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Introduction Key Ideas from Last week

An Oversimplified Look at Quantum Groups

Oversimplification

Quantum objects are given in terms of algebraic structures obtained by altering structures
associated with classical objects.

Classical Object
"deformation"

{ Quantum Object

Group { Algebra
"deformation"

{ "Altered" Algebra
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Introduction Goal for Today

A Concrete Example of a Quantum Group

Goal for Today

Our goal is to discuss a concrete example of a quantum group, obtained by starting from
the classical Lie group SL(2,C) and undergoing a "deformation" process on an algebra
associated with SL(2,C).
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Lie Groups and Lie Algebras A Definition and Example of a Lie Group

The Lie Group SL(2,C)

Definition

A Lie group is a group G such that G is a smooth manifold and the group multiplication and
inversion maps are both smooth maps.

Definition

Roughly speaking, a linear Lie group over C is a subgroup of GL(n,C) defined by
polynomial equations (and thus is a nice subset of Cp).

Example

The special linear group SL(2,C), defined as:
SL(2,C) = {X ∈ GL(2,C) | det(X) = 1} (1)

is an example of a linear Lie group.
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Lie Groups and Lie Algebras Definitions and an Important Class of Examples of Lie Algebras

Lie Algebras

Definition

A Lie algebra L is a vector space with a bilinear map [, ] : L × L → L , called the Lie bracket,
satisfying the following two conditions for x, y, z ∈ L :
(i)(antisymmetry):

[x, y] = −[y, x] (2)

(ii)(Jacobi Identity)
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (3)

A Lie subalgebra L ′ of a Lie algebra L is a subspace L ′ of L such that for any x, y ∈ L ′,
[x, y] ∈ L ′.

Example

Let A be an associative algebra (roughly, a vector space with multiplication). Set
[a, b] = ab − ba. Equipped with this Lie bracket, A becomes a Lie algebra, which we
denote L(A).
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Lie Groups and Lie Algebras A Concrete Example of a Lie Algebra

The Lie Algebra sl(2)

Consider the associative algebra M2(C). From our prior example, we can set:
[X ,Y ] = XY − YX (4)

for all X ,Y ∈ M2(C) to obtain a Lie algebra, which will denote gl(2).

Now, consider the subspace:
sl(2) = {X ∈ gl(2) | tr(X) = 0} (5)

It is quick to verify that sl(2) is a Lie subalgebra of the Lie algebra gl(2).
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Lie Groups and Lie Algebras A Concrete Example of a Lie Algebra

A Basis for sl(2)

We know that every traceless 2 × 2 matrix in sl(2) is of the form:[
x1 x2

x3 −x1

]
(6)

for all constants xi ∈ GL(2).

Accordingly, the following elements form a basis for sl(2):

H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
(7)

We can quickly verify that these basis elements satisfy the following relations under the Lie
bracket:

[X ,Y ] = H, [H,X ] = 2X , [H,Y ] = −2Y (8)
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Lie Groups and Lie Algebras The Lie Group-Lie Algebra Correspondence

How are Lie groups and Lie algebras related?

For any linear Lie group G ⊆ GL(n), its associated Lie algebra is given by:
{X ∈ Mn | etX ∈ G for all t ∈ R} (9)

In particular, sl(2) is the Lie algebra of SL(2,C).

One way to see this is through the relation:
det(eX ) = eTr(X) (10)

Given some matrix X with trace zero, eX will have determinant e0 = 1.

Lie group Lie algebra
SL(2) { sl(2)
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An Algebra We Can "Deform" Enveloping Algebras

Example

Let A be an associative algebra. Set [a, b] = ab − ba. Equipped with this Lie bracket, A
becomes a Lie algebra, which we denote L(A).

In general, given some arbitrary Lie algebra L , we do not have:
• Associativity
• A multiplicative operation
• [x, y] = xy − yx

Instead, we have a Lie bracket.
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An Algebra We Can "Deform" Enveloping Algebras

Tensor Algebra

For the Lie algebra L , we set:
T0(L) = C, T1(L) = L , T2(L) = L ⊗ L , T3(L) = L ⊗ L ⊗ L . . .

