
Introduction

Background

Results

I. Incremental
changes of U(T )

II. A formula for
U(T ) for 2-linear
trees

III. Nonlinear trees

References

The Minimum Number of Multiplicity 1
Eigenvalues among Real Symmetric Matrices

whose Graph is a Tree

Wenxuan “Olivia” Ding
Advisor: Dr. Charles R. Johnson

College of William & Mary

February 19, 2021

1 / 29



Introduction

Background

Results

I. Incremental
changes of U(T )

II. A formula for
U(T ) for 2-linear
trees

III. Nonlinear trees

References

1 Introduction

2 Background

3 Results
I. Incremental changes of U(T )
II. A formula for U(T ) for 2-linear trees
III. Nonlinear trees

2 / 29



Introduction

Background

Results

I. Incremental
changes of U(T )

II. A formula for
U(T ) for 2-linear
trees

III. Nonlinear trees

References

Introduction

Let A = (aij) be an n × n real symmetric matrix. The
graph of A, denoted G (A), is the simple undirected graph
on n vertices with an edge between i and j iff the entry
aij 6= 0 (no restriction on the diagonal entries). Given a
graph G , we define S(G ) to be the set of all real
symmetric matrices A such that G (A) = G .

A tree,T , is a minimally connected undirected graph, i.e.
a connected acyclic graph on n vertices with n − 1 edges.

T =
2 3 41

A =


a11 a12 0 0
a12 a22 a23 0
0 a23 a33 a34
0 0 a34 a44


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Introduction

Every matrix A ∈ Mn(R) ∈ S(T ) has a multiplicity list, which
is a partition of n listing multiplicities of the eigenvalues of A.
The multiplicities can be summarized in two ways: ordered
and unordered.

For example, when n = 15, and the eigenvalues are

−3,−1,−1, 2, 4, 4, 4, 5, 5, 6, 8, 8, 10, 11, 25

An ordered multiplicity list is (1, 2, 1, 3, 2, 1, 2, 1, 1, 1), while an
unordered multiplicity list is (3, 2, 2, 2, 1, 1, 1, 1, 1, 1).
The catalog of a tree, denoted L(T ), is the collection of all
multiplicity lists that occur among the matrices in S(T ).
We define U(T ) to be the minimum number of 1’s among the
lists in L(T ).
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Introduction

Theorem

[3] If T is a tree, the largest and smallest eigenvalue of each
A ∈ S(T ) have multiplicity 1. That is, U(T ) ≥ 2.

Question

When will the multiplicity lists in L(T ) have U(T ) > 2?

U(T ) can be much greater than 2. For example, U(Pn) = n for
the path Pn on n vertices.
There has been much interest, and progress on determining
L(T ) for each tree T . The maximum multiplicity, M(T ), is
the path cover number P(T ) [7], and the minimum number of
distinct eigenvalues is at least the diameter d(T ) [7]. Similarly,
precise information about U(T ) would further narrow the
possibilities for the catalog L(T ).
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For our purpose, we consider three degree possibilities of a
vertex in a tree: a pendent vertex (degree 1), a degree 2 vertex,
or a high degree vertex (HDV) if its degree is at least 3.

A generalized star (g-star) is a tree with at most one HDV;
moreover, the HDV, if it exists, is called the central vertex of
the g-star. A g-star has a number of paths (arms) hanging
from the central vertex. For example,
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A tree is a linear tree if all its HDV’s lie on a single induced
path. A linear tree with k HDV’s is called k-linear. And a
linear tree can be viewed as the composition of g-stars and
connecting paths, i.e. T = L (T1, s1, . . . , sk−1,Tk) [2].

For example, the following tree is a 4-linear tree.
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The smallest nonlinear tree is on 10 vertices, and by 25
vertices, half of the trees are linear.

