Introduction to Quantum Groups

II. q-Deformations of Lie Algebras

Ethan Shelburne

William & Mary

Oct. 7, 2020

An Oversimplified Look at Quantum Groups

Oversimplification

Quantum objects are given in terms of algebraic structures obtained by altering structures associated with classical objects.

Classical Object

Group \rightsquigarrow Algebra $\stackrel{"deformation"}{\rightsquigarrow}$ "Altered" Algebra

A Concrete Example of a Quantum Group

Goal for Today

Our goal is to discuss a concrete example of a quantum group, obtained by starting from the classical Lie group $SL(2, \mathbb{C})$ and undergoing a "deformation" process on an algebra associated with $SL(2, \mathbb{C})$.

The Lie Group $SL(2, \mathbb{C})$

Definition

A Lie group is a group *G* such that *G* is a smooth manifold and the group multiplication and inversion maps are both smooth maps.

Definition

Roughly speaking, a linear Lie group over \mathbb{C} is a subgroup of $GL(n, \mathbb{C})$ defined by polynomial equations (and thus is a nice subset of \mathbb{C}^p).

Example

The special linear group $SL(2, \mathbb{C})$, defined as: $SL(2, \mathbb{C}) = \{X \in GL(2, \mathbb{C}) \mid det(X) = 1\}$ is an example of a linear Lie group.

(1)

Lie Algebras

Definition

A Lie algebra *L* is a vector space with a bilinear map $[,] : L \times L \rightarrow L$, called the Lie bracket, satisfying the following two conditions for $x, y, z \in L$: (i)(*antisymmetry*):

$$[x, y] = -[y, x] \tag{2}$$

(ii)(Jacobi Identity)

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
(3)

A Lie subalgebra L' of a Lie algebra L is a subspace L' of L such that for any $x, y \in L'$, $[x, y] \in L'$.

Example

Let A be an associative algebra (roughly, a vector space with multiplication). Set [a, b] = ab - ba. Equipped with this Lie bracket, A becomes a Lie algebra, which we denote L(A).

The Lie Algebra sl(2)

Consider the associative algebra $M_2(\mathbb{C})$. From our prior example, we can set:

$$[X, Y] = XY - YX \tag{4}$$

for all $X, Y \in M_2(\mathbb{C})$ to obtain a Lie algebra, which will denote $\mathfrak{gl}(2)$.

Now, consider the subspace:

$$\mathfrak{sl}(2) = \{X \in \mathfrak{gl}(2) \mid \mathrm{tr}(X) = 0\}$$
(5)

It is quick to verify that $\mathfrak{sl}(2)$ is a Lie subalgebra of the Lie algebra $\mathfrak{gl}(2)$.

A Basis for $\mathfrak{sl}(2)$

We know that every traceless 2×2 matrix in $\mathfrak{sl}(2)$ is of the form:

$$\begin{bmatrix} x_1 & x_2 \\ x_3 & -x_1 \end{bmatrix} \tag{6}$$

for all constants $x_i \in GL(2)$.

Accordingly, the following elements form a basis for $\mathfrak{sl}(2)$:

$$H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
(7)

We can quickly verify that these basis elements satisfy the following relations under the Lie bracket:

$$[X, Y] = H, \qquad [H, X] = 2X, \qquad [H, Y] = -2Y$$
 (8)

How are Lie groups and Lie algebras related?

For any linear Lie group $G \subseteq GL(n)$, its associated Lie algebra is given by: $\{X \in M_n \mid e^{tX} \in G \text{ for all } t \in \mathbb{R}\}$

In particular, $\mathfrak{sl}(2)$ is the Lie algebra of $SL(2,\mathbb{C})$.

One way to see this is through the relation:

$$\det(e^X) = e^{\operatorname{Tr}(X)} \tag{10}$$

Given some matrix X with trace zero, e^X will have determinant $e^0 = 1$.

Lie group Lie algebra
$$SL(2) \rightarrow \mathfrak{sl}(2)$$

(9)

Example

Let *A* be an associative algebra. Set [a, b] = ab - ba. Equipped with this Lie bracket, *A* becomes a Lie algebra, which we denote L(A).

