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Introduction

Mn (Hn): the set of n× n complex (Hermitian) matrices.

Quantum states are represented as density matrices,
i.e., positive semidefinite matrices in Hn in with trace one.
Denote by Dn the set of density matrices in Mn.
A quantum channel (operation) E : Mn →Mn is a trace preserving
completely positive map admitting an operator sum representation

ρ→ Quantum

Channel E → E(ρ), E(ρ) = E1ρE
†
1 + · · ·+ ErρE

†
r ,

for some E1, . . . , Er ∈Mn such that E†1E1 + · · ·+ E†rEr = In.
In the context of quantum error correction, E1, . . . , Er are the error
operators associated with the channel.
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Quantum Error Correction

Basic Problem
How to recover useful/important information (data bits) after it passes through
a noisy quantum channel E with “known” (by Tomography) error operators.

Correction scheme Encode the data bits ρ̃ ∈ Dk as ρ ∈ Dn for a larger n, and
send it through the channel E to get E(ρ). Then do one of the following.

Apply a syndrome measurement to E(ρ) using additional qubits;
then construct a recovery channel R so that R ◦ E(ρ) = ρ.

ρ̃→ ρ→ E(ρ)→ E(ρ)⊗ σ → (E(ρ), σ̃)→ R ◦ E(ρ) = ρ→ ρ̃.

P̃ → P1P2P2 → Q1Q2Q3 → (Q1Q2Q3)⊗ (R1R2)→ ((Q1Q2Q3), (M1M2))→ (P1P2P3)→ P̃ .

Use operator algebra techniques to determine an error avoiding subspace
to construct a recovery channel R.

ρ̃→ ρ→ E(ρ)→R ◦ E(ρ) = ρ̂→ ρ̃.

P̃ → P1P2P2 → Q1Q2Q3 → P̃ ⊗ (R1R2))→ P̃ .

Ideally, P̃ → P1P2P2 → Q1Q2Q3 → P1P2P3 → P̃ .
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Example: Bit-flip channel

Consider the bit-flip error ρ̃ 7→ Xρ̃X† with X =
(

0 1
1 0

)
that will exchange

the two classical states |0〉〈0| =
(

1 0
0 0

)
and |1〉〈1| =

(
0 0
0 1

)
.

We can encode one qubit ρ̃ ∈M2 into a 3-qubit system ρ ∈M23 , i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

ρ 7→ p0ρ+ p1E1ρE
†
1 + p2E2ρE

†
2 + p3E3ρE

†
3 ,

where p0, p1, p2, p3 ≥ 0 summing up to 1,

E1 = X ⊗ I2 ⊗ I2, E2 = I2 ⊗X ⊗ I2, E3 = I2 ⊗ I2 ⊗X.

QECC with syndrome measurement.
QECC without syndrome measurement.
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Operator algebra

Question
How to find a recovery channel without syndrome measurement?

Equivalently, how to find the error avoiding subspace?

Let A be the algebra generated by {E1, . . . , Er, E
†
1 , . . . , E

†
r}.

By the Wedderburn Theorem, there is a unitary U such that

U†AU = If1 ⊗Mg1 ⊕ · · · ⊕ Ifk ⊗Mgk .

Assume f1 ≥ · · · ≥ fk, and set (f1, g1) = (f, g). Then

U†AU ⊆ (If ⊗Mg)⊕Mn−fg.

Thus U†EjU =
(
If1 ⊗ Fj

Gj

)
for j = 1, . . . , r.

If we encode ρ̃ ∈Mf as ρ = U

(
ρ̃⊗ σ

0n−fg

)
U†,

then E(ρ) = U

(
ρ̃⊗ σ̂

0n−fg

)
U† so that ρ̃ is recoverable.
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Representation Theory and Group Theory

Question
The unitary matrix U is useful in the encoding and decoding processes.
How to find a “good” unitary U to implement the QEC scheme?

