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Mean value theorem

un − un+1 ≤ [resp. ≥] 1/f(un).

F (un+1)− F (un) = (un − un+1)f(ξn)
≤ [resp. ≥] f(ξn)/f(un)
≤ f(un+1)/f(un)
≥ 1



Cesàro’s lemma

F (un+1)− F (un) ≤ f(un+1)/f(un)
≥ 1

lim inf 1
n
F (un) ≥ 1

If f(un+1) ∼ f(un), then

lim sup 1
n
F (un) ≤ 1



Cesàro’s lemma

F (un+1)− F (un) ≤ f(un+1)/f(un)
≥ 1

lim inf 1
n
F (un) ≥ 1

If f(un+1) ∼ f(un), then

lim sup 1
n
F (un) ≤ 1



Use case 1

I un − un+1 ≤ [resp. ≥] Cuαn for some α > 1, 0 < C <∞;
I f(x) = C−1x−α;
I F (x) = (C(α− 1))−1x−α+1.

lim sup 1
n

(C(α− 1))−1u−α+1
n ≤ 1

lim inf n1/(α−1)un ≥ (C(α− 1))1/(α−1)
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Use case 2

I un − un+1 ≤ [resp. ≥] Cu2
n log 1/un for some 0 < C <∞;

I f(x) = 1/(Cx2 log(1/x));

F (x) = −C−1
∫ x ds

s2 log(1/s) = C−1
∫ 1/x ds

log s

F (x) = C−1li(1/x).

However,
d

dx
x

log x = 1
log x −

1
(log x)2 .

So, li(y) ∼y→∞ y/ log y and F (x) ∼x→0 C
−1/(x log 1/x).

(Some details later...)

lim sup(n logn)un ≤ C−1

lim inf(n logn)un ≥ C−1
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Planar trees, Neveu’s formalism
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ø

1

11 12

...

13

2

21

211

...

212

...

I tree t: subset of the set of finite
words on N∗ ;

I rooted at ø;
I artificial parent of the root: ø∗;
I height in the tree: |212| = 3.
I parent: (212)∗ = 21;
I number of children: νt(1) = 3;
I t is infinite, without leaves (for

simplicity) and locally finite:
νt(x) ∈ [1,∞), for all x in t.
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t a tree and x ∈ t:

t[x] = {y ∈ t :xy ∈ t}.
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Electrical networks on trees

I Function c : t \ {ø∗} → (0,∞);
I c(x): conductance of the edge {x∗, x};
I (c(ø) is always 1);
I r(x) = 1/c(x): its resistance.

I tn: those vertices of t at height ≤ n (n ∈ Z+);
I For x ∈ tn, v(x) ∈ R: potential of the vertex x;
I For ø∗ 6= x ∈ tn, i(x) ∈ R: current flowing through the edge

(x∗, x),
I Satisfying Ohm’s law

v(x)− v(x∗) = r(x)i(x) or, equivalently,
i(x) = c(x)(v(x)− v(x∗)).
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Harmonicity
I Kirchhoff’s current law at some vertex x:

i(x) =
νx∑
j=1

i(xj);

I In term of potential (use Ohm’s law):

c(x)(v(x)− v(x∗)) =
νx∑
j=1

c(xj)(v(xj)− v(x))

(c(x) +
νx∑
j=1

c(xj))v(x) = c(x∗)v(x∗) +
νx∑
j=1

c(xj)v(xj)

v(x) = 1
π(x)

(
c(x∗)v(x∗) +

νx∑
j=1

c(xj)v(xj)
)

The potential at x is the c-weighted average of the potentials of
its neighbors: v is harmonic at x.



Harmonicity
I Kirchhoff’s current law at some vertex x:

i(x) =
νx∑
j=1

i(xj);

I In term of potential (use Ohm’s law):

c(x)(v(x)− v(x∗)) =
νx∑
j=1

c(xj)(v(xj)− v(x))

(c(x) +
νx∑
j=1

c(xj))v(x) = c(x∗)v(x∗) +
νx∑
j=1

c(xj)v(xj)

v(x) = 1
π(x)

(
c(x∗)v(x∗) +

νx∑
j=1

c(xj)v(xj)
)

The potential at x is the c-weighted average of the potentials of
its neighbors: v is harmonic at x.



