u\xi|| = ||\xi||$ for all $\xi \in (\ker u)^{\perp}$.

Example: consider the shift operators on $\mathcal{H} = \ell^2(\mathbb{N})$:

$$R:(x_1,x_2,\ldots)\longmapsto(0,x_1,x_2,\ldots)$$

$$L: (x_1, x_2, \ldots) \longmapsto (x_2, x_3, \ldots)$$

They are adjoint to each other and satisfy:

$$R^*R = LR = Id_{\ell^2(\mathbb{N})}$$

 $RR^* = RL =$ projection onto $(0, *, *, *, ...) = (\ker L)^{\perp}$

Algebra of Projections (Murray - von Neumann, 1936)

A projection in a von Neumann algebra *M* is an element $p \in M$ such that: $p^* = p = p^2$. We write $p \leq q$ if $p\mathcal{H} \subset q\mathcal{H}$.

Two projection p, q ∈ M are said equivalent (p ~ q) if there is a partial isometry u ∈ M such that

$$u^*u = p$$
 and $uu^* = q$.

- We write $p \le q$ if there exists a partial isometry $u \in M$ such that $u^*u = p$ and $uu^* \le q$.
- A projection $p \neq 0$ is called *minimal* if for all projections $q \in M$,

$$q \le p \Rightarrow q = 0 \text{ or } q = p.$$

• A projection $p \neq 0$ is called *finite* if for all projections $q \in M$, $p \sim q \leq p \implies q = p$.

Murray - von Neumann Classification (1936 - 1943)

Let $M \subset \mathfrak{B}(\mathcal{H})$ be a factor. We say that *M* is of type:

• *I*: if it contains a minimal projection;

M is of type $I \Leftrightarrow M \simeq \mathfrak{B}(\mathcal{H})$.

 \sim Type *I* factors are classified by dimension.

- *II*: if it contains no minimal projection, but a finite projection;
 - Type *II*₁: if 1_{𝔅(𝔑)} is finite (hence all projections are);
 - Type II_{∞} : if $1_{\mathfrak{B}(\mathcal{H})}$ is not finite, but some projections in M are.

Any I_{∞} factor is of the form $M \otimes \mathfrak{B}(\mathcal{H})$ with M of type II_1 and dim $\mathcal{H} = \infty$.

- *III*: if it contains no finite projection.
 - Type III_{λ} with $0 \le \lambda \le 1$, from the Connes spectrum (1970's)
 - Every III factor is of the form $M \rtimes \mathbb{R}$ with M of type II_{∞} (Tomita-Takesaki)