The diameter is defined to be the length of the longest
induced path in T , measured in vertices. For example, the
diameter for this smallest nonlinear tree is 5.
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Auxiliary results for g-stars and their upward multiplicity lists:

Let G be a graph and fix vertex v . Let A ∈ S(G ). We say that
λ is an upward eigenvalue of A at v if mA(v)(λ) = mA(λ) + 1.
In this case, the multiplicity of this eigenvalue λ is called an
upward multiplicity of A at v , denoted q̂i .
Therefore, for a g-star T , we have the following lemma:

Lemma

[1] Let T be a g-star with the central vertex v. If A ∈ S(T )
and λ is an eigenvalue of A(v), then mA(v)(λ) = mA(λ) + 1.

From this lemma, we can say that the upward eigenvalues of A
(including those with multiplicity 0̂) are exactly the eigenvalues
of A(v). The complete upward multiplicity lists of a g-star
have the form (1, q̂1, 1, q̂2, 1, · · · , q̂r , 1), in which r upward
multiplicities are “bookended” by r + 1 non-upward 1’s.
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Linear superposition principle (LSP):

Theorem

[2] [5] Let T1, · · · ,Tk be g-stars and s1, · · · , sk−1 be nonnegative integers.

Given b̂i , a complete upward multiplicity list for Ti (relative to the central
vertex), i = 1, · · · , k, and ĉj , a list of s non-upward 1’s, j = 1, · · · , k − 1,

construct augmented lists b+i , i = 1, · · · , k and c+j subject to the following:

1 all b+i and c+j are the same length;

2 each b+i and c+j is obtained from b̂i (ĉj ) by inserting nonupward 0s;

3 for each l, the lth element of the augmented lists, denoted b+i,l and c+j,l , are

not all nonupward 0s; and

4 for each l, arranging the b+i,l ’s and c+j,l ’s in the order

b+1,l , c
+
1,l , b

+
2,lc

+
2,l , . . . , b

+
k,l , there is at least one upward multiplicity be-

tween any two non-upward ones.

Then
∑k

i=1 b
+
i +

∑k−1
j=1 c+j ,where the addition is termwise, is a multiplicity list for

LT (T1, s1, . . . , sk−1,Tk ) generated by the LSP. For any k -linear tree
T = L (T1, s1,T2, s2, . . . , sk−1,Tk ) , Lo(T ) is equal to the set of all candidate
multiplicity lists generated by the LSP for T .
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vertex), i = 1, · · · , k, and ĉj , a list of s non-upward 1’s, j = 1, · · · , k − 1,

construct augmented lists b+i , i = 1, · · · , k and c+j subject to the following:

1 all b+i and c+j are the same length;

2 each b+i and c+j is obtained from b̂i (ĉj ) by inserting nonupward 0s;
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Example

Let T = L(T1, 2,T2) and let b̂ = (1, 2̂, 1) and ĉ = (1, 1̂, 1, 1̂, 1, 1̂, 1) be upward
multiplicity lists of T1 and T2, respectively. The following are two ways
superimposing to get ordered multiplicity lists for T :

0 1 2̂ 1 0 0 0 0
0 0 0 0 0 1 0 1
1 1̂ 1 1̂ 1 1̂ 1 0
1 2 3 2 1 2 1 1

and
0 0 1 0 2̂ 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0
0 1 0 1̂ 0 1 1̂ 1 1̂ 1
1 1 1 2 2 1 2 1 1 1

.

The following superposition is not valid, since it violates the condition 4:

0 1 2̂ 1 0 0 0
0 0 0 1 0 1 0
1 1̂ 1 1̂ 1 1̂ 1
1 2 3 3 1 2 1

.
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Existing results about U(T ):

1 The diameter lower bound:

Theorem

[3] If T is a tree on n vertices, then U(T ) ≥ 2d − n.