Representation theory can help determine a matrix U .
But we need to find a unitary U which can be implemented easily
(depending on the hardware).
In particular, U should admit a decomposition

U = U1 · · ·Um

so that each Ui is a unitary gate (quantum gate) available in the
quantum computer lab.
For example, we need to use the standard gates or basic gates available
at the IBM online quantum computers: qiskit.
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so that each Ui is a unitary gate (quantum gate) available in the
quantum computer lab.
For example, we need to use the standard gates or basic gates available
at the IBM online quantum computers: qiskit.
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Fully correlated channels

Consider channels with error operators of the form W⊗n, where
W ∈ SU(2).

So, the action of an error operator has the form

σ1 ⊗ · · · ⊗ σn → (Wσ1W
†)⊗ · · · ⊗ (WσnW

†).

The quantum channel may be represented by

E(ρ) =
∫
W⊗nρ(W⊗n)†dµ(W ).

It is possible that only a finite number unitary W may occur, say,
W ∈ {I2, σx, σy, σz}, where σx, σy, σz are the Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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Frobenius formula

One can use representation theory to decompose the algebra A generated
by {W⊗n : W ∈ SU(2)} as

If0 ⊗Mg0 ⊕ · · · ⊕ Ifk ⊗Mgk

with k = [n/2] (in terms of the Clebsch-Gordan coefficients).

For j = 0, . . . , k,

fj =
(
n

j

)
−
(

n

j − 1

)
and gj = n+ 1− 2j.

We have 2n = f0 ∗ g0 + · · ·+ fk ∗ gk.

Let n = p+ q + r, where p ([logs(fj)]) data qubits will be protected by
q ([log2(gj)]) arbitrary qubits, and r = n− p− q pure qubits. Then

n = 2: 22 = 1 ∗ 3 + 1 ∗ 1, no error correction.
n = 3: 23 = 1 ∗ 4 + 2 ∗ 2, (p, q, r) = (1, 1, 1).
n = 4: 24 = 1 ∗ 5 + 3 ∗ 3 + 2 ∗ 1, (p, q, r) = (1, 1, 2) or (1, 0, 3).
n = 5: 25 = 1 ∗ 6 + 4 ∗ 4 + 5 ∗ 2, (p, q, r) = (2, 2, 1) or (2, 1, 2).
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For n = 3, the following two unitary matrices satisfy U†AU = I2 ⊗M2 ⊕M4

We are only able to decompose the second one into 5 standard gates
U1, . . . , U5 or 14 basic gates V1, . . . , V14 with 6 CNOT gates.
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A recursive scheme

For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.

Recall that:
n = 4: 24 = 1 ∗ 5 + 3 ∗ 3 + 2 ∗ 1, (p, q, r) = (1, 1, 2) or (1, 0, 3).
n = 5: 25 = 1 ∗ 6 + 4 ∗ 4 + 5 ∗ 2, (p, q, r) = (2, 2, 1) or (2, 1, 2).

For n = 4, we can protect at most 1 data bit.
For n = 5, we can use 2 arbitary and 1 pure state to protect 2 data qubits.
We can do it using the 3-qubit circuit twice:

We can extend the recursive scheme to protect k data qubits using 1
arbitrary states and k pure state.
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Finding a better scheme

For n = 6, our recursive scheme does not work.

On the other hand, 26 = 1 ∗ 7 + 5 ∗ 5 + 9 ∗ 3 + 5 ∗ 1.

so that (p, q, r) ∈ {(2, 2, 2), (3, 1, 2), (2, 0, 4)}.

We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
How to construct such an circuit?
We need to find a unitary U ∈M64 such that

U†AU ⊆ I8 ⊗M3 ⊕M40

and encode ρ̃ ∈M8 as

ρ = P (ρ̃⊗ σ ⊕O48)P t ⊆M8 ⊗M3 ⊕M40

with σ ∈M2 so that U†(E(ρ))U = ρ̃⊗ σ̂, where σ̂ ∈M8.
The matrix U and P should admit decomposition as simple unitary gates.
The recursive scheme is useful before we can find a practical and efficient
scheme.

