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Announcements Future talks

Next on Introduction to Quantum Groups

• Oct. 7: q-Deformations of Lie algebras
E. Shelburne’21

• Oct. 21: Quantum automorphisms of graphs
S. Phillips’21 and A. Pisharody’21

• Oct. 28: TBD
M. Weber (Saarland University)

• Nov. 11: TBD
E. Swartz
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Announcements Takeaways of this talk

Shocking Revelation

Noncommutative Geometry is pointless and quantum groups don’t really exist.

Oversimplification

Quantum objects are given in terms of algebraic structures obtained by altering structures
associated with classical objects.

Outline of future talks

Lie group Lie algebra Enveloping algebra Quantum group

G { g { U(g)
q-deformation
{ Uq(g)

Graph Automorphisms C*-algebra Quantum automorphisms

Γ { Aut(Γ) { C(Aut(Γ))
liberation
{ C(Aut+(Γ))
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Announcements Takeaways of this talk

Today’s objectives

1 C*-algebras are the right language for quantum (noncommutative) spaces.

2 Generic instance of liberation: quantum groups à la Woronowicz

Compact group Commutative C*-algebra Woronowicz algebra
G { C(G) { A

(Matrix quantum group)
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Noncommutative spaces From spaces to algebras

Let X be a locally compact (Hausdorff) space. No algebraic structure.

Consider:

C0(X) =
{
f : X −→ C , continuous with lim

x→∞
f(x) = 0

}
.

Then C0(X) is an algebra over C:

(λf + g)(x) = λf(x) + g(x) , (fg)(x) = f(x)g(x).

It also carries a norm:

‖f‖ = sup
{
|f(x)| , x ∈ X

}
for which it is complete, and an involution

f ∗(x) = f(x)

such that
‖f ∗f‖ = ‖f‖2.

In other words, C0(X) is a C*-algebra.

Remark: multiplication in C0(X) is commutative.
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Noncommutative spaces Why look at C0(X) instead of X?

Topological properties of X can be read off C0(X).

For instance:

Theorem

X is compact ⇔ C0(X) has a multiplicative identity.

Proof: a multiplicative identity e of C0(X) must satisfy

e(x)f(x) = f(x)

for all x ∈ X and every f ∈ C0(X). Necessarily, e(x) = 1 for all x ∈ X .
Constant functions are continuous and lim

x→∞
1 = 0 if and only if X is compact �

Points in X give continuous linear functionals on C0(X).

For x ∈ X , consider
evalx : C0(X) −→ C

f 7−→ f(x)
.
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Noncommutative spaces Topological spaces = commutative C*-algebras

Every (locally compact) space X gives rise to a C*-algebra C0(X).

What C*-algebras are obtained in this way?

Obviously, only commutative C*-algebras. All of them?

Theorem (Gelfand-Naimark-Segal, 1943)

Every C*-algebra A is isomorphic to a Closed ∗-invariant subalgebra of continuous linear
operators on some Hilbert space H :

A ⊂ B(H).

Theorem (Gelfand-Naimark, 1943)

If A is a commutative C∗-algebra, there exists a locally compact Hausdorff space X (the
spectrum of A) such that

A ' C0(X).

Classical spaces ←→ Commutative C*-algebras.
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Noncommutative spaces Example: the noncommutative torus

Let θ ∈ R. Consider a unital C*-algebra Aθ generated by two elements U and V such that

U∗U = 1 , V ∗V = 1 , UV = e2iπθVU.

If θ = 0 then Aθ is commutative, hence an algebra of functions by
Gelfand-Naimark’s theorem. In fact,

A0 ' C(T2)

where T2 = S1 × S1 is the 2-torus.

In general, Aθ is not commutative, so not an algebra of functions... but we still write

Aθ = C(T 2
θ )

and say that T 2
θ is a noncommutative torus.

Just because a space doesn’t exist, doesn’t mean it can’t have nice properties.

Theorem. T 2
θ is compact.

Proof (interpretation): Aθ contains a multiplicative unit. �

Remark: T 2
θ may not have points but Aθ has linear functionals, representations...
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Towards quantum groups General strategy

Gelfand theory says:

Classical spaces
∼
←→ Commutative C*-algebras

X 7−→ C0(X)

Relaxing the commutativity condition,

Quantum spaces ←→ (Possibly) noncommutative C*-algebras
7−→ A

What is a quantum group?

Strategy:

1 Associate algebras to ordinary groups. k [G], C∗r (G), L(G), C(G), g, U(g)...

2 Characterize them.

3 Relax conditions to get new objects (and call them quantum groups).

What algebras should we choose?
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Pontryagin duality Duality and Fourier transform

Let G be a locally compact abelian group: Zn, Z, T, R, Qp , ...

The Pontryagin dual of G is

Ĝ = Hom(G,T) =
{
χ : G −→ C , cont. hom. with |χ(g)| ≡ 1

}
Theorem (Pontryagin Duality)

Ĝ is a locally compact abelian group and ̂̂G ' G. Lev Pontryagin
1908 - 1988

Examples of characters of T and R:
χn(z) = zn and χξ(x) = e ixξ

• R̂ =
{
χξ , ξ ∈ R

}
' R

• T̂ =
{
χn , n ∈ Z

}
' Z and by Pontryagin duality, Ẑ ' T.

Theorem

The Pontryagin dual of a compact (resp. discrete) abelian group is discrete (resp. compact.)

Now, back to the main question...
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Pontryagin duality Duality and Fourier transform

What algebra related to a group G should we study (and then deform)?

• C0(G): functions on G with pointwise multiplication
• C*-algebra, always commutative,
• unital if and only if G is compact (then C0(G) = C(G)).