In general, given some arbitrary Lie algebra L, we do not have:

- Associativity
- A multiplicative operation
- [x, y] = xy yx

Instead, we have a Lie bracket.

Tensor Algebra

For the Lie algebra L, we set: $T^{0}(L) = \mathbb{C}, \quad T^{1}(L) = L, \quad T^{2}(L) = L \otimes L, \quad T^{3}(L) = L \otimes L \otimes L...$

Elements of $T^2(L)$ are either simple tensors in the form $x_1 \otimes x_2$ or sums of simple tensors.

In general:

$$T^{n}(L) = L^{\otimes n} = L \otimes \dots \otimes L \text{ (n times)}$$
(11)

Definition

Set:

$$T(L) = \oplus_{n \ge 0} T^n(L) \tag{12}$$

and equip this space with the product defined by:

$$(x_1 \otimes \cdots \otimes x_n)(x_{n+1} \otimes \cdots \otimes x_{n+m}) = x_1 \otimes \cdots \otimes x_n \otimes x_{n+1} \otimes \cdots \otimes x_{n+m}$$
(13)

T(L) is called the tensor algebra of L.

Since $L = T^{1}(L)$, we have a natural embedding of L into T(L).

Let I(L) be the two sided ideal of T(L) generated by all elements of the form $x \otimes y - y \otimes x - [x, y]$ where x and y are elements of L.

Definition

The enveloping algebra U(L) of a Lie algebra L is given by:

$$U(L) = T(L)/I(L)$$
(14)

so that, if i_L is the composition of the natural injection of L into T(L) and the canonical surjection of the tensor algebra onto the enveloping algebra, the relation:

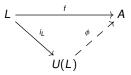
$$L([x,y]) = x \otimes y - y \otimes x \tag{15}$$

is forced to hold.

Universal Property of Enveloping Algebras

Proposition

Let L be a Lie algebra and $i_L : L \to U(L)$ as before. Given any associative algebra A and any morphism of Lie algebras f from L into L(A), there exists a unique morphism of algebras $\phi : U(L) \rightarrow A$ such that $\phi \circ i_L = f$.



The Enveloping Algebra of $\mathfrak{sl}(2)$

In particular, we will focus on the enveloping algebra of $\mathfrak{sl}(2)$, denoted $U(\mathfrak{sl}(2))$.

Proposition

 $U(\mathfrak{sl}(2))$ is isomorphic to the algebra generated by the three elements X, Y, H with the three relations:

$$[X, Y] = H, \qquad [H, X] = 2X, \qquad [H, Y] = -2Y$$
 (16)

Moreover, a basis for $U(\mathfrak{sl}(2))$ is given by the set $\{X^i Y^j H^k\}_{i,j,k\in\mathbb{N}}$.

Definition

Let k be a field. We define the affine plane k[x, y] to be the polynomial algebra over k on variables x and y.

Proposition

We have k[x, y] is a $U(\mathfrak{sl}(2))$ module with the action on the polynomial algebra k[x, y] given by:

$$XP = x \frac{\partial P}{\partial y}$$
 $YP = y \frac{\partial P}{\partial x}$ $HP = x \frac{\partial P}{\partial x} - y \frac{\partial P}{\partial y}$ (17)

where P is some polynomial in k[x, y].

In other words, we have an algebra homomorphism $\rho : U(\mathfrak{sl}(2)) \to \operatorname{End}(k[x, y])$. This homomorphism is defined on the basis:

$$\rho(X) = x \frac{\partial}{\partial y} \qquad \rho(Y) = y \frac{\partial}{\partial x} \qquad \rho(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$$
(18)

A Quick Recap

We also defined an object k[x, y] on which $U(\mathfrak{sl}(2))$ acts.

Before we "deform" $U(\mathfrak{sl}(2))$, we first introduce another algebraic structure fundamental to the study of quantum groups.

Example

Let k be a field and G be a finite group. G has an associative multiplicative map, an inverse map, and an identity e.

