Introduction to Quantum Groups

I. Groups, Algebras and Duality

Pierre Clare

William & Mary

Sept. 30, 2020

Next on Introduction to Quantum Groups

- Oct. 7: q-Deformations of Lie algebras E. Shelburne'21
- Oct. 21: Quantum automorphisms of graphs S. Phillips'21 and A. Pisharody'21
- Oct. 28: TBD M. Weber (Saarland University)
- Nov. 11: TBD E. Swartz

Shocking Revelation

Noncommutative Geometry is *pointless* and quantum groups don't really exist.

Oversimplification

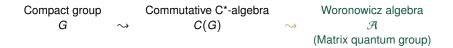
Quantum objects are given in terms of algebraic structures obtained by altering structures associated with classical objects.

Outline of future talks								
Lie group G	\sim	Lie algebra g	\sim	Enveloping alg U(g)	gebra	q -deformation \sim	Quantum group <i>U</i> q(g)	
Graph Г	A →	utomorphisms Aut(Γ)	\sim	C*-algebra C(Aut(Γ))	$\stackrel{\text{liberatio}}{\sim}$	an	n automorphisms $(\operatorname{Aut}^+(\Gamma))$	

Today's objectives

C*-algebras are the right language for quantum (noncommutative) spaces.

2 Generic instance of liberation: quantum groups à la Woronowicz



Let X be a locally compact (Hausdorff) space. No algebraic structure.

Consider:

$$C_0(X) = \{f: X \longrightarrow \mathbb{C}, \text{ continuous with } \lim_{x \to \infty} f(x) = 0\}.$$

Then $C_0(X)$ is an algebra over \mathbb{C} :

$$(\lambda f + g)(x) = \lambda f(x) + g(x)$$
, $(fg)(x) = f(x)g(x)$.

It also carries a norm:

$$||f|| = \sup\left\{|f(x)|, x \in X\right\}$$

for which it is complete, and an involution

$$f^*(x) = \overline{f(x)}$$

such that

$$\|f^*f\| = \|f\|^2.$$

In other words, $C_0(X)$ is a C*-algebra.

Remark: multiplication in $C_0(X)$ is commutative.

Topological properties of X can be read off $C_0(X)$.

For instance:

Theorem

X is compact \Leftrightarrow $C_0(X)$ has a multiplicative identity.

<u>Proof</u>: a multiplicative identity e of $C_0(X)$ must satisfy

e(x)f(x)=f(x)

for all $x \in X$ and every $f \in C_0(X)$. Necessarily, e(x) = 1 for all $x \in X$. Constant functions are continuous and $\lim_{x\to\infty} 1 = 0$ if and only if X is compact

Points in *X* give continuous linear functionals on $C_0(X)$.

For $x \in X$, consider

$$eval_x: C_0(X) \longrightarrow \mathbb{C}$$

 $f \longmapsto f(x)$.

П

Every (locally compact) space X gives rise to a C*-algebra $C_0(X)$.

What C*-algebras are obtained in this way?

Obviously, only commutative C*-algebras. All of them?

Theorem (Gelfand-Naimark-Segal, 1943)

Every C*-algebra A is isomorphic to a Closed *-invariant subalgebra of continuous linear operators on some Hilbert space H:

$$A \subset B(\mathcal{H}).$$

Theorem (Gelfand-Naimark, 1943)

If A is a commutative C^* -algebra, there exists a locally compact Hausdorff space X (the spectrum of A) such that

$$\mathsf{A}\simeq C_0(X).$$

 $\label{eq:Classical spaces} \mathsf{Classical spaces} \qquad \longleftrightarrow \qquad \mathsf{Commutative } \mathsf{C^*}\text{-algebras}.$

Let $\theta \in \mathbb{R}$. Consider a unital C*-algebra A_{θ} generated by two elements U and V such that

$$U^*U = 1$$
 , $V^*V = 1$, $UV = e^{2i\pi\theta}VU$.

If $\theta = 0$ then A_{θ} is commutative, hence an algebra of functions by Gelfand-Naimark's theorem. In fact,

$$\mathsf{A}_0\simeq C(\mathbb{T}^2)$$

where $\mathbb{T}^2 = S^1 \times S^1$ is the 2-torus.

In general, A_{θ} is not commutative, so *not* an algebra of functions... but we still write

$$\mathsf{A}_{\theta} = \mathsf{C}(\mathcal{T}_{\theta}^2)$$

and say that \mathcal{T}^2_{μ} is a noncommutative torus.

Just because a space doesn't exist, doesn't mean it can't have nice properties.

Theorem.
$$\mathcal{T}^2_{ heta}$$
 is compact.

Proof (interpretation): A_{θ} contains a multiplicative unit.

