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Previous lectures:

Compact groups, spectral theory, Peter–Weyl theorem

Locally compact abelian groups and harmonic analysis

The rise of operator algebras; connections with group theory

Supporting characters for Episodes 2-3:

Quantum physics (Hilbert space, spectral theory),

Positive-definite functions (on abelian groups),
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Today:

Representation theory of noncompact groups

1939–1947
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A tangled trail, continued

George Mackey on our subject

A full-scale attack on extending the theory to the general locally compact case

began rather abruptly at the end of 1946.

Nevertheless three more or less unrelated but extremely important steps were made before 1945

These isolated contributions were augmented in 1947 by more than six contributions from six authors

From the previous lecture:
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Late 1930s ideas to go beyond compact groups

Almost periodic functions
Operator algebras
Mystery third

André Weil on his 1940 book (written 1935-1936)

My main hope was to open the way for a generalization beyond compact groups...

Not only did I not reach the promised land of infinite-dimensional representations,

but I stopped before I had even a glimpse of it.

I lost courage when I saw that for finite-dimensional reps of noncompact simple groups,

the matrix coefficients are not square-integrable.

Perhaps it took the prejudice-free mind of a physicist to go further...
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Gruppenpest

Wigner’s early use of representation theory in quantum mechanics

1927 paper: self-adjoint operators commuting with a finite group rep.

Application to systems of n electrons, using the symmetric group Sn

Work with von Neumann applying finite groups and compact groups

1939

Fundamental paper on the inhomogeneous Lorentz group

Eugene Wigner (1902–1995)
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Gruppenpest

Weyl’s first paper on group theory and quantum mechanics

In quantum mechanics, one can ask two clearly distinct questions:

1. How do I find the linear operator corresponding to a given physical quantity?

2. Once I have the operator, what physical meaning does it have?

To the second question, von Neumann has given a clear and far-reaching answer...

If system has built-in symmetries, Hilbert space of possible states must carry representation

Heisenberg commutation relations encapsulate projective representations of R2n
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Heisenberg group?
Link between projective representations and central extensions: known from Schur (1907-1911)…
But I found no early mention of the Heisenberg group (under this or another name)



Wigner’s 1939 paper

Mathematical content

Description of the unitary irreducible representations of SOp3, 1q ˙ R4

Physical relevance

4 / 15
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Wigner’s 1939 paper

Harish-Chandra at the Institute in 1947

In Princeton I learned that not every function is analytic.

After that I couldn’t be a physicist anymore...
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Wigner’s 1939 paper

Representations of SOp3, 1q ˙ R4

Action of SOp3, 1q on pR4q˚
(physical momenta)

Dirac: Wave functions should be vector-valued functions on pR4q˚

Space of allowed wave functions should be invariant

Construction of representations

4 / 15
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Wigner’s 1939 paper

Representations of SOp3, 1q ˙ R4

Action of SOp3, 1q on pR4q˚
(physical momenta)

Dirac: Wave functions should be vector-valued functions on pR4q˚

Space of allowed wave functions should be invariant

Construction of representations
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"

Little groups
"
:

SO (3)
So (2) ✗ 1122 } reps . known
SO (3,1)
so (2,1) } reps ? ?



The Gelfand–Raikov theorem

First abstract result on unitary representations of (general) locally compact groups

The theorem: for any g ‰ e, there exists a unitary irreducible rep. U such that Upgq ‰ 1

Main tool: positive-definite functions and their connections between unitary representations

What was known to Gelfand and Raikov on positive-definite functions on groups?
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The Gelfand–Raikov theorem

Krein (1939) defines f : G Ñ C to be positive-definite when

Hermitian matrix pf pgig´1
j qq1§i,j§n is non-negative for all n and all g1, . . . , gn P G .

First observation of Gelfand and Raikov:

If U : G Ñ BpHq is a unitary rep. then g fiÑ xv ,Upgqvy is positive-definite for any v .

If f is continuous pos-def, then it arises as a diagonal matrix coefficient of a unitary rep.

Irreducible unitary representations correspond to elementary continuous pos-def functions

So enough to show: for g ‰ e, there exists elementary continuous pos-def f with f pgq ‰ 1.
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The Gelfand–Raikov proof

Geometry of positive-definite functions

Positive-definite functions with f peq § 1 form a convex set.

Extreme points are: 0 and the elementary continuous pos-def functions with f peq “ 1

Connection with linear functionals on L
1pG q

Consider L
1pG q with convolution product and involution f fiÑ f pg´1q�pgq´1

.

