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[Previous lectures: J

Compact groups, spectral theory, Peter-Weyl theorem
Locally compact abelian groups and harmonic analysis

The rise of operator algebras; connections with group theory

Supporting characters for Episodes 2-3:

Quantum physics (Hilbert space, spectral theory),

Positive-definite functions (on abelian groups),
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Today:

Representation theory of noncompact groups

1939-1947
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A tangled trail, continued

Papers by Gelfand et al. — 1939-1942

On one-parametrical groups of operators in a normed space

Dokl. Akad. Nauk SSSR 25 (1939) 713-718. Zbl. 22:358

On normed rings

Dokl. Akad. SSSR 23 (1939) 430-432. Zbl. 21:294

To the theory of normed rings. I11.
On the ring of almost periodic functions

Dokl. Akad. Nauk SSSR 28 (1939) $73-574. Zbl. 22:357

@P@raj‘y{‘ a%ebm& =

(with D. A. Rajkov)
On the theory of characters of commutative topological groups

Dokl Akad. Nauk SSSR 28 (1940) 195-198. Zbl 24:120

To the theory of normed rings. IL.
On absolutely convergent trigonometrical series and integrals

Dokl. Akad. Nauk SSSR 26 (1939) S70-572. Zbl. 22:357

Normierte Ringe'

Mat. Sb., Nov. Ser. 9 (51) (1941) 3-23. Zbl. 24:320

Zaur Theorie der Charaktere

der Abelschen topologischen Gruppen

Mat.Sb, Nov. Ser. 9 (51) (1941) 49-50. Zbl. 24:323

(with D. A. Rajkov)

Irreducible unitary representations of locally
bicompact groups

Mat. Sb. 13 (55), 301-316 (1942)

Ideale und primiire Ideale in normierten Ringen

Mat. Sb., Nov. Ser. 9 (51) (1941) 41-48. Zbl. 24:322

(with M. A. Najmark)

On the embedding of normed rings into the ring of operators
in Hilbert space

Mat. Sb., Nov. Ser. 12 (54) (1942) 197-213. Zbl. 60:270
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A tangled trail, continued

[ George Mackey on our subject ]

A full-scale attack on extending the theory to the general locally compact case
began rather abruptly at the end of 1946.
Nevertheless three more or less unrelated but extremely important steps were made before 1945

These isolated contributions were augmented in 1947 by more than six contributions from six authors
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A tangled trail, continued

[ George Mackey on our subject ]

A full-scale attack on extending the theory to the general locally compact case
began rather abruptly at the end of 1946.
Nevertheless three more or less unrelated but extremely important steps were made before 1945

These isolated contributions were augmented in 1947 by more than six contributions from six authors

[ From the previous lecture: ]

ON RINGS OF OPERATORS
Br F. J. Momnay® ax J. v. Neowax
(Received April 3, 1935)
Introduction

1. The problems discussed in this paper arose naturally in continuation of the
work begun in a paper of one of us ((18), chiefly parts I and IT). Their solution
i abstract Hilbert
space under several aspects. First, the formal calculus with operator-rings
leads to them. Second, our attempts to generalise the theory of unitary group-

beyond their classi have always been blocked
by the unsolved questions connected with these problems. Third, various
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A tangled trail, continued

[ George Mackey on our subject ]

A full-scale attack on extending the theory to the general locally compact case
began rather abruptly at the end of 1946.
Nevertheless three more or less unrelated but extremely important steps were made before 1945

These isolated contributions were augmented in 1947 by more than six contributions from six authors

[ From the previous lecture: ]

THE GROUP RING OF A LOCALLY COMPACT GROUP. I
By L. E. Secar!
DepagreNT oF MaTHEMATICS, HARVARD UNIVERSITY
Communicated June 10, 1941
1. The theory of topological groups has an extensive development in
the cases of locally compact? (1. c.) Abelian groups and compact groups.
The theory of almost periodic functions on groups has proved helpful in
investigating these groups, and is of interest in itself. However, there
exist 1. c. groups on which there are defined no almost periodic functions
except for constant functions. It can therefore not be expected that these
aF functions will be useful in investigating general 1. c. groups.
In §2 we define for any 1. c. group G a “group ring” R(G). 11 G is finite
R(G) is the usual group ring over the field of complex numbers. R(G) is 2 / 15




[ Late 1930s ideas to go beyond compact groups J

@ Almost periodic functions
@ Operator algebras
@ Mystery third
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[ Late 1930s ideas to go beyond compact groups J

@ Almost periodic functions
@ Operator algebras
@ Mystery third

[ André Weil on his 1940 book (written 1935-1936) ]

My main hope was to open the way for a generalization beyond compact groups...

Not only did | not reach the promised land of infinite-dimensional representations,
but | stopped before | had even a glimpse of it.

I lost courage when | saw that for finite-dimensional reps of noncompact simple groups,
the matrix coefficients are not square-integrable.

