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RTNCG in our discussions so far:

RT: representation theory of locally compact groups,

NCG: structure of C˚-algebras, connections with representation theory
(+ index theory, K -theory...)

A few papers from 1947...

The group algebra of a locally compact group, by I. Segal,

Irreducible representations of operator algebras, by I. Segal,

Unitary representations of the Lorentz group, by I. M. Gelfand and M. A. Neumark,

Irreducible unitary representations of the Lorentz group, by V. Bargmann,

Infinite irreducible representations of the Lorentz group, by Harish-Chandra,

Sur les relations d’orthogonalité de Bargmann, by R. Godement.
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Aim of the lectures:

Short stories from 1927–1947, to understand the simultaneous birth of the two subjects...

... told from a naive perspective, neither a serious historian’s nor an experienced mathematician’s.

http://afgoustidis.perso.math.cnrs.fr/RTNCG_before_1950.html

Mini-mini-mini:

Informal, short lectures

Small lies are allowed (change of notation, anachronistic shortcuts...)
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Today’s real subject:

The Peter–Weyl paper (1927)

which seems to be the first bridge between representation theory and analysis.
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* Hermann Weyl 's work and background, 1904 - 1924

* The Peter- Weyl paper itself



Some exciting developements from the period 1900–1924

Analysis : Spectral theory

Hilbert’s work on integral equations, Hilbert–Schmidt spectral theory (1900–1910),
F. Riesz, compact operators (1916)

Algebra : finite groups

Representations of nonabelian finite groups, ca. 1900–1905 (Frobenius, Burnside, Schur...)

Physics : relativity

Special and general Relativity
Mathematical investigations: differential geometry, tensor calculus
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Hermann Weyl’s early career

1904–1914 : work on integral equations and spectral theory

(+ Riemann surfaces)

1914–1924 : turns to relativity, and this leads him to:

differential geometry,

tensor calculus,

then finite groups and invariant theory.

1925–1926 : compact groups
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Hermann Weyl’s early career

Hermann Weyl (1887–1955)

&

David Hilbert (1862–1943)

in Göttingen, ca. 1925
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I came to Göttingen a country lad of eighteen.

In the fullness of my ignorance, I made bold to take the course Hilbert had announced...

Most of it went straight over my head. But the doors of a new world swung open for me;

and I had not sat long at Hilbert’s feet before the resolution formed itself in my young heart

that I must by all means read and study whatever this man had written.
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Hilbert 's interests :

* 1885-1893 : invariant theory

* 1893-1898 : algebraic number theory

* 1898-1900 : foundation of geometry

* 1900-1912 : integral equations



Hilbert, integral equations and the birth of spectral theory

Around 1900, Fredholm had studied the equation

upxq ´ �

ª b

a
K px , yqupyqdy “ f pxq;

Fredholm alternative: either nontrivial solutions for f “ 0, or unique solution for all f .

Method: analogy with finite linear systems, and “infinite determinants”.

Parameter �
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(Solve for u , given continuous f on [a,b] and continuous kernel K on [a,b]x[a,b])
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(1- 1An) u = f where Ak : Collais] ) → Collais] )

u > (xmfbklxiyulydy )
a
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(Solve for u , given continuous f on [a,b] and continuous kernel K on [a,b]x[a,b])
-

> solution as méromorphe function of I .

but Fredholm doesn't view this as eigenvalue pb.



Hilbert, integral equations and the birth of spectral theory

Hilbert 1904:

upxq ´ �

ª b

a
K px , yqupyqdy “ 0

if K is symmetric, then analogy with quadratic forms and principal axes theorem.

Countably many values �1,�2, . . . for which there can be a nontrivial solution (“eigenvalues”).

