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Introduction

@ M, (Hy): the set of n x n complex (Hermitian) matrices.

@ Quantum states are represented as density matrices,
i.e., positive semidefinite matrices in H,, in with trace one.

@ Denote by D,, the set of density matrices in M,,.

@ A quantum channel (operation) £ : M,, — M, is a trace preserving
completely positive map admitting an operator sum representation

Quantum
P Chaml e | ) E(p) = ErpE] + - + EpEl,

for some Ei, ..., E,. € M, such that EIEl + - +EIET =1,.
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Introduction

@ M, (Hy): the set of n x n complex (Hermitian) matrices.

@ Quantum states are represented as density matrices,
i.e., positive semidefinite matrices in H,, in with trace one.

@ Denote by D,, the set of density matrices in M,,.

@ A quantum channel (operation) £ : M,, — M, is a trace preserving
completely positive map admitting an operator sum representation

Quantum
P Chaml e | ) E(p) = ErpE] + - + EpEl,

for some Ei, ..., E,. € M, such that EIEl + - +EIET =1,.

@ In the context of quantum error correction, F1, ..., E, are the error
operators associated with the channel.
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Quantum Error Correction

Basic Problem

How to recover useful /important information (data bits) after it passes through
a noisy quantum channel £ with “known” (by Tomography) error operators.
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Quantum Error Correction

Basic Problem

How to recover useful /important information (data bits) after it passes through
a noisy quantum channel £ with “known” (by Tomography) error operators.

Correction scheme Encode the data bits g € Dy, as p € D,, for a larger n, and
send it through the channel £ to get £(p). Then do one of the following.

@ Apply a syndrome measurement to £(p) using additional qubits;
then construct a recovery channel R so that R o £(p) = p.

p—p—Ep) > E(P)®a— (E(p),5) > RoE(p) =p—p.

P — P1PaPy —» Q1Q2Q3 — (Q1Q2Q3) ® (R1R2) — ((Q1Q2Q3), (M1 M3)) — (P1P2P3) — P.
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Quantum Error Correction

Basic Problem

How to recover useful /important information (data bits) after it passes through
a noisy quantum channel £ with “known” (by Tomography) error operators.

Correction scheme Encode the data bits g € Dy, as p € D,, for a larger n, and
send it through the channel £ to get £(p). Then do one of the following.

@ Apply a syndrome measurement to £(p) using additional qubits;

then construct a recovery channel R so that R o £(p) = p.

[ p=p—=Ep) = E(p)@a — (E(p),d) > RoE(p)=p—p. |

P — P1PaPy —» Q1Q2Q3 — (Q1Q2Q3) ® (R1R2) — ((Q1Q2Q3), (M1 M3)) — (P1P2P3) — P.

@ Use operator algebra techniques to determine an error avoiding subspace
to construct a recovery channel R.

[ p=p—=E(p) > RoE(p)=p—p. |

P — P1PaP; - Q1Q2Q3 — P ® (R1R2)) — P.
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Quantum Error Correction

Basic Problem

How to recover useful /important information (data bits) after it passes through
a noisy quantum channel £ with “known” (by Tomography) error operators.

Correction scheme Encode the data bits g € Dy, as p € D,, for a larger n, and
send it through the channel £ to get £(p). Then do one of the following.

@ Apply a syndrome measurement to £(p) using additional qubits;

then construct a recovery channel R so that R o £(p) = p.

[ p=p—=Ep) = E(p)@a — (E(p),d) > RoE(p)=p—p. |

P — P1PaPy —» Q1Q2Q3 — (Q1Q2Q3) ® (R1R2) — ((Q1Q2Q3), (M1 M3)) — (P1P2P3) — P.

@ Use operator algebra techniques to determine an error avoiding subspace
to construct a recovery channel R.

[ p=p—=E(p) > RoE(p)=p—p. |

P — P1PaP; - Q1Q2Q3 — P ® (R1R2)) — P.