Consider the vector space of *k*-valued functions on *G*, which we will denote C(G). C(G) has the natural structure of an algebra under pointwise multiplication.

This algebra and, in fact, any algebra A can be characterized as a vector space equipped with two linear maps $\mu : A \otimes A \to A$ and $\eta : k \to A$ which satisfy the following conditions:

• (Associativity) The diagram:

$$\begin{array}{cccc} A \otimes A \otimes A & \xrightarrow{\mu \otimes \mathrm{id}} & A \otimes A \\ & & \downarrow_{\mathrm{id} \otimes \mu} & & \downarrow^{\mu} \\ A \otimes A & \xrightarrow{\mu} & A \end{array}$$

commutes. This means the multiplicative operation is associative.

• (Unit) The diagram:

$$\begin{array}{cccc} k\otimes A & \xrightarrow{\eta\otimes \mathrm{id}} & A\otimes A & \xleftarrow{\mathrm{id}\otimes\eta} & A\otimes k \\ & \searrow \cong & & \downarrow^{\mu} & \swarrow \cong \\ & & & A \end{array}$$

commutes. This means the element $\eta(1)$ is a left and right unit for μ .

(20)

(19)

Recall from last week, C(G) also carries the maps:

• an antipode
$$S : C(G) \longrightarrow C(G)$$
:
 $S(f) : g \longmapsto f(g^{-1})$

The maps Δ , ε , and *S* satisfy the following conditions for C = C(G):

• (Coassociativity) The diagram:

$$\begin{array}{ccc} C & \stackrel{\Delta}{\longrightarrow} & C \otimes C \\ \downarrow^{\Delta} & & \downarrow^{\mathrm{id} \otimes \Delta} \\ C \otimes C & \stackrel{\Delta \otimes \mathrm{id}}{\longrightarrow} & C \otimes C \otimes C \end{array}$$

commutes.

• (Counit) The diagram:

$$\begin{array}{cccc} k\otimes C & \xleftarrow{\varepsilon\otimes \mathrm{id}} & C\otimes C & \xrightarrow{\mathrm{id}\otimes\varepsilon} & C\otimes k \\ & \swarrow & & \swarrow & & \swarrow \\ & & \swarrow & & \swarrow & \\ & & C \end{array}$$

commutes.

(21)

(22)

The maps Δ , ε , and S also satisfy:

• Coinvertibility:

 $m \circ (S \otimes id) \circ \Delta = \eta \circ \varepsilon = m \circ (id \otimes S) \circ \Delta$ $f(g^{-1}g) = f(e) = f(gg^{-1})$

• Δ and ε are morphisms of algebras.

This is enough to conclude C(G) is what we will call a "Hopf algebra."

Hopf Algebras

Definition

A Hopf Algebra is a sextuple $(H, \mu, \eta, \Delta, \varepsilon, S)$ such that (H, μ, η) is an algebra, Δ and ε are algebra morphisms satisfying the conditions of coassociativity and counit, and *S* satisfies the condition of coinvertibility.

Example

 $U(\mathfrak{sl}(2))$ is a Hopf algebra.

Consider the maps:

$$\delta : \mathfrak{sl}(2) \to \mathfrak{sl}(2) \oplus \mathfrak{sl}(2)$$

$$x \mapsto (x, x)$$

$$z : \mathfrak{sl}(2) \to \{0\}$$

$$x \mapsto 0$$
op : \mathfrak{sl}(2) \to \mathfrak{sl}(2)
$$x \mapsto -x$$
(23)

Using corollaries of the universal property of enveloping algebras, we can use these maps to derive a coproduct $\Delta : U(\mathfrak{sl}(2)) \rightarrow U(\mathfrak{sl}(2)) \otimes U(\mathfrak{sl}(2))$, a counit $\varepsilon : U(\mathfrak{sl}(2)) \rightarrow \mathbb{C}$, and a antipode $S : U(\mathfrak{sl}(2)) \rightarrow U(\mathfrak{sl}(2))$.