Perhaps it took the prejudice-free mind of a physicist to go further...
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Gruppenpest

[Wigner's early use of representation theory in quantum mechanics]

Eugene Wigner (1902-1995)
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@ 1927 paper: self-adjoint operators commuting with a finite group rep.

@ Application to systems of n electrons, using the symmetric group &,
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Gruppenpest

[Wigner's early use of representation theory in quantum mechanics]

@ 1927 paper: self-adjoint operators commuting with a finite group rep.
@ Application to systems of n electrons, using the symmetric group &,

@ Work with von Neumann applying finite groups and compact groups

@ Fundamental paper on the inhomogeneous Lorentz group

Eugene Wigner (1902-1995)

3/15



Gruppenpest

[ Weyl’s first paper on group theory and quantum mechanics J

In quantum mechanics, one can ask two clearly distinct questions:
1. How do | find the linear operator corresponding to a given physical quantity?

2. Once | have the operator, what physical meaning does it have?

To the second question, von Neumann has given a clear and far-reaching answer...

@ If system has built-in symmetries, Hilbert space of possible states must carry representation
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Gruppenpest

[ Weyl’s first paper on group theory and quantum mechanics J

In quantum mechanics, one can ask two clearly distinct questions:
1. How do | find the linear operator corresponding to a given physical quantity?

2. Once | have the operator, what physical meaning does it have?

To the second question, von Neumann has given a clear and far-reaching answer...

@ If system has built-in symmetries, Hilbert space of possible states must carry representation

@ Heisenberg commutation relations encapsulate projective representations of R>”

Heisenberg group?
Link between projeative representations and central extensions: known from Schur (1907-1911)...

But [ found no early mention of the Heisenberg group (wnder this or another name) 315




Wigner's 1939 paper

ON UNITARY REPRESENTATIONS OF THE INHOMOGENEOUS
LORENTZ GROUP*

By E. WieNER
(Received December 22, 1937)

[ Mathematical content]

Description of the unitary irreducible representations of SO(3,1) x R*
v Or aMler double cover
SL(4.€) kRY

4/15



Wigner's 1939 paper

ON UNITARY REPRESENTATIONS OF THE INHOMOGENEOUS
LORENTZ GROUP*

By E. WieNER
(Received December 22, 1937)

[ Mathematical content]

Description of the unitary irreducible representations of SO(3,1) x R*

[ Physical relevance }

We see thus’ that there corresponds to every invariant quantum mechanical
system of equations such a representation of the inhomogeneous Lorentz group.
This representation, on the other hand, though not sufficient to replace the
quantum mechanical equations entirely, can replace them to a large extent.

4/15



Wigner's 1939 paper

A. Previous treatments

The representations of the Lorentz group have been investigated repeatedly.
The first investigation is due to Majorana,” who in fact found all representations
of the class to be dealt with in the present work excepting two sets of representa-
tions. Dirac® and Proca® gave more elegant derivations of Majorana’s results
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Wigner's 1939 paper

A. Previous treatments

The representations of the Lorentz group have been investigated repeatedly.
The first investigation is due to Majorana,” who in fact found all representations
of the class to be dealt with in the present work excepting two sets of representa-
tions. Dirac® and Proca® gave more elegant derivations of Majorana’s results

Acknowledgement. The subject of this paper was suggested to me as early as

1928 by P. A. M. Dirac who realised even at that date the connection of repre-

sentations with quantum mechanical equations. I am greatly indebted to him
Vo= =

also for many fruitful conversations about this subject, especially during the )
years 1934/35, the outgrowth of which the present paper is. L W

I am indebted also to J. v. Neumann for his help and friendly advice. =
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Wigner's 1939 paper

The difference between the present paper and that of Majorana and Dirac
lies—apart from the finding of new representations—mainly in its greater
mathematical rigor. Majorana and Dirac freely use the notion of infinitesimal
operators and a set of functions to all members of which every infinitesimal
operator can be applied. This procedure cannot be mathematically justified
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The difference between the present paper and that of Majorana and Dirac
lies—apart from the finding of new representations—mainly in its greater
mathematical rigor. Majorana and Dirac freely use the notion of infinitesimal
operators and a set of functions to all members of which every infinitesimal
operator can be applied. This procedure cannot be mathematically justified

[ Harish-Chandra at the Institute in 1947]

In Princeton | learned that not every function is analytic.

After that | couldn't be a physicist anymore...
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Wigner's 1939 paper

The difference between the present paper and that of Majorana and Dirac
lies—apart from the finding of new representations—mainly in its greater
mathematical rigor. Majorana and Dirac freely use the notion of infinitesimal
operators and a set of functions to all members of which every infinitesimal
operator can be applied. This procedure cannot be mathematically justified

[ Harish-Chandra at the Institute in 1947 J

In Princeton | learned that not every function is analytic.

After that | couldn't be a physicist anymore...

