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Announcements

Introduction to Quantum Groups Series

• Sep. 28: Groups, algebras and duality
P. Clare

• Oct. 7: q-Deformations of Lie algebras
E. Shelburne’21

• Oct. 21: Quantum automorphisms of graphs
S. Phillips’21 and A. Pisharody’21

• Oct. 28: Quantum automorphism groups of finite graphs: a survey
M. Weber

• Nov. 11: TBD
E. Swartz
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Objectives

Today’s objectives

1 Generic instance of liberation: quantum groups à la Woronowicz.

Compact group Commutative C*-algebra Woronowicz algebra
G { C(G) { A

(Matrix quantum group)

Permutation Group Commutative C*-algebra Quantum Permutation Group

Sn { C(Sn)
liberation
{ C(S+

n )

2 Characterize classical permutation groups with a Woronowicz algebra and use the process of
liberation introduced in the previous discussion of compact matrix quantum groups to define
quantum permutation groups.

3 Apply the above to automorphisms of finite graphs to define quantum automorphisms.

3 / 23



Quantum Permutations

Permutations as matrices

Sn is the group consisting of bijections of a set with n elements.

To any permutation σ ∈ Sn one can associate a matrix of size n × n:

σ̃ :=

 eσ(1) . . . eσ(k) . . . eσ(n)


where {e1, . . . , en} denotes the canonical basis of Cn .

Example: the permutations (12) and (132) in S3 are represented by

(̃12) =

 0 1 0
1 0 0
0 0 1

 and (̃132) =

 0 1 0
0 0 1
1 0 0


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Quantum Permutations

Permutations as Matrices

General properties:

• All permutation matrices σ̃ are unitary (σ̃∗σ̃ = In).
• The map σ 7−→ σ̃ is an injective group homomorphism.

{ Sn can be viewed as a subgroup of the unitary group: Sn ≤ U(n) .

Observation:

The matrices coming from Sn are not just unitary... they are magic!

Recall that a matrix in Mn(C) is called magic if its a square matrix, all of whose entries are projections,
0 and 1 in C, and all of whose rows and columns are partitions of unity, meaning the projections are
pairwise orthogonal and their sums equal 1.

The notion of magic unitary generalizes to matrices with entries in a C*-algebra and plays a central role
in the definition of quantum permutations.
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Quantum Permutations

Sn as a Quantum Group: the Generating Matrix

Define
uij : Sn −→ C

by

uij :



g11 . . . g1n

. . .

.

.

. gij

.

.

.

. . .

gn1 . . . gnn


7−→ gij

Fact:

Then C(Sn) is generated by these uij ’s.

Idea: think of this generating family as the entries in a matrix u = [uij ] ∈ Mn(C(Sn)).
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Quantum Permutations

Sn as a Quantum Group: the Generating Matrix

Observations:
• All the entries of u are projections in C(Sn): u2

ij = uij = u∗ij
• uijuik = δjk uij and ujiuki = δjk uji for 1 ≤ i, j ≤ n

•
n∑

l=1
uil = 1 =

n∑
l=1

uli for 1 ≤ i ≤ n

• u is unitary in Mn(C(Sn)).

In other words, the matrix u is a magic unitary in Mn(C(Sn)).

Conclusion

The C∗−algebra C(Sn) is the universal commutative C∗−algebra generated by n2 elements
{uij , 1 ≤ i, j ≤ n}, with relations making u = {uij } ∈ Mn(C(Sn)) into a magic unitary matrix.
We write

C(Sn) = C∗comm(uij | u = n × n magic unitary).
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Quantum Permutations

Sn as a Quantum Group: Woronowicz Algebra Structure

From a previous talk in the Quantum Groups Series, we know the commutative C∗−algebra C(Sn) has
a structure of Woronowicz algebra:

◦ C(Sn) is generated by n2 elements {uij , 1 ≤ i, j ≤ n}.

◦ They form a biunitary matrix u = [uij ] in Mn(C(Sn)).

◦ ∆(uij) = Σuik ⊗ ukj defines a morphism ∆ : C(Sn) −→ C(Sn) ⊗ C(Sn).

◦ ε(uij) = δij defines a morphism ε : C(Sn) −→ C

◦ S(uij) = u∗ji defines a morphism S : C(Sn) −→ C(Sn)op

Conclusion:

Therefore, C(Sn) is a Woronowicz algebra. We have now characterized C(Sn) and are ready to modify
this structure to get a non-classical object: quantum permutation groups.
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Quantum Permutations

Liberation of C(Sn)

The idea of liberation is to drop the commutativity condition. In other terms, C(S+
n ) is defined as the not

necessarily commutative C*-algebra satisfying (M.U.). We write
C(S+

n ) = C∗(uij |u = n × n magic unitary).