Chi-Kwong Li Quantum Error Correction



Finding a better scheme

For n = 6, our recursive scheme does not work.
On the other hand, 26 = 1 ∗ 7 + 5 ∗ 5 + 9 ∗ 3 + 5 ∗ 1.

so that (p, q, r) ∈ {(2, 2, 2), (3, 1, 2), (2, 0, 4)}.

We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
How to construct such an circuit?
We need to find a unitary U ∈M64 such that

U†AU ⊆ I8 ⊗M3 ⊕M40

and encode ρ̃ ∈M8 as

ρ = P (ρ̃⊗ σ ⊕O48)P t ⊆M8 ⊗M3 ⊕M40

with σ ∈M2 so that U†(E(ρ))U = ρ̃⊗ σ̂, where σ̂ ∈M8.
The matrix U and P should admit decomposition as simple unitary gates.
The recursive scheme is useful before we can find a practical and efficient
scheme.

Chi-Kwong Li Quantum Error Correction



Finding a better scheme

For n = 6, our recursive scheme does not work.
On the other hand, 26 = 1 ∗ 7 + 5 ∗ 5 + 9 ∗ 3 + 5 ∗ 1.

so that (p, q, r) ∈ {(2, 2, 2), (3, 1, 2), (2, 0, 4)}.

We can use 1 arbitary states, 2 pure state to protect 3 data qubits.

How to construct such an circuit?
We need to find a unitary U ∈M64 such that

U†AU ⊆ I8 ⊗M3 ⊕M40

and encode ρ̃ ∈M8 as

ρ = P (ρ̃⊗ σ ⊕O48)P t ⊆M8 ⊗M3 ⊕M40

with σ ∈M2 so that U†(E(ρ))U = ρ̃⊗ σ̂, where σ̂ ∈M8.
The matrix U and P should admit decomposition as simple unitary gates.
The recursive scheme is useful before we can find a practical and efficient
scheme.

Chi-Kwong Li Quantum Error Correction



Finding a better scheme

For n = 6, our recursive scheme does not work.
On the other hand, 26 = 1 ∗ 7 + 5 ∗ 5 + 9 ∗ 3 + 5 ∗ 1.

so that (p, q, r) ∈ {(2, 2, 2), (3, 1, 2), (2, 0, 4)}.

We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
How to construct such an circuit?

We need to find a unitary U ∈M64 such that

U†AU ⊆ I8 ⊗M3 ⊕M40

and encode ρ̃ ∈M8 as

ρ = P (ρ̃⊗ σ ⊕O48)P t ⊆M8 ⊗M3 ⊕M40

with σ ∈M2 so that U†(E(ρ))U = ρ̃⊗ σ̂, where σ̂ ∈M8.
The matrix U and P should admit decomposition as simple unitary gates.
The recursive scheme is useful before we can find a practical and efficient
scheme.

Chi-Kwong Li Quantum Error Correction



Finding a better scheme

For n = 6, our recursive scheme does not work.
On the other hand, 26 = 1 ∗ 7 + 5 ∗ 5 + 9 ∗ 3 + 5 ∗ 1.

so that (p, q, r) ∈ {(2, 2, 2), (3, 1, 2), (2, 0, 4)}.

We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
How to construct such an circuit?
We need to find a unitary U ∈M64 such that

U†AU ⊆ I8 ⊗M3 ⊕M40

and encode ρ̃ ∈M8 as

ρ = P (ρ̃⊗ σ ⊕O48)P t ⊆M8 ⊗M3 ⊕M40

with σ ∈M2 so that U†(E(ρ))U = ρ̃⊗ σ̂, where σ̂ ∈M8.

The matrix U and P should admit decomposition as simple unitary gates.
The recursive scheme is useful before we can find a practical and efficient
scheme.