Classification of unitary representations according to von Neumann and Mm‘ra.y10

According to Murray and von Neumann, if the original representation was

factorial, all representations into which it can be decomposed will be factorial

also. Thus every representation is equivalent to a sum of factorial repre-

sentations, part of which is “normal,” the other part “pathological.”
It will turn out again that the inhomogeneous Lorentz group has no path-

ological representations. Thus this assumption of Majorana and Dirac also

will be justified a posteriori. Every unitary representation of the inhomogenous

Lorentz group can be decomposed into normal irreducible representations. It
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Wigner's 1939 paper

[Representations of SO(3,1) x R“J

@ Action of SO(3,1) on (R*)* (physical momenta)
@ Dirac: Wave functions should be vector-valued functions on (R*)*

@ Space of allowed wave functions should be invariant

[ Construction of representations ]

4/15



Wigner's 1939 paper

LRepresentations of SO(3,1) x R“]

@ Action of SO(3,1) on (R*)* (physical momenta)

@ Dirac: Wave functions should be vector-valued functions on (R*)*

@ Space of allowed wave functions should be invariant

[ Construction of representations ]

4/15



Wigner's 1939 paper

LRepresentations of SO(3,1) x R“]

@ Action of SO(3,1) on (R*)* (physical momenta)
@ Dirac: Wave functions should be vector-valued functions on (R*)*

@ Space of allowed wave functions should be invariant

[ Construction of representations ]

@

The pure translations form an invariant subgroup of the whole inhomogeneous .
Lorentz group and Frobenius’ method” will be applied in Section 6 to build
up the representations of the whole group out of representations of the subgroup,

4/15



Wigner's 1939 paper

[Representations of SO(3,1) x R“J

@ Dirac: Wave functions should be vector-valued functions on (R*)*
@ Space of allowed wave functions should be invariant

[ Construction of representations ]

@ Action of SO(3,1) on (R*)* (physical momenta) i
>

The momentum vectors of the

1st class are time-like,

2nd class are null-vectors, but not all their components will be zero,

3rd class vanish (i.e., all their components will be zero), 0
4th class are space-like.
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Wigner's 1939 paper

R stabifizers
LRepresentations of SO(3,1) x R“] ok

@ Action of SO(3,1) on (R*)* (physical momenta)
@ Dirac: Wave functions should be vector-valued functions on (R*)*

@ Space of allowed wave functions should be invariant

[ Construction of representations ]

The momentum vectors of the

1st class are time-like,

2nd class are null-vectors, but not all their components will be zero,

3rd class vanish (i.e., all their components will be zero), —
4th class are space-like. 40%
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Wigner's 1939 paper

LRepresentations of SO(3,1) x R“]

@ Action of SO(3,1) on (R*)* (physical momenta)
@ Dirac: Wave functions should be vector-valued functions on (R*)*

@ Space of allowed wave functions should be invariant

[ Construction of representations ] “ ikt Qm% 2
The momentum vectors of the So(3)
1st class are time-like, S0(2) X R fep Eaeun
2nd class are null-vectors, but not all their components will be zero,
3rd class vanish (i.e., all their components will be zero), $0(3,4) Aj reps ??
4th class are space-like. S0(2,4)
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The Gelfand—Raikov theorem

Papers by Gelfand et al. — 1939-1942

@Pga{w alg ehrax  ~

groups of

Dokl. Akad. Nauk SSSR 25 (1939) 713-718. Zbl. 22:358

in a normed space

On normed rings

Dokl. Akad. SSSR 23 (1939) 430-432. Zbl. 21:294

To the theory of normed rings. IL.

To the theory of normed rings. I1L.
On the ring of almost periodic functions

Dokl. Akad. Nauk SSSR 25 (1939) 573-574. Zbl. 22:357

(with D. A. Rajkov)

On the theory of characters of commatative topological groups

Dokl Akad. Nauk SSSR 28 (1940) 195-198. Zbl. 24:120

On absolutely convergent trigonometrical series and integrals

Dokl. Akad. Nauk SSSR 25 (1939) 570-572. Zbl. 22:357

Normierte Ringe'

Mat. Sb., Nov. Ser. 9 (51) (1941) 3-23. Zbl. 24:320

Zur Theorie der Charaktere
der Abelschen topologischen Gruppen

Mat. Sb., Nov. Ser. 9 (51) (1941) 49-50. Zbl. 24:323

Ideale und primiire Ideale in normierten Ringen

Mat. Sb, Nov. Ser. 9 (51) (1941) 41-48. Zbl. 24:322

(with D. A. Rajkov)

unitary of locally

Mat. Sb. 13 (55), 301-316 (1942)

bicompact groups

On the embedding of normed rings into the ring of operators

(with M. A. Najmark)

in Hilbert space

Mat. Sb., Nov. Ser. 12 (54) (1942) 197-213. Zbl. 60:270
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The Gelfand—Raikov theorem
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The Gelfand—Raikov theorem

Irreducible unitary representations of locally
. bicompact groups

Mat. Sb. 13 (55), 301-316 (1942)
[Transl., II. Ser., Am. Math. Soc. 36 (1964) 1-15). Zbl. 166:401