If '1,'2, ... is a corresponding orthonormal family of “eigenfunctions”, then
ª b

a

ª b

a
K ps, tqf psqgptq “

ÿ

k

1
�k

ckpf qckpgq

where ckpf q “ ≥b
a f psq'kpsqds is viewed as a “Fourier coefficient” of f .
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Hilbert, integral equations and the birth of spectral theory

Hilbert 1906:

More generally, can consider quadratic forms on `2pNq,
Bpxq “

ÿ

p,q

bp,q xp xq

and try to find “reduction”
Bpxq “

ÿ

k

�kpx 1
kq2.

In Fredholm case this works, but corresponding forms are “completely continuous” :

If x Ñ x˚ weakly, then Bpxq Ñ Bpx˚q.

But can consider arbitrary “bounded” forms... and Hilbert discovers continuous spectrum.
Very many applications to “singular” Fredholm-type equations, and other problems.
In the terrain of analysis a rich vein of gold has been struck...

5 / 20
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Work of E. Schmidt on Hilbert’s results

Erhard Schmidt

(1876–1959)

1905 thesis

Elegant, constructive approach to eigenvalues and eigenfunctions.

If K px , yq nonsymmetric, use Hilbert’s work for

px , yq fiÑ
ª b

a
K px , zqK py , zqdz .

1908

Geometric perspective on `2pZq and Hilbert’s results... that’s another story.

5 / 20
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Further contributions by F. Riesz

1913 book:

Instead of bilinear form Bpx , yq on `2pZq, consider endomorphism A s.t.

Bpx , yq “ xx ,Ayy`2pZq.

Modern notion of spectrum, functional calculus...

Completely continuous forms become compact operators on `2pZq.

1916 paper:

General spectral theory of compact operators (ostensibly on C pra, bsq).

Frygies Riesz

(1880–1956)
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Hermann Weyl’s early career

1904–1914 : work on integral equations and spectral theory

(+ Riemann surfaces)

1914–1924 : turns to relativity, and this leads him to:

differential geometry,

tensor calculus,

then finite groups and invariant theory.

1925–1926 : compact groups
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Weyl, general relativity and tensor calculus after 1916

My mathematical mind was as blank as any veteran’s,

and I did not know what to do.

I started to study algebraic surfaces;

but before long, Einstein’s memoir came into my hand and set me afire.
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From relativity to group theory

New topics for Weyl...

Differential geometry, work of Élie Cartan

Lie algebras

Tensor calculus

Élie Cartan (1869–1951)

Controversy with E. Study

Study complained about the neglect of invariant theory by Weyl and others.

Led Weyl to several papers on invariant theory and finite groups

End of 1924: complete reductibility of finite-dim. reps. of SLpn,Cq

Eduard Study (1862–1930)
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From relativity to group theory

Weyl’s annual report, January 1924

The theory of finite groups, to which I was originally drawn by the theory of relativity,

is becoming more and more my real area of work.

Weyl’s annual report, January 1925

In the last few months I succeeded in overcoming the difficulties,

based in part on researches of Prof. É. Cartan, Paris,

and partly in collaboration with Prof. Schur, Berlin.

The results combine into one of the most wonderful theories to be found in mathematics.
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Flashback to Frobenius and Schur, 1896–1905

Georg Frobenius (1849–1917) Issai Schur (1875–1941)

Frobenius 1896–1900

Definitions and basic notions for representations of finite groups
Complete reducibility for finite-dimensional representations
Regular representation theorem: contains all irreducibles, with multiplicity the degree
Ñ Implicit in proof: idempotents in the group algebra
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Flashback to Frobenius and Schur, 1899–1905

Schur 1901–1905

1901 thesis: invariant theory and polynomial representations of GLpn,Cq
Ñ connection with representations of Sn

1905: reworking of the Frobenius theory

Emphasis on elementary methods, Schur’s lemma as a key tool
Orthogonality relations for matrix coefficients
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Schur’s 1923–1924 inspiration, and his correspondence with Weyl

Hurwitz 1897

Had used “invariant integration” to study the invariants of SOpn,Rq.

Schur 1923–1924

Realized that Hurwitz’s method carried over his orthogonality relations to compact groups.

Published “New applications of the Integral calculus to problems in the theory of invariants”.