2 The degree 2 vertices upper bound:

Theorem

[3] For a linear tree T , U(T ) ≤ 2 + D2, where D2(T ) denotes
the number of degree 2 vertices in T .
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• The change of U(T ) is bounded by 1 upon adding a vertex

• Discussion of how U(T ) changes upon different ways of adding
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I. Incremental changes of U(T ) for linear trees

Given a tree, we can add a vertex and obtain a larger tree via
either adding a pendent vertex, in which a new edge and a
vertex pendent at an existing vertex are added, or edge
subdivision, in which a new vertex of degree 2 is positioned
along an existing edge. When a tree is linear and the resulting
tree upon vertex addition is also linear, we can use the LSP to
prove that the change of U(T ) is bounded by 1.
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I. Incremental changes of U(T ) for linear trees

Theorem

Let T be a linear tree, and let T ′ be a linear tree obtained by
adding a vertex to T , through either adding a pendent vertex
or edge subdivison. Then |U(T ′)− U(T )| ≤ 1.

Proof. Given a linear tree T = L(T1, s1, · · · , sk ,Tk+1), we may add a
vertex in the following 6 ways while maintaining the linearity.

1 Add a pendent vertex to the endpoint of an arm of some Ti ;

2 Add a pendent vertex to the central vertex of some Ti ;

3 Subdivide an edge on an arm of a g-star (equivalent to 1);

4 Subdivide an edge on a connecting path si for some 1 ≤ i ≤ k;

5 Add a pendent vertex to a vertex on a connecting path si ;

6 Add a pendent vertex to a non-pendent vertex on an arm of a
peripheral g-star (i.e T1 or Tk+1)

15 / 29
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I. Incremental changes of U(T ) for linear trees
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I. Incremental changes of U(T ) for linear trees

Empirical evidence from the database [3]:

Table: Changes in U(T ) after adding a pendent vertex [4]

−1 0 +1

Isolated 0 0 1
Pendent 221 430 554
Degree 2 936 85 0
HDV 226 594 0

Total 1383 1109 555

Table: Changes in U(T ) after edge subdivision

−1 0 +1

225 490 909

17 / 29
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When a vertex is added in a particular way

When a vertex is added in a particular way, we can determine
the exact set of possible values of U(T ′)− U(T ).

Table: Possible changes of U(T ) upon addition of a vertex

Vertex addition +1 +0 -1

At an HDV No Yes Yes

At a degree 2 vertex No Yes Yes

At a pendent vertex
d increases by 1 Yes Yes Yes
d stays the same No Yes Yes

Edge subdivision Yes Yes Yes

18 / 29
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A new bound and a refined bound

A new diameter upper bound:

Corollary

For any linear tree T , U(T ) ≤ d(T ); moreover, U(T ) ≤ d(T )− 1
unless T is a path.

A refined 2 + D2 upper bound:

Theorem

For a linear tree T = L(T1, s1, · · · , sk ,Tk+1), U(T ) = 2 + D2 if and
only if T is depth 1 and either of the following is true:

(a) si = 0 for all 1 ≤ i ≤ k; or

(b) degTj = 3 for all 1 < j < k + 1.

Corollary

If a linear tree T is not depth 1, then U(T ) ≤ D2 + 1.

19 / 29
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II. A formula for U(T ) for 2-linear trees

U(T ) has been characterized for 1-linear trees, i.e. g-stars.

Prior result

[1] Let T be a g-star with arm lengths l1 ≥ · · · ≥ la. Then

U(T ) = max{1 + l1, 2d(T )− n}.

Efforts [6] have been made to determine multiplicity lists,
hence U(T ), for special cases of 2-linear trees, such as double
paths. For example,

Now, moving one step further, we consider 2-linear trees in
general.

20 / 29
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II. A formula for U(T ) for 2-linear trees

Theorem

Let T = L(T1, s,T2) be a 2-linear tree. Let ni be the number of
vertices in Ti , i = 1, 2. Let l1 ≥ l2 ≥ · · · ≥ la (resp.,
m1 ≥ m2 ≥ · · · ≥ mb) be the length of the arms of T1 (resp., T2).