@ First abstract result on unitary representations of (general) locally compact groups

@ The theorem: | for any g # e, there exists a unitary irreducible rep. U such that U(g) # 1
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The Gelfand—Raikov theorem

Irreducible unitary representations of locally
bicompact groups

Mat. Sb. 13 (55), 301-316 (1942)
[Transl., II. Ser., Am. Math. Soc. 36 (1964) 1-15). Zbl. 166:401

@ First abstract result on unitary representations of (general) locally compact groups
@ The theorem: | for any g # e, there exists a unitary irreducible rep. U such that U(g) # 1
@ Main tool: positive-definite functions and their connections between unitary representations

@ What was known to Gelfand and Raikov on positive-definite functions on groups?

Riesz (1933) for G=R weil (1940)
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The Gelfand—Raikov theorem

Irreducible unitary representations of locally
bicompact groups

Mat. Sb. 13 (55), 301-316 (1942)
[Transl., II. Ser., Am. Math. Soc. 36 (1964) 1-15). Zbl. 166:401

@ First abstract result on unitary representations of (general) locally compact groups
@ The theorem: for any g # e, there exists a unitary irreducible rep. U such that U(g) # 1
@ Main tool: positive-definite functions and their connections between unitary representations

@ What was known to Gelfand and Raikov on positive-definite functions on groups?

4
Riesz (1933) for G=R w%o)
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The Gelfand—Raikov theorem

Irreducible unitary representations of locally
bicompact groups

Mat. Sb. 13 (55), 301-316 (1942)
[Transl., II. Ser., Am. Math. Soc. 36 (1964) 1-15). Zbl. 166:401

@ First abstract result on unitary representations of (general) locally compact groups
@ The theorem: for any g # e, there exists a unitary irreducible rep. U such that U(g) # 1
@ Main tool: positive-definite functions and their connections between unitary representations

@ What was known to Gelfand and Raikov on positive-definite functions on groups?

pd
Riesz (1933) for G=R w%o) Kreln (1939) Kolmogorov for probability

P 4
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The Gelfand—Raikov theorem

@ Krein (1939) defines f : G — C to be positive-definite when

Hermitian matrix (f(g,-gj_l))lg,-Jg,, is non-negative for all n and all g1,...,g,€ G.

@ First observation of Gelfand and Raikov:

o If U: G — Z(H) is a unitary rep. then g — (v, U(g)v) is positive-definite for any v.

o If f is continuous pos-def, then it arises as a diagonal matrix coefficient of a unitary rep.
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The Gelfand—Raikov theorem

@ Krein (1939) defines f : G — C to be positive-definite when

Hermitian matrix (f(g,-gj_l))lg,-Jg,, is non-negative for all n and all g1,...,g,€ G.

@ First observation of Gelfand and Raikov:
o If U: G — Z(H) is a unitary rep. then g — (v, U(g)v) is positive-definite for any v.

o If f is continuous pos-def, then it arises as a diagonal matrix coefficient of a unitary rep.

@ Irreducible unitary representations correspond to elementary continuous pos-def functions

%eémvwnfu;- % f- fuirf wk L4 positive - defimite

B g% o h=U-04 («>0)
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The Gelfand—Raikov proof

[ Geometry of positive-definite functions]

@ Positive-definite functions with f(e) < 1 form a convex set.

@ Extreme points are: 0 and the elementary continuous pos-def functions with f(e) =1
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The Gelfand—Raikov proof

[ Geometry of positive-definite functions]

@ Positive-definite functions with f(e) < 1 form a convex set.

@ Extreme points are: 0 and the elementary continuous pos-def functions with f(e) =1

[Connection with linear functionals on [(G) }

@ Consider L}(G) with convolution product and involution f — f(g—1)A(g)~ L.

o If f is continuous pos-def, then linear functional L(p) = {_ fy is positive: L(¢ @) = 0 for all
@ Every positive linear functional on L!(G) arises in this way.

@ Can consider weak topology on L!(G), and thus on continuous pos-def functions.
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The Gelfand—Raikov paper

[ Geometry of positive-definite functions]

@ Positive-definite continuous functions with f(e) < 1 form a convex set &.
@ Extreme points are: 0 and the elementary continuous pos-def functions with f(e) =1

@ Krein—Milman: & is the weakly closed convex hull of its extreme points
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The Gelfand—Raikov paper

[ Geometry of positive-definite functions]

Positive-definite continuous functions with f(e) < 1 form a convex set &.

Extreme points are: 0 and the elementary continuous pos-def functions with f(e) =1

@ Krein—Milman: & is the weakly closed convex hull of its extreme points

[ Conclusion for the original problem ]

@ Enough to show: for g # e, there exists elementary continuous pos-def f s.t. f(g) # 1.