Ideally, P — PiPyPy — Q1Q2Q3 — Py PyPs — P.
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Example: Bit-flip channel

Consider the bit-flip error 5 — XXt with X = that will exchange

0 1
1 0

the two classical states |0)(0] = (é 8) and [1)(1] = <8 (1))
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Example: Bit-flip channel

Consider the bit-flip error 5 — XXt with X = ((1) (1)> that will exchange

the two classical states |0)(0] = (é 8) and |1)(1| = <8 (1))

We can encode one qubit g € M into a 3-qubit system p € Mss, i.e., we will
use two qubits to protect one qubits.
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Example: Bit-flip channel

Consider the bit-flip error 5 — XXt with X = (1) [1) that will exchange
. 10 0 0
the two classical states |0)(0] = (0 0) and |1)(1| = <0 1).

We can encode one qubit g € M into a 3-qubit system p € Mss, i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

p = pop + p1E1pE] + p2B2pEL + ps EspE},
where po, p1,p2,p3 > 0 summing up to 1,

F1=XQLQL,E2=0LX®IhF=0LgIl,®X.
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Example: Bit-flip channel

Consider the bit-flip error 5 — XXt with X = (1) [1) that will exchange

the two classical states |0)(0] = (é 8) and |1)(1| = <8 (1))

We can encode one qubit g € M into a 3-qubit system p € Mss, i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

p = pop + p1E1pE] + p2B2pEL + ps EspE},
where po, p1,p2,p3 > 0 summing up to 1,
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Example: Bit-flip channel

Consider the bit-flip error 5 — XXt with X = (1) [1) that will exchange
. 1 0 0 0
the two classical states |0)(0] = (0 0) and |1)(1| = <0 1)_

We can encode one qubit g € M into a 3-qubit system p € Mss, i.e., we will
use two qubits to protect one qubits. The channel on three qubits has the form:

p = pop + p1E1pE] + p2B2pEL + ps EspE},
where po, p1,p2,p3 > 0 summing up to 1,

F1=XQLQL,E2=0LX®IhF=0LgIl,®X.
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QECC with syndrome measurement.
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Operator algebra

How to find a recovery channel without syndrome measurement?
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How to find a recovery channel without syndrome measurement?
Equivalently, how to find the error avoiding subspace?

@ Let A be the algebra generated by {F1, ..., E,, EI, LB
@ By the Wedderburn Theorem, there is a unitary U such that

UTAU =1y, @ My, ® -+~ @ I, @ My,
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Operator algebra

How to find a recovery channel without syndrome measurement?
Equivalently, how to find the error avoiding subspace?

@ Let A be the algebra generated by {F1, ..., E,, EI, LB
@ By the Wedderburn Theorem, there is a unitary U such that
UTAU =1y, @ My, ® -+~ @ I, @ My,
@ Assume f1 > -+ > fi, and set (f1,91) = (f,g). Then
UYAU C (Iy @ My) @ M—y,.
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Operator algebra

How to find a recovery channel without syndrome measurement?
Equivalently, how to find the error avoiding subspace?

@ Let A be the algebra generated by {F1, ..., E,, EI, LB
@ By the Wedderburn Theorem, there is a unitary U such that
UTAU =1y, @ My, ® -+~ @ I, @ My,
@ Assume f1 > -+ > fi, and set (f1,91) = (f,g). Then
UYAU C (Iy @ My) @ M—y,.

If1®Fj .
a forj=1,...,r.

J

Thus UTE;U = (
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Operator algebra

How to find a recovery channel without syndrome measurement?
Equivalently, how to find the error avoiding subspace?

@ Let A be the algebra generated by {F1, ..., E,, EI, LB
@ By the Wedderburn Theorem, there is a unitary U such that
UTAU =1y, @ My, ® -+~ @ I, @ My,
@ Assume f1 > -+ > fi, and set (f1,91) = (f,g). Then
UYAU C (Iy @ My) @ M—y,.

Thus UTE;U = (Ih@Fj . > forj=1,...,r.

J

@ If we encode p € My as p:U(p®U 0 >UT,
n—fg

then E(p) =U (p@ 7 ) U' so that j is recoverable.

On—fg
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Representation Theory and Group Theory

The unitary matrix U is useful in the encoding and decoding processes.
How to find a “good” unitary U to implement the QEC scheme?
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Representation Theory and Group Theory

The unitary matrix U is useful in the encoding and decoding processes.
How to find a “good” unitary U to implement the QEC scheme?

@ Representation theory can help determine a matrix U.

