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Assume
> u, N\ 0;
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» f:(0,a) = (0,00), N\, has an antiderivative (—F).
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How fast does this sequence vanish?

Assume
> u, N\ 0;
> Uy — Upt1 < [resp. =] 1/f(uy);
> f:(0,a) = (0,00), N\, has an antiderivative (—F).
Use case 2
> U, — U1 < [resp. >] CuZ log1/u, for some 0 < C' < oo;
> f(x) =1/(Ca?log(1/x));
> F(z)="77



Mean value theorem

Up — Upt1 < [resp. >] 1/f(uy).

F(tunt1) — F(un) = (un — tny1) f(&n)
< [resp. =] f(&)/f(un)
< funt1)/ f(un)

>1



Cesaro’s lemma

F(unt1) = Fun) < flunt1)/f(un)
>1



Cesaro’s lemma

F(upt1) — F(un) < flunt1)/f(un)
>1

1
liminf —F(u,) > 1
n

If f(unt1) ~ f(un), then

1
limsup —F(u,) <1
n



Use case 1

> u, —Un+1 < [resp. >] Cu? for some a > 1, 0 < C < o0;
> f(:l?) = 11770‘7
> F(z) = (Cla—1)) temoth

1
limsup — (Ca — 1)) tu, M <1
n
lim inf nt/(@= Dy, > (Cla — 1))1/(04*1)
lim sup nt/ (@~ Ny, < (C(a — 1))1/(a—1)



Use case 2

> U, — Unyp1 < [resp. >] Cu2 log1/u,, for some 0 < C' < oo;
> f(z) =1/(Cx*log(1/x));

¥ ds Vz ds
F —_0! - !
() ¢ / s2log(1/s) ¢ / log s
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Use case 2

> U, — Unyp1 < [resp. >] Cu2 log1/u,, for some 0 < C' < oo;
> f(z) =1/(Cx*log(1/x));

‘” ds Ve gs
F — _ —1 — —1
(=) ¢ / s2log(1/s) ¢ / log s

However,
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dz logz - logz  (logz)?
So, li(y) ~y—oo y/logy and F(z) ~yz—0 C~1/(zlog1/z).




Use case 2

> U, — Unyp1 < [resp. >] Cu2 log1/u,, for some 0 < C' < oo;
> f(z) =1/(Cx*log(1/x));

‘” ds Ve gs
F — _ —1 — —1
() ¢ / s2log(1/s) ¢ / log s

However,
d =z 1 1

dz logz - logz  (logz)?

So, li(y) ~y—oo y/logy and F(z) ~yz—0 C~1/(zlog1/z).
(Some details later...)

lim sup(n logn)u, < C~*

lim inf(nlogn)u, > c!



Conductance of a tree



Planar trees, Neveu’s formalism

21 212 » tree t: subset of the set of finite
words on N* ;
\ / » rooted at ¢;
11 12 13 21 » artificial parent of the root: g,;
\ / > height in the tree: |212]| = 3.
> parent: (212), = 21;
| 4
| 2

1 2
number of children: 14(1) = 3;
\ / t is infinite, without leaves (for
simplicity) and locally finite:
9]

vi(x) € [1,00), for all x in ¢.

D



Reindexed Subtree

211 212

11 12 13 21

N
\./

D

t a tree and x € t:

tlx] ={y € t:ay € t}.




Reindexed Subtree
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t a tree and x € t:

tlx] ={y € t:ay € t}.
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Electrical networks on trees

» Function c: ¢\ {¢.} — (0,00);
> c(z): conductance of the edge {x,,x};
> (c(o) is always 1);

> r(x) = 1/c(x): its resistance.



Electrical networks on trees

Function c: ¢\ {¢.} — (0, 00);

c(z): conductance of the edge {x,,x};

(c(o) is always 1);

r(x) = 1/c(x): its resistance.

t,,: those vertices of ¢ at height < n (n € Zy);
For x € t,, v(z) € R: potential of the vertex x;

For g, # x € t,,, i(x) € R: current flowing through the edge
('/Eﬂm 1")7

Satisfying Ohm’s law

VVvyVvy VYVYVY

v

v(x) — v(zs) = r(x)i(z) or, equivalently,

i(z) = c(z)(v(r) — v(@.)).