@ Without asking for elementary, this is easy:

o Take left regular representation L on L?(G), and ¢ € %.(G) with support near g and norm 1,
o Then f(x) = (o, L(x)¢)12() has desired property.
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Positive-definite continuous functions with f(e) < 1 form a convex set &.

Extreme points are: 0 and the elementary continuous pos-def functions with f(e) =1

@ Krein—Milman: & is the weakly closed convex hull of its extreme points

[ Conclusion for the original problem ]

@ Enough to show: for g # e, there exists elementary continuous pos-def f s.t. f(g) # 1.

@ Without asking for elementary, this is easy:

o Take left regular representation L on L?(G), and ¢ € %.(G) with support near g and norm 1,
o Then f(x) = (o, L(x)¢)12() has desired property.

This f is close to a finite combination of elementary continuous pos-def functions.
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Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

THE GROUP RING OF A LOCALLY COMPACT GROUP. I
v By I. E. SEGAL!
DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY
Communicated June 10, 1941

1. The theory of topological groups has an extensive development in
the cases of locally compact? (1. c.) Abelian groups and compact groups.
The theory of almost periodic functions on groups has proved helpful in
investigating these groups, and is of interest in itself. However, there
exist 1. c. groups on which there are defined no almost periodic functions
except for constant functions. It can therefore not be expected that these
functions will be useful in investigating general 1. c. groups.

In §2 we define for any 1. c. group G a “‘group ring” R(G). If G is finite
R(G) is the usual group ring over the field of complex numbers. R(G) is
defined in terms of Haar measure on G. It is known that there exists on
any 1. c. group a Haar measure, and this assures the existence of a non-
trivial group ring. In this note we present an account of the ideal theory
of a group ring for the case in which the group is either 1. c. Abelian or com-
pact. However, the conclusions of our principal theorems (Theorems 1
and 2) have meaning, and may well be true, in the case that the group in
question is an arbitrary 1. c. group.
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Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

This 1941 algebra:

Take C (G) and add unit
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Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

The twin papers of 1947

THE GROUP ALGEBRA OF A LOCALLY COMPACT GROUP(})

BY
1. E. SEGAL

IRREDUCIBLE REPRESENTATIONS OF OPERATOR
ALGEBRAS

I. E. SEGAL

(Colns the term “ c*-algebra “)

7/15



Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

Godement’s thesis work, 1943-1946:

General theory of spherical functions
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Gelfand, Godement, Segal

All working towards a general representation theory in the early 1940s

Godement to Cartan, Feb. 1946
(thanks to Christophe Eckes)
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The Lorentz group everywhere

[George Mackey on our subject ]

A full-scale attack [...] began rather abruptly at the end of 1946

[...] in 1947, more than six contributions from six authors

{ Papers from 1947: ]
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The Lorentz group everywhere

[George Mackey on our subject ]

A full-scale attack [...] began rather abruptly at the end of 1946

[...] in 1947, more than six contributions from six authors

{ Papers from 1947: ]

Unitary representations of the Lorentz group, by Gelfand and Naimark,
Irreducible unitary representations of the Lorentz group, by Bargmann,
Infinite irreducible representations of the Lorentz group, by Harish-Chandra,

e 6 6 o

Unitary representations of the group of transformations of the straight line, by Gelfand and Naimark,

The group algebra of a locally compact group, by Segal,

Irreducible representations of operator algebras, by Segal,

@ Sur les relations d’orthogonalité de Bargmann, by Godement.
8/15



Gelfand—Naimark on SL(2, C)

(with M. A. Najmark)

Unitary representations of the Lorentz group

Izv. Akad. Nauk SSSR, Ser. Mat. 11 (1947) 411-504. Zbl. 37:153

In this paper all unitary irreducible representations of the unimodular complex
group of second order are determined; This group is locally isomorphic to the
Lorentz group.

It is proved also that an arbitrary unitary representation can be decomposed
into these irreducible representations.

As far as possible, the theorems are proved in such a way that similar proofs
can be carried out for all complex semisimple groups.

9/15



Gelfand—Naimark on SL(2, C)

(with M. A. Najmark)

Unitary representations of the Lorentz group

Izv. Akad. Nauk SSSR, Ser. Mat. 11 (1947) 411-504. Zbl. 37:153

In this paper all unitary irreducible representations of the unimodular complex
group of second order are determined; This group is locally isomorphic to the
Lorentz group.

It is proved also that an arbitrary unitary representation can be decomposed
into these irreducible representations.

As far as possible, the theorems are proved in such a way that similar proofs
can be carried out for all complex semisimple groups.