If f is continuous pos-def, then linear functional Lp'q “ ≥
G f ' is positive: Lp' ˚ r'q • 0 for all '

Every positive linear functional on L
1pG q arises in this way.

Can consider weak topology on L
1pG q, and thus on continuous pos-def functions.

6 / 15
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The Gelfand–Raikov paper

Geometry of positive-definite functions

Positive-definite continuous functions with f peq § 1 form a convex set P.

Extreme points are: 0 and the elementary continuous pos-def functions with f peq “ 1

Krein–Milman: P is the weakly closed convex hull of its extreme points

Conclusion for the original problem

Enough to show: for g ‰ e, there exists elementary continuous pos-def f s.t. f pgq ‰ 1.

Without asking for elementary, this is easy:

Take left regular representation L on L
2pG q, and ' P CcpG q with support near g and norm 1,

Then f pxq “ x', Lpxq'yL2pGq has desired property.

This f is close to a finite combination of elementary continuous pos-def functions.
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Gelfand, Godement, Segal
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Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

Godement to Cartan, Feb. 1946

(thanks to Christophe Eckes)
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Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

Godement to Cartan, Feb. 1946

(thanks to Christophe Eckes)
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(Coins the term “ C*-algebra “)



Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

Godement to Cartan, Feb. 1946

(thanks to Christophe Eckes)

7 / 15

Godement’s thesis work, 1943-1946:

General theory of spherical functions
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The Lorentz group everywhere

George Mackey on our subject

A full-scale attack [...] began rather abruptly at the end of 1946

[...] in 1947, more than six contributions from six authors

Papers from 1947:

Unitary representations of the Lorentz group, by Gelfand and Naimark,

Irreducible unitary representations of the Lorentz group, by Bargmann,

Infinite irreducible representations of the Lorentz group, by Harish-Chandra,

Unitary representations of the group of transformations of the straight line, by Gelfand and Naimark,

The group algebra of a locally compact group, by Segal,

Irreducible representations of operator algebras, by Segal,

Sur les relations d’orthogonalité de Bargmann, by Godement.
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Gelfand–Naimark on SLp2,Cq
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Harish-Chandra, young physicist

Harish-Chandra at the Institute in 1947

In Princeton I learned that not every function is analytic.

After that I couldn’t be a physicist anymore...
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Bargmann on SLp2,Rq

1947 paper:

Studies reps. of SOp3, 1q, SOp2, 1q, and double cover SLp2,Rq
First steps to approach representation theory:

Lie algebra representations
&

eigenvalues of Lie algebra Hermitian operators

11 / 15
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Bargmann on SLp2,Rq

Finds continuous series and discrete series depending on the sop2q-spectrum

Introduces explicit geometric realizations for each possible spectrum

Finds explicit formulas for matrix coefficients

Studies asymptotic behavior of matrix coefficients

Proves L
2pG q densely spanned by discrete series matrix elts. + wave packets of princ. series
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Godement’s ideas on discrete series

1947 CRAS notes:

Notion of square-integrable representation

Abstract proof of Bargmann’s orthogonality relations

Square-integrability modulo center, in case Z pG q is finite

Taken up by Harish-Chandra, reductive-specific proofs
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Promised this series would stop somewhere around 1947...
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Direct integral decompositions

Beginnings and application to representation theory:

Von Neumann 1938-1939: “rings of operators” are key to “continuous sum” decompositions

Paper published only in 1949, but flourished in work of F. Mautner (thesis 1948)

Where representation theorists still can’t escape operator algebras:

Plancherel formula (1950)

Notion of Type I groups and C
˚-algebras, and “liminal/CCR”
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(Segal, Mautner, Godement, ….)

(Mautner, Kaplansky)



Induced representations

George Mackey

(1916–2006)

Mackey on the general notion of induced representation

In 1949 I stumbled upon a general way of constructing unitary representations

which includes many of the constructions used by Gelfand, Neumark and Bargmann...

I use the phrase “stumbled upon” because I was not seeking such a construction at all.

I had just become aware of the 1930 paper of Stone...

After 1950, depth and breadth in study of particular classes of groups
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1 Compact groups, connections to spectral theory and with harmonic analysis

2 Abelian locally compact groups: harmonic analysis, almost periodic functions and topology

3 Beginnings of operator algebras: group representations and quantum mechanics behind the curtain

4 Beginnings of noncompact group representations, connections with physics and operator algebras
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