Harmonicity

» Kirchhoff’s current law at some vertex x:

i@) = S i)

j=1
» In term of potential (use Ohm’s law):

Ve

c(@)(v(x) —v(w.)) = Y clzj)(v(z]) - v(x))

Jj=1



Harmonicity

» Kirchhoff’s current law at some vertex x:
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j=1
» In term of potential (use Ohm’s law):
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Harmonicity

» Kirchhoff’s current law at some vertex x:

Vg

i(@) = ila);

Jj=1

» In term of potential (use Ohm’s law):

(c() + Y cla)ela) = cla)e +Z clzi)e
) 3
o) = 5 (clea)ole) + Do ewi)v(z))



Harmonicity

» Kirchhoff’s current law at some vertex x:

Vg

i(@) = ila);

j=1
» In term of potential (use Ohm’s law):

Ve

c(@)(v(x) —v(w.)) = Y clzj)(v(z]) - v(x))

Jj=1

The potential at x is the c-weighted average of the potentials of
its neighbors: v is harmonic at x.



Effective conductance

Fix the potential at some (sets of) vertices and harmonicity elsewhere:
0 if x = g;
v(z)=qU if |z| =n;
L (c@)v(e) + 2, claj)o(e) 1< o] <n—1.



Effective conductance

Fix the potential at some (sets of) vertices and harmonicity elsewhere:

0 if x = g;
v(z)=qU if |z| =n;
L (c(w)o(w) + Xy clg)ola) 1< el <n—1.

» Linear system, such a v exists and is unique;

v

function U — v clearly linear;

> =327 100) = 2052, c(j)u(4), total current entering the
network;

» U — I is also linear;

» define €, (t) = I/U (and %, (t) = U/I): effective conductance
and resistance between ¢ and the n-th level of ¢.



= On & v(0p) =U
11 12 --- 1V1 V¢1 V¢2...V¢VV¢
c(n)V\ﬁQ¢ v
1 2 Vg

€U




Series and parallel laws



Conductance of an m-ary tree



Conductance of a m-ary tree (2)

-m - m Choa(t)
) =X = X L@

In term of effective resistance:

Rn(t) = %(1 + B1 (1)) =

Define the effective resistance of the infinite tree ¢ as

Z(t) = lim Z,(t) € (0,00] (it exists, see later).

n—oo



Conductance of a m-ary tree (2)

-m - m Choa(t)
) =X = X L@

In term of effective resistance:

A1+ B (1) =

m

R (t)
Define the effective resistance of the infinite tree ¢ as

Z(t) = lim Z,(t) € (0,00] (it exists, see later).

n—oo

Then Z(t) < 00 <= A< m.
Phase transition:

> A< m: Zn(t) — Z(t) < oo;
> \=m: Z,(t) = n, increases at linear speed;

> A >m: Zn(t) ~ C(A/m)™ increases at exponential speed.



Random walk on a tree



Random walk and transition kernels

> Pt xt—|[0,1];

> P(z,y) is the probability that a random walker located at the
vertex x will go to y (in one step).

> foranyz €t, > o Plr,y) =1



Random walk and transition kernels

> Pitxt—[0,1];
» P(z,y) is the probability that a random walker located at the
vertex x will go to y (in one step).

> foranyz €t, > o, P(r,y) = 1;
» nearest-neighbour random walk: P(z,y) > 0 if and only if y is a
neighbour of x (its parent or one of its children);

» For z € t, P,: distribution of a path (Xj)r>o in ¢, starting at
(Xo = x) with transition kernel P.

> Example:

P¢<X1 = 1,X2 = 12,X3 = 17X4 = @)
= P(s,1)P(1,12)P(12,1)P(1, ).



Random walk on a weighted tree

A(z1) x A(zvy)
> 1
Tk
Transition kernel P:
1
P(z,r,) = T~ A
1+3250 Alz))
Alzi
P(x,xi) (z0) 1=1,...,v,.

1430 Al)



Particular case: A\-biased RW (A =1/)\)

For some A > 0,

—_

1\\%

zl 2 e TVy
1
A

A
P «) = ;
N

1
P(x,xi):/\_FVx i=1,...,u,

Sitmple RW if A = 1.



Random walk on a tree with conductances

xl x2 s TV,
\\ c(z2)
c(z1) x c(avy)
c(z)
P(x,x.) = ;((i))’
P(in):(;((x;)) 1=1,...,V;.