9/15



Gelfand—Naimark on SL(2, C)

‘ Struceture theora: ‘

§1. Some subgroups of the group G

§2. Some relations between the group G and the subgroups H,K,Z,Z,D
§3. Some relations between integrals over the group G and over the
subgroups K,H,Z,72,D

§4. Cosets of G by Z and by K

(Z = upper triangular, > = diagonal)
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Gelfand—Naimark on SL(2,C)

‘ Structure theorg: ‘

§1. Some subgroups of the group G

§2. Some relations between the group G and the subgroups H,K,Z,Z,D

§3. Some relations between integrals over the group G and over the
subgroups K,H,Z,72,D

§4. Cosets of G by Z and by K

(Z = upper triangular, > = diagonal)

§5. The principal series of irreducible representations of the group G

§6. The trace of the representation of the principal series

In our representations, to each element g of the Lorentz group we associate a
unitary operator U, in an infinite-dimensional space; this operator has no trace
in the usual sense. However, an operator [,U,du(g) for compact Q has a trace.
Hence, we can define the trace of the operator U, and the character of the
representation [« 6, formula (94)].

Formulas of representation theory are usually quite elegant. Therefore, the
authors have tried not only to give the existence proofs but to write down each
result in the final form. .

Normed rings reappear here...
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§2. Some relations between the group G and the subgroups H,K,Z,Z,D

§3. Some relations between integrals over the group G and over the
subgroups K,H,Z,72,D

§4. Cosets of G by Z and by K

(Z = upper triangular, > = diagonal)

§7. Decomposition of the regular representation of the group G into irreducible
representations; analog of the Plancherel theorem

§5. The principal series of irreducible representations of the group G

§6. The trace of the representation of the principal series

In our representations, to each element g of the Lorentz group we associate a
unitary operator U, in an infinite-dimensional space; this operator has no trace
in the usual sense. However, an operator [,U,du(g) for compact Q has a trace.
Hence, we can define the trace of the operator U, and the character of the
representation [« 6, formula (94)].

Formulas of representation theory are usually quite elegant. Therefore, the
authors have tried not only to give the existence proofs but to write down each
result in the final form. .

Normed rings reappear here...

Further, we determine the decomposition of the regular representation into
irreducible representations. It turns out that the decomposition of the regular
representation does not include all irreducible representations (as in the case of
commutative and compact groups) but only the representations of the so-called
“principal series”. This fact is not due to complications related to the set theory
but is quite “classic”. We obtain also an analog of the Plancherel formula.
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§5. The principal series of irreducible representations of the group G

§6. The trace of the representation of the principal series

In our representations, to each element g of the Lorentz group we associate a
unitary operator U, in an infinite-dimensional space; this operator has no trace
in the usual sense. However, an operator [,U,du(g) for compact Q has a trace.
Hence, we can define the trace of the operator U, and the character of the

representation [« 6, formula (94)].

Formulas of representation theory are usually quite elegant. Therefore, the
authors have tried not only to give the existence proofs but to write down each

result in the final form. .
Normed rings reappear here...

Further, we determine the decomposition of the regular representation into
irreducible representations. It turns out that the decomposition of the regular
representation does not include all irreducible representations (as in the case of
commutative and compact groups) but only the representations of the so-called
“principal series”. This fact is not due to complications related to the set theory
but is quite “classic”. We obtain also an analog of the Plancherel formula.

y series of irred p
of the group G

8. The !

Theorem 10. If x(g) = (x} x x,)(g) and x,(g9)eR’ then the operator U, ., has a
trace and this trace is given by formulas (225) and (226).

This theorem, as in §6, immediately implies:

Theorem 11. For an arbitrary integrable function x(g) an operator U, ., of the

irreducible repres: ion of the 'y series is compact.

piix

Theorem 12. Repr ios of the compl 'y series that correspond to
different p, from the interval 0 < p, <2 are not equivalent to each other and they
are not equivalent to representations of the principal series.

§9. Decomposition of an arbitrary unitary representation of the group G into
representations of the principal and complementary series
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Harish-Chandra, young physicist

( Harish-Chandra at the Institute in 1947]

In Princeton | learned that not every function is analytic.

After that | couldn’t be a physicist anymore...
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Harish-Chandra, young physicist

Infinite irreducible representations of the Lorentz group
By HarisH-CHANDRA, Gonville and Caius College, Cambridge

(Communicated by P. A. M. Dirac, F.R.S.—Received 8 August 1946)
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Harish-Chandra, young physicist

Infinite irreducible representations of the Lorentz group
By HarisH-CHANDRA, Gonville and Caius College, Cambridge

(Communicated by P. A. M. Dirac, F.R.S.—Received 8 August 1946)

Further, as pointed out by Dirac (1945), it is possible to use expinors to describe
the transformation properties of the wave function of a spinning particle, In a
theory based on these expinors it is possible to make the charge density positive
definite for particles of integral spin or the energy density positive definite for
particles of half-integral spin, in contradistinction with the results of the existing
theory (see Pauli 1940). This is made possible by the circumstance that infinite
unitary representations of the Lorentz group exist for both integral and half-
integral spins. By imposing subsidiary conditions on the wave function, it can be
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Harish-Chandra, young physicist