A Coproduct on $U(\mathfrak{sl}(2))$

Proposition

Explicitly, the coproduct Δ on $U(\mathfrak{sl}(2))$ is given by:

$$\Delta(x_1\cdots x_n) = 1 \otimes x_1\cdots x_n + \sum_{p=1}^{n-1} \sum_{\sigma} x_{\sigma(1)}\cdots x_{\sigma(p)} \otimes x_{\sigma(p+1)}\cdots x_{\sigma(n)} + x_1\cdots x_n \otimes 1$$
(24)

where σ runs over all (p, q)-shuffles of the symmetric group S_n .

Commutativity and Co-commutativity

Additionally, a Hopf algebra's product μ may be commutative and its coproduct Δ may be cocommutative. Let

$$\pi_{A,A}(a \otimes a') = a' \otimes a \tag{25}$$

(Commutativity) The diagram:

$$\begin{array}{ccc} A \otimes A & \xrightarrow{\tau_{A,A}} & A \otimes A \\ \searrow \mu & \swarrow \mu \\ A \end{array}$$

0

commutes.

(Cocommutativity) The diagram:

$$\overset{\wedge}{\otimes} \tilde{C} \xrightarrow{\tau_{C,C}} \hat{C} \overset{\wedge}{\otimes} \hat{C}$$
(27)

commutes.

Example

 $U(\mathfrak{sl}(2))$ is a cocommutative but not necessarily commutative Hopf algebra.

C

(26)

Now, we will construct a one parameter deformation of the enveloping algebra of $\mathfrak{sl}(2)$, $U(\mathfrak{sl}(2))$.

Definition

Let *q* be an invertible element of our field \mathbb{C} . Consider the algebra generated by the variables *X*, *Y*, *H*, and *K* under the relations:

$$KK^{-1} = K^{-1}K = 1,$$

$$KXK^{-1} = q^{2}X, KYK^{-1} = q^{-2}Y$$

$$[X, Y] = H, (q - q^{-1})H = K - K^{-1},$$

$$[H, X] = q(XK + K^{-1}X), [H, Y] = -q^{-1}(YK + K^{-1}Y)$$
(28)

This algebra will be denoted $U_q(\mathfrak{sl}(2))$ and is a *q*-deformation of the enveloping algebra $U(\mathfrak{sl}(2))$.

In particular, if we set q = 1 and K = 1, we get the relations:

$$[X, Y] = H, \qquad [H, X] = 2X, \qquad [H, Y] = -2Y$$
(29)
and get $U_1(\mathfrak{sl}(2))/(K-1) = U(\mathfrak{sl}(2)).$

We will call $U_q(\mathfrak{sl}(2))$ a quantum group. $U_q(\mathfrak{sl}(2))$ is also another example of a Hopf algebra.

Proposition

Unlike $U(\mathfrak{sl}(2))$ which was cocommutative, $U_{\mathfrak{a}}(\mathfrak{sl}(2))$ is neither commutative nor cocommutative.

$$SL(2) \rightarrow \mathfrak{sl}(2) \rightarrow U(\mathfrak{sl}(2)) \xrightarrow{q-\text{deformation}} U_q(\mathfrak{sl}(2))$$

Definition

Let *q* be an invertible element of the ground field *k*, and let I_q be the two-sided ideal of the free algebra $k\{x, y\}$ generated by the element yx - qxy. We define the *quantum plane* as the quotient-algebra

$$k_q[x, y] = k\{x, y\}/l_q \tag{30}$$

Now, let's assume the invertible element q is different than 1 and -1. This allows us to define:

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} \tag{31}$$

for any integer n.

Definition

Now we define q-analogues of partial derivatives:

$$\frac{\partial_q(x^m y^n)}{\partial x} = [m] x^{m-1} y^n \qquad \frac{\partial_q(x^m y^n)}{\partial y} = [n] x^m y^{n-1}$$
(32)

along with two useful functions (automorphisms) on the quantum plane σ_x, σ_y :

$$\sigma_x(x) = qx, \qquad \sigma_x(y) = y, \qquad \sigma_y(x) = x, \qquad \sigma_y(y) = qy$$
 (33)

Proposition

We have k[x, y] is a $U(\mathfrak{sl}(2))$ module with the action on the polynomial algebra k[x, y] given by:

$$XP = x \frac{\partial P}{\partial y}$$
 $YP = y \frac{\partial P}{\partial x}$ $HP = x \frac{\partial P}{\partial x} - y \frac{\partial P}{\partial y}$ (34)

where P is some polynomial in k[x, y].

