COHERENT CONFIGURATIONS & QUANTUM ORBITAL ALGEBRAS  
(Brund on work of Impini, Mančinske, Roberson (2020))  
DEF Given a sut 
$$\Omega$$
, a coherent configuration  
is a partition  $R = \{R_{i}^{2} : i \in I\}$  of  
 $\Omega^{2} = \Omega \times \Lambda$  into relation (or clusse) satisfying:

(3) For 
$$\mathcal{M}$$
 i, j, k \in I  $\mathcal{M} \cong (x, \beta) \in \mathcal{R}_{k}$ ,  
the number of  $\mathcal{T} \in \Omega$  such that  
 $(x, \mathcal{T}) \in \mathcal{R}_{i}$   $\mathcal{M}$   $(\mathcal{T}, \beta) \in \mathcal{R}_{j}$  is a constant  
 $P_{ij}^{k}$  that does not depend on  $x \geq \beta$ .  
 $P_{ij}^{k}$ : intersection numbers of  $\mathcal{R}$ 

EX Let 
$$G \leq Sym(-\Omega)$$
.  
The,  $G$  has a network action on priors:  
 $(\alpha, \beta)^{3} := (\alpha^{3}, \beta^{3})$ ,  $g \in G$   
NOTATION  $\alpha^{3} = \gamma$  means  $g$  such  $\alpha \in \gamma$ !

Define a relation 
$$\Lambda_{G}$$
 in  $\exists g \in G$  such that  
 $(\alpha, \beta) \sim_{G} (\mathcal{F}, \mathcal{F})$  if  $\exists g \in G$  such that  
 $(\alpha, \beta)^{g} = (\mathcal{F}, \mathcal{F}).$ 

CLAIM ~G is a equivalence relation 
$$\Omega \times \Lambda$$
  
REFLEXIVE IF IEG is the identity,  
the  $(\alpha, \beta)^{1} = (\alpha, \beta)$ 

SYMMETRIC Suppose 
$$(\varkappa, \beta) \sim_{G} (\tau, \delta)$$
.  
The  $(\varkappa, \beta)^{3} = (\tau, \delta)$   
 $\Rightarrow (\tau, \delta)^{3^{-1}} = ((\varkappa, \beta)^{2})^{2^{-1}} = (\varkappa, \beta)^{(3^{2^{-1}})} = (\varkappa, \beta)$   
TRANSITIVE Suppose  $(\varkappa, \beta_{1}) \sim_{G} (\varkappa, \beta_{2}), (\varkappa, \beta_{2}) \sim_{G} (\varkappa, \beta_{2})$ .

The 
$$\exists j_1 h \in G$$
 such that  
 $(\alpha_1, \beta_1)^9 = (\alpha_2, \beta_2), (\alpha_2, \beta_2)^h = (\alpha_3, \beta_3)$   
So:  $(\alpha_1, \beta_1)^{9h} = (\alpha_3, \beta_3)$ 

Let this partition be 
$$R_{q} = \{R_{i}: i \in I\}$$
  
provide and  $R_{i}$  is required and a set or bital is  $(r_{1}\beta)^{q} = \{(x_{i}\beta)^{p} : (x_{i}^{2}\beta^{p}): g \in Q\}$  of  $\Omega \times \Omega$  and  $\infty$   
CLAIM  $R_{q}$  is a colorest in figure.  
("Partition of the diagonal")

For each 
$$(\alpha, \alpha) \in \Omega^{2}$$
,  $j \in G$ ,  
 $(\alpha, \alpha)^{3} = (\alpha^{3}, \alpha^{3})$  is den in the  
Jingend, i.e.,  
if  $(\alpha, \alpha) \in R_{A}$   $\rightarrow$   $D := \{(\tau, \tau): \tau \in \Omega\}$ ,  
 $T_{m}$   $R_{A} \subseteq D$ .  
In fact, if  $\alpha G$  is the orbit of  $\alpha$   
under  $G$   $\rightarrow$   
 $(\alpha, \beta)^{G} := \{(\alpha, \beta)^{3}: j \in G\}$ ,  
 $T_{m}$   $(\alpha, \alpha)^{G} = \{(\beta, \beta): \beta \in \alpha \in S\}$ .  
 $f_{m}$  is a while related on  $R_{A} = (\alpha, \alpha)^{G}$ .