Elements of T2(L) are either simple tensors in the form x1 ⊗ x2 or sums of simple tensors.

In general:
Tn(L) = L⊗n = L ⊗ · · · ⊗ L (n times) (11)

Definition

Set:
T(L) = ⊕n≥0Tn(L) (12)

and equip this space with the product defined by:
(x1 ⊗ · · · ⊗ xn)(xn+1 ⊗ · · · ⊗ xn+m) = x1 ⊗ · · · ⊗ xn ⊗ xn+1 ⊗ · · · ⊗ xn+m (13)

T(L) is called the tensor algebra of L .
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An Algebra We Can "Deform" Enveloping Algebras

Since L = T1(L), we have a natural embedding of L into T(L).

Let I(L) be the two sided ideal of T(L) generated by all elements of the form
x ⊗ y − y ⊗ x − [x, y] where x and y are elements of L .

Definition

The enveloping algebra U(L) of a Lie algebra L is given by:
U(L) = T(L)/I(L) (14)

so that, if iL is the composition of the natural injection of L into T(L) and the canonical
surjection of the tensor algebra onto the enveloping algebra, the relation:

iL ([x, y]) = x ⊗ y − y ⊗ x (15)
is forced to hold.
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An Algebra We Can "Deform" Enveloping Algebras

Universal Property of Enveloping Algebras

Proposition

Let L be a Lie algebra and iL : L → U(L) as before. Given any associative algebra A and
any morphism of Lie algebras f from L into L(A), there exists a unique morphism of
algebras φ : U(L)→ A such that φ ◦ iL = f .

L
f //

iL

!!

A

U(L)

φ

==

12 / 30



An Algebra We Can "Deform" Enveloping Algebras

The Enveloping Algebra of sl(2)

In particular, we will focus on the enveloping algebra of sl(2), denoted U(sl(2)).

Proposition

U(sl(2)) is isomorphic to the algebra generated by the three elements X ,Y ,H with the
three relations:

[X ,Y ] = H, [H,X ] = 2X , [H,Y ] = −2Y (16)

Moreover, a basis for U(sl(2)) is given by the set {X iY jHk }i,j,k∈N.
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An Algebra We Can "Deform" Enveloping Algebras

Definition

Let k be a field. We define the affine plane k [x, y] to be the polynomial algebra over k on
variables x and y.

Proposition

We have k [x, y] is a U(sl(2)) module with the action on the polynomial algebra k [x, y] given
by:

XP = x
∂P
∂y

YP = y
∂P
∂x

HP = x
∂P
∂x
− y

∂P
∂y

(17)

where P is some polynomial in k [x, y].

In other words, we have an algebra homomorphism ρ : U(sl(2))→ End(k [x, y]). This
homomorphism is defined on the basis:

ρ(X) = x
∂

∂y
ρ(Y) = y

∂

∂x
ρ(H) = x

∂

∂x
− y

∂

∂y
(18)
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An Algebra We Can "Deform" Enveloping Algebras

A Quick Recap

Lie group Lie algebra Enveloping algebra
SL(2) { sl(2) { U(sl(2))

We also defined an object k [x, y] on which U(sl(2)) acts.

Before we "deform" U(sl(2)), we first introduce another algebraic structure fundamental to
the study of quantum groups.
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Hopf Algebras The Algebra of k -valued Functions on a Group

Example

Let k be a field and G be a finite group. G has an associative multiplicative map, an inverse
map, and an identity e.

Consider the vector space of k -valued functions on G, which we will denote C(G). C(G)
has the natural structure of an algebra under pointwise multiplication.
This algebra and, in fact, any algebra A can be characterized as a vector space equipped
with two linear maps µ : A ⊗ A → A and η : k → A which satisfy the following conditions:
• (Associativity) The diagram:

(19)
commutes. This means the multiplicative operation is associative.

• (Unit) The diagram:

(20)
commutes. This means the element η(1) is a left and right unit for µ.
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Hopf Algebras The Algebra of k -valued Functions on a Group

Recall from last week, C(G) also carries the maps:

◦ a comultiplication ∆ : C(G) −→ C(G × G):
∆(f) : (g1, g2) 7−→ f(g1g2)

◦ a counit ε : C(G) −→ k :
ε(f) = f(e)

◦ an antipode S : C(G) −→ C(G):
S(f) : g 7−→ f(g−1)
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Hopf Algebras The Algebra of k -valued Functions on a Group

The maps ∆, ε, and S satisfy the following conditions for C = C(G):
• (Coassociativity) The diagram:

(21)
commutes.