One can always associate conductances to a RW on ¢:
> \-biased random walk: c(z) = A\~ 1*l;
» in general, for weights A

)= ] Aw.

g<y=x



Recurrence and transience

For x € t, consider the times (min @) = co):

7. =min{k > 0: X =2} and 7] =min{k>1:X; =2}

x

Two regimes:

Recurrence Either for any x in ¢, P,(7,7 < 0o) = 1: in this case, the
walk almost surely visits every vertex infinitely many
times;

Transience Or, for any z in ¢, P, (7,7 < oo) < 1: in this case, almost
surely, the number of visits at any vertex is finite (and
can be zero).



RW + EN = Q

Recall that there is a unique solution v : t,, — R to

0 if x = g;
v(z) =141 if |z| =n;
(Ple, o) + 52 Pl wiyo(a) 1< o <n—1.

Now fix some height n > 0 in ¢ and let
f(z) = Po(r™ < 7).
Then, f(¢) =0 and f(x) =1 if |z| = n.



RW + EN = Q

Recall that there is a unique solution v : t,, — R to

0 if x = g;
v(z) =141 if |z| =n;
(P, 2o + S0 Plasaiyo(a) 1< ja] <n—1.

Now fix some height n > 0 in ¢ and let
f(x) = Pp(r™ < 7).

Then, f(¢) =0 and f(x) =1 if |z| = n.
For 0 < |z| < n, decompose with respect to the value of X;:

fla) = Py(r™ <)

= Pp(Xy = ., < Tp) + ZPJC(Xl =xj, < T@)
j=1

= P(z,2.) P, (") < 15) + > P(2,25) Py (7" < 7).
j=1

So f(z) = v(z) for any z € t,.



RW + EN = O?

Finally, (recall that U = 1),



RW + EN = O?

Finally, (recall that U = 1),

)= 1= Y ) B < 7
j=1
= 7(0) S P, )Py < 1)

Theorem

The random walk associated to the conductances (c(x))zer is transient
ont iff €(t) >0 (i.e. Z(t) < ).



RW + EN = O?

Finally, (recall that U = 1),

Co(t) =T=> c(x)P;j(r™ <7,

Theorem

The random walk associated to the conductances (c(x))zer is transient
ont iff €(t) >0 (i.e. Z(t) < ).

Corollary

A-biased walk on an m-regular tree is transient iff A < m.



Galton-Watson trees






Galton-Watson trees (branching processes)

» Reproduction law: (p;);>0, non-negative numbers adding up to 1;
> p; = P(v =4): probability that an individual has ¢ children;
» assume po = 0 (for clarity) and p; < 1 (for non-silliness);

> key-value: E[v] =3 .-, ip; = m, average number of children.



Galton-Watson trees (branching processes)

» Reproduction law: (p;);>0, non-negative numbers adding up to 1;
» p; = P(v =1): probability that an individual has i children;
» assume po = 0 (for clarity) and p; < 1 (for non-silliness);
» key-value: E[v] =3.., ip; = m, average number of children.
We build an infinite random tree T*
» the root has v, ~ v children;
» each of its children then reproduces independently in the same
way;
» and so on...

Branching property: “Subtrees above any height k£ are independent
trees distributed as T' and are independant of what happens below k.



How big is a GW tree?

For n > 0, let Z,(T) be the number of individuals at generation n in
T. Then,

W) = 22T .

mn

Theorem (Kesten—Stigum, 1966)
W(T) > 0 iff E[vlogv] < oc.



A-biased walk on a Galton-Watson tree

Let’s try to do this...
In the same way as before (Series/Parallel laws),

1 G (TN])
Z)\ 1+%,— 1(T[])



A-biased walk on a Galton-Watson tree

Let’s try to do this...
In the same way as before (Series/Parallel laws),

Z N1 Goa(Th])
14+ %n— 1(T[ i])
By the branching property,

EWT)]:E[_ Al}E[W]:TE[%]

—n—oo 0 (exponentially fast) if A > m.



A-biased walk on a Galton-Watson tree

Let’s try to do this...
In the same way as before (Series/Parallel laws),

Z N1 Goa(Th])
14+ %n— 1(T[ i])
By the branching property,

m Crn-1
-y e e D] - Re[ D).

S E[(gnfl (T)]

V\S

—n—oo 0 (exponentially fast) if A > m.
Fatou’s lemma implies (in case A > m),
E[€(T)] = E[lim €, (T)] < lim inf E[%,(T)] = 0,

so €(T) = 0, almost surely. Cases A =m and X > m are more
difficult.