Remark: \mathcal{T}^2_{μ} may not have points but A_{θ} has linear functionals, representations...

	Towards quan	tum groups	General strategy				
Gelfand theory says:							
	Classical spaces X	$\stackrel{\sim}{\longleftrightarrow}$	Commutative C*-algebras $C_0(X)$				

Relaxing the commutativity condition,

Quantum spaces	\longleftrightarrow	(Possibly) noncommutative C*-algebras	h
£	\mapsto	А	L

What is a quantum group?

Strategy:

- Associate algebras to ordinary groups.
- $k[G], C_r^*(G), \mathcal{L}(G), C(G), \mathfrak{g}, U(\mathfrak{g})...$

- Characterize them.
- 3 Relax conditions to get new objects (and call them quantum groups).

What algebras should we choose?

Let G be a locally compact abelian group: $\mathbb{Z}_n, \mathbb{Z}, \mathbb{T}, \mathbb{R}, \mathbb{Q}_p, ...$

The Pontryagin dual of G is

$$\widehat{G} = \operatorname{Hom}(G, \mathbb{T}) = \left\{ \chi : G \longrightarrow \mathbb{C}, \text{ cont. hom. with } |\chi(g)| \equiv 1 \right\}$$

Theorem (Pontryagin Duality)

 \widehat{G} is a locally compact abelian group and $\widehat{\widehat{G}}\simeq G.$

Examples of characters of $\mathbb T$ and $\mathbb R :$

$$\chi_n(z) = z^n$$
 and $\chi_{\xi}(x) = e^{ix\xi}$

•
$$\widehat{\mathbb{R}} = \{ \chi_{\xi} , \xi \in \mathbb{R} \} \simeq \mathbb{R}$$

• $\widehat{\mathbb{T}} = \{ \chi_n , n \in \mathbb{Z} \} \simeq \mathbb{Z}$ and by Pontryagin duality, $\widehat{\mathbb{Z}} \simeq \mathbb{T}$.

Theorem

The Pontryagin dual of a compact (resp. discrete) abelian group is discrete (resp. compact.)

Now, back to the main question...

Lev Pontryagin 1908 - 1988

What algebra related to a group G should we study (and then deform)?

- $C_0(G)$: functions on G with pointwise multiplication
 - C*-algebra, always commutative,
 - unital if and only if G is compact (then $C_0(G) = C(G)$).
- $C_r^*(G)$: (completion of) $C_c(G)$ with convolution (= $\mathbb{C}[G]$ if G is finite)
 - C*-algebra, commutative if and only if G is abelian,
 - unital if and only if G is discrete.

Theorem (Fourier Analysis on Abelian Groups)

Let G be an abelian group. For $f \in C_c(G)$ and $\chi \in \widehat{G}$, let

$$\widehat{f}(\chi) = \int_G f(g) \overline{\chi(g)} \, dg.$$

Then $\widehat{f} \in C_0(\widehat{G})$ and the Fourier transformation $f \mapsto \widehat{f}$ extends to an isomorphism $C_r^*(G) \simeq C_0(\widehat{G}).$

If G is abelian, $C_0(G)$ and $C_r^*(G)$ are dual choices.

If G is non-abelian and non-compact, \widehat{G} is not a group...

Goal for the rest of the talk

Describe a framework that accommodates algebras such as $C_0(G)$ and $C_r^*(G)$, in which Fourier-Pontryagin duality is restored.

Neither G nor \widehat{G} will really exist, but they will be dual to each other. $\widehat{\Box}$... $\widehat{\Box}$

First, let us characterize $C_0(G)$ when G is a classical group.

Two questions

- How does the algebraic structure of G manifest at the level of C₀(G)?
- Can *C*₀(*G*) be described by generators and relations?

Let G be a group with identity e. The algebra C(G) carries:

• a comultiplication
$$\Delta : C(G) \longrightarrow C(G \times G)$$
:
 $\Delta(f) : (g_1, g_2) \longmapsto f(g_1g_2)$
• a counit $\varepsilon : C(G) \longrightarrow \mathbb{C}$:
 $\varepsilon(f) = f(e)$

• an antipode
$$S : C(G) \longrightarrow C(G)$$
:
 $S(f) : g \longmapsto f(g^{-1})$

Since G is a group, Δ , ε and S satisfy:

Coassociativity:

$$(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$$
 $f((g_1g_2)g_3) = f(g_1(g_2g_3))$

Counitality:

$$(\varepsilon \otimes \operatorname{id}) \circ \Delta = \operatorname{id} = (\operatorname{id} \otimes \varepsilon) \circ \Delta$$
 $f(\varepsilon) = f = f(\cdot \varepsilon)$

Coinvertibility:

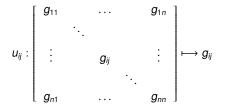
$$m \circ (S \otimes id) \circ \Delta = \eta \circ \varepsilon = m \circ (id \otimes S) \circ \Delta$$
 $f(g^{-1}g) = f(e) = f(gg^{-1})$

The algebraic structure of *G* is encoded in $(C(G), \Delta, \varepsilon, \eta, S)$.