Harmonicity
I Kirchhoff’s current law at some vertex x:

i(x) =
νx∑
j=1

i(xj);

I In term of potential (use Ohm’s law):

c(x)(v(x)− v(x∗)) =
νx∑
j=1

c(xj)(v(xj)− v(x))

(c(x) +
νx∑
j=1

c(xj))v(x) = c(x∗)v(x∗) +
νx∑
j=1

c(xj)v(xj)

v(x) = 1
π(x)

(
c(x∗)v(x∗) +

νx∑
j=1

c(xj)v(xj)
)

The potential at x is the c-weighted average of the potentials of
its neighbors: v is harmonic at x.



Harmonicity
I Kirchhoff’s current law at some vertex x:

i(x) =
νx∑
j=1

i(xj);

I In term of potential (use Ohm’s law):

c(x)(v(x)− v(x∗)) =
νx∑
j=1

c(xj)(v(xj)− v(x))

(c(x) +
νx∑
j=1

c(xj))v(x) = c(x∗)v(x∗) +
νx∑
j=1

c(xj)v(xj)

v(x) = 1
π(x)

(
c(x∗)v(x∗) +

νx∑
j=1

c(xj)v(xj)
)

The potential at x is the c-weighted average of the potentials of
its neighbors: v is harmonic at x.



Effective conductance

Fix the potential at some (sets of) vertices and harmonicity elsewhere:

v(x) =


0 if x = ø;
U if |x| = n;

1
π(x) (c(x)v(x∗) +

∑νx

j=1 c(xj)v(xj)) if 1 ≤ |x| ≤ n− 1.

I Linear system, such a v exists and is unique;
I function U 7→ v clearly linear;
I I =

∑νø
j=1 i(j) =

∑νø
j=1 c(j)v(j), total current entering the

network;
I U 7→ I is also linear;
I define Cn(t) = I/U (and Rn(t) = U/I): effective conductance

and resistance between ø and the n-th level of t.
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Series and parallel laws



Conductance of an m-ary tree



Conductance of a m-ary tree (2)

Cn(t) = m

λ
βn−1(t) = m

λ

Cn−1(t)
1 + Cn−1(t) .

In term of effective resistance:

Rn(t) = λ

m
(1 + Rn−1(t)) = · · ·

Define the effective resistance of the infinite tree t as

R(t) = lim
n→∞

Rn(t) ∈ (0,∞] (it exists, see later).

Then R(t) <∞ ⇐⇒ λ < m.
Phase transition:
I λ < m: Rn(t)→ R(t) <∞;
I λ = m: Rn(t) = n, increases at linear speed;
I λ > m: Rn(t) ∼ C(λ/m)n increases at exponential speed.
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Random walk and transition kernels

I P : t× t→ [0, 1];
I P (x, y) is the probability that a random walker located at the

vertex x will go to y (in one step).
I for any x ∈ t,

∑
y∈t P (x, y) = 1;

I nearest-neighbour random walk: P (x, y) > 0 if and only if y is a
neighbour of x (its parent or one of its children);

I For x ∈ t, Px: distribution of a path (Xk)k≥0 in t, starting at x
(X0 = x) with transition kernel P .

I Example:

Pø(X1 = 1, X2 = 12, X3 = 1, X4 = ø)
= P (ø, 1)P (1, 12)P (12, 1)P (1, ø).
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Random walk on a weighted tree

x∗

x

x1 x2 . . . xνx

1

A(x1)

A(x2)

A(xνx)

Transition kernel P :

P (x, x∗) = 1
1 +

∑νx

j=1 A(xj)
;

P (x, xi) = A(xi)
1 +

∑νx

j=1 A(xj)
i = 1, . . . , νx.



Particular case: λ-biased RW (A ≡ 1/λ)

For some λ > 0,

x∗

x

x1 x2 . . . xνx

λ

1

1

1

P (x, x∗) = λ

λ+ νx
;

P (x, xi) = 1
λ+ νx

i = 1, . . . , νx.

Simple RW if λ = 1.



Random walk on a tree with conductances

x∗

x

x1 x2 . . . xνx

c(x)

c(x1)

c(x2)

c(xνx)

P (x, x∗) = c(x)
π(x) ;

P (x, xi) = c(xi)
π(x) i = 1, . . . , νx.

One can always associate conductances to a RW on t:
I λ-biased random walk: c(x) = λ−|x|;
I in general, for weights A

c(x) =
∏

ø≺y�x
A(y).



Recurrence and transience

For x ∈ t, consider the times (min ∅ =∞):

τx = min{k ≥ 0 :Xk = x} and τ+
x = min{k ≥ 1 :Xk = x}

Two regimes:
Recurrence Either for any x in t, Px(τ+

x <∞) = 1: in this case, the
walk almost surely visits every vertex infinitely many
times;

Transience Or, for any x in t, Px(τ+
x <∞) < 1: in this case, almost

surely, the number of visits at any vertex is finite (and
can be zero).