(2) (Converse relation)  
Let 
$$R_{\lambda}^{*} = \{(x, \beta)^{9} : g \in G\} = (x, \beta)^{9}$$
  
Define  $R_{\lambda}^{*} := \{(\beta, \alpha)^{9} : g \in G\} = (\beta, \alpha)^{9}$ .  
Then,  $(T, s) \in R_{\lambda}^{*} \Rightarrow (T, s) = (\alpha, \beta)^{9}$   
Then,  $(T, s) \in R_{\lambda}^{*} \Rightarrow (T, s) = (\alpha, \beta)^{9}$   
 $= \gamma = \alpha^{5}, \quad s = \beta^{5}$ 

$$\Rightarrow (s, r) = (\rho, \kappa)^{3} \in R_{\lambda}^{1}$$
  
So,  $(\rho, \kappa)^{5}$  is the convex of  $(\alpha_{1}\rho)^{5}$ .  
(3)  $((\alpha_{1}, \rho) \in R_{\kappa}, -A \text{ time true } (\alpha_{1}, \rho) \in R_{\kappa}, -A \text{ time true } (\alpha_{1}, \rho) \in R_{\kappa}, -A \text{ time true } (\alpha_{1}, \rho) \in R_{\lambda}, (\tau, \rho) \in R_{\lambda}^{2}$ .  
Such that  $(\alpha_{1}, \tau) \in R_{\lambda}, (\tau, \rho) \in R_{\lambda}^{2}$ .  
Thu, for any  $(\alpha_{1}^{1}, \rho^{1}) \in R_{\kappa}, (\alpha_{1}^{1}, \rho) \in R_{\lambda}^{2}$ ,  
 $(\tau^{5}, \rho^{5}) = (\kappa_{1}, \tau)^{3} \in R_{\lambda}, (\tau_{1}, \rho) \in R_{\lambda}, (\tau^{5}, \rho) \in R_{\lambda}, (\tau^{5},$ 

 $\frac{EQUIVALENTLY}{R = \{R_{i}: i \in I\}} \quad \text{Given} \quad \stackrel{\text{def}}{=} \quad \text{columnt in Figure 1}}$   $R = \{R_{i}: i \in I\} \quad \text{on} \quad \Omega_{i}, \quad \text{ore} \quad \text{construct}$   $a \quad \text{matrix} \quad A_{i}, \quad \text{for unl} \quad i \in I:$ 

$$(A_{i})_{\alpha\beta} := \begin{cases} l, & if (\alpha,\beta) \in R_{i} \end{cases}$$
  
 $(A_{i})_{\alpha\beta} \in R_{i}$ 

PROP The lines spen of the EAX: i.e.J, i.e., the set of all metrices of the firm  $\sum_{i \in I} c_i A_i$  ( $c_i \in C$ ) is a self -adjoint, united algebra containing the all-ones metrix J and which is the all-ones metrix J and which is doed when o, the entrymic product.

Since 
$$A_i \circ A_j = S_{ij}A_i = \begin{cases} 0, if i \neq j \\ A_i, if i = j \end{cases}$$

it's doud when 
$$\circ$$
.  
It's with, since  $I = \sum_{d \in D} A_d$ ,  
 $J = \sum_{i \in I} A_i$  (partition!)  $\square$ 

PROP Fo- Il <sup>x</sup><sub>1</sub>j<sup>x</sup> + 1,  
A:Aj = 
$$\sum_{k \in I} p_{ij}^{k} A_{k}$$
.  
metrix melt  
Consegnently,  $Q(R)$  is cloud under metrix  
multiplication.

$$\underline{PF} \left(A_{\lambda}^{*}A_{j}^{*}\right)_{\alpha\beta} = \sum_{\tau \in \mathcal{SL}} \left(A_{\lambda}^{*}\right)_{\alpha\beta} \left(A_{j}^{*}\right)_{\alpha\beta}$$

So, if 
$$(\alpha, \beta) \in R_{K}$$
,  $(A; A;) \propto \beta$  is the  
number of  $\Upsilon$  such  $n \neq (\alpha, \sigma) \in R_{i}$  be  $(\tau, \beta) \in R_{j}$ ,  
i.e.,  $(A; A;) \propto \beta = p_{i}^{K}$ .