In other words, we have an algebra homomorphism $\rho: U(\mathfrak{sl}(2)) \to \operatorname{End}(k[x, y])$. This homomorphism is defined on the basis:

$$\rho(X) = x \frac{\partial}{\partial y} \qquad \rho(Y) = y \frac{\partial}{\partial x} \qquad \rho(H) = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$$
(35)

Proposition

We have $k_q[x, y]$ is a $U_q(\mathfrak{sl}(2))$ module with the action on the polynomial algebra $k_q[x, y]$ given by:

$$XP = x \frac{\partial_q P}{\partial y} \qquad YP = \frac{\partial_q P}{\partial x} y \qquad KP = (\sigma_x \sigma_y^{-1})(P)$$

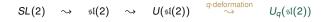
$$HP = \frac{1}{q - q^{-1}} (\sigma_x \sigma_y^{-1} - \sigma_y \sigma_x^{-1})(P)$$
(36)

where P is some polynomial in $k_q[x, y]$.

In other words, we have an algebra homomorphism $\rho : U_q(\mathfrak{sl}(2)) \to \operatorname{End}(k_q[x, y])$. This homomorphism is defined on the basis:

$$\rho(X) = x \frac{\partial_q}{\partial y} \qquad \rho(Y) = \frac{\partial_q}{\partial x} y \qquad \rho(K) = (\sigma_x \sigma_y^{-1})$$

$$\rho(H) = \frac{1}{q - q^{-1}} (\sigma_x \sigma_y^{-1} - \sigma_y \sigma_x^{-1})$$
(37)



q-deformation k[x, y] $k_a[x, y]$

The fact that $U(\mathfrak{sl}(2))$'s action on the affine plane has a quantum analogue is just one example of the way in which the (very well developed) representation theory of $U(\mathfrak{sl}(2))$ translates nicely into the quantum case.

Thanks for listening!

Sources:

Quantum Groups, by Christian Kassel Lie Algebras, by F. Gonzalez Introduction to Lie Groups and Lie Algebras, by A. Kirillov Jr.

Proposition

Any two irreducible $U(\mathfrak{sl}(2))$ -module V(n) of dimension n + 1 are isomorphic. In particular, $V(n) \cong k[x, y]_n$, a submodule of the affine plane containing homogenous polynomials of degree n.

Proposition

(Clebsch-Gordan Formula) Consider two nonnegative integers $n \ge m$ and let V(n) and V(m) be a $U(\mathfrak{sl}(2))$ -modules of dimension n + 1 and m + 1 respectively. Then there exists an isomorphism of $U(\mathfrak{sl}(2))$ -modules:

$$V(n) \otimes V(m) \cong V(n+m) \oplus V(n+m-2) \oplus \cdots \oplus V(n-m+2) \oplus V(n-m)$$
 (38)

Assume q is not a root of unity.

Proposition

Any two irreducible $U_q(\mathfrak{sl}(2))$ -module V(n) of dimension n + 1 are isomorphic. In particular, $V(n) \cong k_q[x, y]_n$, a submodule of the affine plane containing homogenous polynomials of degree n.

Proposition

(Quantum Clebsch-Gordan Formula) Consider two nonnegative integers $n \ge m$ and let V(n) and V(m) be a $U_q(\mathfrak{sl}(2))$ -modules of dimension n + 1 and m + 1 respectively. Then there exists an isomorphism of $U_q(\mathfrak{sl}(2))$ -modules:

$$V(n) \otimes V(m) \cong V(n+m) \oplus V(n+m-2) \oplus \cdots \oplus V(n-m+2) \oplus V(n-m)$$
 (39)