A-biased walk on a Galton-Watson tree (2)

Theorem (Russell Lyons, 1990)
A-biased RW on a GW-tree is almost surely transient iff A < m.



A-biased walk on a Galton-Watson tree (2)

Theorem (Russell Lyons, 1990)
A-biased RW on a GW-tree is almost surely transient iff A < m.

Theorem (Addario-Berry—Broutin—Lugosi, 2009)
IfE[1?] < 0o and A =m,

Rn(T)/n — 1/W, a.s. and in L.



A-biased walk on a Galton-Watson tree (2)

Theorem (Russell Lyons, 1990)
A-biased RW on a GW-tree is almost surely transient iff A < m.

Theorem (Addario-Berry—Broutin—Lugosi, 2009)
IfE[1?] < 0o and A =m,

Rn(T)/n — 1/W, a.s. and in L.

» Perturbation around this critical case (c(z) = m~1*l x some r.v.)
for an m-regular tree in Addario-Berry et al. and

» on a Galton-Watson tree (Chen-Hu-Lin 2018) with very precise
asymptotics.



A-biased walk on a Galton-Watson tree (3)

Open questions (as far as I know...):
» Does this result holds under the more reasonable assumption
Elvlogr] < oo?
» What about the speed of the convergence %, (T) — € (T) in the
transient case?

» (Famous question:) In the transient case, does €(T) has a
density (w.r.t. Lebesgue measure)?



Conductance of a subdiffusive random weighted tree



Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A(1),A2),...,Aw)) € | ](0,00)".

k>0

D



Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A(1),A2),...,Aw)) € | ](0,00)".
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Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A(1),A2),...,Aw)) € | ](0,00)".

k>0
1V1

11 e
A(H\ /A ()
1 2

Vg



Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A(1),A2),...,Aw)) € | ](0,00)".

k>0

1vy 21 cee 25

NN

Vg



Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A(1),A2),...,Aw)) € | ](0,00)".

k>0

11y 21 <o 219 c Vg,

\/\ i W\ )



Weighted Galton-Watson trees

Random finite sequence (whose length is also random):

A = (A1), AQ2),...,A()) € | |(0,00)".

k>0

11/1 21 e 2y2 . VQVVQ,

11\ /11/1\ /A\(ng) ug\ /Z/QVVD
\A@) |
A(1) Alvy)
@

[
D

— T, random tree with random weights.



Transience criterion

Theorem (Lyons—Pemantle 92, Faraud 11)
Consider, for s > 0,

v

P(s) =logE [Z A(i)s} .

i=1
Then, the random walk on the weighted tree T is transient iff

Vs €[0,1], (s) > 0.



Transience criterion

Theorem (Lyons—Pemantle 92, Faraud 11)
Consider, for s > 0,

v

P(s) =logE [Z A(i)s} .

i=1
Then, the random walk on the weighted tree T is transient iff

Vs €[0,1], (s) > 0.

» Actually, many (4) “sub-regimes” in the recurrent case.

» Very rich model of random walk, popular in the RWRE
community.



Normalized case

From now on, we assuine

(1) = logEZA(i) =0. (Hnorm)



Normalized case

From now on, we assume
1/1(1) = IOgEZ A(Z) =0. (Hnorm)
1=1

We can prove that our RW is recurrent: by the parallel/series law,



Normalized case

From now on, we assume
1/1(1) = IOgEZ A(Z) =0. (Hnorm)
1=1

We can prove that our RW is recurrent: by the parallel/series law,

and by the branching property,

[ ol

hence



Biggin’s theorem

Mandelbrot’s martingale (1974):

My(T) =Y c@)= > ][] Al — Mu(T).

|z|=n |z|=n ¢<y=z

Theorem (Kahane—Peyriere 76, Biggins 77, Lyons 95)
Under the hypotheses

v

> A(i) log A(i)

E[(i A(i)) log™ (Zi: A(z))} < 00, (Hx10g x)

Moo (T) > 0 a.s.

7/},(1) =K € [—OO, 0), (Hderivative)




Recursive distributional equation

Vo= ¥ T AW

|z|=n+1g<y=z

fza S A0 ] AW

i=1 |z|=n+1, i<z i<y=w
= ZA(i)M (T'l4])
i=1
Therefore, M., has the same distribution as
AMY + AQMP + - Aw)MY,

where M(%), Mcg), ...are independent copies of M., independent of
the random vector (A(1),..., A(v)).



