INTRODUCTION TO QUANTUM GROUPS IV.

COHERENT CONFIGURATIONS & QUANTUM DRBITAL ALGEBRAS

(Bued on work of Lupini, Mancinska, Roberson (2020))

DEF Given a set Ω , a coherent configuration is a partition $R = \{R_i : i \in I\}$ of $\Omega^2 := \Omega \times \Omega$ into relations

(or classe) satisfying:

- (1) ("Diagonal") There is a subset D = I

 of the intex set such that

 \$\frac{2}{3} \text{Rd} : d = D\right\right\right\} is a partition of the

 diagonal \{(\pi_1 \pi_2): \pi \in \sigma\right\}. (These one

 alled the diagonal relation.)
- (Z) ("Converse") For end relation Ri,
 its converse { (\beta, \times): (\pi, \beta) \in \Ri}
 is also a relation, any Rie R.

(R:1 = R; is allowed!)

(3) ("Intersection Numbers")

For all i, j, k \in I and any $(\alpha, \beta) \in R_k$,

the number of $\gamma \in \Omega$ such that $(\alpha, \gamma) \in R_i$ and $(\gamma, \beta) \in R_i$ is a

constant P_i that does not depend

on $\alpha \& \beta$.

Pij : intersection numbers of R

Q: Why make such a definition?

A: Donald Higman defind cohorent configurations (CC's) in an attempt to "do group theory without groups"!

EX Let G = Sym(sc)

NOTATION: If $\alpha, \beta \in \Omega$ all g sale $\alpha + \beta$, then we write $\alpha = \beta = \beta$

orbit of a under G:

Natural action on pairs in IXXI:

(~, p) = (~, p)

The orbit $(x, \beta)^G$ under This action on pairs is welled an orbital.

Define a relation γ_{q} on $\Omega = \Omega_{r} \Omega$

EXERCISE: n_{G} is an equivolue relation $n_{G} = n \times n_{G}$

so: the equivalue classes of RXR under (o-5itels)

Let this pa-tition le

Ra!= {Ri: i = I}

CLAIM Rq is a coherent configuration

(1) Partition of diagonal?

Yes. $(\alpha, \alpha)^{\epsilon_1} \longleftrightarrow \overline{\xi}(\beta, \beta): \beta \in \alpha^{\epsilon_1}$

© Converse? Suppose $R_i = (x, \beta)^{6}$

Lt $(7,8) \in (4,8)^{6}$ $\Rightarrow (7,8) = (4,8)^{9}$

50, x 9 = 8, p 9 = 8

 $=> (s, \tau) \in (\beta, \infty)^{9}$

Start
$$w$$
 $(\alpha, \beta) \in \mathbb{R}_{\kappa}$ $(\sigma, \beta) \in \mathbb{R}_{j}$ $(\alpha, \beta) \in \mathbb{R}_{j}$

Let
$$(\alpha', \beta') \in \mathbb{R}_{k} \implies \alpha' = \alpha^{g}, \beta' = \beta^{g}$$

for some $g \in G$
 $(T^{g}, \beta^{g}) \in G$

$$(x^3, x^3) \in \mathbb{R}$$
;

the some for
$$(\alpha', \beta')$$
 as

EQUIVALENTLY: Give and CC

R = {Ri: i = I} on II, one

can construct a matrix Ai for

end i = I:

 $(A_i)_{\alpha\beta} := \begin{cases} 1, & \text{if } (\alpha,\beta) \in \mathbb{R}_i \\ 0, & \text{otherwise} \end{cases}$

¿Ai! i ← T }: cha-acteristic matrices
of the CC

PROP The linear span of the {Ai:i=I},
i.e., the set of all metrices

EciAi (ci=C)

i=I

(file)

is a self-adjoint, united algebra

containing the all-ones metrix J

and which is closed under of

The entrywise podust.

DEF This algebra Q(R) is called a coherent algebra.

PROP For all i, $j \in I$,

Ai Aj = $\sum_{k \in I} p_{ij}^{k} A_{k}$ matrix

mult.

Consequently, Q(R) is closed under matrix multiplicati.

" $\frac{PF}{} = \frac{\sum_{\alpha \in \Omega} (A_{\alpha})_{\alpha \beta}}{(A_{\alpha})_{\alpha \beta}} = \frac{\sum_{\alpha \in \Omega} (A_{\alpha})_{\alpha \beta}}{(A_{\alpha})_{\alpha \beta}}$

NOTE Since of colored algebra is closed under the entywise product,

thre's a unique basis of 0,1-metries will done a partition of 2x52

50: { coheet } coheet } algebras

DEF Given a graph [w/ adjacenty
metrix A, we can define two
(not necessarily distinct!) whereat
algebras on $V(\Gamma) \times V(\Gamma)$!