DEF Given a graph 
$$\Gamma$$
 of adjourny metrix A,  
we and the two (not necessarily distinct!)  
cohorent adjustments (on  $V(\Gamma) \times V(\Gamma)$ ):  
(1)  $\mathcal{Q}(\mathcal{R}_{\Gamma})$ , the where t adjustment of  $\Gamma$ ,  
which is the unique smallest where t  
adjustment containing A (and I and J).



$$(17 - 4\pi v.s.)$$

$$O_{n} = the other half, if 
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$T_{n} = the substite observed algebra the other half of the substite observed algebra half of the substite observed algebra$$$$

so: 
$$Q(\mathcal{R}_{r}) = Q(\mathcal{R}_{At}(r))$$

NOTE Thre is an efficient (polynomial time)  
algorithm for computing 
$$Q(R_P)$$
:  
algorithm for computing  $Algorithm(Lehman)weisfull - Lemme Algorithm(Lehman) $(25,12,5,6) - strong rights here $compared of the strong pair of $compared of the strong pair of the strong pair of $compared of the strong pair of the strong pair of the strong pairof mighters $key (a ching graph) = Aut(C) = E13.$$$$$$ 

So, 
$$\mathcal{Q}(\mathcal{R}_{Aut}(e)) = M_{25}(\mathcal{C})$$
  
(for every  $\alpha_{j\beta} \in V(e), \ \xi(\alpha_{j\beta})$   
is its own  $o-bitul)$ .  
 $Dim_{\mathcal{C}}(\mathcal{Q}(\mathcal{R}_{Aut}(e))) = 25^2 = 625$ 

On the other had, if A is the  
adjacency matrix of 
$$E_{j}$$
  
 $A^{2} = 12I + 5A + 6(J - I - A),$   
As  $\{A, I, J\}$  is a basic for  $\mathcal{Q}(\mathbb{R}_{\Gamma})$   
 $Dim_{c}(\mathcal{Q}(\mathbb{R}_{\Gamma})) = 3$   
Three coherent algebras are very different!

Automorphisms of 
$$\Gamma$$
 Commutative  $C^*$ -elgebra liberation Quantum Antomorphism  
Aut  $(\Gamma)$   $C(Aut(\Gamma))$   $C(Aut(\Gamma)^*)$ ,  
Aut  $(\Gamma)^{\dagger}$ 

Quantum permutiti 
$$g \rightarrow p$$
:  
 $S_n^+ \longrightarrow C(S_n^+) := \langle u_{ij} : s_i f_j(1) & (2) \rangle$ 

If 
$$\Gamma$$
 has non adjacency matrix  $A$ , then we dolve  
the guentum automorphic grap  $Aut(\Gamma^+)$   
(o-  $Qut(\Gamma)$ ) by

$$A \cup t \left( \Gamma \right)^{\dagger} \longleftarrow C \left( A \cup t \left( \Gamma \right)^{\dagger} \right) := C \left( S_{n}^{\dagger} \right) \left( A \cup u = u A \right)$$

Since 
$$C(A \downarrow (\Gamma)) \cong C(A \downarrow (\Gamma)^{\dagger})$$
  
 $A \downarrow (\Gamma) \cong A \downarrow (\Gamma)^{\dagger}$ .