@ But we need to find a unitary U which can be implemented easily
(depending on the hardware).

@ In particular, U should admit a decomposition
U=U,---Up,

so that each U, is a unitary gate (quantum gate) available in the
quantum computer lab.
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Representation Theory and Group Theory

The unitary matrix U is useful in the encoding and decoding processes.
How to find a “good” unitary U to implement the QEC scheme?

@ Representation theory can help determine a matrix U.

@ But we need to find a unitary U which can be implemented easily
(depending on the hardware).

@ In particular, U should admit a decomposition
U=U,---Up,

so that each U, is a unitary gate (quantum gate) available in the
quantum computer lab.

@ For example, we need to use the standard gates or basic gates available
at the IBM online quantum computers: qiskit.
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Fully correlated channels

@ Consider channels with error operators of the form W®™, where
W e SU(2).
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Fully correlated channels

@ Consider channels with error operators of the form W®™, where
W e SU(2).

@ So, the action of an error operator has the form

Q- Qon— WoWH® - @ (Wa, Wh.
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Fully correlated channels

@ Consider channels with error operators of the form W®™, where
W e SU(2).

@ So, the action of an error operator has the form
01 Q- RQop — (WUlWT) ®--® (WUnWT)'

@ The quantum channel may be represented by

)= [ WO du(w).
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Fully correlated channels

@ Consider channels with error operators of the form W®™, where
W e SU(2).

@ So, the action of an error operator has the form
01 Q- RQop — (WUlWT) ®--® (WUnWT)'

@ The quantum channel may be represented by
)= [ WO du(w).

@ It is possible that only a finite number unitary W may occur, say,
W € {I2,0,,0y,0.}, where 05,0y, 0 are the Pauli matrices:

(0 1 (0 —i (1 0
Te=\1 0) %= \i o) 7 \0o -1/
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Frobenius formula

@ One can use representation theory to decompose the algebra A generated
by {W®™" : W € SU(2)} as

Iy, ®Mqo@"'@1fk ® My,

with k& = [n/2] (in terms of the Clebsch-Gordan coefficients).
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Frobenius formula

@ One can use representation theory to decompose the algebra A generated
by {W®™" : W € SU(2)} as

Iy, ®Mqo@"'@1fk ® My,

with k& = [n/2] (in terms of the Clebsch-Gordan coefficients).
@ Forj=0,...,k,

n n .
fj<j)—<j_1) and g =n+1-2j
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Frobenius formula

@ One can use representation theory to decompose the algebra A generated
by {W®™" : W € SU(2)} as

Iy, ®Mqo@"'@1fk ® My,

with k& = [n/2] (in terms of the Clebsch-Gordan coefficients).
@ Forj=0,...,k,

<) (]—1) and gi =n+1-2j.
fo

@ We have 2" = foxgo+ -+ + fr * gk-
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Frobenius formula

@ One can use representation theory to decompose the algebra A generated
by {W®™" : W € SU(2)} as

Iy, ®Mqo@"'@1fk ® My,

with k& = [n/2] (in terms of the Clebsch-Gordan coefficients).
@ Forj=0,...,k,

n n .
fj<j)—<j_1) and g =n+1-2j

@ We have 2" = foxgo+ -+ + fr * gk-
@ Let n =p+ g+ r, where p ([log,(f;)]) data qubits will be protected by
q ([logy(g;)]) arbitrary qubits, and » = n — p — ¢ pure qubits. Then
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Frobenius formula

@ One can use representation theory to decompose the algebra A generated
by {W®™" : W € SU(2)} as

Iy, ®Mqo@"'@1fk ® My,

with k& = [n/2] (in terms of the Clebsch-Gordan coefficients).
@ Forj=0,...,k,

n n .
fj<j)—<j_1) and g =n+1-2j

@ We have 2" = foxgo+ -+ + fr * gk-
@ Let n =p+ g+ r, where p ([log,(f;)]) data qubits will be protected by
q ([logy(g;)]) arbitrary qubits, and » = n — p — ¢ pure qubits. Then

n=2 22=1%3+1x1, no error correction.
n=3 22 =1%4+2%2, (p,q,7) = (1,1,1).
n=4:2*=1%54+3%3+2x1, (p,q,r) = (1,1,2) or (1,0,3).
n=>5 2=1%6+4%x4+5%2, (p,q,m) = (2,2,1) or (2,1,2).
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For n = 3, the following two unitary matrices satisfy Ut AU = I, @ Ma & My
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For n = 3, the following two unitary matrices satisfy Ut AU = I, @ Ma & My