Consider now an irreducible representation of the proper Lorentz group. The
matrices /¥ then form an irreducible set. Denote the representation space by R.
Reduce this space with respect to the subgroup d; consisting of spatial rotations
only. Now &, is a compact group, and it is well known that every representation of
a compact group is completely reducible into a direct sum of irreducible representa-
tions each of which is unitary and of a finite degree (see Pontrjagin 1939, p. 205).
Now every irreducible representation of 8, is characterized by a number & > 0 which
is integral or half-integral. Thus 3 is decomposed into a direct sum of subspaces ;.
which are all irreducible with respect to 8;. It will be assumedf that in this decom-
position there occurs at most only one subspace R, for any particular value of k.
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Harish-Chandra, young physicist

Consider now an irreducible representation of the proper Lorentz group. The
matrices /¥ then form an irreducible set. Denote the representation space by R.
Reduce this space with respect to the subgroup d; consisting of spatial rotations
only. Now d, is a compact group, and it is well known that every representation of
a compact group is completely reducible into a direct sum of irreducible representa-
tions each of which is unitary and of a finite degree (see Pontrjagin 1939, p. 205).
Now every irreducible representation of d; is characterized by a number k> 0 which
is integral or half-integral Thus R is decomposed into a direct, of subspaces R,
which are all irreducible with respect to ;. It wi
position there occurs at most only one

R, for any particular value of k.

t Note added in proof. 1t is possible to avoid this assumption. The proof is then some-
what more complicated but the final result is the same.

10/15



Bargmann on SL(2,R)

Valentine Bargmann (1980-1989)
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Bargmann on SL(2,R)

Valentine Bargmann (1980-1989)

1947 paper:

@ Studies reps. of SO(3,1), SO(2,1), and double cover SL(2,R)
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Bargmann on SL(2,R)

1947 paper:

@ Studies reps. of SO(3,1), SO(2,1), and double cover SL(2, R)

o First steps to approach representation theory:

Lie algebra representations
&

eigenvalues of Lie algebra Hermitian operators
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Bargmann on SL(2,R)

5f. Construction of the infinitestmal representations of ©. The one parameter
subgroup a(t) = exp(ixo) is a compact Abelian group. By comparison of (4.11)
and (4.12) it is seen that exp(4wxo) = e. It follows that U, = exp(—1tH,) has
a pure point spectrum, i.e., there exists a complete orthonormal system of vectors
gn in § such that”

(5.18) Uign = €™ gn;  Hoga = Mgn.

Since a(4w) = e, the proper values A, may be iniegral or half integral. We may
derive (5.18) directly from Stone’s Theorem, or we may use the fact that a
unitary representation of any compact group may be decomposed into finite-
dimensional irreducible parts (which, for Abelian groups, are one-dimensional
and of the form (5.18)). (Cf. [Wigner, p. 194]).

Choose one of the proper vectors of Hy. Denote it by ¢ (|| g || = 1) and let A
be the corresponding proper value, so that Hog = Ag. By (5.17) g € ¥, and hence

H!J = /gcég» u.daﬂwtt o on % fm'm LI\QCSDLZ))

[ﬁb’é b WFM/WLD-g Ho

and  achon of 4L(2,C) on eenvechsts
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unitary representation of any compact group may be decomposed into finite-
dimensional irreducible parts (which, for Abelian groups, are one-dimensional
and of the form (5.18)). (Cf. [Wigner, p. 194]).

Choose one of the proper vectors of Hy. Denote it by ¢ (|| g || = 1) and let A
be the corresponding proper value, so that Hog = Ag. By (5.17) g € ¥, and hence

5g. Classification of the possible reps i I. The i class. As-
sume first that all vectors of the series F'’g, G°g are different from zero. Then
all numbers A =+ s are proper values of H,, and are either all integral or half
integral. Moreover, all numbers p, and o, are positive. (Cf. (5.26)) It follows

Hy s setf-adjoint o on U gom Lie(S0(2))
[ﬂb’& ab Wrmm l)-g Ko

and  achon of 4L(2,C) on eenvechsts

II. The discrete class.

(1) Assume now that for some positive s F'g = 0. This will also hold for all
succeeding s. If h + 1 (h 2 0) is the smallest integer for which this oceurs then
the vectors g, - - -, F*g are all different from zero, and it again follows that all
vectors in the series may be obtained from F"g by applying a power of G to it,
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Bargmann on SL(2,R)

@ Finds continuous series and discrete series depending on the s0(2)-spectrum

@ Introduces explicit geometric realizations for each possible spectrum
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Bargmann on SL(2,R)

@ Finds continuous series and discrete series depending on the s0(2)-spectrum

@ Introduces explicit geometric realizations for each possible spectrum

§6. ions of the i class, C (¢ 2 1) §9. Representations of the discrete classes Di and Dy *
1t is easy to construct unitary representations of € (and hence of &) as long 9a. The multiplier representations Ty. We consider here as the manifold 9t
as they are not required to be irreducible. For example, one may choose in the the open unit circle in the complex plane (2 < 1), i.e., the manifold 9* of

