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Motivation: Covering Numbers of Groups
Let G be a group.

A cover of G is a collection H of proper subgroups of G whose union is all of
G : G =

⋃
H∈H

H

G is coverable if and only if G is non-cyclic.

The covering number of G is the minimum number of subgroups necessary to
cover G .

σ(G) = covering number of G .

Questions to pursue:
I Given G , what is σ(G)?
I Given n ∈ N, we can find a group G such that σ(G) = n?

Easy examples: σ(C2 × C2) = 3
In fact, for any group G , σ(G) ≥ 3.

Theorem: There is no group G such that σ(G) = 7.
There is no group G such that σ(G) = 11.
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What about Covering Numbers for Rings?

Let R be a ring.
A cover of R is a collection C of proper subrings of R whose union is all of R:
R =

⋃
S∈C

S

R is coverable if and only if a cover exists.

The covering number of R is the minimum number of subrings necessary to
cover R.

σ(R) = covering number of R.

Questions to consider:
I Should rings have unity? Should subrings have unity?
I Which rings are coverable?
I Given R, what is σ(R)?
I Given n ∈ N, we can find a ring R such that σ(R) = n?

Nicholas J. Werner (SUNY College at Old Westbury) Covering Numbers of Rings April 30, 2020 3 / 28



Conventions about Unity

All rings contain unity.
Why we want this: nice structure theorems for finite rings.

For S ⊆ R to be a subring, we have three options.
(S1) S must contain 1R

(S2) S must contain some multiplicative identity (1S 6= 1R , possibly)

(S3) S need not contain any multiplicative identity

Generally, (S1) and (S2) are too restrictive.

We adopt (S3): a subring of a ring must be an Abelian group under addition,
and must be closed under multiplication.

Nicholas J. Werner (SUNY College at Old Westbury) Covering Numbers of Rings April 30, 2020 4 / 28



Example: Z2 × Z2

(S1) S must contain 1R

(S2) S must contain some multiplicative identity (1S 6= 1R , possibly)

(S3) S need not contain any multiplicative identity
For each n, let Zn be the ring of integers mod n.
Example. Let R = Z2 × Z2

Z2 × Z2

{(0, 0), (0, 1)} {(0, 0), (1, 1)} {(0, 0), (1, 0)}

{(0, 0)}

Subring Lattice

Under (S1), R is not coverable.
Under (S2) or (S3), R is coverable, and σ(R) = 3.
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Example: Z4 × Z2

(S1) S must contain 1R

(S2) S must contain some multiplicative identity (1S 6= 1R , possibly)
(S3) S need not contain any multiplicative identity
Example. Let R = Z4 × Z2.

Z4 × Z2

{
(0, 0), (1, 1),
(2, 0), (3, 1)

} {
(0, 0), (1, 0),
(2, 0), (3, 0)

} {
(0, 0), (0, 1),
(2, 0), (2, 1)

}

{(0, 0), (2, 0)} {(0, 0), (0, 1)}

{(0, 0)}

Subring Lattice

Under (S1) or (S2), R is not coverable.
Under (S3), R is coverable, and σ(R) = 3.
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Coverable Rings

A group G is coverable if and only if G is non-cyclic.

What is the analog of “cyclic” for rings?

Notation
Let R be a ring and a ∈ R.

The subring generated by a, denoted by 〈〈a〉〉, is the smallest subring of R
containing a.

Elements of 〈〈a〉〉 are “polynomials in a”:

cnan + cn−1an−1 + · · ·+ c1a

where n ≥ 1 and each ci ∈ Z.

R is coverable if and only if for all a ∈ R, R 6= 〈〈a〉〉
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Examples

Zn = ring of integers mod n
Fq = finite field with q elements (q a prime power)

Then:
Zn is not coverable, because Zn = 〈〈1〉〉

Fq is not coverable.
Proof. The unit group of Fq is cyclic and isomorphic to Cq−1.
Let u be a generator of the unit group.
Then, Fq = 〈〈u〉〉.

Z2 × Z2 and Z4 × Z2 are coverable
Both have covering number 3.
(If you get bored: Is Z3 × Z3 coverable? Is F4 × F4 coverable?)