• C∗r (G): (completion of) Cc(G) with convolution (= C[G] if G is finite)
• C*-algebra, commutative if and only if G is abelian,
• unital if and only if G is discrete.

Theorem (Fourier Analysis on Abelian Groups)

Let G be an abelian group. For f ∈ Cc(G) and χ ∈ Ĝ, let

f̂(χ) =

∫
G

f(g) χ(g) dg.

Then f̂ ∈ C0(Ĝ) and the Fourier transformation f 7→ f̂ extends to an isomorphism

C∗r (G) ' C0(Ĝ).

If G is abelian, C0(G) and C∗r (G) are dual choices.

If G is non-abelian and non-compact, Ĝ is not a group... 11 / 19



Matrix quantum groups Characterization of C(G)

Goal for the rest of the talk

Describe a framework that accommodates algebras such as C0(G) and C∗r (G), in which
Fourier-Pontryagin duality is restored.

Neither G nor Ĝ will really exist, but they will be dual to each other. . . . ̂
First, let us characterize C0(G) when G is a classical group.

Two questions

• How does the algebraic structure of G manifest at the level of C0(G)?

• Can C0(G) be described by generators and relations?
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Matrix quantum groups Characterization of C(G)

Let G be a group with identity e. The algebra C(G) carries:
◦ a comultiplication ∆ : C(G) −→ C(G × G):

∆(f) : (g1, g2) 7−→ f(g1g2)
◦ a counit ε : C(G) −→ C:

ε(f) = f(e)

◦ an antipode S : C(G) −→ C(G):
S(f) : g 7−→ f(g−1)

Since G is a group, ∆, ε and S satisfy:
• Coassociativity:

(∆ ⊗ id) ◦∆ = (id⊗ ∆) ◦∆ f((g1g2)g3) = f(g1(g2g3))
• Counitality:

(ε ⊗ id) ◦∆ = id = (id⊗ ε) ◦∆ f(e ·) = f = f(· e)

• Coinvertibility:
m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗S) ◦∆ f(g−1g) = f(e) = f(gg−1)

The algebraic structure of G is encoded in
(
C(G),∆, ε, η,S

)
.
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Matrix quantum groups Characterization of C(G)

Now assume that G is a compact (Lie) group (of unitary matrices):
G ⊂ U(n).

Consider the elementary matrix coefficient functions uij ∈ C(G):

uij :



g11 . . . g1n

. . .

... gij

...

. . .

gn1 . . . gnn


7−→ gij

Facts:

• The functions {uij , 1 ≤ i, j ≤ n} generate the C*-algebra C(G).

• They form a biunitary matrix u = [uij] in Mn(C(G)).

• ∆(uij) =
∑

k uik ⊗ ukj . It is a morphism ∆ : C(G) −→ C(G) ⊗ C(G).

• ε(uij) = δij . It is a morphism ε : C(G) −→ C.

• S(uij) = uji = u∗ji defines a morphism S : C(G) −→ C(G)op.
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Matrix quantum groups Liberation of C(G)

Woronowicz algebras

Characterization of C(G) Definition (Woronowicz, 1987)

A matrix quantum group is a unital C*-algebra A with maps ∆, ε and S such that:

• A is generated by n2 elements {uij , 1 ≤ i, j ≤ n}.

• They form a biunitary matrix u = [uij] in Mn(A).

• ∆(uij) =
∑

k uik ⊗ ukj defines a morphism ∆ : A −→ A⊗A.

• ε(uij) = δij defines a morphism ε : A −→ C.

• S(uij) = u∗ji defines a morphism S : A −→ Aop.

15 / 19



Matrix quantum groups Characterization of compact groups

Recall the correspondence given by Gelfand theory:

Locally compact spaces
∼
←→ Commutative C*-algebras

X 7−→ C0(X)

Now we have:

Compact groups −→ Commutative Wornowicz algebras
G 7−→ C(G)

{ Is this a one-to-one correspondence?

Theorem

Every commutative Woronowicz algebra is of the form C(G), where G is a compact group.

Proof: let A be a commutative Woronowicz algebra. Since A is unital, it has compact
spectrum. Let G = Sp(A) and consider the embedding

Sp(A) 3 ϕ 7−→ [ϕ(uij)] ∈ U(n).

Properties of ∆, ε and S show that the image of this embedding is a subgroup of U(n). �
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Matrix quantum groups Another example

Are there interesting examples of noncommutative Woronowicz algebras?

Let Γ = 〈γ1, . . . , γn〉 be a finitely generated group and consider the associated C*-algebra:

C∗(Γ)
dense
⊃ C[Γ] ⊃ Γ.

It is a Woronowicz algebra with defining matrix:

u =


γ1

γ2

. . .

γn

 ∈ Mn (C∗(Γ))

and structure maps defined by:

∆(γ) = γ ⊗ γ , ε(γ) = 1 , S(γ) = γ−1.

Theorem

All co-commutative Woronowicz algebras are of the form C∗(Γ).
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Matrix quantum groups Pontryagin duality revisited

General picture

Let A be a Woronowicz algebra.

• If A is commutative, it is of the form C(G) with G compact group.

• If A is co-commutative, it is of the form C∗(Γ) with Γ discrete group.

With this in mind, if A is an arbitrary Woronowicz algebra, we write
A = C(G) = C∗(Γ)

and call G and Γ quantum groups.

Remarks:

◦ This generalizes Pontryagin duality: the dual of a compact (resp. discrete) quantum
group is a discrete (resp. compact) quantum group.

◦ The dense ∗-algebra of A generated by the u′ijs generalizes C∞(G) if G is compact
and C[Γ] if Γ is discrete.
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That’s all for today!

Thank you.
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