Recursive distributional equation

Vo= ¥ T AW

|z|=n+1g<y=z

fza S A0 ] AW

i=1 |z|=n+1, i<z i<y=w
= ZA(Z')M (Ta])
i=1

Therefore, M., has the same distribution as
AMY + AQMP + - Aw)MY,

where M(%), Mcg), ...are independent copies of M., independent of
the random vector (A(1),..., A(v)).

This characterizes the distribution of M., among # Jy probability
measures (Quansheng Liu 97).



The “subdiffusive” regime
Recall that ¢(1) = 0 and ¢’(1) < 0. Consider

k =1inf{s > 1:9(s) = 0} € (1, 0].

U(s) P(s)
1 2 1 2
0‘ W s 0‘ E
1<k<2 K € (2,00

Figure: Schematic behavior of ¢ under our hypotheses

E[(Z H [ZA )" log™ A( )]<oo, if1<r<2
E[(gA@)) } < oo, ifke€e (2 00)].

(Hy)



Heuristics

1(T]i])
z; m and %,(T) — 0.
n]

We expect that E[€,] — 0 “not too fast” so
= E[%,] ~ E[%,—1] = un—1, then
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1(T]i])
z; m and %,(T) — 0.
n]

We expect that E[€,] — 0 “not too fast” so
= E[%,] ~ E[€,-1] = up—1, then

T)/un = ZA —/un’VZA Ti])/un-1,

so if it converges, to some random positive function of T' (say Y (T)),
Y should satisfy



Heuristics

1(T]i])
z; m and %,(T) — 0.
n]

We expect that E[€,] — 0 “not too fast” so
= E[%,] ~ E[€,-1] = up—1, then

T)/un = ZA —/un’VZA Ti])/un-1,

so if it converges, to some random positive function of T' (say Y (T)),
Y should satisfy

so Y should be distributed as M.



Our result

Theorem (R. 2020+)

Under the hypotheses (Hnorm); (Hderivative) ond (Hy), as n goes to
infinity,

6, /E|Cn] = Ms a.s.

1
E[%,] < if k=2 and
nlogn
1
E[@,) ~ —— ifr>2.



Lower bound




Lower bound

so (branching property)

E[%n]:]E[ -1 ]

1 + (gnfl

(gg—l }
1 + %n—l
(cgn—l/un—l)2 i|
1/un—l + cgn—l/un—l
M2
l/un_l =+ Moo] ’

Up—1 — Up :IE[

= U/nflE|:

~ unfl]E|:



Lower bound

so (branching property)

E[¢,] = E Lfnﬁ]'
@2
Up—1 — Un = E[ﬁ}
2
S
2
% tun_E [wfﬁ]

Actually, < is rigorous (some very magic inequality involved).



Lower bound (2)

Some knowledge of M, (tail probability estimates) allow to compute,
as a goes to infinity,

=al™" ifl<k<2;
=a 'loga ifk=2;

M .
~E[M2]/a if k> 2.

E
1/a+ My



Lower bound (2)

Some knowledge of M, (tail probability estimates) allow to compute,
as a goes to infinity,

=al™" ifl<k<2;
=a 'loga ifk=2;

M .
~E[M2]/a if k> 2.

E
1/a+ My

so putting everything together, we obtain

_1 ifl<r<2
_qlogl/up—q if Kk =2;
if kK > 2,

unfl_ungcx

SRS
SESISESRE

-1



Lower bound (2)

Some knowledge of M, (tail probability estimates) allow to compute,
as a goes to infinity,
=al™" ifl<k<2;
[EELESN 0T
a+ Ma =<a ‘loga if k=2;
~E[M2]/a if k> 2.

so putting everything together, we obtain

up_q ifl<r<2
Up—1 — Uy < C xS u2_jlogl/u,—1 if k=2;
uZ_ g if K > 2,

and we can use our mean-value theorem based inequalities to

conclude.



Thank you slide

Thank you for your attention!



Blank slide 1



Blank slide 2



Blank slide 3



Blank slide 4



Blank slide 5



Blank slide 6



Blank slide 7



Blank slide &



Blank slide 9



	Prologue
	Conductance of a tree
	Random walk on a tree
	Galton-Watson trees
	Conductance of a subdiffusive random weighted tree