Note that 〈〈a〉〉 is commutative.
Consequently, any noncommutative ring is coverable.
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Easy Observations and Known Results

If R is coverable, then σ(R) ≥ 3

If R/I is coverable, then R is coverable, and σ(R) ≤ σ(R/I)

We can assume all subrings used in a minimal cover are maximal.

A. Lucchini, A. Maróti (2012): classified all rings with covering number 3

A. Lucchini, A. Maróti (2010), E. Crestani (2012): covering number for
Mn(Fq) (n × n matrices over Fq)

N. W. (2015): covering number for direct products of finite fields

G. Peruginelli, N. W. (2018): covering number for finite semisimple rings
(direct products of matrix rings over finite fields)

M. Cai, N. W. (2019): covering numbers for 2× 2 upper triangular matrix
rings over finite fields
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Reducing to the case of Finite Rings

Proposition (B. H. Neumann, J. Lewin)
Let R be a coverable ring (with unity) such that σ(R) is finite.
Then, there exists a two-sided ideal I of R such that R/I is finite and
σ(R) = σ(R/I).

Proof.
B. H. Neumann (1954): If R =

⋃n
i=1 Si , then each Si has finite index in R.

J. Lewin (1967): The intersection
⋂n

i=1 Si contains a two-sided ideal I of
finite index.
So: a cover of R can be pushed forward onto R/I. Thus, σ(R/I) ≤ σ(R).
It is always true that σ(R) ≤ σ(R/I). Therefore, σ(R) = σ(R/I).

Question: R is coverable, and σ(R) is infinite.
Is σ(R) countable?
What are the maximal subrings of R?
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Reducing to Rings of Order pn

Chinese Remainder Theorem
Let R be a finite ring with unity.

Then, R is isomorphic to a direct product of rings of prime power order:

R ∼= R1 × R2 × · · · × Rn

where |Ri | = pei
i for distinct primes p1, . . . , pn.

Moreover, if S is a subring of R, then

S ∼= S1 × S2 × · · · × Sn

where each Si is a subring of Ri .

Corollary
Let R be as above.
If R is coverable, then σ(R) = min

1≤i≤n
σ(Ri ).
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Reducing to characteristic p

Proposition (E. Swartz, N. W. (2019–))
Let R be a finite coverable ring of characteristic pn.
Then σ(R) = σ(R/pR).

Proof.
Let M be a maximal subring of R. Show that pR ⊆ M.

I If pR 6⊆ M, then R = M + pR by maximality.
I Let r ∈ R. Then, r = m1 + pr1

= m1 + p(m2 + pr2) = m1 + pm2 + p2r2

= m1 + pm2 + p2(m3 + pr3) = m1 + pm2 + p2m3 + p3r3

= m1 + pm2 + p2m3 + · · ·+ pn−1mn−1
which is in M.

I So, M = R. Contradiction!

Since pR is contained in every maximal subring, any minimal cover of R can
be pushed forward onto R/pR. So, σ(R/pR) ≤ σ(R).
Certainly, σ(R) ≤ σ(R/pR). Thus, σ(R/pR) = σ(R).
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Which Numbers occur as Covering Numbers of Rings?
Recall: there are no groups with covering number 7 or 11 (among others).
Are there similar restricted values for covering numbers of rings?

Example
Let q = pn be a prime power.
Then, there exists a ring R with σ(R) = pn + 1.

Let R =


a b c

0 a 0
0 0 a

 : a, b, c ∈ Fq

.

Maximal subrings of R ←→ linear subspaces of F2
q

a xb xc
0 a 0
0 0 a

 : a, x ∈ Fq

 ←→ Span
(

b
c

)
F2

q has q + 1 linear subspaces

We need every maximal subring to cover R
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Which Numbers occur as Covering Numbers of Rings?

3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20
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Which Numbers occur as Covering Numbers of Rings?

3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20

Using the fact that pn + 1 occurs as a covering number
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Covering Numbers of Matrix Rings

Theorem (Lucchini & Maróti (2010), Crestani (2012))
Let n ≥ 2. Let d be the smallest prime divisor of n.
Let m be the number of subspaces W ⊆ Fn

q such that:
dim(W ) ≤ n

2 , and
d does not divide dim(W ).

Then,

σ(Mn(Fq)) = m + 1
n

n−1∏
i=1,
d-i

(qn − qi )

In particular,
σ(M2(Fq)) = q + 1 + 1

2 (q2 − q)
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Which Numbers occur as Covering Numbers of Rings?

