Covering Numbers of Rings

Nicholas J. Werner

SUNY College at Old Westbury

April 30, 2020

Nicholas J. Werner (SUNY College at Old Westbury)

Motivation: Covering Numbers of Groups

Let G be a group.

- A cover of G is a collection \mathcal{H} of proper subgroups of G whose union is all of G: $G = \bigcup_{H \in \mathcal{H}} H$
- G is coverable if and only if G is non-cyclic.
- The covering number of *G* is the minimum number of subgroups necessary to cover *G*.
- $\sigma(G) = \text{covering number of } G$.
- Questions to pursue:
 - Given G, what is $\sigma(G)$?
 - Given $n \in \mathbb{N}$, we can find a group G such that $\sigma(G) = n$?

• Easy examples:
$$\sigma(C_2 \times C_2) = 3$$

In fact, for any group *G*, $\sigma(G) \ge 3$.

• Theorem: There is no group G such that $\sigma(G) = 7$. There is no group G such that $\sigma(G) = 11$.

Nicholas J. Werner (SUNY College at Old Westbury)

What about Covering Numbers for Rings?

Let R be a ring.

- A cover of R is a collection C of proper subrings of R whose union is all of R: $R = \bigcup_{S \in C} S$
- *R* is coverable if and only if a cover exists.
- The covering number of *R* is the minimum number of subrings necessary to cover *R*.
- $\sigma(R) = \text{covering number of } R$.
- Questions to consider:
 - Should rings have unity? Should subrings have unity?
 - Which rings are coverable?
 - Given R, what is $\sigma(R)$?
 - Given $n \in \mathbb{N}$, we can find a ring R such that $\sigma(R) = n$?

Conventions about Unity

- All rings contain unity. Why we want this: nice structure theorems for finite rings.
- For S ⊆ R to be a subring, we have three options.
 (S1) S must contain 1_R
 - (S2) S must contain some multiplicative identity $(1_S \neq 1_R, \text{ possibly})$
 - (S3) S need not contain any multiplicative identity

Generally, (S1) and (S2) are too restrictive.

We adopt (S3): a subring of a ring must be an Abelian group under addition, and must be closed under multiplication.

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2$

- (S1) S must contain 1_R
- (S2) S must contain some multiplicative identity $(1_S \neq 1_R, \text{ possibly})$
- (S3) S need not contain any multiplicative identity

For each *n*, let \mathbb{Z}_n be the ring of integers mod *n*.

Example. Let $R = \mathbb{Z}_2 \times \mathbb{Z}_2$

Under (S1), *R* is not coverable. Under (S2) or (S3), *R* is coverable, and $\sigma(R) = 3$.

Example: $\mathbb{Z}_4 \times \mathbb{Z}_2$

(S1) S must contain 1_R

(S2) S must contain some multiplicative identity $(1_S \neq 1_R, \text{ possibly})$

(S3) S need not contain any multiplicative identity

Example. Let $R = \mathbb{Z}_4 \times \mathbb{Z}_2$.

Under (S1) or (S2), *R* is not coverable.

Under (S3), R is coverable, and $\sigma(R) = 3$.

Coverable Rings

A group G is coverable if and only if G is non-cyclic.

What is the analog of "cyclic" for rings?

Notation

Let R be a ring and $a \in R$.

The subring generated by *a*, denoted by $\langle \langle a \rangle \rangle$, is the smallest subring of *R* containing *a*.

• Elements of $\langle \langle a \rangle \rangle$ are "polynomials in *a*":

$$c_na^n + c_{n-1}a^{n-1} + \cdots + c_1a$$

where $n \geq 1$ and each $c_i \in \mathbb{Z}$.

• *R* is coverable if and only if for all $a \in R$, $R \neq \langle \langle a \rangle \rangle$

Examples

- $\mathbb{Z}_n = \text{ ring of integers mod } n$
- $\mathbb{F}_q = \text{ finite field with } q \text{ elements } (q \text{ a prime power})$

Then:

- \mathbb{Z}_n is **not** coverable, because $\mathbb{Z}_n = \langle \langle 1 \rangle
 angle$
- \mathbb{F}_q is **not** coverable. **Proof**. The unit group of \mathbb{F}_q is cyclic and isomorphic to C_{q-1} . Let u be a generator of the unit group. Then, $\mathbb{F}_q = \langle \langle u \rangle \rangle$.
- $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_4 \times \mathbb{Z}_2$ are coverable Both have covering number 3. (If you get bored: Is $\mathbb{Z}_3 \times \mathbb{Z}_3$ coverable? Is $\mathbb{F}_4 \times \mathbb{F}_4$ coverable?)
- Note that ((a)) is commutative.
 Consequently, any noncommutative ring is coverable.