It follows that C(Sn) is
C(Sn) ' C(S+

n )/ 〈ab = ba〉

where 〈ab = ba〉 =
〈
ab − ba , a, b ∈ C(S+

n )
〉

is the ideal.

Although there is no such object as S+
n , we consider Sn as a subgroup of the quantum group S+

n and
write

Sn ⊆ S+
n (1)

to express that we think of the surjection
C(S+

n ) −→ C(S+
n )/ 〈ab = ba〉 ' C(Sn) (2)

as the restriction of functions from S+
n to Sn .
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Quantum Permutations

Quantum Permutations

We now claim that the corresponding compact quantum group C(S+
n ) consists of “quantum

permutations". Recall:

C(Sn) = C∗comm(uij | u = n × n magic unitary)

C(S+
n ) = C∗(uij | u = n × n magic unitary)

We will use algebras to compare Sn and S+
n . To do so, we will interpret the surjection

C(S+
n ) −→ C(S+

n )/ 〈ab = ba〉 ' C(Sn)

to imply Sn ⊆ S+
n .

Conclusion:

C(Sn) ' C(S+
n ) if and only if C(S+

n ) is commutative.

Consider S1. By construction, S1 contains only one element, the identity. Clearly, C(S+
1 ) is

commutative. Then when we relax the commutativity requirement C(S1) ' C(S+
1 ).

Now consider S2. Then C(S2) is generated by 2 elements, p, 1 − p. We have a magic unitary of the
form [

p 1 − p
1 − p p

]
Then p and 1 − p automatically commute and so C(S+

2 ) is commutative. Therefore, C(S2) ' C(S+
2 ).
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Quantum Permutations

Quantum Permutations

Proposition (Lupini et al., 2020).

C(S+
3 ) is commutative.

Consider S3.
• Suppose u = [uij ]i,j∈[3] is a magic unitary. By the definition of magic unitaries, all pairs uij and ulk in

the same row (i = l) and/or column (j = k ) commute. So, we only need to show that uij and ulk
commute for i , l and j , k . Since we can permute the rows and columns of a magic unitary
independently and always have a magic unitary, it suffices to show that u11u22 = u22u11.

• We have that
u11u22 = u11u22(u11 + u12 + u13)

= u11u22u11 + u11u22u12 + u11u22u13 u22u12 = 0

= u11u22u11 + u11u22u13

• Additionally,
u11u22u13 = u11(1 − u21 − u23)u13

= u11u13 − u11u21u13 − u11u23u13 u11u21 = 0, u23u13 = 0

= u11u13

= 0
• Therefore, u11u22 = u11u22u11 and thus, u22u11 = u11u22 by applying ∗ to this equation.

Then we know C(S+
3 ) is commutative and C(S3) ' C(S+

3 )
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Quantum Permutations

Quantum Permutations

Consider S4. There exists non-commuting projections p and q on the Hilbert space H that generate an
infinite-dimensional sub-C∗-algebra of B(H). Then C(S+

4 ) surjects onto
p 1 − p 0 0

1 − p p 0 0
0 0 q 1 − q
0 0 1 − q q


Observe that this matrix is a magic unitary, so C(S+

4 ) has a noncommutative quotient, and C(S+
4 ) is

not commutative as well. Therefore, C(S+
4 ) is not isomorphic to C(S4).

Then “S+
4 " consists of quantum permutations.

More generally:

For n ≥ 4, C(S+
n ) is not commutative, and infinite dimensional. In particular:

C(Sn) ; C(S+
n ).

Conclusion:

Quantum permutations start existing at n = 4.
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Overview

Overview So Far:

What We’ve Shown So Far:

Permutation Group Commutative C*-algebra Quantum Permutation Group

Sn { C(Sn)
liberation
{ C(S+

n )

Goal: Apply this to Automorphisms of Graphs

Automorphisms of Γ Commutative C*-algebra Quantum Automorphisms

Aut(Γ) { C(Aut(Γ))
liberation
{ C(Aut(Γ)+)
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Quantum Automorphisms

What are Graph Automorphisms

• Let Γ be a graph on n vertices. A graph automorphism is a bijection σ : V(Γ)→ V(Γ) that
preserves adjacency and non-adjacency between vertices.

Example: For the graph Γ below, the transposition σ = (1 2) is an automorphism:

• The automorphisms of Γ form a group, denoted by Aut(Γ).
In the example, Aut(Γ) = {e, (1 2)}

Aut(Γ) ≤ Sn , so we can also consider automorphisms as as matrices
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Quantum Automorphisms

Which matrices are automorphisms of Γ?