In the next months, for irreducible represenations of SOpn,Rq and Opn,Rq, found
Character formula

Dimension formula
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Schur’s 1923–1924 inspiration, and his correspondence with Weyl

Weyl sent a letter to Schur in October 1924, with

an offprint of his recent “invariant theory” paper,

a draft of his complete reducibility theorem for SLpn,Cq,
Ñ using the “unitary trick”.

Schur replied with a description of his character and dimension formulas,
comparing them to work of Cartan.

Less than two weeks later, Weyl had the results for all semisimple compact Lie groups.
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Weyl’s 1925 papers on compact semisimple Lie groups

Complete reductibility of finite-dimensional representations of complex semisimple Lie algebras

Compact form, compact covering group, unitary trick

Structure theory beyond Cartan–Killing: root reflections, Weyl group...

Character and dimension formulas, modelled on Schur’s.

Left open: analogue of the “regular representation theorem” of Frobenius?
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The Peter–Weyl paper

English translation at:

http://afgoustidis.perso.math.cnrs.fr/peter_weyl_translation.pdf

(Use at your own risk!)

Quite short (19 pages)

Shining synthesis of group theory, spectral theory and Fourier analysis

Very different from the 1925 memoirs:

No algebraic hypotheses: arbitrary compact topological group

Wholly analytic in language

Very different from modern textbook proofs of the result
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Peter–Weyl preliminaries

G : compact topological group, fix Haar measure.

If ⇡ is a continuous representation of G on a finite-dim. vector space V⇡, then ⇡ is unitarizable.

Matrix coefficients

Fix an orthonormal basis pv1, . . . , vn⇡ q of V⇡, and define c
⇡
ij : G Ñ C by

c
⇡
ij pgq :“ xvi ,⇡pgqvjy.

Schur relations:
››c⇡ij

››2
L2pGq “ VolpGq

n⇡
,

and if ⇡ fi ⇡1, then xc⇡ij , c⇡
1

kl yL2pGq “ 0 for all i , j , k , l .
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Alfred Haar 1933 ! Motivoted . . . by Peter- Weyl .

Peter
- Weyl assume G is a compact lie group

to have invariant measure . . .
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The strategy

Peter & Weyl’s statement of the result

Schur’s relations mean the collections pn1{2
VolpG q´1{2

c
⇡
ij q, for the various inequivalent ⇡,

give rise to an orthonormal family in L2pG q.
Peter–Weyl: we’ll prove that this orthonormal system is complete.

Enter ideas from Fourier analysis

For f : G Ñ C continuous, and ⇡ as above, form the “Fourier coefficients”

⇡pf q “
ª

G
f psq⇡psqds, c

⇡
ij pf q “ xvi ,⇡pf qvjy

Then Schur’s relations immediately give “Bessel inequality”
ÿ

⇡

ÿ

i,j

n⇡|c⇡ij pf q|2 § VolpG q ¨ }f }2 .
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On page 5, C ˚-algebras!

For continuous functions on G , can consider

convolution product f ˚ g “ ≥
G f pxy´1qgpyqdy ;

hermitian conjugate f fiÑ rf , where rf pgq “ f pg´1q,
trace of an element: Trpf q “ VolpG q ¨ f p1G q.

Can rewrite Bessel inequality as
ÿ

⇡

n⇡ Tr p⇡pf q⇡pf q‹q § Trpf ˚ rf q.

Notice product rule ⇡pf ˚ gq “ ⇡pf q⇡pgq, and ⇡prf q “ ⇡pf q:. Thus can rewrite as
ÿ

⇡

n⇡ Tr⇡pf ˚ rf q § Trpf ˚ rf q.

Idea: notice all operators ⇡pf ˚ rf q are hermitian positive, and apply Hilbert–Schmidt theory.
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The Peter–Weyl argument, in outline

∞
⇡
n⇡ Tr⇡pf ˚ rf q § Trpf ˚ rf q.