• (Counit) The diagram:

(22)
commutes.
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Hopf Algebras The Algebra of k -valued Functions on a Group

The maps ∆, ε, and S also satisfy:
• Coinvertibility:

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗S) ◦∆ f(g−1g) = f(e) = f(gg−1)

• ∆ and ε are morphisms of algebras.

This is enough to conclude C(G) is what we will call a "Hopf algebra."

19 / 30



Hopf Algebras A Definition

Hopf Algebras

Definition

A Hopf Algebra is a sextuple (H, µ, η,∆, ε,S) such that (H, µ, η) is an algebra, ∆ and ε are
algebra morphisms satisfying the conditions of coassociativity and counit, and S satisfies
the condition of coinvertibility.
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Hopf Algebras A Definition

Example

U(sl(2)) is a Hopf algebra.

Consider the maps:
δ :sl(2)→ sl(2) ⊕ sl(2)

x 7→ (x, x)

z :sl(2)→ {0}

x 7→ 0

op :sl(2)→ sl(2)

x 7→ −x

(23)

Using corollaries of the universal property of enveloping algebras, we can use these maps
to derive a coproduct ∆ : U(sl(2))→ U(sl(2)) ⊗ U(sl(2)), a counit ε : U(sl(2))→ C, and a
antipode S : U(sl(2))→ U(sl(2)).
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Hopf Algebras A Definition

A Coproduct on U(sl(2))

Proposition

Explicitly, the coproduct ∆ on U(sl(2)) is given by:

∆(x1 · · · xn) = 1 ⊗ x1 · · · xn +
n−1∑
p=1

∑
σ

xσ(1) · · · xσ(p) ⊗ xσ(p+1) · · · xσ(n) + x1 · · · xn ⊗ 1 (24)

where σ runs over all (p, q)-shuffles of the symmetric group Sn.
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Hopf Algebras A Definition

Commutativity and Co-commutativity

Additionally, a Hopf algebra’s product µ may be commutative and its coproduct ∆ may be
cocommutative. Let

τA ,A (a ⊗ a′) = a′ ⊗ a (25)

• (Commutativity) The diagram:

(26)
commutes.

• (Cocommutativity) The diagram:

(27)
commutes.

Example

U(sl(2)) is a cocommutative but not necessarily commutative Hopf algebra.
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A q-Deformed Enveloping Algebra Definition

Now, we will construct a one parameter deformation of the enveloping algebra of sl(2),
U(sl(2)).

Definition

Let q be an invertible element of our field C. Consider the algebra generated by the
variables X ,Y ,H, and K under the relations:

KK−1 =K−1K = 1,

KXK−1 = q2X , KYK−1 = q−2Y

[X ,Y ] = H, (q − q−1)H = K − K−1,

[H,X ] = q(XK + K−1X), [H,Y ] = −q−1(YK + K−1Y)

(28)

This algebra will be denoted Uq(sl(2)) and is a q-deformation of the enveloping algebra
U(sl(2)).

In particular, if we set q = 1 and K = 1, we get the relations:
[X ,Y ] = H, [H,X ] = 2X , [H,Y ] = −2Y (29)

and get U1(sl(2))/(K − 1) = U(sl(2)).
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A q-Deformed Enveloping Algebra Recap

We will call Uq(sl(2)) a quantum group. Uq(sl(2)) is also another example of a Hopf
algebra.

Proposition

Unlike U(sl(2)) which was cocommutative, Uq(sl(2)) is neither commutative nor
cocommutative.

SL(2) { sl(2) { U(sl(2))
q-deformation

{ Uq(sl(2))
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Action of Uq (sl(2)) on the quantum plane The Quantum Plane

Definition

Let q be an invertible element of the ground field k , and let Iq be the two-sided ideal of the
free algebra k {x, y} generated by the element yx − qxy. We define the quantum plane as
the quotient-algebra

kq[x, y] = k {x, y}/Iq (30)

Now, let’s assume the invertible element q is different than 1 and −1. This allows us to
define:

[n] =
qn − q−n

q − q−1
(31)

for any integer n.