Now assume that G is a compact (Lie) group (of unitary matrices):

 $G \subset U(n).$

Consider the elementary matrix coefficient functions $u_{ij} \in C(G)$:



Facts:

- The functions $\{u_{ij}, 1 \le i, j \le n\}$ generate the C*-algebra C(G).
- They form a biunitary matrix $u = [u_{ij}]$ in $M_n(C(G))$.
- $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$. It is a morphism $\Delta : C(G) \longrightarrow C(G) \otimes C(G)$.

•
$$\varepsilon(u_{ij}) = \delta_{ij}$$
. It is a morphism $\varepsilon : C(G) \longrightarrow \mathbb{C}$.

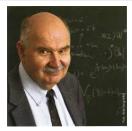
S(u_{ij}) = u_{ji} = u_{ji}^{*} defines a morphism S : C(G) → C(G)^{op}.

Woronowicz algebras

Characterization of C(G) Definition (Woronowicz, 1987)

A matrix quantum group is a unital C*-algebra \mathcal{A} with maps Δ , ε and S such that:

- \mathcal{A} is generated by n^2 elements $\{u_{ij}, 1 \leq i, j \leq n\}$.
- They form a biunitary matrix $u = [u_{ij}]$ in $M_n(\mathcal{A})$.
- Δ(u_{ij}) = Σ_k u_{ik} ⊗ u_{kj} defines a morphism Δ : ℋ → ℋ ⊗ ℋ.
- $\varepsilon(u_{ij}) = \delta_{ij}$ defines a morphism $\varepsilon : \mathcal{A} \longrightarrow \mathbb{C}$.
- $S(u_{ij}) = u_{ij}^*$ defines a morphism $S : \mathcal{A} \longrightarrow \mathcal{A}^{op}$.



Recall the correspondence given by Gelfand theory:

	Locally compact spaces X	$s \stackrel{\sim}{\longleftrightarrow} \mapsto$	Commutative C*-algebras $C_0(X)$	
Now we have	<u>.</u>			
	$\begin{array}{cc} \text{Compact groups} & \longrightarrow \\ G & \longmapsto \end{array}$	Comm	utative Wornowicz algebras $C(G)$	

→ Is this a one-to-one correspondence?

Theorem

Every commutative Woronowicz algebra is of the form C(G), where G is a compact group.

Proof: let \mathcal{A} be a commutative Woronowicz algebra. Since \mathcal{A} is unital, it has compact spectrum. Let $G = Sp(\mathcal{A})$ and consider the embedding

$$\operatorname{Sp}(\mathcal{A}) \ni \varphi \longmapsto [\varphi(u_{ij})] \in \operatorname{U}(n).$$

Properties of Δ , ε and S show that the image of this embedding is a subgroup of U(n). Are there interesting examples of noncommutative Woronowicz algebras?

Let $\Gamma = \langle \gamma_1, \dots, \gamma_n \rangle$ be a finitely generated group and consider the associated C*-algebra: $C^*(\Gamma) \stackrel{\text{dense}}{\supset} \mathbb{C}[\Gamma] \supset \Gamma.$

It is a Woronowicz algebra with defining matrix:

$$u = \begin{bmatrix} \gamma_1 & & & \\ & \gamma_2 & & \\ & & \ddots & \\ & & & \gamma_n \end{bmatrix} \in M_n(C^*(\Gamma))$$

and structure maps defined by:

$$\Delta(\gamma) = \gamma \otimes \gamma$$
 , $\varepsilon(\gamma) = 1$, $S(\gamma) = \gamma^{-1}$.

Theorem

All co-commutative Woronowicz algebras are of the form $C^*(\Gamma)$.

General picture

Let $\ensuremath{\mathcal{R}}$ be a Woronowicz algebra.

- If \mathcal{A} is commutative, it is of the form C(G) with G compact group.
- If \mathcal{A} is co-commutative, it is of the form $C^*(\Gamma)$ with Γ discrete group.

With this in mind, if \mathcal{A} is an arbitrary Woronowicz algebra, we write $\mathcal{A} = C(G) = C^*(\Gamma)$ and call G and Γ quantum groups.

Remarks:

- This generalizes Pontryagin duality: the dual of a compact (resp. discrete) quantum group is a discrete (resp. compact) quantum group.
- The dense *-algebra of A generated by the u'_{ij}s generalizes C[∞](G) if G is compact and C[Γ] if Γ is discrete.

Thank you.

#