0 0 0 0 1 0 0 0 =1
\/‘E I \g 00 0
-V oy i 00 4 00 0
0B o Voo o Vioo 0
Eoo - Vi o 0 Vi 00 0
[ "L 0 o5 0 0 oo 0
N L 000 Wi 0
0 0 0 00 0 0 1 0

We are only able to decompose the second one into 5 standard gates
Ui,...,Us or 14 basic gates Vi, ..., Via with 6 CNOT gates.

|a0) |%0)

o) U= ln)

[a2) |g2)

|q0) |q0)
o) qUi—=la) Oz |—
g2 [g2)
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A recursive scheme

@ For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.
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A recursive scheme

@ For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.
@ Recall that:
n=4:2"=1%5+3%3+2x%1, (pyq,7) = (1,1,2) o .
n=>5 2=1%6+4%x4+5%2, (p,q,m) =(2,2,1) or (2,1, 2).

~
=
—
—
=
w
Nt
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A recursive scheme

@ For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.
@ Recall that:
n=4:2"=1%54+3%x3+2x1, (p,q,7) = (1,1,2) or (1,0,3).
n=>5 2°=1%6+4%4+5%2, (pyq,7) = (2,2,1) or (2,1,2).

@ For n =4, we can protect at most 1 data bit.

=
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A recursive scheme

@ For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.
@ Recall that:
n=4:2"=1%5+3%34+2x1, (p,q,7) = (1,1,2) or (1,0,3).
n=>5 2°=1%6+4%4+5%2, (pyq,7) = (2,2,1) or (2,1,2).
@ For n =4, we can protect at most 1 data bit.

@ Forn =5, we can use 2 arbitary and 1 pure state to protect 2 data qubits.
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A recursive scheme

@ For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.
@ Recall that:
n=4:2"=1%5+3%34+2x1, (p,q,7) = (1,1,2) or (1,0,3).
n=>5 2°=1%6+4%4+5%2, (pyq,7) = (2,2,1) or (2,1,2).
@ For n =4, we can protect at most 1 data bit.

For n = 5, we can use 2 arbitary and 1 pure state to protect 2 data qubits.

We can do it using the 3-qubit circuit twice:
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A recursive scheme

@ For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.
@ Recall that:
n=4:2"=1%5+3%34+2x1, (p,q,7) = (1,1,2) or (1,0,3).
n=>5 2°=1%6+4%4+5%2, (pyq,7) = (2,2,1) or (2,1,2).
@ For n =4, we can protect at most 1 data bit.
@ Forn =5, we can use 2 arbitary and 1 pure state to protect 2 data qubits.
@ We can do it using the 3-qubit circuit twice:

Ju)
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A recursive scheme

@ For n = 3, we can use 1 abitary and 1 pure state to protect 1 data qubit.
@ Recall that:
n=4:2"=1%5+3%3+2x%1, (p,q,7) = (1,1,2) or (1,0,3
n=>5 2°=1%6+4%4+5%2, (pyq,7) = (2,2,1) or (2,1,2).

@ For n =4, we can protect at most 1 data bit.

=

@ Forn =5, we can use 2 arbitary and 1 pure state to protect 2 data qubits.

@ We can do it using the 3-qubit circuit twice:

Ju)

@ We can extend the recursive scheme to protect k data qubits using 1
arbitrary states and k pure state.
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Finding a better scheme

@ For n = 6, our recursive scheme does not work.
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Finding a better scheme

@ For n = 6, our recursive scheme does not work.

@ On the other hand, 2 =1%74+5%x54+9%3+5%1.

SO that (p?q’r) e {(272’2)’(37 172)7(2’074)}'
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Finding a better scheme

@ For n = 6, our recursive scheme does not work.

@ On the other hand, 2 =1%74+5%x54+9%3+5%1.
SO that (p? q’ r) e {(272’2)’ (37 172)7 (2’07 4)}'

@ We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
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Finding a better scheme

@ For n = 6, our recursive scheme does not work.
@ On the other hand, 2 =1%74+5%x54+9%3+5%1.