Easy Observations and Known Results

- If R is coverable, then $\sigma(R) \ge 3$
- If R/I is coverable, then R is coverable, and $\sigma(R) \leq \sigma(R/I)$
- We can assume all subrings used in a minimal cover are maximal.
- A. Lucchini, A. Maróti (2012): classified all rings with covering number 3
- A. Lucchini, A. Maróti (2010), E. Crestani (2012): covering number for *M_n*(𝔽_q) (*n* × *n* matrices over 𝔽_q)
- N. W. (2015): covering number for direct products of finite fields
- G. Peruginelli, N. W. (2018): covering number for finite semisimple rings (direct products of matrix rings over finite fields)
- M. Cai, N. W. (2019): covering numbers for 2×2 upper triangular matrix rings over finite fields

Reducing to the case of Finite Rings

Proposition (B. H. Neumann, J. Lewin)

Let R be a coverable ring (with unity) such that $\sigma(R)$ is finite.

Then, there exists a two-sided ideal I of R such that R/I is finite and $\sigma(R) = \sigma(R/I)$.

Proof.

- B. H. Neumann (1954): If $R = \bigcup_{i=1}^{n} S_i$, then each S_i has finite index in R.
- J. Lewin (1967): The intersection ∩ⁿ_{i=1} S_i contains a two-sided ideal I of finite index.
- So: a cover of R can be pushed forward onto R/I. Thus, $\sigma(R/I) \leq \sigma(R)$.
- It is always true that $\sigma(R) \leq \sigma(R/I)$. Therefore, $\sigma(R) = \sigma(R/I)$.

```
Question: \mathbb{R} is coverable, and \sigma(\mathbb{R}) is infinite.
Is \sigma(\mathbb{R}) countable?
What are the maximal subrings of \mathbb{R}?
```

Reducing to Rings of Order p^n

Chinese Remainder Theorem

Let R be a finite ring with unity.

Then, R is isomorphic to a direct product of rings of prime power order:

$$R\cong R_1\times R_2\times\cdots\times R_n$$

where $|R_i| = p_i^{e_i}$ for distinct primes p_1, \ldots, p_n .

Moreover, if S is a subring of R, then

$$S \cong S_1 \times S_2 \times \cdots \times S_n$$

where each S_i is a subring of R_i .

Corollary

Let R be as above.

If R is coverable, then
$$\sigma(R) = \min_{1 \le i \le n} \sigma(R_i)$$
.

Reducing to characteristic p

Proposition (E. Swartz, N. W. (2019–))

Let R be a finite coverable ring of characteristic p^n . Then $\sigma(R) = \sigma(R/pR)$.

Proof.

- Let *M* be a maximal subring of *R*. Show that $pR \subseteq M$.
 - If $pR \not\subseteq M$, then R = M + pR by maximality.

• Let
$$r \in R$$
. Then, $r = m_1 + pr_1$

$$= m_1 + p(m_2 + pr_2) = m_1 + pm_2 + p^2 r_2$$

= $m_1 + pm_2 + p^2(m_3 + pr_3) = m_1 + pm_2 + p^2 m_3 + p^3 r_3$
= $m_1 + pm_2 + p^2 m_3 + \dots + p^{n-1} m_{n-1}$

which is in M.

- ► So, M = R. Contradiction!
- Since pR is contained in every maximal subring, any minimal cover of R can be pushed forward onto R/pR. So, $\sigma(R/pR) \leq \sigma(R)$.
- Certainly, $\sigma(R) \leq \sigma(R/pR)$. Thus, $\sigma(R/pR) = \sigma(R)$.

Recall: there are no groups with covering number 7 or 11 (among others). Are there similar restricted values for covering numbers of rings?

Example

Let $q = p^n$ be a prime power. Then, there exists a ring R with $\sigma(R) = p^n + 1$.