Chi-Kwong Li Quantum Error Correction



Finding a better scheme

For n = 6, our recursive scheme does not work.
On the other hand, 26 = 1 ∗ 7 + 5 ∗ 5 + 9 ∗ 3 + 5 ∗ 1.

so that (p, q, r) ∈ {(2, 2, 2), (3, 1, 2), (2, 0, 4)}.

We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
How to construct such an circuit?
We need to find a unitary U ∈M64 such that

U†AU ⊆ I8 ⊗M3 ⊕M40

and encode ρ̃ ∈M8 as

ρ = P (ρ̃⊗ σ ⊕O48)P t ⊆M8 ⊗M3 ⊕M40

with σ ∈M2 so that U†(E(ρ))U = ρ̃⊗ σ̂, where σ̂ ∈M8.
The matrix U and P should admit decomposition as simple unitary gates.

The recursive scheme is useful before we can find a practical and efficient
scheme.

Chi-Kwong Li Quantum Error Correction



Finding a better scheme

For n = 6, our recursive scheme does not work.
On the other hand, 26 = 1 ∗ 7 + 5 ∗ 5 + 9 ∗ 3 + 5 ∗ 1.

so that (p, q, r) ∈ {(2, 2, 2), (3, 1, 2), (2, 0, 4)}.

We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
How to construct such an circuit?
We need to find a unitary U ∈M64 such that

U†AU ⊆ I8 ⊗M3 ⊕M40

and encode ρ̃ ∈M8 as

ρ = P (ρ̃⊗ σ ⊕O48)P t ⊆M8 ⊗M3 ⊕M40

with σ ∈M2 so that U†(E(ρ))U = ρ̃⊗ σ̂, where σ̂ ∈M8.
The matrix U and P should admit decomposition as simple unitary gates.
The recursive scheme is useful before we can find a practical and efficient
scheme.

Chi-Kwong Li Quantum Error Correction



Extension to qudits

Consider quantum channels on n-qudits (d-dimensional) with error operators of
the form W⊗n, where W ∈ SU(d).

Theorem [GLNPS, 2014]
For the n-qudit channels described above, we can use n = dk + 1 physical
qudits protect k logical qubits. So, the “error correction rate” is

k/(dk + 1)→ 1/d as n = dk + 1→∞.

Remark One can actually find a QECC of higher dimension correcting f(n)
qudits such that f(n)/n→ 1 as n→∞.

Question Can we find a better scheme?

C.K. Li, M. Nakahara, Y.T. Poon, N.S. Sze, H. Tomita, Recursive Encoding and Decoding of Noiseless Subsystem

and Decoherence Free Subspace, Physical Review A 84, 044301 (2011).

U. Gungordu, C.K. Li, M. Nakahara, Y.T. Poon and N.K. Sze, Recursive encoding and decoding of the noiseless

subsystem for qudits, Physical Review A, 89, 042301 (2014).
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Extension to qudits

Consider quantum channels on n-qudits (d-dimensional) with error operators of
the form W⊗n, where W ∈ SU(d).

Theorem [GLNPS, 2014]
For the n-qudit channels described above, we can use n = dk + 1 physical
qudits protect k logical qubits. So, the “error correction rate” is

k/(dk + 1)→ 1/d as n = dk + 1→∞.

Remark One can actually find a QECC of higher dimension correcting f(n)
qudits such that f(n)/n→ 1 as n→∞.

Question Can we find a better scheme?

C.K. Li, M. Nakahara, Y.T. Poon, N.S. Sze, H. Tomita, Recursive Encoding and Decoding of Noiseless Subsystem

and Decoherence Free Subspace, Physical Review A 84, 044301 (2011).

U. Gungordu, C.K. Li, M. Nakahara, Y.T. Poon and N.K. Sze, Recursive encoding and decoding of the noiseless

subsystem for qudits, Physical Review A, 89, 042301 (2014).
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Any comments, suggestions, answers?

Thank you for your attention!
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