SO that (p?q’r) e {(272’2)’(37 172)7(2’074)}'

@ We can use 1 arbitary states, 2 pure state to protect 3 data qubits.

@ How to construct such an circuit?
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Finding a better scheme

@ For n = 6, our recursive scheme does not work.

@ On the other hand, 2 =1%74+5%x54+9%3+5%1.
SO that (p? q’ r) e {(272’2)’ (37 172)7 (2’07 4)}'

@ We can use 1 arbitary states, 2 pure state to protect 3 data qubits.
@ How to construct such an circuit?

@ We need to find a unitary U € Mgy such that
UTAU C Is @ Ms & Mo
and encode p € My as
p=P(p®0c®0s8)P" C Mg ® Mz ® Mo

with o € My so that UT(£(p))U = j ® &, where & € Ms.

Chi-Kwong Li Quantum Error Correction



Finding a better scheme

@ For n = 6, our recursive scheme does not work.

@ On the other hand, 2 =1%74+5%x54+9%3+5%1.
SO that (p?q’r) e {(272’2)’(37 172)7(2’074)}'
@ We can use 1 arbitary states, 2 pure state to protect 3 data qubits.

@ How to construct such an circuit?

@ We need to find a unitary U € Mgy such that
UTAU C Is @ Ms & Mo
and encode p € My as
p=P(p®0c®0s8)P" C Mg ® Mz ® Mo

with o € My so that UT(£(p))U = j ® &, where & € Ms.

@ The matrix U and P should admit decomposition as simple unitary gates.
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Finding a better scheme

@ For n = 6, our recursive scheme does not work.

@ On the other hand, 2 =1%74+5%x54+9%3+5%1.
SO that (p?q’r) e {(272’2)’(37 172)7(2’074)}'
@ We can use 1 arbitary states, 2 pure state to protect 3 data qubits.

@ How to construct such an circuit?

@ We need to find a unitary U € Mgy such that
UTAU C Is @ Ms & Mo
and encode p € My as
p=P(p®0c®0s8)P" C Mg ® Mz ® Mo

with o € My so that UT(£(p))U = j ® &, where & € Ms.
@ The matrix U and P should admit decomposition as simple unitary gates.

@ The recursive scheme is useful before we can find a practical and efficient
scheme.
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Extension to qudits

Consider quantum channels on n-qudits (d-dimensional) with error operators of
the form W®", where W € SU(d).
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Extension to qudits

Consider quantum channels on n-qudits (d-dimensional) with error operators of
the form W®", where W € SU(d).

Theorem [GLNPS, 2014]

For the n-qudit channels described above, we can use n = dk + 1 physical
qudits protect k logical qubits.
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Extension to qudits

Consider quantum channels on n-qudits (d-dimensional) with error operators of
the form W®", where W € SU(d).

Theorem [GLNPS, 2014]

For the n-qudit channels described above, we can use n = dk + 1 physical
qudits protect k logical qubits. So, the “error correction rate” is

k/(dk+1) > 1/dasn=dk+1— oo.
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Extension to qudits

Consider quantum channels on n-qudits (d-dimensional) with error operators of
the form W®", where W € SU(d).

Theorem [GLNPS, 2014]

For the n-qudit channels described above, we can use n = dk + 1 physical
qudits protect k logical qubits. So, the “error correction rate” is

k/(dk+1) > 1/dasn=dk+1— oo.

Remark One can actually find a QECC of higher dimension correcting f(n)
qudits such that f(n)/n — 1 as n — co.
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Extension to qudits

Consider quantum channels on n-qudits (d-dimensional) with error operators of
the form W®", where W € SU(d).

Theorem [GLNPS, 2014]

For the n-qudit channels described above, we can use n = dk + 1 physical
qudits protect k logical qubits. So, the “error correction rate” is

k/(dk+1) > 1/dasn=dk+1— oo.

Remark One can actually find a QECC of higher dimension correcting f(n)
qudits such that f(n)/n — 1 as n — co.

Question Can we find a better scheme?
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Any comments, suggestions, answers?
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Any comments, suggestions, answers?

Thank you for your attention!
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