RW + EN = ♥
Recall that there is a unique solution v : tn → R to

v(x) =


0 if x = ø;
1 if |x| = n;
(P (x, x∗)v(x∗) +

∑νx

j=1 P (x, xj)v(xj)) if 1 ≤ |x| ≤ n− 1.

Now fix some height n > 0 in t and let

f(x) = Px(τ (n) < τø).

Then, f(ø) = 0 and f(x) = 1 if |x| = n.

For 0 < |x| < n, decompose with respect to the value of X1:

f(x) = Px(τ (n) < τø)

= Px(X1 = x∗, τ
(n) < τø) +

νx∑
j=1

Px(X1 = xj, τ (n) < τø)

= P (x, x∗)Px∗(τ (n) < τø) +
νx∑
j=1

P (x, xj)Pxj( τ (n) < τø).

So f(x) = v(x) for any x ∈ tn.
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RW + EN = ♥2

Finally, (recall that U = 1),

Cn(t) = I =
νø∑
j=1

c(x)Pj(τ (n) < τø)

= π(ø)
νø∑
j=1

P (ø, j)Pj(τ (n) < τø)

= π(ø)Pø(τ (n) < τ+
ø )

↘n→∞ π(ø)Pø(τ+
ø =∞) = C (t).

Theorem
The random walk associated to the conductances (c(x))x∈t is transient
on t iff C (t) > 0 (i.e. R(t) <∞).

Corollary
λ-biased walk on an m-regular tree is transient iff λ < m.



RW + EN = ♥2

Finally, (recall that U = 1),

Cn(t) = I =
νø∑
j=1

c(x)Pj(τ (n) < τø)

= π(ø)
νø∑
j=1

P (ø, j)Pj(τ (n) < τø)

= π(ø)Pø(τ (n) < τ+
ø )

↘n→∞ π(ø)Pø(τ+
ø =∞) = C (t).

Theorem
The random walk associated to the conductances (c(x))x∈t is transient
on t iff C (t) > 0 (i.e. R(t) <∞).

Corollary
λ-biased walk on an m-regular tree is transient iff λ < m.



RW + EN = ♥2

Finally, (recall that U = 1),

Cn(t) = I =
νø∑
j=1

c(x)Pj(τ (n) < τø)

= π(ø)
νø∑
j=1

P (ø, j)Pj(τ (n) < τø)

= π(ø)Pø(τ (n) < τ+
ø )

↘n→∞ π(ø)Pø(τ+
ø =∞) = C (t).

Theorem
The random walk associated to the conductances (c(x))x∈t is transient
on t iff C (t) > 0 (i.e. R(t) <∞).

Corollary
λ-biased walk on an m-regular tree is transient iff λ < m.



Prologue

Conductance of a tree

Random walk on a tree

Galton-Watson trees

Conductance of a subdiffusive random weighted tree





Galton-Watson trees (branching processes)

I Reproduction law: (pi)i≥0, non-negative numbers adding up to 1;
I pi = P(ν = i): probability that an individual has i children;
I assume p0 = 0 (for clarity) and p1 < 1 (for non-silliness);
I key-value: E[ν] =

∑
i≥1 ipi =: m, average number of children.

We build an infinite random tree T :
I the root has νø ∼ ν children;
I each of its children then reproduces independently in the same

way;
I and so on...

Branching property: “Subtrees above any height k are independent
trees distributed as T and are independant of what happens below k.”
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How big is a GW tree?

For n ≥ 0, let Zn(T ) be the number of individuals at generation n in
T . Then,

Wn(T ) := Zn(T )
mn

→W (T ).

Theorem (Kesten–Stigum, 1966)
W (T ) > 0 iff E[ν log ν] <∞.



λ-biased walk on a Galton-Watson tree
Let’s try to do this...
In the same way as before (Series/Parallel laws),

Cn(T ) =
νø∑
i=1

λ−1 Cn−1(T [i])
1 + Cn−1(T [i]) .

By the branching property,

E[Cn(T )] = E
[ νø∑
i=1

λ−1
]
E
[ Cn−1(T )

1 + Cn−1(T )

]
= m

λ
E
[ Cn−1(T )

1 + Cn−1(T )

]
.

≤ m

λ
E[Cn−1(T )]

→n→∞ 0 (exponentially fast) if λ > m.

Fatou’s lemma implies (in case λ > m),

E[C (T )] = E[lim Cn(T )] ≤ lim inf E[Cn(T )] = 0,

so C (T ) = 0, almost surely. Cases λ = m and λ > m are more
difficult.
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1 + Cn−1(T )

]
.