We also define z(T1) = max{0, l1 −
∑i=a

i=2 li} (resp.,

z(T2) = max{0,m1 −
∑j=b

j=2 mj}.) Then

U(T ) = max


2 + z(T1) + z(T2) + s (upward 0̂ bound)

l1 + 1− b n2−z(T2)−1
2 c (difference bound for T1)

m1 + 1− b n1−z(T1)−1
2 c (difference bound for T2)

2d(T )− n1 − n2 − s (diameter bound)

21 / 29
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II. A formula for U(T ) for 2-linear trees

Example

Upward 0̂ bound: 2

Difference bounds: 1

Diameter bound: 1

U(T ) = 2

Upward 0̂ bound: 2

Difference bounds: 3

Diameter bound: 2

U(T ) = 3

Upward 0̂ bound: 2

Difference bounds: 3

Diameter bound: 4

U(T ) = 4
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III. Nonlinear trees

We know a lot about linear trees, but little is known about
nonlinear trees and their multiplicity lists. The LSP cannot be
easily extended.

We classify nonlinear trees in terms of their diameter (≥ 5).
Define cores of diameter d nonlinear trees to be the minimal
nonlinear trees with that diameter.

The characterization of cores is that, a nonlinear tree T is a
core for diameter d nonlinear trees if and only if n(T ) = d + 5.
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III. Nonlinear trees

What are nice about cores:

1. For a given diameter, there are finitely many cores.

2. Each core generates an infinite family of nonlinear trees via
a sequence of pendent vertex additions while the diameter
remains the same.

3. The union of the families of all the cores for d is the set of
all nonlinear trees with diameter d .

4. The families of two different cores for some d might overlap
with one another.

5. Cores of any diameter d nonlinear trees only contain 4
HDV’s.

24 / 29
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a sequence of pendent vertex additions while the diameter
remains the same.

3. The union of the families of all the cores for d is the set of
all nonlinear trees with diameter d .

4. The families of two different cores for some d might overlap
with one another.
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III. Nonlinear trees

Conjecture

Let T be a core of diameter d nonlinear trees, then

U(T ) =

{
2 if d ≤ 7

d − 5 if d ≥ 8
.

Moreover, for any T ′ in the family generated by T ,
U(T ′) ≤ U(T ).
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III. Nonlinear trees

How can we enumerate all the cores of a given diameter d?

Algorithm

Start with the 10-vertex nonlinear tree, say T . There are two
types of edges in T : R(ed) edges that are adjacent to the
central vertex and B(lue) edges that are adjacent to some
pendent vertex.

Since the cores are minimal nonlinear trees of diameter d , they
are obtained by adding d − 5 vertices to T in a way such that
the addition of each vertex increases the diameter by 1.
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III. Nonlinear trees

Algorithm (Cont.)

In fact, up to isomorphism, it equates to doing edge subdivision
d − 5 times on one diameter of T . So, generating cores boils
down to what we can do on one diameter of T .

Wlog , assume the diameter is the following 5-path, where
p, q, r , and s denote the number of edge subdivisions operated
on respective edges.

p sq r

The set of all the cores of diameter d equals all possible
nonnegative integer string partitions of d − 5, i.e.
p + q + r + s = d − 5, up to isomorphism.
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III. Nonlinear trees

How many cores are there given a diameter d?

Proposition

Define c(d) to be the number of cores for diameter d nonlinear
trees. Then,

c(d) =
[
p1 p2 p3 p4 p5

] [
1 2 4 6 12

]T
where pi , 1 ≤ i ≤ 5, denotes the number of non-isomorphic
partitions of one of the following patterns:
(a, a, a, a), (a, b, b, b), (a, a, b, b), (a, b, b, c), and (a, b, c , d).

In fact, the generating function of c(d) is the expansion of

c(x + 5) =
(1 + x2)

(1− x)2(1− x2)2
.
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d c(d)

5 1
6 2
7 6
8 10
9 19

10 28
11 44
12 60
13 85
14 110
15 146
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