Let
$$R = \left\{ \begin{bmatrix} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$
 : $a, b, c \in \mathbb{F}_q \right\}.$

• Maximal subrings of $R \iff$ linear subspaces of \mathbb{F}_q^2 $\left\{ \begin{bmatrix} a & xb & xc \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix} : a, x \in \mathbb{F}_q \right\} \iff \operatorname{Span} \begin{pmatrix} b \\ c \end{pmatrix}$

• \mathbb{F}_q^2 has q+1 linear subspaces

• We need every maximal subring to cover R

Using the fact that $p^n + 1$ occurs as a covering number

Theorem (Lucchini & Maróti (2010), Crestani (2012))

Let $n \ge 2$. Let d be the smallest prime divisor of n. Let m be the number of subspaces $W \subseteq \mathbb{F}_a^n$ such that:

- dim $(W) \leq \frac{n}{2}$, and
- d does not divide dim(W).

Then,

$$\sigma(M_n(\mathbb{F}_q)) = m + \frac{1}{n} \prod_{\substack{i=1,\\d \nmid i}}^{n-1} (q^n - q^i)$$

In particular,

$$\sigma(M_2(\mathbb{F}_q)) = q + 1 + \frac{1}{2}(q^2 - q)$$

Using the fact that $p^n + 1$ occurs as a covering number

Using the fact that $p^n + 1$ occurs as a covering number

Using covering numbers for $M_2(\mathbb{F}_q)$: $\sigma = q + 1 + \frac{1}{2}(q^2 - q)$

Examples: Direct Products of Finite Fields

R	Coverable?	$\sigma(R)$							
\mathbb{F}_q	Νο	—							
$\mathbb{F}_2\times\mathbb{F}_2$	Yes	3							
$\mathbb{F}_3\times\mathbb{F}_3$	No: ${\it R}=\langle\langle(1,-1) angle angle$								
$\mathbb{F}_3\times\mathbb{F}_3\times\mathbb{F}_3$	Yes	6							
$\mathbb{F}_4 \times \mathbb{F}_4 \times \mathbb{F}_4 \times \mathbb{F}_4$	Yes	4							
$\mathbb{F}_4\times\mathbb{F}_4\times\mathbb{F}_4$	Yes	4							
$\mathbb{F}_4\times\mathbb{F}_4$	Yes	4							
$\mathbb{F}_2\times\mathbb{F}_4$	No: ${\it R}=\langle\langle(1,lpha) angle angle$	_							
where $\mathbb{F}_4=\mathbb{F}_2(lpha)$									

Direct Products of the Same Field

Theorem (N. W. (2015))

Let $R = \prod_i (\prod_i F_i)$, where each F_i is a distinct finite field. Then,

- 1. *R* is coverable if and only if at least one $\prod_i F_i$ is coverable
- 2. if *R* is coverable, then $\sigma(R) = \min\{\sigma(\prod_i F_i)\}$

Theorem (N. W. (2015))

For each prime power q, there exists a positive integer $\tau(q)$ such that

$$\prod_{i=1}^t \mathbb{F}_q$$
 is coverable if and only if $t \geq au(q).$

Moreover, if $t \ge \tau(q)$, then $\sigma(\prod_{i=1}^{t} \mathbb{F}_q) = \sigma(\prod_{i=1}^{\tau(q)} \mathbb{F}_q)$.

How to find $\tau(q)$?

 $\tau(q)$: smallest value of t such that $\prod_{i=1}^{t} \mathbb{F}_{q}$ is coverable.

Example. Let $R = \mathbb{F}_q \times \mathbb{F}_q$.

Suppose there exist $\alpha, \beta \in \mathbb{F}_q$ such that

•
$$\mathbb{F}_q = \mathbb{F}_p(\alpha)$$
 and $\mathbb{F}_q = \mathbb{F}_p(\beta)$

• α and β have different minimal polynomials over \mathbb{F}_p

•
$$g(x) =$$
 minimial polynomial for β

• $f(x) \neq g(x)$

Let $S = \langle \langle (\alpha, \beta) \rangle \rangle$. Then, S = R, because:

•
$$f((\alpha,\beta)) = (f(\alpha), f(\beta)) = (0, f(\beta)) \in S$$

•
$$(0, \frac{f(\beta)}{\beta})^{q-1} = (0, 1) \in S$$

•
$$(0,1)(\alpha,\beta) = (0,\beta) \in S$$

•
$$\{0\} \times \mathbb{F}_q \subseteq S$$

• Likewise, $\mathbb{F}_q imes \{0\} \subseteq S$

Conclusion: t needs to be big enough to prevent this

A Formula for $\tau(q)$

 $\tau(q)$: smallest value of t such that $\prod_{i=1}^{t} \mathbb{F}_{q}$ is coverable.