§de. On M the group & is realized by the conformal transformations of the

Euclidean space of the three variables 2°, z', 2*, the manifold 9 (invariant under
unit circle onto itself. We have

Lorentz transformations) defined by the equation guaz'z' = d(= const.), and
consider the transformations y = ax which are induced on I by the Lorentz a+B
transformations of the z*. (Depending on the value of d, M is a hyperboloid, ©.1) 2 =az= Bt a
of one sheet, (d > 0), or of two sheets (d < 0), or it is a cone (d = 0), the light-
cone of special relativity). A volume element which is invariant with respect

(e — B = 1) (ae®,zeM)

(cf. (4.23)). A multiplier of (1) is given by

to the standard transformations T°(a)f = f(a'z) is readily defined on 9. 9.2) wa,2) = a+ B2
Therefore the 7°(a) are unitary operators on the Hilbert space of all square-
integrable functions over 9, and they furnish a representation of ® since (of. (4.25)).  We observe that
T(a)T°(b) = T°(ab). dz' - S - 5 /
93 dz’ _ 1-27 = |ula,2) 0 — 22) (& = az).
A simple analysis shows that these representations are reducible. It turns ©3) dz u,2) 77 = lu@ )|

out that the operators 7°(a) are particularly simple if M is the light-cone. In _— .
what follows we shall show that a further reduction leads to irreducible 16 The construction described in this section is closely related to Dirac’s construction of
tions (of the continuous class C3) the expansor representation [Dirac 2]. Cf. also the Appendix to Part IT of this paper.

2
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(e — B = 1) (ae®,zeM)

(cf. (4.23)). A multiplier of (1) is given by

to the standard transformations T°(a)f = f(a'z) is readily defined on 9. 9.2) wa,2) = a+ B2

Therefore the 7°(a) are unitary operators on the Hilbert space of all square-

integrable functions over 9, and they furnish a representation of ® since (cf. (4.26)).  We observe that

T'()T°(}) = T°(ab). dz' - 5 -2 . ,
9.3 — = 1-27 = a, z, 1 — 22) 7 = az).

A simple analysis shows that these representations are reducible. It turns ©3) dz #(a2) 7 =lula, 2 [ (
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tions (of the continuous class C5).
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Bargmann on SL(2,R)

@ Finds continuous series and discrete series depending on the s0(2)-spectrum

@ Introduces explicit geometric realizations for each possible spectrum

Finds explicit formulas for matrix coefficients

Studies asymptotic behavior of matrix coefficients

@ Proves L2(G) densely spanned by discrete series matrix elts. + wave packets of princ. series
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Godement's ideas on discrete series

[1947 CRAS notes: ]

@ Notion of square-integrable representation

@ Abstract proof of Bargmann’s orthogonality relations
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Godement's ideas on discrete series

[1947 CRAS notes: ]

@ Notion of square-integrable representation
@ Abstract proof of Bargmann’s orthogonality relations

@ Square-integrability modulo center, in case Z(G) is finite

@ Taken up by Harish-Chandra, reductive-specific proofs
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Promised this series would stop somewhere around 1947...

Papers from 194

Unitary representations of the Lorentz group, by Gelfand and Naimark,
Irreducible unitary representations of the Lorentz group, by Bargmann,
Infinite irreducible representations of the Lorentz group, by Harish-Chandra,

Unitary representations of the group of transformations of the straight line, by Gelfand and Naimark,
The group algebra of a locally compact group, by Segal,

Irreducible representations of operator algebras, by Segal,
Sur les relations d'orthogonalité de Bargmann, by Godement.
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Direct integral decompositions

[ Beginnings and application to representation theory: ]

@ Von Neumann 1938-1939: “rings of operators’ are key to “continuous sum” decompositions

@ Paper published only in 1949, but flourished in work of F. Mautner (thesis 1948)
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Direct integral decompositions

[ Beginnings and application to representation theory: ]

@ Von Neumann 1938-1939: “rings of operators’ are key to “continuous sum” decompositions

Paper published only in 1949, but flourished in work of F. Mautner (thesis 1948)

[Where representation theorists still can’t escape operator algebras: ]

@ Plancherel formula (1950)  (segal, Mautner, Godement, ....)

Notion of Type | groups and C*-algebras, and “liminal/CCR"  (Mautwer, Kaplansky)
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Induced representations

[ Mackey on the general notion of induced representation ]

In 1949 | stumbled upon a general way of constructing unitary representations

which includes many of the constructions used by Gelfand, Neumark and Bargmann...

| use the phrase “stumbled upon” because | was not seeking such a construction at all.

I had just become aware of the 1930 paper of Stone...

George Mackey
(1916-2006)

After 1950, depth and breadth in study of particular classes of groups
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@ Compact groups, connections to spectral theory and with harmonic analysis
@ Abelian locally compact groups: harmonic analysis, almost periodic functions and topology
© Beginnings of operator algebras: group representations and quantum mechanics behind the curtain

@ Beginnings of noncompact group representations, connections with physics and operator algebras
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