≤ m

λ
E[Cn−1(T )]

→n→∞ 0 (exponentially fast) if λ > m.

Fatou’s lemma implies (in case λ > m),

E[C (T )] = E[lim Cn(T )] ≤ lim inf E[Cn(T )] = 0,

so C (T ) = 0, almost surely. Cases λ = m and λ > m are more
difficult.



λ-biased walk on a Galton-Watson tree (2)

Theorem (Russell Lyons, 1990)
λ-biased RW on a GW-tree is almost surely transient iff λ < m.

Theorem (Addario-Berry–Broutin–Lugosi, 2009)
If E[ν2] <∞ and λ = m,

Rn(T )/n→ 1/W, a.s. and in L1.

I Perturbation around this critical case (c(x) = m−|x| × some r.v.)
for an m-regular tree in Addario-Berry et al. and

I on a Galton-Watson tree (Chen–Hu–Lin 2018) with very precise
asymptotics.
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λ-biased walk on a Galton-Watson tree (3)

Open questions (as far as I know...):
I Does this result holds under the more reasonable assumption

E[ν log ν] <∞?
I What about the speed of the convergence Cn(T )→ C (T ) in the

transient case?
I (Famous question:) In the transient case, does C (T ) has a

density (w.r.t. Lebesgue measure)?
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Galton-Watson trees

Conductance of a subdiffusive random weighted tree



Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A(1), A(2), . . . , A(ν)) ∈
⊔
k≥0

(0,∞)k.

ø

1

11

A(11)

. . . 1ν1

A(1ν1)

A(1)

2

21
A(21)
. . . 2ν2

A(2ν2)

A(2)
. . . νø

νø1

A(νø1)

. . . νøννø

A(νøννø)

A(νø)

ø∗
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Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A(1), A(2), . . . , A(ν)) ∈
⊔
k≥0

(0,∞)k.

ø
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11

A(11)

. . . 1ν1
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21
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A(2ν2)

A(2)
. . . νø

νø1

A(νø1)

. . . νøννø

A(νøννø)
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ø∗

→ T , random tree with random weights.



Transience criterion

Theorem (Lyons–Pemantle 92, Faraud 11)
Consider, for s ≥ 0,

ψ(s) = log E
[ ν∑
i=1

A(i)s
]
.

Then, the random walk on the weighted tree T is transient iff

∀s ∈ [0, 1], ψ(s) > 0.

I Actually, many (4) “sub-regimes” in the recurrent case.
I Very rich model of random walk, popular in the RWRE

community.
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Normalized case
From now on, we assume

ψ(1) = logE
ν∑
i=1

A(i) = 0. (Hnorm)

We can prove that our RW is recurrent: by the parallel/series law,

C (T ) =
νø∑
i=1

A(i) C (T [i])
1 + C (T [i]) .

and by the branching property,

E[C (T )] = E
[ νø∑
i=1

A(i)
]
E
[ C (T )

1 + C (T )

]
= E

[ C (T )
1 + C (T )

]
,

hence
E
[ C (T )2

1 + C (T )

]
= 0, thus C (T ) = 0 a.s.
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Biggin’s theorem

Mandelbrot’s martingale (1974):

Mn(T ) =
∑
|x|=n

c(x) =
∑
|x|=n

∏
ø≺y�x

A(x)→M∞(T ).

Theorem (Kahane–Peyrière 76, Biggins 77, Lyons 95)
Under the hypotheses

ψ′(1) := E

[
ν∑
i=1

A(i) logA(i)
]
∈ [−∞, 0); (Hderivative)

E
[( ν∑

i=1
A(i)

)
log+

( ν∑
i=1

A(i)
)]

<∞, (HX logX)

M∞(T ) > 0 a.s.



Recursive distributional equation

Mn+1(T ) =
∑

|x|=n+1

∏
ø≺y�x

A(x)

=
νø∑
i=1

∑
|x|=n+1, i≺x

A(i)
∏

i≺y�x

A(x)

=
νø∑
i=1

A(i)Mn(T [i]).

Therefore, M∞ has the same distribution as

A(1)M (1)
∞ +A(2)M (2)

∞ + · · ·A(ν)M (ν)
∞ ,

where M (1)
∞ , M (2)

∞ , . . . are independent copies of M∞, independent of
the random vector (A(1), . . . , A(ν)).

This characterizes the distribution of M∞ among 6= δ0 probability
measures (Quansheng Liu 97).
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The “subdiffusive” regime
Recall that ψ(1) = 0 and ψ′(1) < 0. Consider

κ = inf{s > 1 :ψ(s) = 0} ∈ (1,∞].