• The adjacency matrix of a graph Γ with n vertices is the n × n matrix ε where εij is the number of
edges between vertices i and j.
Example:

ε =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0


• For the example above, a quick calculation shows that the automorphims σ and e commute with

the adjacency matrix of Γ

σ =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 e =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Automorphisms of a graph Γ commute with the adjacency matrix of Γ. Specifically, for σ ∈ Sn ,

σ ∈ Aut(Γ)⇔ σε = εσ
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Quantum Automorphisms

Proof that Graph Automorphisms Commute with the Adjacency Matrix

Let σ ∈ Sn . Then σ ∈ Aut(Γ) ⇐⇒ σε = εσ.

• Let σ ∈ Sn , and σ ∈ Aut(Γ)
• As functions,

σ : ei 7−→ eσ(i)

ε : ei 7−→
∑
i∼j

ej σ =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ε =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0


where i ∼ j means i and j are related by an edge.

• Composing them,
ε ◦ σ : ei 7−→

∑
σ(i)∼j

ej

σ ◦ ε : ei 7−→
∑
i∼j

eσ(j)

• Since σ ∈ Aut(Γ)
σ(i) ∼ j ⇐⇒ j = σ(k), or some k where i ∼ k

• Therefore
ε ◦ σ(ei) =

∑
σ(i)∼j

ej =
∑
i∼k

eσ(k) = σ ◦ ε(ei)

• The converse is shown in a similar way.
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Quantum Automorphisms

How do we characterize C(Aut(Γ))?

• We have seen that C(Sn) is the universal commutative C∗-algebra:

C(Sn) := C∗comm(uij , 1 ≤ i, j ≤ n | uij = u∗ij = u2
ij ,
∑
`

ui` =
∑
`

u`i = 1)

• Similarly, C(Aut(Γ)) is the universal commutative C∗-algebra:

C(Aut(Γ)) := C∗comm(uij , 1 ≤ i, j ≤ n | uij = u∗ij = u2
ij ,
∑
`

ui` =
∑
`

u`i = 1, uε = εu)

• The inclusion of groups Aut(Γ) ≤ Sn is reflected by a surjection of C*-algebras
C(Sn)→ C(Aut(Γ)). Indeed:

C(Aut(Γ)) � C(Sn)/〈εu = uε〉
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Quantum Automorphisms

How do we liberate C(Aut(Γ))?

• Recall that C(S+
n ) is the universal not necessarily commutative C∗-algebra:

C(S+
n ) := (uij , 1 ≤ i, j ≤ n | uij = u∗ij = u2

ij ,
∑
`

ui` =
∑
`

u`i = 1)

• (Banica, 2005) Similarly we may define the quantum automorphism group Aut(Γ)+ based on the
Woronowicz algebra:

C(Aut(Γ)+) := C(S+
n )/〈εu = uε〉

• As before with the quantum permuation group,
C(Aut(Γ)+)/〈ab = ba〉 � C(Aut(Γ))

There is a surjection C(Aut(Γ)+) −→ C(Aut(Γ)), so we can say:

Aut(Γ) ≤ Aut(Γ)+
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Quantum Automorphisms

What does it mean to have quantum symmetry?

If the algebra C(Aut(Γ)+) is commutative:

• C(Aut(Γ)+) := C(Sn+)/〈εu = uε〉 is the same as C(Aut(Γ))

• Not only is there a surjection C(Aut(Γ)+) −→ C(Aut(Γ)), there is a bijection
• C(Aut(Γ)+) � C(Aut(Γ)), so we say a graph has no quantum symmetry, or

Aut(Γ) = Aut(Γ)+

If the algebra C(Aut(Γ)+) is NOT commutative:

• There is a surjection from C(Aut(Γ)+) to C(Aut(Γ)), but no bijection
• In some sense there are "extra elements" in Aut(Γ)+

• We can say a graph has quantum symmetry, or there are "quantum automorphims," and

Aut(Γ) < Aut(Γ)+
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Quantum Automorphisms

Graphs with and without Quantum Symmetry

• As we had before with n = 1, 2, 3, we know C(Sn) � C(S+
n ).

So Aut(Γ)+ = Aut(Γ) for these graphs, they have no quantum symmetry.

• K4 the complete graph on 4 vertices has quantum symmetry. In fact, Aut(K4)+ = S+
4

(Banica-Bichon, 2007).

• The Petersen Graph has no quantum symmetry, Aut(P)+ = Aut(P) = S5 (Schmidt, 2018).

20 / 23



Quantum Automorphisms

Wrapping Up

Overall View:

Compact group Commutative C*-algebra Woronowicz algebra

G { C(G)
liberation
{ A

(Matrix quantum group)

First Part of Today’s Talk:

Permutation Group Commutative C*-algebra Quantum Permutation Group

Sn { C(Sn)
liberation
{ C(S+

n )

Second Part of Today’s Talk:

Automorphisms of Γ Commutative C*-algebra Quantum Automorphisms

Aut(Γ) { C(Aut(Γ))
liberation
{ C(Aut(Γ)+)
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That’s all for today!

Thank you
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That’s all for today!
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