Instead of the operators

⇡pf ˚ rf q P EndpV⇡q for the various possible ⇡,

consider z “ f ˚ rf and the kernel

Kz : G ˆ G Ñ C
px , yq fiÑ pf ˚ rf qpxy´1q.

If �1, . . . ,�n eigenvalues of ⇡pf ˚ rf q, and v1, . . . , vn P V⇡ basis of eigenvectors, then

For fixed i , matrix coefficients ci1, . . . , cin are eigenfunctions of Kz for �1, . . . , �n.

Will reduce theorem to the fact that Trpzq “ Trpf ˚ rf q is the sum of the eigenvalues of Kz .
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The Peter–Weyl argument, in outline

Key step: construct representations ⇡ such that ⇡pzq “ ⇡pf ˚ rf q is nonzero.

The endomorphism Az of L2pG q is compact and positive.

Ñ Nonzero eigenvalues have finite multiplicities, and can be arranged in sequence

�1 ° �2 ° . . .

Peter and Weyl use an algorithm from Schmidt’s thesis to construct e : G Ñ C s.t.

e ˚ z “ z ˚ e “ �1 e and e ˚ e “ e.

Can then find an orthonormal family '1, . . . ,'n in the �1-eigenspace for Kz such that

epst´1q “ '1psq'1ptq ` ¨ ¨ ¨ ` 'npsq'nptq.

Functions '1, . . . ,'n span a finite-dimensional subrepresentation ⇡ of L2pG q, and ⇡pzq ‰ 0.
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The Peter–Weyl argument, in outline

Done so far:

Beginning with arbitrary nonzero f , and setting z “ f ˚ rf , have built ⇡ such that ⇡pzq ‰ 0.
Can assume ⇡ irreducible, form matrix coefficients c

⇡
ij and finite Fourier series

S
p1q
f “

ÿ

i,j

c
⇡
ij pf qc⇡ij

Can consider remainder f p1q “ f ´ S
p1q
f “ ∞

i,j
c
⇡
ij pf qc⇡ij .

Iterate previous arguments:

Get “partial sums” – finite Fourier series S
ppq
f comprising more representations,

and remainders pf ppqq at each step.
Explicit estimate proves remainder f

ppq goes to 0, both uniformly and in L2, as p Ñ 8.
17 / 20



Peter and Weyl’s concluding remarks

1 “Fourier expansion” converges uniformly, not only in L2 sense.

2 All irreducible representations must occur in regular representation.

Proof:

Would be easy if convolution algebra C pG q had a unit. But it doesn’t.

Instead consider approximate unit p1⌫q⌫PN...

Then for all ⇡, must have ⇡p1⌫q Ñ 1, and therefore ⇡p1⌫q must be nonzero for large ⌫.

3 If x ‰ y in G , then there is a unirrep ⇡ such that ⇡pxq ‰ ⇡pyq. (Gelfand–Raikov)

4 Weyl (1926) had applied similar methods for H. Bohr’s theory of almost periodic functions.

ù “first example of character theory for a truly noncompact group, that of translations of R” .
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Gruppentheorie und Quantenmechanik

Weyl on Hilbert’s spectral theory

The story would have been dramatic enough had it ended here.

But then a sort of miracle happened: the spectral theory in Hilbert space

was discovered to be the adequate mathematical instrument of the new quantum physics...

Quantum developments to above themes

von Neumann 1927: abstract Hilbert space, unbounded (self-adjoint) operators, spectral theorem

Weyl 1928: sensational book Gruppentheorie und Quantenmechanik

In the book: a conjecture on unitary representations of R
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Gruppentheorie und Quantenmechanik

Weyl 1928: if A is a bounded self-adjoint operator on a Hilbert space H, then

t fiÑ e
itA is a unitary representation of R.

Weyl 1928: allow A to be unbounded, then maybe all unitary reps. of R arise in this way.

Stone 1930: that is true.
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Next lecture:

abelian locally compact groups (1932–1936),

with an emphasis on the analytic background.
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