0 s

ψ(s)

21 κ

1 < κ ≤ 2
0 s

ψ(s)

1 2

κ ∈ (2,∞]

Figure: Schematic behavior of ψ under our hypotheses

E
[( ν∑

i=1
A(i)

)κ]
+ E

[ ν∑
i=1

A(i)κ log+ A(i)
]
<∞, if 1 < κ ≤ 2;

E
[( ν∑

i=1
A(i)

)2]
<∞, if κ ∈ (2,∞].

(Hκ)



Heuristics

Cn(T ) =
νø∑
i=1

A(i) Cn−1(T [i])
1 + Cn−1(T [i]) and Cn(T )→ 0.

We expect that E[Cn]→ 0 “not too fast” so
un := E[Cn] ∼ E[Cn−1] = un−1, then

Cn(T )/un =
νø∑
i=1

A(i) Cn−1(T [i])/un
1 + Cn−1(T [i]) ≈

νø∑
i=1

A(i)Cn−1(T [i])/un−1,

so if it converges, to some random positive function of T (say Y (T )),
Y should satisfy

Y (T ) =
νø∑
i=1

A(i)Y (T [i]),

so Y should be distributed as M∞.



Heuristics

Cn(T ) =
νø∑
i=1

A(i) Cn−1(T [i])
1 + Cn−1(T [i]) and Cn(T )→ 0.

We expect that E[Cn]→ 0 “not too fast” so
un := E[Cn] ∼ E[Cn−1] = un−1, then

Cn(T )/un =
νø∑
i=1

A(i) Cn−1(T [i])/un
1 + Cn−1(T [i]) ≈

νø∑
i=1

A(i)Cn−1(T [i])/un−1,

so if it converges, to some random positive function of T (say Y (T )),
Y should satisfy

Y (T ) =
νø∑
i=1

A(i)Y (T [i]),

so Y should be distributed as M∞.



Heuristics

Cn(T ) =
νø∑
i=1

A(i) Cn−1(T [i])
1 + Cn−1(T [i]) and Cn(T )→ 0.

We expect that E[Cn]→ 0 “not too fast” so
un := E[Cn] ∼ E[Cn−1] = un−1, then

Cn(T )/un =
νø∑
i=1

A(i) Cn−1(T [i])/un
1 + Cn−1(T [i]) ≈

νø∑
i=1

A(i)Cn−1(T [i])/un−1,

so if it converges, to some random positive function of T (say Y (T )),
Y should satisfy

Y (T ) =
νø∑
i=1

A(i)Y (T [i]),

so Y should be distributed as M∞.



Our result

Theorem (R. 2020+)
Under the hypotheses (Hnorm), (Hderivative) and (Hκ), as n goes to
infinity,

Cn/E[Cn]→M∞ a.s.

E[Cn] � 1
n1/(κ−1) if 1 < κ < 2;

E[Cn] � 1
n logn if κ = 2 and

E[Cn] ∼ 1
nE[M2

∞] if κ > 2.



Lower bound

Cn(T ) =
νø∑
i=1

A(i) Cn−1(T [i])
1 + Cn−1(T [i])

so (branching property)

E[Cn] = E
[ Cn−1

1 + Cn−1

]
.

un−1 − un = E
[ C 2

n−1
1 + Cn−1

]
= un−1E

[ (Cn−1/un−1)2

1/un−1 + Cn−1/un−1

]
≈ un−1E

[ M2
∞

1/un−1 +M∞

]
.

Actually, ≤ is rigorous (some very magic inequality involved).
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Lower bound (2)

Some knowledge of M∞ (tail probability estimates) allow to compute,
as a goes to infinity,

E
[ M2

∞
1/a+M∞

]
� a1−κ if 1 < κ < 2;
� a−1 log a if κ = 2;
∼ E[M2

∞]/a if κ > 2.

so putting everything together, we obtain

un−1 − un ≤ C ×


uκn−1 if 1 < κ < 2;
u2
n−1 log 1/un−1 if κ = 2;
u2
n−1 if κ > 2,

and we can use our mean-value theorem based inequalities to
conclude.
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Thank you slide

Thank you for your attention!



Blank slide 1



Blank slide 2



Blank slide 3



Blank slide 4



Blank slide 5



Blank slide 6



Blank slide 7



Blank slide 8



Blank slide 9


	Prologue
	Conductance of a tree
	Random walk on a tree
	Galton-Watson trees
	Conductance of a subdiffusive random weighted tree