- (1) a(Rr), the wholet algebra of I, while is the unique smellest cohount algebra containing A (al I al J).
- (2) $Q\left(R_{Aut}(r)\right)$, the orbital algebra of Γ , with is the cohort algebra of Γ , coresponds to the relation $\gamma_{A,t}(r)$ $\gamma_{A,t}(r)$

NOTE $A \subseteq \mathcal{A}(\mathcal{R}_{A \to (r)})$, so $\mathcal{A}(\mathcal{R}_r) \subseteq \mathcal{Q}(\mathcal{R}_{A \to (r)})$

NOTE There is an efficient (polynomial time)

algorithm for computing al (Rp):

Weis feiler - Leman Algorithm

(Lehman)

 $\frac{\text{Ex I}}{2} \qquad \Gamma: \qquad \frac{3}{2} \qquad \text{Ant}(\Gamma) = \langle (1,2) \rangle$

Orbitels: (17 of the) $\frac{2}{(1,1)}, (2,2)^{\frac{3}{2}}, \frac{2}{(3,3)^{\frac{3}{2}}}, \dots$ $\frac{2}{(1,3)}, (2,3)^{\frac{3}{2}}, \frac{2}{(3,4)^{\frac{3}{2}}}, \dots$

A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}

a(Rr): Dinersia 17 over C!

As it turns out, $\alpha(R_r) = \alpha(R_{Aut(r)})$

EX2 There is (25,12,5,6) - st-ort replan gaph (a Chang gaph) m/ Aut (C) = {1} $Q(R_{Aut}(e)) = M_{25}(C)$ Dimension 625 (for every a, BeV(C), {(K,B)} is its own orbital) On the other hand, if A is Re aljacen metix of C, the $A^2 = 12I + 5A + 6(J-I-A)$ So: { A, I, J-I-A} is a basis for (Cl (Rp)) Dihersia 3 over C RECALL !

Automo-plans of (Commentive C*-algebra Liberton Duantum automorphism C (Aut(1))

C (Aut(1))

At(1)

magic unitary: U = (ui;) clut is sur C*-algebra

(2) "Partition of unity":

$$\sum_{k=1}^{n} u_{ik} = \sum_{k=1}^{n} u_{ki} = 1,$$

$$u_{ij}u_{ik} = S_{jk}u_{ij}, \quad u_{ji}u_{ki} = S_{jk}u_{ji}$$

$$((3) U is unitary: UU \neq = I = U^*U$$

Quantum permetati group:

If I has now adj metrix A,

guestion automorphism gp Act(I)+:

Aut
$$(\Gamma)^{\dagger} \longleftrightarrow C(Aut(\Gamma^{+})) := C(S_{n}^{\dagger})/(Au=u_{n})$$

 $\left(\left(\left(\left(A + (\Gamma) \right) \right) \right) \cong \left(\left(A + (\Gamma)^{+} \right) \right)$

RELATIONS: If a & T are adjant in M

al p & 8 are noneliant,

the

Map ups = nos nap = npx nsp = nsp npx = 0

NEW IDEA: (Inpini, Mancinska, Roberson 2020)

Desire on equivalent relation \sim_2 on $V(\Gamma) \times V(\Gamma)$ Ing! $(\alpha, \beta) \sim_2 (\sigma, \delta)$ if $u_{\alpha \gamma} u_{\beta \delta} \neq 0$

Equivelue classes: Quantum orbitals

THM (LMR 2020)

The quature orbitale form a CC

RANT(T)+ w/ corresponding cohorunt

alyeba Q (RANT(T)).

IDEA:
$$\alpha(R_n) \subseteq \alpha(R_{n+(r)}) \subseteq \alpha(R_{n+(r)})$$

THM (LMR 2020) $u_{AB}u_{BS} = 0$ unless (x, y), (β, S) are both in the same close of $R_{AA}(r)^{\dagger}$

THM (LMR 2020) Almost all graphs on n vertices have trivial granten automorphon SP no n > 00.

Pf - Basai, Kucera (1979): Almost all graphe m n vertices have $t = \frac{1}{2} \text{viol}$ when the infiguration Rp, i.e., $Rp = \left\{ \sum_{i} (x_i, \beta_i) \right\} : x_i, \beta \in V(P) \right\}$

· The Ma (c) = a(Rr) = a(Ratost)

40
$$Q\left(\mathcal{R}_{Aut(r)^{\dagger}}\right) = M_n\left(c\right)$$

$$\stackrel{d}{=} Aut\left(\Gamma\right) = 1$$

• So
$$_{l}$$
 where $\alpha = \gamma$ & $\beta = \delta$,