3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20

Using the fact that pn + 1 occurs as a covering number
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Which Numbers occur as Covering Numbers of Rings?

3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20

Using the fact that pn + 1 occurs as a covering number

Using covering numbers for M2(Fq) : σ = q + 1 + 1
2 (q2 − q)
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Examples: Direct Products of Finite Fields

R Coverable? σ(R)

Fq No —

F2 × F2 Yes 3

F3 × F3 No: R = 〈〈(1,−1)〉〉 —

F3 × F3 × F3 Yes 6

F4×F4×F4×F4 Yes 4

F4 × F4 × F4 Yes 4

F4 × F4 Yes 4

F2 × F4 No: R = 〈〈(1, α)〉〉 —

where F4 = F2(α)
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Direct Products of the Same Field

Theorem (N. W. (2015))
Let R =

∏
i (
∏

j Fi ), where each Fi is a distinct finite field. Then,
1. R is coverable if and only if at least one

∏
j Fi is coverable

2. if R is coverable, then σ(R) = min
i
{σ(
∏

j Fi )}

Theorem (N. W. (2015))
For each prime power q, there exists a positive integer τ(q) such that

t∏
i=1

Fq is coverable if and only if t ≥ τ(q).

Moreover, if t ≥ τ(q), then σ(
∏t

i=1 Fq) = σ(
∏τ(q)

i=1 Fq).
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How to find τ(q)?
τ(q): smallest value of t such that

∏t
i=1 Fq is coverable.

Example. Let R = Fq × Fq.

Suppose there exist α, β ∈ Fq such that
Fq = Fp(α) and Fq = Fp(β)
α and β have different minimal polynomials over Fp

I f (x) = minimial polynomial for α
I g(x) = minimial polynomial for β
I f (x) 6= g(x)

Let S = 〈〈(α, β)〉〉. Then, S = R, because:
f ((α, β)) = (f (α), f (β)) = (0, f (β)) ∈ S
(0, f (β))q−1 = (0, 1) ∈ S
(0, 1)(α, β) = (0, β) ∈ S
{0} × Fq ⊆ S
Likewise, Fq × {0} ⊆ S

Conclusion: t needs to be big enough to prevent this
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A Formula for τ(q)
τ(q): smallest value of t such that

∏t
i=1 Fq is coverable.

Theorem
Let q = pn.
Let ψ(p, n) be the number of monic irreducible polynomials in Fp[x ] of degree n.
Then

τ(q) =
{

p n = 1
ψ(p, n) + 1 n > 1

A formula for ψ(p, n) is known:

ψ(p, n) = 1
n
∑
d|n

µ(d)pn/d

where the sum is taken over all positive divisors d of n, and µ is the Möbius
µ-function.
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A Formula for the Covering Number

Theorem
Let q = pn.

Let ω(n) =
{

1 n = 1
# prime divisors of n n > 1

Then,
σ(
∏τ(q)

i=1 Fq) = τ(q)ω(n) + n
(
τ(q)

2
)

When n = 1, we have τ(p) = p and σ(
∏p

i=1 Fp) = p +
(p

2
)

= p + 1
2 (p2 − p)

Here are the covering numbers of R =
∏τ(q)

i=1 Fq for some other values of q:

q 4 8 9 16 25 27 32 49 64 81 125
τ(q) 2 3 4 4 11 9 7 22 10 19 41
σ(R) 4 12 16 28 121 117 112 484 290 703 2501
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Which Numbers occur as Covering Numbers of Rings?

3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20

Using the fact that pn + 1 occurs as a covering number

Using covering numbers for M2(Fq) : σ = q + 1 + 1
2 (q2 − q)
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Which Numbers occur as Covering Numbers of Rings?

3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20

Using the fact that pn + 1 occurs as a covering number

Using covering numbers for M2(Fq) : σ = q + 1 + 1
2 (q2 − q)

Using covering numbers for
∏p

i=1 Fp : σ = p + 1
2 (p2 − p)
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Conjectures

Conjecture
There does not exist a ring with unity that has covering number 13.

(Much stronger) Conjecture (maybe too strong?)

For rings with unity, the only possible (finite) covering numbers are
pn + 1
those coming from Mn(Fq)
those coming from

∏τ(q)
i=1 Fq
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Thank you!
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