$$\begin{array}{cccc} \mathsf{Th}_{\mathbf{r}} & \mathsf{u}_{\mathbf{r}} \mathsf{g} & = \mathsf{u}_{\mathbf{r}} \mathsf{g} & \mathsf{u}_{\mathbf{r}} \mathsf{g} & \mathsf{u}_{\mathbf{r}} \mathsf{g} & \mathsf{u}_{\mathbf{r}} \mathsf{g} & = \mathsf{u}_{\mathbf{r}} \mathsf{g} & \mathsf{u}_{\mathbf{r}} \mathsf$$

$$(\alpha, \beta) \sim_{2} (\tau, s)$$
 if  $u_{\alpha \sigma} u_{\beta \delta} \neq 0$   
(Note also put  $\nu_{1} \sim V(\Gamma)$  defined  $\neg$   
 $\alpha \sim_{1} \beta$  if  $u_{\alpha \beta} \neq 0$  also againstic  
 $\pi \sim_{1} \beta$  if  $u_{\alpha \beta} \neq 0$  also againstic  
 $\pi \sim_{1} \beta$  if  $u_{\alpha \beta} \neq 0$  also againstic  
 $\pi \sim_{1} \beta$  if  $u_{\alpha \beta} \neq 0$  also againstic

THM (LMR 2020) The quantum orbitule of 
$$\Gamma$$
 form  
a coherent configuration  $\mathcal{R}_{Aut}(r)^{\intercal}$  v/ corresponding  
coherent algebra  $\mathcal{Q}\left(\mathcal{R}_{Aut}(r)^{\intercal}\right)$ .

NOTE • If 
$$\alpha, \beta \in V(\Gamma)$$
 on in the same  
clusical orbital, they are in the same  
guestion or sital. So,  
 $Q(R_{hat}(\Gamma)^{+}) \subseteq Q(R_{hat}(\Gamma))$   
•  $Q(R_{hat}(\Gamma))^{+}$  must write the adjourn

$$\begin{pmatrix} (\mathcal{R}_{A,t}(r)^{t}) & \text{with contract of } \\ \text{matrix} & A \quad \text{of} \quad ['] \\ \begin{pmatrix} (x, \beta) & \sim_{2} (x, \delta) & \text{is not } possible \\ (x, \beta) & \sim_{2} (x, \delta) & \text{is not } possible \\ \text{if one prime is an edge, other vin t!} \end{pmatrix}$$

So,  

$$\mathcal{A}(\mathcal{R}_{r}) \subseteq \mathcal{A}(\mathcal{R}_{A,t(r)}) \subseteq \mathcal{A}(\mathcal{R}_{A,t(r)})$$

THM (LMR 2020) Let F be a graph of  
edjaceny metrix A. If U is a majic  
unitary That commuter of A, The:  
(1) U commuter of every element of 
$$Q(Rr)$$
;  
(2)  $U_{KB}U_{SS} = O$  unless  $(x, r)$ ,  $(B, S)$   
are both in the same close of  $Rr$ .

THM (LMR 2020) Almost all juple on a vertices have trivial que to stand plan group os n — , oo. Pf · Babii, Kuce-a (1979): almost all gapls have t-juil where infigurati Rr ; i.e.,  $\mathcal{R}_{\Gamma} = \{\{(\alpha,\beta)\} : \alpha, \beta \in V(\Gamma)\}$ • Thus,  $M_n(\mathbb{C}) = Q(\mathbb{R}_p) \subseteq Q(\mathbb{R}_{Aut(r)^*}) \cong Q(\mathbb{R}_{Aut(r)}) \subseteq M_n(\mathbb{C})$ so  $Q(R_{A,t}(r)^{\dagger}) = M_n(C).$  $= A_{t}(r) = \xi_{1}\xi_{1}$ • So, unless a = V ~ p = S,  $u_{\kappa\beta}u_{\sigma\delta} = O;$ othruine, Uxp Uxp = Uxp. Therefore, C(Aut(Γ)<sup>+</sup>) is commutative,  $A \cdot t(\Gamma)^{\dagger} = A \cdot t(\Gamma) = \tilde{\xi}(\tilde{\xi}) \cdot D$ 10