Definition

Now we define q-analogues of partial derivatives:
∂q(xmyn)

∂x
= [m]xm−1yn ∂q(xmyn)

∂y
= [n]xmyn−1 (32)

along with two useful functions (automorphisms) on the quantum plane σx , σy :
σx(x) = qx, σx(y) = y, σy(x) = x, σy(y) = qy (33)
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Action of Uq (sl(2)) on the quantum plane Reminder

Proposition

We have k [x, y] is a U(sl(2)) module with the action on the polynomial algebra k [x, y] given
by:

XP = x
∂P
∂y

YP = y
∂P
∂x

HP = x
∂P
∂x
− y

∂P
∂y

(34)

where P is some polynomial in k [x, y].

In other words, we have an algebra homomorphism ρ : U(sl(2))→ End(k [x, y]). This
homomorphism is defined on the basis:

ρ(X) = x
∂

∂y
ρ(Y) = y

∂

∂x
ρ(H) = x

∂

∂x
− y

∂

∂y
(35)

27 / 30



Action of Uq (sl(2)) on the quantum plane Quantum Analogue

Proposition

We have kq[x, y] is a Uq(sl(2)) module with the action on the polynomial algebra kq[x, y]
given by:

XP = x
∂qP
∂y

YP =
∂qP
∂x

y KP = (σxσ
−1
y )(P)

HP =
1

q − q−1
(σxσ

−1
y − σyσ

−1
x )(P)

(36)

where P is some polynomial in kq[x, y].

In other words, we have an algebra homomorphism ρ : Uq(sl(2))→ End(kq[x, y]). This
homomorphism is defined on the basis:

ρ(X) = x
∂q

∂y
ρ(Y) =

∂q

∂x
y ρ(K) = (σxσ

−1
y )

ρ(H) =
1

q − q−1
(σxσ

−1
y − σyσ

−1
x )

(37)
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Conclusion Takeaways

A Final Comment

SL(2) { sl(2) { U(sl(2))
q-deformation

{ Uq(sl(2))

k [x, y]
q-deformation

{ kq[x, y]

The fact that U(sl(2))’s action on the affine plane has a quantum analogue is just one
example of the way in which the (very well developed) representation theory of U(sl(2))

translates nicely into the quantum case.
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Conclusion Thanks!

Thanks for listening!

Sources:

Quantum Groups, by Christian Kassel
Lie Algebras, by F. Gonzalez

Introduction to Lie Groups and Lie Algebras, by A. Kirillov Jr.
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Bonus Slides Classical Case

Proposition

Any two irreducible U(sl(2))-module V(n) of dimension n + 1 are isomorphic. In particular,
V(n) � k [x, y]n, a submodule of the affine plane containing homogenous polynomials of
degree n.

Proposition

(Clebsch-Gordan Formula) Consider two nonnegative integers n ≥ m and let V(n) and
V(m) be a U(sl(2))-modules of dimension n + 1 and m + 1 respectively. Then there exists
an isomorphism of U(sl(2))-modules:

V(n) ⊗ V(m) � V(n + m) ⊕ V(n + m − 2) ⊕ · · · ⊕ V(n −m + 2) ⊕ V(n −m) (38)
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Bonus Slides Quantum Case

Assume q is not a root of unity.

Proposition

Any two irreducible Uq(sl(2))-module V(n) of dimension n + 1 are isomorphic. In particular,
V(n) � kq[x, y]n, a submodule of the affine plane containing homogenous polynomials of
degree n.

Proposition

(Quantum Clebsch-Gordan Formula) Consider two nonnegative integers n ≥ m and let
V(n) and V(m) be a Uq(sl(2))-modules of dimension n + 1 and m + 1 respectively. Then
there exists an isomorphism of Uq(sl(2))-modules:

V(n) ⊗ V(m) � V(n + m) ⊕ V(n + m − 2) ⊕ · · · ⊕ V(n −m + 2) ⊕ V(n −m) (39)
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