Theorem

Let $q = p^n$.

Let $\psi(p, n)$ be the number of monic irreducible polynomials in $\mathbb{F}_p[x]$ of degree n. Then

$$au(q) = egin{cases} p & n=1 \ \psi(p,n)+1 & n>1 \end{cases}$$

A formula for $\psi(p, n)$ is known:

$$\psi(p,n) = \frac{1}{n} \sum_{d|n} \mu(d) p^{n/d}$$

where the sum is taken over all positive divisors d of n, and μ is the Möbius $\mu\text{-function}.$

Nicholas J. Werner (SUNY College at Old Westbury)

A Formula for the Covering Number

Theorem Let $q = p^n$. Let $\omega(n) = \begin{cases} 1 & n = 1 \\ \# \text{ prime divisors of } n & n > 1 \end{cases}$ Then, $\sigma(\prod_{i=1}^{\tau(q)} \mathbb{F}_q) = \tau(q)\omega(n) + n\binom{\tau(q)}{2}$

When
$$n = 1$$
, we have $\tau(p) = p$ and $\sigma(\prod_{i=1}^{p} \mathbb{F}_{p}) = p + {p \choose 2} = p + \frac{1}{2}(p^{2} - p)$

Here are the covering numbers of $R = \prod_{i=1}^{\tau(q)} \mathbb{F}_q$ for some other values of q:

q	4	8	9	16	25	27	32	49	64	81	125
$\tau(q)$	2	3	4	4	11	9	7	22	10	19	41
$\sigma(R)$	4	12	16	28	121	117	112	484	290	703	2501

Nicholas J. Werner (SUNY College at Old Westbury)

Using the fact that $p^n + 1$ occurs as a covering number

Using covering numbers for $M_2(\mathbb{F}_q)$: $\sigma = q + 1 + \frac{1}{2}(q^2 - q)$

Using the fact that $p^n + 1$ occurs as a covering number

Using covering numbers for $M_2(\mathbb{F}_q)$: $\sigma = q + 1 + \frac{1}{2}(q^2 - q)$

Using covering numbers for $\prod_{i=1}^{p} \mathbb{F}_{p}$: $\sigma = p + \frac{1}{2}(p^{2} - p)$

Conjecture

There does not exist a ring with unity that has covering number 13.

(Much stronger) Conjecture (maybe too strong?)

For rings with unity, the only possible (finite) covering numbers are

- $p^n + 1$
- those coming from $M_n(\mathbb{F}_q)$
- those coming from $\prod_{i=1}^{\tau(q)} \mathbb{F}_q$

Thank you!

References

- M. Cai, N. Werner. *Covering numbers of upper triangular matrix rings over finite fields*. Involve 12 (2019), no. 6, 1005–1013.
- E. Crestani. *Sets of elements that pairwise generate a matrix ring.* Comm. Algebra 40 (2012), no. 4, 1570–1575.
- L.-C. Kappe. *Finite coverings: a journey through groups, loops, rings, and semigroups,* in Group Theory, Combinatorics, and Computing. Contemporary Mathematics, Vol. 611. Amer. Math. Soc., Providence, RI, 2014. 79–88.
- A. Lucchini, A. Maróti. *Rings as the union of proper subrings*. Preprint (2010). http://arxiv.org/abs/1001.3984v1
- A. Lucchini, A. Maróti. *Rings as the union of proper subrings*. Algebr. Represent. Theory 15 (2012) 1035–1047.
- G. Peruginelli, N. Werner. *Maximal subrings and covering numbers of finite semisimple rings*. Comm. Algebra 46 (2018), no. 11, 4724–4738.
- N. Werner. *Covering numbers of finite rings*. Amer. Math. Monthly 122 (2015), no. 6, 552–566.

Nicholas J. Werner (SUNY College at Old Westbury)